
Data Sheet, DS 2, Apr i l 2001

N e v e r s t o p t h i n k i n g .

Wired
Communicat ions

C161U

Embedded C166 with

USB,USART and SSC

Version 1.3

Edition 2001-04-5

Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany

© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

Data Sheet, DS 2, Apr i l 2001

N e v e r s t o p t h i n k i n g .

C161U

Embedded C166 with

USB,USART and SSC

Version 1.3

Wired

Communicat ions

C161U

For questions on technology, delivery and prices please contact the Infineon
Technologies Offices in Germany or the Infineon Technologies Companies and
Representatives worldwide: see our webpage at http://www.infineon.com

C161U

Revision History: 2001-04-5 DS 2
Previous Version: Preliminary Data Sheet 02.2000,

this is the first non-preliminary version.1)

1)All previous distributed versions are preliminary. They have been replaced by this version.

Page Subjects (major changes since last revision)

89 Correction of the PEC Control Register:
The correct channel numbers are PEC channels 0 and 2.
The name of the corresponding register is PECXC2 and not PECXC1.

101 Correction of EPEC_CTRL_REGx description
333 Correction of USB description: AS2 was removed
459 Correction of the Parameter t14.

Improved formatting (text, figures, tables)

C161U

Page Table of Contents
1 Overview . 11
1.1 Key Features . 11
1.2 Logic Symbol . 14
1.3 Pinning Diagram . 15
1.4 Typical Applications . 16
1.4.1 Personal Computer (PC) Peripherals Applications 16

2 Pin Descriptions . 17
2.1 C161U Pin Diagram . 17
2.2 C161U Pin Definitions and Functions . 18

3 Architectural Overview . 26
3.1 Basic CPU Concepts and Optimizations . 27
3.2 On-Chip System Resources . 33
3.3 Clock Generation Concept . 35
3.4 On-Chip Peripheral Blocks . 39
3.5 Protected Bits . 44

4 Memory Organization . 45
4.1 Internal RAM and SFR Area . 47
4.2 External Memory Space . 52
4.3 Crossing Memory Boundaries . 53

5 Central Processor Unit . 54
5.1 Instruction Pipelining . 56
5.2 Bit-Handling and Bit-Protection . 62
5.3 Instruction State Times . 63
5.4 CPU Special Function Registers . 64
5.5 PEC - Extension of Functionality . 85

6 DMA - External PEC (EPEC) . 94
6.1 EPEC Functionality . 94
6.2 EPEC Implementation . 94
6.3 EPEC Register Description . 96
6.4 EPEC Transfer Example . 103
6.5 Implementation of EPEC Interrupt Generation Unit 104

7 Interrupt and Trap Functions . 105
7.1 Interrupt System Structure . 106
7.2 Interrupt Control Registers . 111
7.3 Operation of the PEC Channels . 115
7.4 Prioritization of Interrupt and PEC Service Requests 118
7.5 Saving the Status during Interrupt Service . 120
7.6 Interrupt Response Times . 122
7.7 PEC Response Times . 124
Data Sheet 2001-04-19

C161U

Page Table of Contents
7.8 External Interrupts .126
7.8.1 Fast External Interrupts .127
7.8.2 External Interrupt Source Control .128
7.8.3 Interrupt Subnode Control .129
7.8.4 Interrupt Control Register .130
7.9 Trap Functions .131

8 Parallel Ports .136
8.1 PORT0 .140
8.1.1 Alternate Functions of PORT0 .144
8.2 PORT1 .147
8.2.1 Alternate Functions of PORT1 .151
8.3 PORT2 .152
8.3.1 Alternate Functions of PORT2 .154
8.4 PORT3 .157
8.4.1 Alternate Functions of PORT3 .159
8.5 PORT4 .164
8.5.1 Alternate Functions of PORT4 .166
8.6 PORT6 .168
8.6.1 Alternate Functions of PORT6 .170

9 Dedicated Pins .174

10 External Bus Interface .177
10.1 External Bus Modes .178
10.2 Programmable Bus Characteristics .187
10.3 READY Controlled Bus Cycles .193
10.4 Controlling the External Bus Controller .195
10.5 EBC Idle State .207
10.6 External Bus Arbitration .208
10.7 XBUS Interface .211
10.8 Initialization of the C161U’s X-peripherals .212

11 General Purpose Timer Unit .214
11.1 Kernel Description .215
11.1.1 Functional Description of Timer Block 1 .215
11.1.1.1 Core Timer T3 .217
11.1.1.2 Auxiliary Timers T2 and T4 .225
11.1.1.3 Timer Concatenation .227
11.1.2 Functional Description of Timer Block 2 .232
11.1.2.1 Core Timer T6 .233
11.1.2.2 Auxiliary Timer T5 .235
11.1.2.3 Timer Concatenation .237
11.1.3 GPT Register Set .239
Data Sheet 2001-04-19

C161U

Page Table of Contents
12 Asynchronous/Synchr. Serial Interface . 253
12.1 Functional Description . 253
12.1.1 Features . 253
12.1.2 Overview . 255
12.1.3 Register Description . 256
12.1.4 General Operation . 267
12.1.5 Asynchronous Operation . 268
12.1.5.1 Asynchronous Data Frames . 270
12.1.5.2 Asynchronous Transmission . 272
12.1.5.3 Asynchronous Reception . 273
12.1.5.4 IrDA Mode . 273
12.1.5.5 RXD/TXD Data Path Selection in Asynchronous Modes 275
12.1.6 Synchronous Operation . 276
12.1.6.1 Synchronous Transmission . 277
12.1.6.2 Synchronous Reception . 277
12.1.6.3 Synchronous Timing . 278
12.1.7 Baudrate Generation . 278
12.1.7.1 Baudrates in Asynchronous Mode . 279
12.1.7.2 Baudrates in Synchronous Mode . 283
12.1.8 Autobaud Detection . 284
12.1.8.1 General Operation . 284
12.1.8.2 Serial Frames for Autobaud Detection . 285
12.1.8.3 Baudrate Selection and Calculation . 286
12.1.8.4 Overwriting Registers on Successful Autobaud Detection 289
12.1.9 Hardware Error Detection Capabilities . 290
12.1.10 Interrupts . 291

13 Real Time Clock (RTC) . 293
13.1 Introduction . 293
13.1.1 Features . 293
13.1.2 Overview . 293
13.2 Function Description . 293
13.2.1 RTC Block Diagram . 294
13.2.2 RTC Control . 294
13.2.3 System Clock Operation . 295
13.2.4 Cyclic Interrupt Generation . 295
13.2.5 Alarm Interrupt Generation . 295
13.2.6 48-bit Timer Operation . 295
13.2.7 Defining the RTC Time Base . 296
13.2.8 Increased RTC Accuracy through Software Correction 298
13.2.9 Hardware dependend RTC Accuracy . 298
13.2.10 Interrupt Sub Node RTCISNC . 298
13.2.11 RTC Disable Functionality . 299
Data Sheet 2001-04-19

C161U

Page Table of Contents
13.2.12 Register Definition of RTC module .300

14 High-Speed Synchronous Serial Interface .305
14.1 Full-Duplex Operation .310
14.2 Half Duplex Operation .313
14.3 Baud Rate Generation .315
14.4 Error Detection Mechanisms .316
14.5 SSC Interrupt Control .318

15 USB Interface Controller .321
15.1 USB Features .321
15.2 USB Protocol .321
15.3 USB Endpoints .322
15.4 USB Interface Controller (USBD) Architecture .331
15.5 Endpoint Info Block .331
15.6 USB Microprocessor Registers .335
15.7 Programmers Guidlines: Using USB and EPEC .345
15.7.1 Writing the configuration-value .346
15.7.2 In-Transfer (Transmit) .346
15.7.3 Out-Transfer (Receive) .347
15.7.4 Reading out Setup-Packets .347
15.7.5 Special case: Setup-Transfer .348
15.7.6 Setting of configuration and alternate settings of interfaces 348
15.7.7 Stalling Endpoints .348
15.7.8 Start of Frame .349
15.7.9 Suspend and Suspendoff .349
15.7.10 Device disconnecting .350

16 Watchdog Timer (WDT) .351
16.1 Operation of the Watchdog Timer .352

17 Bootstrap Loader .355

18 System Reset .360
18.1 System Startup Configuration .367

19 Power Reduction Modes .372
19.1 Idle Mode .372
19.2 Power Down Mode .374
19.3 Status of Output Pins during Idle and Power Down Mode 374
19.4 Extended Power Management .376
19.4.1 Sleep Mode .377

