PIC18F2220/2320/4220/4320 Rev. C2 Silicon Errata The PIC18F2220/2320/4220/4320 Rev. C2 parts you have received conform functionally to the Device Data Sheet (DS39599**G**), except for the anomalies described below. Any Data Sheet Clarification issues related to the PIC18F2220/2320/4220/4320 will be reported in a separate Data Sheet errata. Please check the Microchip web site for any existing issues. # The following silicon errata apply only to PIC18F2220/2320/4220/4320 devices with these Device/Revision IDs: | Part Number | Device ID | Revision ID | |-------------|---------------|-------------| | PIC18F2220 | 0000 0101 100 | 0 0111 | | PIC18F2320 | 0000 0101 000 | 0 0111 | | PIC18F4220 | 0000 0101 101 | 0 0111 | | PIC18F4320 | 0000 0101 001 | 0 0111 | The Device IDs (DEVID1 and DEVID2) are located at addresses 3FFFFEh:3FFFFh in the device's configuration space. They are shown in binary in the format "DEVID2 DEVID1". All of the issues listed here will be addressed in future revisions of the PIC18F2220/2320/4220/4320 silicon. #### 1. Module: Core (DAW Instruction) The DAW instruction may improperly clear the Carry bit (STATUS<0>) when executed. #### Work around Test the Carry bit state before executing the DAW instruction. If the Carry bit is set, increment the next higher byte to be added, using an instruction such as INCFSZ (this instruction does not affect any Status flags and will not overflow a BCD nibble). After the DAW instruction has been executed, process the Carry bit normally (see Example 1). # EXAMPLE 1: PROCESSING THE CARRY BIT DURING BCD ADDITIONS | MOVLW | 0x80 | ; | .80 (BCD) | |---------|-------------|----|-----------------------| | ADDLW | 0x80 | ; | .80 (BCD) | | | | | | | BTFSC | STATUS, C | ; | test C | | INCFSZ | byte2 | ; | inc next higher LSB | | DAW | | | | | BTFSC | STATUS, C | ; | test C | | INCFSZ | byte2 | ; | inc next higher LSB | | | | | | | This is | repeated fo | or | each DAW instruction. | #### Date Codes that pertain to this issue: All engineering and production devices. #### 2. Module: MSSP (All I²C™ and SPI Modes) The Buffer Full flag bit (BF) of the SSPSTAT register (SSPSTAT<0>) may be inadvertently cleared, even when the SSPBUF register has not been read. This will occur only when the following two conditions occur simultaneously: - The four Least Significant bits of the BSR register are equal to 0Fh (BSR<3:0> = 1111) and - Any instruction that contains C9h in its 8 Least Significant bits (i.e., register file addresses, literal data, address offsets, etc.) is executed. #### Work around Identified work arounds will involve setting the contents of BSR<3:0> to some value other than 0Fh In addition to those proposed below, other solutions may exist. - When developing or modifying code, keep these guidelines in mind: - Assign 12-bit addresses to all variables. This allows the assembler to know when Access Banking can be used. - Do not set the BSR to point to Bank 15 (BSR = 0Fh). - Allow the assembler to manipulate the Access bit present in most instructions. Accessing the SFRs in Bank 15 will be done through the Access Bank. Continue to use the BSR to select all GPR Banks. - If accessing a part of Bank 15 is required and the use of Access Banking is not possible, consider using indirect addressing. - If pointing the BSR to Bank 15 is unavoidable, review the absolute file listing. Verify that no instructions contain C9h in the 8 Least Significant bits while the BSR points to Bank 15 (BSR = 0Fh). #### Date Codes that pertain to this issue: All engineering and production devices. #### 3. Module: MSSP (SPI, Slave Mode) In its current implementation, the \overline{SS} (Slave Select) control signal generated by an external master processor may not be successfully recognized by the PIC[®] microcontroller operating in Slave Select mode (SSPM3:SSPM0 = 0100). In particular, it has been observed that faster transitions (those with shorter fall times) are more likely to be missed than slower transitions. #### Work around Insert a series resistor between the source of the \overline{SS} signal and the corresponding \overline{SS} input line of the microcontroller. The value of the resistor is dependent on both the application system's characteristics and process variations between microcontrollers. Experimentation and thorough testing is encouraged. This is a recommended solution; others may exist. #### Date Codes that pertain to this issue: All engineering and production devices. #### **REVISION HISTORY** Rev A Document (9/2008) Initial release of this errata. Includes silicon issues 1 (Core – DAW Instruction), 2 (MSSP – All I^2C^{TM} and SPI modes) and 3 (MSSP – SPI, Slave Mode). **NOTES:** #### Note the following details of the code protection feature on Microchip devices: - Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. #### **Trademarks** The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. ### WORLDWIDE SALES AND SERVICE #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca. IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 **Toronto** Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 **Australia - Sydney** Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 **China - Beijing** Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 **China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 **China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049 #### ASIA/PACIFIC India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 **Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820 01/02/08