20 System Control Unit (CSCU) .381
20.1 Introduction .381
20.2 Operational Overview .381
Data Sheet 2001-04-19

C161U

Page Table of Contents
20.2.1 Overview of CSCU submodules . 381
20.3 XBUS Peripheral Configuration Block . 383
20.4 System Control Block . 384
20.4.1 Register Write Protection . 384
20.4.2 Clock Output Frequency Control . 388
20.5 Peripheral Management Module . 392
20.6 Identification Registers . 394
20.6.1 Introduction . 394
20.6.2 ID Register Description . 394

21 System Programming . 397
21.1 Stack Operations . 400
21.2 Register Banking . 404
21.3 Procedure Call Entry and Exit . 405
21.4 Table Searching . 407
21.5 Peripheral Control and Interface . 407
21.6 Floating Point Support . 408
21.7 Trap/Interrupt Entry and Exit . 408
21.8 Unseparable Instruction Sequences . 409
21.9 Overriding the DPP Addressing Mechanism . 409
21.10 Pits, Traps and Mines . 411

22 Register Set . 412
22.1 Register Description Format . 412
22.2 CPU General Purpose Registers (GPRs) . 413
22.3 Special Function Registers ordered by Address 415
22.4 Special Function Registers ordered by Name . 426
22.5 Special Notes . 437

23 Instruction Set Summary . 438

24 AC/DC Characteristics . 442
24.1 Absolute Maximum Ratings . 442
24.2 Recommended Operating Conditions . 442
24.3 DC Characteristics . 442
24.4 USB Full-speed (12 Mbit/s) Driver Characteristics 444
24.5 Failsafe operation . 444
24.6 Testing Waveforms . 445
24.7 AC Characteristics . 446
24.7.1 Definition of Internal Timing . 446
24.7.2 System Reset . 448
24.7.3 External Clock Drive XTAL1 . 449
24.7.4 JTAG Interface Timing . 450
24.8 Asynchronous Bus Timing . 451
24.8.1 Memory Cycle Variables . 451
Data Sheet 2001-04-19

C161U

Page Table of Contents
24.8.1.1 AC Characteristics, Multiplexed Bus .451
24.8.1.2 AC Characteristics, Demultiplexed Bus .459
24.8.1.3 AC Characteristics, CLKOUT and READY .466

25 Package Outline .468
Data Sheet 2001-04-19

P-TQFP-100

Embedded C166 with USB,
USART and SSC
C161U

 C161U

Version 1.3 CMOS

1 Overview
C161U is a new low cost member of the Infineon
Communication Controller family using low power
CMOS technology. The device combines the
successful Infineon C166 16-bit full-static core with a
full-speed Universal Serial Bus (USB) interface and
3-Kbyte of Dual-Port on-chip RAM.

C161U adresses Intelligent NT or SOHO PBX designs, off

ering up to 18 MIPS along with
legacy peripherals such as USART, SCI and Timers.
The USB device core has a built-in DMA, which provides maximum flexibility and
performance. Off-loading the CPU in such a manner allows the user to implement value
add software features enabling product differentiation.

C161U provides:
• On-Chip full-static C166 Core supporting a 16- or 8-bit C16x Family System running

up to 36 MHz
• 12 Mbit/s Full-Speed USB Interface Vers. 1.1 compliant
• Support for Audio, Data and Communication Device Classes
• USART Interface with AutoBaud Support (1.2 kbit/s - 230.4 kbit/s)
• AT-Command sensitive AutoBaud Detection

1.1 Key Features
C161U is a new low-cost member of the Infineon Communication Controller family. The
device has the following features:
• C166 Static Core with Peripherals including:

– Full-static core up to 18 MIPS (@ 36 MHz)
Data Sheet 11 2001-04-19

Type Package
C161U P-TQFP-100

C161U

Overview
– Peripheral Event Controller (PEC) for 8 independent DMA channels
– 16 Dynamically Programmable Priority-Level Interrupt System
– Two External Interrupts
– Up to 56 SW-configurative Input/Output (I/O) Ports, some with Interrupt Capabilities
– 8-bit or 16-bit External Data Bus
– Multiplexed or Demultiplexed Address/Data Bus
– Up to 2-Mbyte Linear Address Space for Code and Data
– Four Programmable Chip-Select Lines with Wait-State Generator Logic
– On-Chip 3,072-Byte Dual-Port SRAM for user applications
– On-Chip 1,024-Byte Special Function Register Area
– On-Chip PLL with Output Clock Signal
– Five Multimode General Purpose Timers
– On-Chip Programmable Watchdog Timer
– Glueless Interface to EPROM, Flash EPROM and SRAM
– Low-Power Management Supporting Idle-, Power-Down- and Sleep-Mode and

additional CPU clock slow-down mode with mode control for each peripheral
– USART interface with Auto Baud Rate detection up to 230,400 kbit/s
– USART Baud Rate generation in asynchronous mode up to 2.25 MBaud @ 36 MHz
– USART Baud Rate generation in synchronous mode up to 4.5 MBaud @ 36 MHz
– USART standard Baud Rates generation with very small deviation (230.4 kBaud

< 0.01%, 460.8 kBaud < 0.15 %, 691.2 kBaud < 0.04 %, 921.6 kBaud < 0.15 %) @
36 MHz

– High speed Serial Synchronous Channel Interface (SSC) with ALIS-3.0 and AC97
compatibility up to 18 MBaud in SSC Master Mode and up to 9 MBaud in SSC Slave
Mode @ 36 MHz

• USB Interface including:
– USB Specification 1.1 Compliant
– 12 Mbit/s Full-Speed Mode
– 7 SW-configurable Endpoints, in addition to the bi-directional Control Endpoint 0
– 3 Configurations with 3 alternate settings and 4 interfaces supported
– Each non-Control Endpoint can be either Isochronous, Bulk or Interrupt
– Autonomous DMA Transfer by on-chip DMA for 8 USB endpoints

• On-Chip PLL for CPU and USB clock generation
• External crystal and direct driven input clock of 8 MHz when USB interface is used. In

applications without USB, the input clock frequency can vary between 4 and 20 MHz
dependent on the CPU target clock frequency.

• Single and variable crystal clock input frequency (using USB 8 MHz only)
• Bootstrap Loader support via USART interface
• On-Chip Debug Support (OCDS)
• JTAG Boundary Scan Test Support according to IEEE 1149.1
• 3.3 V Single Supply Voltage, 5 V (TTL-) Tolerant I/Os
• -40 °C to +85 °C operating temperature range
• C161U is available in a 100-Pin P-TQFP package
Data Sheet 12 2001-04-19

C161U

Overview
Power Management
Besides the basic power-save (power-reduction) modes Idle mode and Power down
mode, the C161U offers a number of additional power management features, which can
be selectively used for effective power reduction. Refer to Table 1.

Note: Peripherals Management enables the user to control (via software) the clock of
selected peripherals. Refer to register SYSCON 3.

C161U power requirement in individual modes is described in DC Characteristics,
Table 94

Table 1 Overview of Power Management Modes
Mode Description CPU Wake-up
Running
mode

The system is fully operational. All clocks and
peripherals are set and enabled, as determined
by software. Full power consumption.

Slow
down
mode

The CPU runs slower. The oscillator runs at a
lower frequency; the clock is divided by a
programmable factor (1...32). Peripherals
management is possible; incl. PLL On/Off.
Refer to register SYSCON 2.

Controlled by software.

Idle
mode

When the processor has no active tasks to
perform, it enters Idle mode by the IDLE
command. All peripherals remain powered and
clocked, however, peripherals management is
possible. For detailed description see
Chapter 19.1, "Idle Mode".

• Any interrupt
• Reset

Sleep
mode

The program stops execution and turns off the
clocks for:
• almost the entire chip, but RTC, or
• the entire chip.

The whole clock system is stopped.
Refer to register SYSCON 1.

• All enabled external
interrupts

• NMI
• RTC timer (in

asynchronous mode)
• PEC requests
• ASC interface
• SSC interface

Power
down
mode

The program stops execution (instruction
PWRDN) and turns off the clocks for the CPU
and for all peripherals; ports optionally.

• Reset
Data Sheet 13 2001-04-19

C161U

Overview
1.2 Logic Symbol
C161U logic symbol is shown in Figure 1 below.

Figure 1 C161U Logic Symbol

P-TQFP-100

C161U Address/Data
Bus

General Purpose
I/O

Full Speed
USB

Clock

USARTSSC/SCI
Data Sheet 14 2001-04-19

C161U

Overview
1.3 Pinning Diagram
Figure 2 shows the pinning diagram of the C161U.

Figure 2 Pinning Diagram of the C161U

P
1H

.3

P
0H

.4
P

0H
.5

P
0H

.6

P
0H

.7
V

S
S

V
D

D
P

1L
.0

P
1L

.1
P

1L
.2

P
1L

.3
P

1L
.4

P
1L

.5
P

1L
.6

P
1L

.7
V

S
S

V
S

S
V

D
D

P
0H

.2
P

0H
.3

V
D

D

P
1H

.1
P

1H
.0

P
1H

.2

P
1H

.4

100TQFPpinningC161U

T
C

K

P
3.

8

V
D

D
V

S
S

C
LK

M
O

D
E

P
3.

6
P

3.
5

P
3.

3
V

D
D

A
X

T
A

L2
X

T
A

L1
V

S
S

A
V

S
S

T
M

S
T

D
O

T
D

I

V
S

S

P
3.

15

P
3.

12

P
3.

10

V
D

D

P
3.

9

P
3.

11

P
3.

13

P
4.

0

P0L.1
P0L.2
P0L.3

VSS
VDD

P0L.4
P0L.5
P0L.6
P0L.7
P0H.0
P0H.1

ALE

P0L.0

VSS
VDD

BRKIN

RD
WR / WRL
READY

EA

VDD
DPLS

DMNS
VSSU

P6.7
P6.6
P6.5
VDD
VSS
P6.3
P6.2
P6.1
P6.0

TEST

P2.1
P2.0

RSTIN
RSTOUT

NMI

TRST

C161U
SAF C161U - LF

P-TQFP-100

515560657075

26

30

35

40

45

50

100

95

90

85

80

76

1 5 251510 20
P4.1
P4.2
P4.3
P4.4
BRKOUT

P1H.7
P1H.6
P1H.5

VSS
VDD
Data Sheet 15 2001-04-19

C161U

Overview
1.4 Typical Applications

1.4.1 Personal Computer (PC) Peripherals Applications

Figure 3 C161U in Personal Computer Peripherals

USB Host Interface

USB

V.24-Interface

V.24

Flash

C166
Core

RAM

EPEC

C161U

SRAM

Joystick

Multimedia
Keyboard

AUDIO
Device

CD-ROM
Player

XBUS

ex
te

rn
al

 B
U

S

EBC
Data Sheet 16 2001-04-19

C161U

Pin Descriptions
2 Pin Descriptions

2.1 C161U Pin Diagram

Figure 4 C161U Pin Configuration

P-TQFP-100

C161U

P0L(7:0) I/O or AD(7:0)

P0H(7:0) I/O or AD(15:8)

P1L(7:0) I/O or A(7:0)
P1H(7:0) I/O or A(15:8)

P4(4:0) I/O or A(20:16)

RSTIN
NMI

RSTOUT
I/O or CLKOUT

WR/WRL
READY

EA

RD
ALE

EXnINT(1:0) P2(1:0)

I/O or HLDA
I/O or HOLD

I/O or CS(3:0)

I/O or BREQ

P6(3:0)

P6(6)
P6(5)

P6(7)

DPLS
DMNS

XTAL1
XTAL2

TDO
TCK
TMS
TDI

JTAG
PortUSB

Port

I/O or BHE or WRHP3(12)

P3(15)

P3(6:5,3)GPT1/2
Port

Fast

I/O or MRST
I/O or MTSR

SSC/SCI

Port I/O or SCLK
Serial

P3(8)
P3(9)
P3(13)

or I/OInterrupts
External

I/O or TxD
I/O or RxD

P3(10)
P3(11)

USART/ASC
Port

MicroController
Bus

TRST

TEST

CLKMODE

BRKOUT

BRKIN
OCDS
Data Sheet 17 2001-04-19

C161U

Pin Descriptions
2.2 C161U Pin Definitions and Functions

Table 2 Microprocessor Bus and Control Signals
Pin No. Symbol Input (I)

Output (O)
Function

39-42, 45-48,
49-50, 53-58

PORT0:
P0L0-
P0L7,
P0H0-
P0H7

I/O PORT0 consists of the two 8-bit bidirectional
I/O ports P0L and P0H. It is bitwise
programmable for input or output via direction
bits. For a pin configured as input, the output
driver is put into high-impedance.
In case of an external bus configuration,
PORT0 serves as the address (A) and
address/data (AD) bus in demultiplexed bus
modes.
Demultiplexed bus modes:
Data Path Width: 8-bit 16-bit
P0L0-P0L7: D0-D7 D0-D7
P0H0-P0H7: I/O D8-D15
Multiplexed bus modes:
Data Path Width: 8-bit 16-bit
P0L0-P0L7: AD0-AD7 AD0-AD7
P0H0-P0H7: A8-A15 AD8-AD15

61-68, 71-78
PORT1:
P1L0-
P1L7,
P1H0-
P1H7

I/O PORT1 consists of the two 8-bit bidirectional
I/O ports P1L and P1H. It is bitwise
programmable for input or output via direction
bits. For a pin configured as input, the output
driver is put into high-impedance.
PORT1 is used as the 16-bit address bus (A)
in demultiplexed bus modes and also after
switching from a demultiplexed bus mode to a
multiplexed bus mode (see Chapter 8.3).
Data Sheet 18 2001-04-19

C161U

Pin Descriptions
23, 26-29 P4.0 -
P4.4

I/O

O

O

PORT4 is an 5-bit bidirectional I/O port. It is
bit-wise programmable for input or output via
direction bits. For a pin configured as input, the
output driver is put into high-impedance state.
In case of an external bus configuration, Port4
can be used to output the segment address
lines:
P40 A16 Least Significant Segment
Address Line
...
P4.4 A20 Most Significant Segment
Address Line

81 RSTIN I Reset Input with Schmitt-Trigger
characteristics. A low level at this pin for a
specified duration while the oscillator is
running resets the device. An internal pull-up
resistor permits power-on reset using only a
capacitor connected to VSS.

82 RSTOUT O Internal Reset Indication Output. This pin is set
to a low level when the C161U is executing
either a hardware-, software- or a watchdog
timer reset. RSTOUT remains low until the
C161U has initialized itself.

83 NMI I Non-Maskable Interrupt Input. A high to low
transition at this pin causes the CPU to vector
to the NMI trap routine. When the PWRDN
(power down) instruction is executed, the NMI
pin must be low in order to force the CPU to go
into power down mode. If NMI is high, when
PWRDN is executed, the device will continue
to run in normal mode. If not used, pin NMI
should be pulled high externally.

Table 2 Microprocessor Bus and Control Signals (cont’d)
Pin No. Symbol Input (I)

Output (O)
Function
Data Sheet 19 2001-04-19

C161U

Pin Descriptions
84-87, 90-92 P6.0-
P6.3,
P6.5-
P6.7

O
I/O

O
...
O
I

O
O

Port6 is an 7-bit bidirectional I/O port. It is bit-
wise programmable for input or output via
direction bits. For a pin configured as input, the
output driver is put into high-impedance state.
Port6 outputs can be configured as push/pull
or open-drain drivers.
P6.0 CS0 Chip Select 0 Output
...
P6.3 CS3 Chip Select 3 Output
P6.5 HOLD External Master Hold

Request Input
P6.6 HLDA Hold Acknowledge Output
P6.7 BREQ Bus Request Output

97-98 P2.0-
P2.1

I/O

I

I

PORT2 is an 2-bit bidirectional I/O port. It is
bit-wise programmable for input or output via
direction bits. For a pin configured as input, the
output driver is put into high-impedance state.
Port2 outputs can be configured as push/pull
or open-drain drivers.
P2.0 EX0IN Fast External Interrupt 0

 Input
P2.1 EX1IN Fast External Interrupt 1

Input
34 RD O External Memory Read Strobe. RD is

activated for every external instruction or data
read access.

35 WR/WRL O External Memory Write Strobe. In WR mode
this pin is activated for every external data
write access. In WRL mode this pin is
activated for low byte data write accesses on a
16-bit bus, and for every data write access on
an 8-bit bus. See WRCFG in register
SYSCON for mode selection.

37 ALE O Address Latch Enable Output. Can be used for
latching the address into external memory or
an address latch in the multiplexed bus
modes.

Table 2 Microprocessor Bus and Control Signals (cont’d)
Pin No. Symbol Input (I)

Output (O)
Function
Data Sheet 20 2001-04-19

C161U

Pin Descriptions
36 READY I Ready Input. When the ready function is
enabled, a high level at this pin during an
external memory access will force the
insertion of memory cycle time waitstates until
the pin returns to an low level.

38 EA I External Access Enable pin. A low level at this
pin during and after Reset forces the CPU to
begin instruction execution out of external
memory.
Note: This pin must always be set to ’0’.

Table 2 Microprocessor Bus and Control Signals (cont’d)
Pin No. Symbol Input (I)

Output (O)
Function
Data Sheet 21 2001-04-19

C161U

Pin Descriptions
Table 3 General Purpose I/O and Control Signals
Pin No. Symbol Input (I)

Output (O)
Function

10-12, 16-22 P3.3,
P3.5-
P3.6,
P3.8-
P3.13,
P3.15

I/O
I/O
I/O

O

I

I

I

I/O

I/O

O

I/O

O

O

I/O

O

PORT3 is a 10-bit bidirectional I/O port. It is
bit-wise programmable for input or output via
direction bits. For a pin configured as input, the
output driver is put into high-impedance state.
Port3 outputs can be configured as push/pull
or open-drain drivers.
The following PORT3 pins also serve for
alternate functions:
P3.3 T3OUT GPT1 Timer T3 Toggle Latch

 Output
P3.5 T4IN GPT1 Timer T4 Input for

 Count/Gate/Reload/Capture
Input for Timer 3 T3EUD
Input for Timer 2 T2EUD

P3.6 T3IN GPT1 Timer T3 Count/Gate/
 Input

P3.7 T2IN GPT1 Timer T2 Input for
Count/Gate/Reload/Capture

P3.8 MRST SSC Master-Rec./Slave-
Transmit I/O

P3.9 MTSR SSC Master-Transmit/Slave-
Rec. O/I

P3.10 TxD0 ASC Clock/Data Output
(Async./Sync.)

P3.11 RxD0 ASC Data Input (Async.) or
I/O (Sync.)

P3.12 BHE External Memory High Byte
 Enable Signal

WRH External Memory High Byte
Write Strobe

P3.13 SCLK SSC Master Clock Output/
Slave Clock Input (CPU

 Clock)
P3.15 CLKOUT System Clock Output

(CPU Clock)
Data Sheet 22 2001-04-19

C161U

Pin Descriptions
Table 4 USB Interface Signals
Pin No. Symbol Input (I)

Output (O)
Function

95 DPLS I/O USB Data+ input/output signal.
94 DMNS I/O USB Data- input/output signal.

Table 5 Clock Interface Signals
Pin No. Symbol Input (I)

Output (O)
Function

7 XTAL1 I External crystal input to the on-chip
oscillator. Clock input for direct driven clock
without using an external crystal. Function is
determined by the CLKMODE pin.

8 XTAL2 O Output from the oscillator amplifier circuit. To
clock the C161U from an external source,
drive XTAL1, while XTAL2 leaving
unconnected. Minimum and maximum high/
low and rise/fall times specified in the AC
characteristics must be observed.

13 CLKMODE I Clock Mode Select pin. CLKMODE must be
set to LOW if an external crystal is used. Set
to HIGH signal enables the direct clock input
path and switches the internal oscillator in
power down mode.

Table 6 Boundary Scan / JTAG / Test Interface Signals/OCDS
Pin No. Symbol Input (I)

Output (O)
Function

1 TCK I Boundary Scan Test Clock Input. There is no
internal pull device implemented. During
normal operation, it is recommended to
connect TCK to VSS.

2 TDI I Boundary Scan Test Data Input. An internal
pull-up device is connected to TDI. During
normal operation, TDI can be left open.
Data Sheet 23 2001-04-19

C161U

Pin Descriptions
3 TDO O Boundary Scan Test Data Output. During
normal operation, the output TDO can be left
open.

4 TMS I Boundary Scan Test Mode Select Input,
internal pull-up.

100 TRST I Boundary Scan Test Reset. There is an
internal pull-up device implemented. TRST is
low active, which means the boundary scan
tap controller resets while TRST = ’0’.
For normal operation,
• TRST can be connected to a LOW signal

(using ’0’ signal or external pull-down
device) to keep the tap controller in reset
mode, or

• TRST can be left open. In this case, the
reset is performed using the TMS/TCK
signals according to IEEE 1149.1

In boundary scan test mode, TRST can be left
open, since the internal pull-up device pro-
vides the necessary HIGH signal.

99 TEST I Test Mode Enable Pin.
HIGH signal enables the chip internal test
mode.
Note: In normal operation, TEST must be

connected to VSS (LOW signal) since
no internal Pull-Down resistor is
provided.

31 BRKIN I In OCDS mode, a falling edge from HIGH to
LOW signal on brkin forces the system to stop.
An internal pull-up resistor is provided.

30 BRKOUT O In OCDS mode, a falling edge on brkout
indicates the trigger of a pre-selected OCDS
event.

Table 6 Boundary Scan / JTAG / Test Interface Signals/OCDS
Pin No. Symbol Input (I)

Output (O)
Function
Data Sheet 24 2001-04-19

C161U

Pin Descriptions
Table 7 Power/Ground Signals
Pin No. Symbol Input (I)

Output (O)
Function

15, 25, 33, 44,
52, 60, 70, 80,
89, 96

VDD - Digital Supply Voltage
Note: All pins must be connected to VDD.

5, 14, 24, 32,
43, 51, 59, 69,
79, 88

VSS - Digital Ground
Note: All pins must be connected to VSS.

9 VDDAX - Analog Supply Voltage:
VDDAX supplies the oscillator circuitry only,
and is internal not connected to VDD in order
to separate possible noise influence from the
noise sensitive part. External, on board level,
the VDDAX can be connected to the same
power supply as the VDD.

6 VSSAX - Analog Ground
VSSAX is connected to the oscillator circuitry
Gound only, in order to separate possible
noise influence. External, on board level, the
VSSA can be connected to the same Ground
as the VSS.

93 VSSU - Digital Ground for USB Transceiver
VSSU is connected to the USB transceiver
only and is internally not connected to the
common ground in order to separate possible
noise influence. External, on board level, the
VSSU can be connected to the same ground
as VSS.
Data Sheet 25 2001-04-19

C161U

Architectural Overview
3 Architectural Overview
The architecture of the C161U combines the advantages of both RISC and CISC
processors in a very well-balanced way. The sum of the features which are combined
result in a high performance microcontroller, which is the right choice not only for today's
applications, but also for future engineering challenges. The C161U not only integrates
a powerful CPU core and a set of peripheral units into one chip, but also connects the
units in a very efficient way. One of the four buses used concurrently on the C161U is
the XBUS, an internal representation of the external bus interface. This bus provides a
standardized method of integrating application-specific peripherals to produce derivates
of the standard C161U.

Figure 5 C161U Functional Block Diagram

CPU
CORE

P1 P2 P3 P4

P6P0

OSC

PLL
WDT

JTAG

GPT1ASC

USB

GPT2

OCDS

EPECBUS

SSC

CTL

Interrupt Controller PEC

XBUS Module

Internal
ROM RAM

C161U
Data Sheet 26 2001-04-19

C161U

Architectural Overview
3.1 Basic CPU Concepts and Optimizations
The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic
and logic unit (ALU) and dedicated SFRs. Additional hardware is provided for a separate
multiply and divide unit, a bit-mask generator and a barrel shifter.

Figure 6 CPU Block Diagram

To meet the demand for greater performance and flexibility, a number of areas has been
optimized in the processor core. Functional blocks in the CPU core are controlled by
signals from the instruction decode logic. These are summarized below, and described
in detail in the following sections:
1. High Instruction Bandwidth / Fast Execution
2. High Function 8-bit and 16-bit Arithmetic and Logic Unit
3. Extended bit Processing and Peripheral Control
4. High Performance Branch-, Call-, and Loop Processing
5. Consistent and Optimized Instruction Formats
6. Programmable Multiple Priority Interrupt Structure

MCB02147

CPU

SP
STKOV
STKUN

Instr. Reg.
Instr. Ptr.

Exec. Unit

4-Stage
Pipeline

MDH
MDL

PSW
SYSCON Context Ptr.

Mul/Div-HW

R15

R0

General

Purpose

Registers

Bit-Mask Gen

Barrel - Shifter

ALU
(16-bit)

Data Page Ptr. Code Seg. Ptr.

Internal
RAM

R15

R0

ROM

16

16

32

BUSCON 0
BUSCON 1
BUSCON 2
BUSCON 3
BUSCON 4 ADDRSEL 4

ADDRSEL 3
ADDRSEL 2
ADDRSEL 1
Data Sheet 27 2001-04-19

C161U

Architectural Overview
High Instruction Bandwidth / Fast Execution
Based on the hardware provisions, most of the C161U's instructions can be executed in
just one machine cycle, which requires 55.6 ns at 36 MHz CPU clock. For example, shift
and rotate instructions are always processed within one machine cycle, independent of
the number of bits to be shifted.
Branch-, multiply- and divide instructions normally take more than one machine cycle.
These instructions, however, have also been optimized. For example, branch
instructions only require an additional machine cycle, when a branch is taken, and most
branches taken in loops require no additional machine cycles at all, due to the so-called
‘Jump Cache’.
A 32-bit / 16-bit division takes 1µs, a 16-bit * 16-bit multiplication takes 0.5 µs.
The instruction cycle time has been dramatically reduced through the use of instruction
pipelining. This technique allows the core CPU to process portions of multiple sequential
instruction stages in parallel. The following four stage pipeline provides the optimum
balancing for the CPU core:
FETCH: In this stage, an instruction is fetched from the RAM or from the external
memory, based on the current IP value.
DECODE: In this stage, the previously fetched instruction is decoded and the required
operands are fetched.
EXECUTE: In this stage, the specified operation is performed on the previously fetched
operands.
WRITE BACK: In this stage, the result is written to the specified location.
If this technique were not used, each instruction would require four machine cycles. This
increased performance allows a greater number of tasks and interrupts to be processed.

Instruction Decoder
Instruction decoding is primarily generated from PLA outputs based on the selected
opcode. No microcode is used and each pipeline stage receives control signals staged
in control registers from the decode stage PLAs. Pipeline holds are primarily caused by
wait states for external memory accesses and cause the holding of signals in the control
registers. Multiple-cycle instructions are performed through instruction injection and
simple internal state machines which modify required control signals.

High Function 8-bit and 16-bit Arithmetic and Logic Unit
All standard arithmetic and logical operations are performed in a 16-bit ALU. In addition,
for byte operations, signals are provided from bits six and seven of the ALU result to
correctly set the condition flags. Multiple precision arithmetic is provided through a
'CARRY-IN' signal to the ALU from previously calculated portions of the desired
operation. Most internal execution blocks have been optimized to perform operations on
either 8-bit or 16-bit quantities. Once the pipeline has been filled, one instruction is
Data Sheet 28 2001-04-19

C161U

Architectural Overview
completed per machine cycle, except for multiply and divide. An advanced Booth
algorithm has been incorporated to allow four bits to be multiplied and two bits to be
divided per machine cycle. Thus, these operations use two coupled 16-bit registers, MDL
and MDH, and require four and nine machine cycles, respectively, to perform a 16-bit by
16-bit (or 32-bit by 16-bit) calculation plus one machine cycle to setup and adjust the
operands and the result. Even these longer multiply and divide instructions can be
interrupted during their execution to allow for very fast interrupt response. Instructions
have also been provided to allow byte packing in memory while providing sign extension
of bytes for word wide arithmetic operations. The internal bus structure also allows
transfers of bytes or words to or from peripherals based on the peripheral requirements.
A set of consistent flags is automatically updated in the PSW after each arithmetic,
logical, shift, or movement operation. These flags allow branching on specific conditions.
Support for both signed and unsigned arithmetic is provided through user-specifiable
branch tests. These flags are also preserved automatically by the CPU upon entry into
an interrupt or trap routine.
All targets for branch calculations are also computed in the central ALU.
A 16-bit barrel shifter provides multiple bit shifts in a single cycle. Rotates and arithmetic
shifts are also supported.

Extended Bit Processing and Peripheral Control
A large number of instructions has been dedicated to bit processing. These instructions
provide efficient control and testing of peripherals while enhancing data manipulation.
Unlike other microcontrollers, these instructions provide direct access to two operands
in the bit-addressable space without requiring to move them into temporary flags.
The same logical instructions available for words and bytes are also supported for bits.
This allows the user to compare and modify a control bit for a peripheral in one
instruction. Multiple bit shift instructions have been included to avoid long instruction
streams of single bit shift operations. These are also performed in a single machine
cycle.
In addition, bit field instructions have been provided, which allow the modification of
multiple bits from one operand in a single instruction.

High Performance Branch-, Call-, and Loop Processing
Due to the high percentage of branching in controller applications, branch instructions
have been optimized to require one extra machine cycle only when a branch is taken.
This is implemented by precalculating the target address while decoding the instruction.
To decrease loop execution overhead, three enhancements have been provided:
• The first solution provides single cycle branch execution after the first iteration of a

loop. Thus, only one machine cycle is lost during the execution of the entire loop. In
loops which fall through upon completion, no machine cycles are lost when exiting the
Data Sheet 29 2001-04-19

C161U

Architectural Overview
loop. No special instructions are required to perform loops, and loops are
automatically detected during execution of branch instructions.

• The second loop enhancement allows the detection of the end of a table and avoids
the use of two compare instructions embedded in loops. One simply places the lowest
negative number at the end of the specific table, and specifies branching if neither this
value nor the compared value have been found. Otherwise the loop is terminated if
either condition has been met. The terminating condition can then be tested.

• The third loop enhancement provides a more flexible solution than the Decrement and
Skip on Zero instruction which is found in other microcontrollers. Through the use of
Compare and Increment or Decrement instructions, the user can make comparisons
to any value. This allows loop counters to cover any range. This is particularly
advantageous in table searching.

Saving of system state is automatically performed on the internal system stack avoiding
the use of instructions to preserve state upon entry and exit of interrupt or trap routines.
Call instructions push the value of the IP on the system stack, and require the same
execution time as branch instructions.
Instructions have also been provided to support indirect branch and call instructions.
This supports implementation of multiple CASE statement branching in assembler
macros and high level languages.

Consistent and Optimized Instruction Formats
To obtain optimum performance in a pipelined design, an instruction set has been
designed which incorporates concepts from Reduced Instruction Set Computing (RISC).
These concepts primarily allow fast decoding of the instructions and operands while
reducing pipeline holds. These concepts, however, do not preclude the use of complex
instructions, which are required by microcontroller users. The following goals were used
to design the instruction set:
1. Provide powerful instructions to perform operations which currently require

sequences of instructions and are frequently used. Avoid transfer into and out of
temporary registers such as accumulators and carry bits. Perform tasks in parallel
such as saving state upon entry into interrupt routines or subroutines.

2. Avoid complex encoding schemes by placing operands in consistent fields for each
instruction. Also avoid complex addressing modes which are not frequently used. This
decreases the instruction decode time while also simplifying the development of
compilers and assemblers.

3. Provide most frequently used instructions with one-word instruction formats. All other
instructions are placed into two-word formats. This allows all instructions to be placed
on word boundaries, which alleviates the need for complex alignment hardware. It
also has the benefit of increasing the range for relative branching instructions.
Data Sheet 30 2001-04-19

C161U

Architectural Overview
The high performance offered by the hardware implementation of the CPU can efficiently
be utilized by a programmer via the highly functional C161U instruction set which
includes the following instruction classes:
• Arithmetic Instructions
• Logical Instructions
• Boolean Bit Manipulation Instructions
• Compare and Loop Control Instructions
• Shift and Rotate Instructions
• Prioritize Instruction
• Data Movement Instructions
• System Stack Instructions
• Jump and Call Instructions
• Return Instructions
• System Control Instructions
• Miscellaneous Instructions
Possible operand types are bits, bytes and words. Specific instruction support the
conversion (extension) of bytes to words. A variety of direct, indirect or immediate
addressing modes are provided to specify the required operands.

Programmable Multiple Priority Interrupt System
The following enhancements have been included to allow processing of a large number
of interrupt sources:
1. Peripheral Event Controller (PEC): This processor is used to off-load many interrupt

requests from the CPU. It avoids the overhead of entering and exiting interrupt or trap
routines by performing single-cycle interrupt-driven byte or word data transfers with
an optional increment of either the PEC source or the destination pointer. Just one
cycle is 'stolen' from the current CPU activity to perform a PEC service.

2. Multiple Priority Interrupt Controller: This controller allows all interrupts to be placed at
any specified priority. Interrupts may also be grouped, which provides the user with
the ability to prevent similar priority tasks from interrupting each other. For each of the
possible interrupt sources there is a separate control register, which contains an
interrupt request flag, an interrupt enable flag and an interrupt priority bitfield. Once
having been accepted by the CPU, an interrupt service can only be interrupted by a
higher prioritized service request. For standard interrupt processing, each of the
possible interrupt sources has a dedicated vector location.

3. Multiple Register Banks: This feature allows the user to specify up to sixteen general
purpose registers located anywhere in the internal RAM. A single one-machine-cycle
instruction allows to switch register banks from one task to another.

4. Interruptable Multiple Cycle Instructions: Reduced interrupt latency is provided by
allowing multiple-cycle instructions (multiply, divide) to be interruptable.
Data Sheet 31 2001-04-19

C161U

Architectural Overview
With an interrupt response time within a range from just 140 ns to 280 ns (in case of
internal program execution), the C161U is capable of reacting very fast on non-
deterministic events.
Its fast external interrupt inputs are sampled every 28 ns and allow to recognize even
very short external signals.
C161U also provides an excellent mechanism to identify and to process exceptions or
error conditions that arise during run-time, so called 'Hardware Traps'. Hardware traps
cause an immediate non-maskable system reaction which is similiar to a standard
interrupt service (branching to a dedicated vector table location). The occurrence of a
hardware trap is additionally signified by an individual bit in the trap flag register (TFR).
Except for another higher prioritized trap service being in progress, a hardware trap will
interrupt any current program execution. In turn, hardware trap services can normally not
be interrupted by standard or PEC interrupts.
Software interrupts are supported by means of the 'TRAP' instruction in combination with
an individual trap (interrupt) number.
Data Sheet 32 2001-04-19

C161U

Architectural Overview
3.2 On-Chip System Resources
C161U controllers provide a number of powerful system resources designed around the
CPU. The combination of CPU and these resources results in the high performance of
the members of this controller family.

Peripheral Event Controller (PEC) and Interrupt Control
The Peripheral Event Controller allows to respond to an interrupt request with a single
data transfer (word or byte) which only consumes one instruction cycle and does not
require to save and restore the machine status. Each interrupt source is prioritized every
machine cycle in the interrupt control block. If PEC service is selected, a PEC transfer is
started. If CPU interrupt service is requested, the current CPU priority level stored in the
PSW register is tested to determine whether a higher priority interrupt is currently being
serviced. When an interrupt is acknowledged, the current state of the machine is saved
on the internal system stack and the CPU branches to the system specific vector for the
peripheral.
PEC contains a set of SFRs which store the count value and control bits for eight data
transfer channels. In addition, the PEC uses a dedicated area of RAM which contains
the source and destination addresses. The PEC is controlled similar to any other
peripheral through SFRs containing the desired configuration of each channel.
An individual PEC transfer counter is implicitly decremented for each PEC service
except forming in the continuous transfer mode. When this counter reaches zero, a
standard interrupt is performed to the vector location related to the corresponding
source. PEC services are very well suited, for example, to move register contents to/from
a memory table. C161U has 8 PEC channels each of which offers such fast interrupt-
driven data transfer capabilities.

Memory Areas
The memory space of the C161U is configured in a Von Neumann architecture which
means that code memory, data memory, registers and I/O ports are organized within the
same linear address space which covers up to 2 MBytes. The entire memory space can
be accessed bytewise or wordwise. Particular portions of the on-chip memory have
additionally been made directly bit addressable.
A 16-bit wide internal RAM (IRAM) provides fast access to General Purpose Registers
(GPRs), user data (variables) and system stack. The internal RAM may also be used for
code. A unique decoding scheme provides flexible user register banks in the internal
memory while optimizing the remaining RAM for user data. The size of the internal RAM
is 3 KByte.
The CPU disposes of an actual register context consisting of up to 16 wordwide and/or
bytewide GPRs, which are physically located within the on-chip RAM area. A Context
Pointer (CP) register determines the base address of the active register bank to be
Data Sheet 33 2001-04-19

C161U

Architectural Overview
accessed by the CPU at a time. The number of register banks is only restricted by the
available internal RAM space. For easy parameter passing, a register bank may overlap
others.
A system stack of up to 1024 words is provided as a storage for temporary data. The
system stack is also located within the on-chip RAM area, and it is accessed by the CPU
via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are
implicitly compared against the stack pointer value upon each stack access for the
detection of a stack overflow or underflow.
Hardware detection of the selected memory space is placed at the internal memory
decoders and allows the user to specify any address directly or indirectly and obtain the
desired data without using temporary registers or special instructions.
For Special Function Registers 1024 Bytes of the address space are reserved. The
standard Special Function Register area (SFR) uses 512 bytes, while the Extended
Special Function Register area (ESFR) uses the other 512 bytes. (E)SFRs are wordwide
registers which are used for controlling and monitoring functions of the different on-chip
units. Unused (E)SFR addresses are reserved for future members of the C161U family
with enhanced functionality.

External Bus Interface
In order to meet the needs of designs where more memory is required than is provided
on chip, up to 2 MBytes of external RAM and/or ROM can be connected to the
microcontroller via its external bus interface. The integrated External Bus Controller
(EBC) allows to access external memory and/or peripheral resources in a very flexible
way. For up to five address areas the bus mode (multiplexed / demultiplexed), the data
bus width (8-bit / 16-bit) and even the length of a bus cycle (waitstates, signal delays)
can be selected independently. This allows to access a variety of memory and peripheral
components directly and with maximum efficiency. If the device does not run in Single
Chip Mode, where no external memory is required, the EBC can control external
accesses in one of the following four different external access modes:

– 16-/18-/20-/24-bit Addresses, 16-bit Data, Demultiplexed
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Demultiplexed
– 16-/18-/20-/24-bit Addresses, 16-bit Data, Multiplexed
– 16-/18-/20-/24-bit Addresses, 8-bit Data, Multiplexed

The demultiplexed bus modes use PORT1 for addresses and PORT0 for data input/
output. The multiplexed bus modes use PORT0 for both addresses and data input/
output. All modes use Port 4 for the upper address lines (A16...) if selected.
Important timing characteristics of the external bus interface (waitstates, ALE length and
Read/Write Delay) have been made programmable to allow the user the adaption of a
wide range of different types of memories and/or peripherals. Access to very slow
memories or peripherals is supported via a particular 'Ready' function.
Data Sheet 34 2001-04-19

C161U

Architectural Overview
For applications which require less than 64 KBytes of address space, a non-segmented
memory model can be selected, where all locations can be addressed by 16 bits, and
thus Port 4 is not needed as an output for the upper address bits (A20/A19/A17...A16),
as is the case when using the segmented memory model.
On-chip XBUS is an internal representation of the external bus and allows to access
integrated application-specific peripherals/modules in the same way as external
components. It provides a defined interface for these customized peripherals.

3.3 Clock Generation Concept
The on-chip clock generator provides the C161U with its basic clock signal that controls
all activities of the controller hardware. Its oscillator can either run with an external crystal
and appropriate oscillator circuitry (see also recommendations in chapter „Dedicated
Pins“) or it can be driven by an external oscillator. The oscillator either directly feeds the
external clock signal to the controller hardware (through buffers), divides the external
clock frequency by 2 or 4, or feeds an on-chip phase locked loop (PLL) which multiplies
the input frequency by a selectable factor F. This resulting internal clock signal is also
referred to as “CPU clock”. Two separated clock signals are generated for the CPU itself
and the peripheral part of the chip. While the CPU clock is stopped during the idle mode,
the peripheral clock keeps running. Both clocks are switched off, when the power down
mode is entered.
Note: Pin13 CLKMODE must be connected to LOW signal if an external crystal is used.

Pin cockmode connected to HIGH signal enables the direct input path and
switches the oscillator circuit in power down mode.

The on-chip PLL circuit allows operation of the C161U on a low frequency external clock
while still providing maximum performance. The PLL generates a CPU clock signal with
50% duty cycle. The PLL also provides fail safe mechanisms which allow the detection
of frequency deviations and the execution of emergency actions in case of an external
clock failure.
In addition to the CPU clock, the PLL generates the USB clock which is used for the USB
module only. shows the general clock generation concept of the C161U.
Note: If the USB interface of the C161U is used, an USB clock of 48 MHz is mandatory.

In addition, a CPU clock equal or greater than 20 MHz is required in order to
guarantee the full USB functionality. According to Table 8, the only possible input
clock frequency when operating the USB interface is 8 MHz, either using an
external crystal or an direct input clock.

The following constrains must be taken into account when considering the clock concept:
1. The USB clock must be 48 MHz, see the note above. Since there is a fixed PLL

prescaler of 1/6, the XTAL1 frequency must be 8 MHz.
2. If running the USB interface, the CPU clock must be equal or greater than 20 MHz
3. The maximum CPU clock frequency is 36 MHz (18 MIPS).
Data Sheet 35 2001-04-19

C161U

Architectural Overview
4. All AC and DC specifications described in Chapter 24, "AC/DC Characteristics" must
be fulfilled.

5. The input frequency of the internal oscillator circuit is 4 MHz up to 20 MHz. This
applies only, if an external crystal is used.

6. In direct drive mode, the internal oscillator circuit is bypassed. The clock input
frequency range is 4 MHz up to 36 MHz.

Figure 7 C161U General Clock Concept

% 2

% 2

Phase
Detector

Charge
Pump

Loop
Filter

VCO

common mode feedback

CPU Divider
1/(6,8,12,24)

Lock
Detection

Feedback

Divider 1/6

USB Divider
1/6 (fixed)

(288 MHz
@ 8 MHz)

PLL UNIT

CLOCK UNIT

USB_Clock
(must be 48 MHz)

Mux

Mux

Mux

Mux

Clock
Control
Unit

CLKCFG

Pin 15
XTAL1

Pin 16
XTAL2

Pin 13
clkmode

Pin 30
clockout

Main CPU_Clock

OSC

(SYSCON: P0H7:5)

fCPU = fIN x F fOSC

OWD
control signals

Div1

Div2

fUSB = fIN x 6

fXTAL
Mux

Slow
Down
Divider

SYSCON2.7

Reload

SYSCON2.10:14
Data Sheet 36 2001-04-19

C161U

Architectural Overview
Note: All supported clock modes for the C161U are shown in Table 8. Because of the
limited size of the register, there are not all combinations adjustable, which can be
derived theoretical from .

Table 8 C161U Clock Generation Modes

PLL Operation
On power-up the PLL provides a stable clock signal within ca. 1 ms after VDD has
reached 3.3 V±10%, even if there is no external clock signal (in this case the PLL will run
on its basic frequency of 2...5 MHz). The PLL starts synchronizing with the external clock
signal as soon as it is available. Within ca. 1 ms after stable oscillations of the external
clock within the specified frequency range the PLL will be synchronous with this clock at
a frequency of F * fOSC, ie. the PLL locks to the external clock.
Note: If the C161U is required to operate on the desired CPU clock directly after reset

make sure that RSTIN remains active until the PLL has locked (ca. 1 ms).

P0H.7-P0H.5 Frequency Divider Activation

USB Interface is NOT used

0 0 1 fXTAL * 0.5 direct drive, D1 not active, D2 active, PLL free running (2..5 MHz)

Note: The PLL can be switched off completely by setting bit
PLLDIS = ’1’ (SYSCON3.13, see page 393).

0 1 0 fXTAL * 1.5 D1 not active, D2 not active, F = 1.5

0 1 1 fXTAL * 1.0 direct drive, D1 not active, D2 not active, PLL free running (2..5
MHz)

Note: The PLL can be switched off completely by setting bit
PLLDIS = ’1’ (SYSCON3.13, see page 393).

1 0 0 fXTAL * 6.0 D1 not active, D2 not active, F = 6.0

1 0 1 fXTAL * 1.125 D1 active, D2 active, F = 1.125

1 1 0 fXTAL * 3.0 D1 not active, D2 not active, F = 3.0

1 1 1 fXTAL * 4.5 D1 not active, D2 not active, F = 4.5, Default Mode

0 0 0 fXTAL * 0.375 D1 active, D2 active, F = 0.375

USB Interface is used (USB clock must be 48 MHz)

1 1 0 fXTAL * 3 D1 not active, D2 not active, F = 3.0
fUSB =def 48 MHz Τ fXTAL = 8 MHz Τ fCPU = 24 MHz

1 1 1 fXTAL * 4.5 D1 not active, D2 not active, F = 4.5, Default Mode
fUSB =def 48 MHz Τ fXTAL = 8 MHz Τ fCPU = 36 MHz
Data Sheet 37 2001-04-19

C161U

Architectural Overview
When PLL operation is selected the CPU clock is a selectable multiple of the oscillator
frequency, ie. the input frequency. The table above lists the possible selections.
The PLL constantly synchronizes to the external clock signal. Due to the fact that the
external frequency is 1/F’th of the PLL output frequency the output frequency may be
slightly higher or lower than the desired frequency. This jitter is irrelevant for longer time
periods. For short periods (1...4 CPU clock cycles) it remains below 4%.
When the PLL detects a missing input clock signal it generates an interrupt request. This
warning interrupt indicates that the PLL frequency is no more locked, ie. no more stable.
This occurs when the input clock is unstable and especially when the input clock fails
completely, eg. due to a broken crystal. In this case the synchronization mechanism will
reduce the PLL output frequency down to the PLL’s basic frequency (2...5 MHz). The
basic frequency is still generated and allows the CPU to execute emergency actions in
case of a loss of the external clock.

Prescaler Operation
When pins P0.15-13 (P0H.7-5) are equal ’001’ during reset the CPU clock is derived
from the internal oscillator (input clock signal) by a 2:1 prescaler (see Table 8).
The frequency of fCPU is half the frequency of fXTAL and the high and low time of fCPU (ie.
the duration of an individual TCL) is defined by the period of the input clock fXTAL.
The timings listed in the ’AC Characteristics’ of the data sheet that refer to TCLs
therefore can be calculated using the period of fXTAL for any TCL.

Direct Drive
When pins P0.15-13 (P0H.7-5) equal ’011’ during reset the clock system is directly
driven from the internal oscillator with the input clock signal, ie. fOSC = fCPU.
The maximum input clock frequency depends on the clock signal’s duty cycle, because
the minimum values for the clock phases (TCLs) must be respected.

Oscillator Watchdog
The C161U provides an Oscillator Watchdog (OWD) which monitors the clock signal
generated by the on-chip oscillator (either with a crystal or via external clock drive) in
prescaler or direct drive mode. For this operation the PLL provides a clock signal which
is used to supervise transitions on the oscillator clock. This PLL clock is independent
from the XTAL1 clock. When the expected oscillator clock transitions are missing the
OWD activates the PLL Unlock / OWD interrupt node and supplies the CPU with the PLL
clock signal. Under these circumstances the PLL will oscillate with its basic frequency.
The OWD’s interrupt output can be disabled by setting bit OSCENBL = '0' (default after
reset) in SYSCON register. In this case, no oscillator watchdog interrupt request is
generated and the CPU clock signal is derived from the oscillator clock in any case.
Data Sheet 38 2001-04-19

C161U

Architectural Overview
Note: The CPU clock source is only switched back to the oscillator clock after a
hardware reset.

3.4 On-Chip Peripheral Blocks
C161U clearly separates peripherals from the core. This structure permits the maximum
number of operations to be performed in parallel and allows peripherals to be added or
deleted from family members without modifications to the core. Each functional block
processes data independently and communicates information over common buses.
Peripherals are controlled by data written to the respective Special Function Registers
(SFRs). These SFRs are located either within the standard SFR area
(00’FE00H...00’FFFFH) or within the extended ESFR area (00’F000H...00’F1FFH).
These built in peripherals either allow the CPU to interface with the external world, or
provide functions on-chip that otherwise were to be added externally in the respective
system.

C161U peripherals are:
• Two General Purpose Timer Blocks (GPT1 and GPT2)
• An Asynchronous/Synchronous Serial Interface (ASC)
• A High-Speed Synchronous Serial Interface (SSC)
• An Universal Serial Bus Interface (USB)
• A Watchdog Timer (WDT)
• Six I/O ports with a total of 56 I/O lines
Each peripheral also contains a set of Special Function Registers (SFRs), which control
the functionality of the peripheral and temporarily store intermediate data results. Each
peripheral has an associated set of status flags. Individually selected clock signals are
generated for each peripheral from binary multiples of the CPU clock.

Peripheral Interfaces
The on-chip peripherals generally have two different types of interfaces, an interface to
the CPU and an interface to external hardware. Communication between CPU and
peripherals is performed through Special Function Registers (SFRs) and interrupts. The
SFRs serve as control/status and data registers for the peripherals. Interrupt requests
are generated by the peripherals based on specific events which occur during their
operation (eg. operation complete, error, etc.).
For interfacing with external hardware, specific pins of the parallel ports are used, when
an input or output function has been selected for a peripheral. During this time, the port
pins are controlled by the peripheral (when used as outputs) or by the external hardware
which controls the peripheral (when used as inputs). This is called the 'alternate (input
or output) function' of a port pin, in contrast to its function as a general purpose I/O pin.
Data Sheet 39 2001-04-19

C161U

Architectural Overview
Peripheral Timing
Internal operation of CPU and peripherals is based on the CPU clock (fCPU). The on-chip
oscillator derives the CPU clock from the crystal or from the external clock signal. The
clock signal which is gated to the peripherals is independent from the clock signal which
feeds the CPU. During Idle mode the CPU’s clock is stopped while the peripherals
continue their operation. Peripheral SFRs may be accessed by the CPU once per state.
When an SFR is written to by software in the same state where it is also to be modified
by the peripheral, the software write operation has priority. Further details on peripheral
timing are included in the specific sections about each peripheral.

Programming Hints

Access to SFRs
All SFRs reside in data page 3 of the memory space. The following addressing
mechanisms allow to access the SFRs:
• Indirect or direct addressing with 16-bit (mem) addresses it must be guaranteed that

the used data page pointer (DPP0...DPP3) selects data page 3.
• Accesses via the Peripheral Event Controller (PEC) use the SRCPx and DSTPx

pointers instead of the data page pointers.
• Short 8-bit (reg) addresses to the standard SFR area do not use the data page

pointers but directly access the registers within this 512 Byte area.
• Short 8-bit (reg) addresses to the extended ESFR area require switching to the 512

Byte extended SFR area. This is done via the EXTension instructions EXTR,
EXTP(R), EXTS(R).

Byte write operations to word wide SFRs via indirect or direct 16-bit (mem) addressing
or byte transfers via the PEC force zeros in the non-addressed byte. Byte write
operations via short 8-bit (reg) addressing can only access the low byte of an SFR and
force zeros in the high byte. It is therefore recommended, to use the bit field instructions
(BFLDL and BFLDH) to write to any number of bits in either byte of an SFR without
disturbing the non-addressed byte and the unselected bits.

Reserved Bits
Some of the bits which are contained in the C161U's SFRs are marked as 'Reserved'.
User software should never write '1's to reserved bits. These bits are currently not
implemented and may be used in future products to invoke new functions. In this case,
the active state for these functions will be '1', and the inactive state will be '0'. Therefore
writing only ‘0’s to reserved locations provides portability of the current software to future
devices. Read accesses to reserved bits return ‘0’s.
Data Sheet 40 2001-04-19

C161U

Architectural Overview
Parallel Ports
C161U provides up to 72 I/O lines which are organized into seven input/output ports. All
port lines are bit-addressable, and all input/output lines are individually (bit-wise)
programmable as inputs or outputs via direction registers. The I/O ports are true
bidirectional ports which are switched to high impedance state when configured as
inputs. The output drivers of three I/O ports can be configured (pin by pin) for push/pull
operation or open-drain operation via control registers. During the internal reset, all port
pins are configured as inputs.
All port lines have programmable alternate input or output functions associated with
them. PORT0 and PORT1 may be used as address and data lines when accessing
external memory, while Port 4 outputs the additional segment address bits A20/A19/
A17...A16 in systems where segmentation is used to access more than 64 KBytes of
memory. Port 6 provides optional bus arbitration signals (BREQ, HLDA, HOLD) and chip
select signals. Port 2 accepts the fast external interrupt inputs. Port 3 includes alternate
functions of timers, serial interfaces, the optional bus control signal BHE and the system
clock output (CLKOUT). Port 7 is used for general purpose I/Os. All port lines that are
not used for these alternate functions may be used as general purpose I/O lines.

Serial Channels
Serial communication with other microcontrollers, processors, terminals or external
peripheral components is provided by two serial interfaces with different functionality, an
Asynchronous/Synchronous Serial Channel (ASC) and a High-Speed Synchronous
Serial Channel (SSC).
ASC is upward compatible with the serial ports of the Infineon 8-bit microcontroller
families and supports full-duplex asynchronous communication at up to 2.25 MBaud and
half-duplex synchronous communication at up to 4.5 MBaud @ 36 MHz CPU clock.
A dedicated baud rate generator allows to set up all standard baud rates without
oscillator tuning. For transmission, reception and error handling 4 separate interrupt
vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or
received, preceded by a start bit and terminated by one or two stop bits. For
multiprocessor communication, a mechanism to distinguish address from data bytes has
been included (8-bit data plus wake up bit mode).
In synchronous mode, the ASC transmits or receives bytes (8 bits) synchronously to a
shift clock which is generated by the ASC. The ASC always shifts the LSB first. A loop
back option is available for testing purposes.
A number of optional hardware error detection capabilities has been included to increase
the reliability of data transfers. A parity bit can automatically be generated on
transmission or be checked on reception. Framing error detection allows to recognize
data frames with missing stop bits. An overrun error will be generated, if the last
character received has not been read out of the receive buffer register at the time the
reception of a new character is complete.
Data Sheet 41 2001-04-19

C161U

Architectural Overview
SSC supports full-duplex synchronous communication at up to 18 Mbaud @ 36 MHz
CPU clock in SSC master mode and up to 9 MBaud @ 36 MHz in SSC slave mode. It
may be configured so it interfaces with serially linked peripheral components. A
dedicated baud rate generator allows to set up all standard baud rates without oscillator
tuning. For transmission, reception and error handling 3 separate interrupt vectors are
provided.
The SSC transmits or receives characters of 2...16 bits length synchronously to a shift
clock which can be generated by the SSC (master mode) or by an external master (slave
mode). The SSC can start shifting with the LSB or with the MSB and allows the selection
of shifting and latching clock edges as well as the clock polarity. A number of optional
hardware error detection capabilities has been included to increase the reliability of data
transfers. Transmit and receive error supervise the correct handling of the data buffer.
Phase and baudrate error detect incorrect serial data.

General Purpose Timer (GPT) Unit
The GPT units represent a very flexible multifunctional timer/counter structure which
may be used for many different time related tasks such as event timing and counting,
pulse width and duty cycle measurements, pulse generation, or pulse multiplication.
The five 16-bit timers are organized in two separate modules, GPT1 and GPT2. Each
timer in each module may operate independently in a number of different modes, or may
be concatenated with another timer of the same module.
Each timer can be configured individually for one of three basic modes of operation,
which are Timer, Gated Timer, and Counter Mode. In Timer Mode the input clock for a
timer is derived from the internal CPU clock divided by a programmable prescaler, while
Counter Mode allows a timer to be clocked in reference to external events (via TxIN).
Pulse width or duty cycle measurement is supported in Gated Timer Mode where the
operation of a timer is controlled by the ‘gate’ level on its external input pin TxIN.
The count direction (up/down) for each timer is programmable by software or may
additionally be altered dynamically by an external signal (TxEUD) to facilitate eg. position
tracking.
The core timers T3 and T6 have output toggle latches (TxOTL) which change their state
on each timer over-flow/underflow. The state of these latches may be output on port pins
(TxOUT) or may be used internally to concatenate the core timers with the respective
auxiliary timers resulting in 32/33-bit timers/counters for measuring long time periods
with high resolution.
Various reload or capture functions can be selected to reload timers or capture a timer’s
contents triggered by an external signal or a selectable transition of toggle latch TxOTL.
Data Sheet 42 2001-04-19

C161U

Architectural Overview
Watchdog Timer
The Watchdog Timer represents one of the fail-safe mechanisms which have been
implemented to prevent the controller from malfunctioning for longer periods of time.
The Watchdog Timer is always enabled after a reset of the chip, and can only be
disabled in the time interval until the EINIT (end of initialization) instruction has been
executed. Thus, the chip’s start-up procedure is always monitored. The software has to
be designed to service the Watchdog Timer before it overflows. If, due to hardware or
software related failures, the software fails to do so, the Watchdog Timer overflows and
generates an internal hardware reset and pulls the RSTOUT pin low in order to allow
external hardware components to reset.
The Watchdog Timer is a 16-bit timer, clocked with the CPU clock divided either by 2 or
by 128. The high byte of the Watchdog Timer register can be set to a prespecified reload
value (stored in WDTREL) in order to allow further variation of the monitored time
interval. Each time it is serviced by the application software, the high byte of the
Watchdog Timer is reloaded.
Data Sheet 43 2001-04-19

C161U

Architectural Overview
3.5 Protected Bits
C161U provides a special mechanism to protect bits which can be modified by the on-
chip hardware from being changed unintentionally by software accesses to related bits
(see also chapter “The Central Processing Unit”).

The following bits are protected:

Σ = 33 protected bits in the C161U

Register Bit Name Notes
T2IC, T3IC, T4IC T2IR, T3IR, T4IR GPT1 timer interrupt request flags
T5IC, T6IC T5IR, T6IR GPT2 timer interrupt request flags
CRIC CRIR GPT2 CAPREL interrupt request flag
T3CON, T6CON T3OTL, T6OTL GPTx timer output toggle latches
S0TIC, S0TBIC S0TIR, S0TBIR ASC transmit(buffer) interrupt request

flags
S0RIC, S0EIC S0RIR, S0EIR ASC receive/error interrupt request flags
S0CON S0REN ASC receiver enable flag
SSCTIC, SSCRIC SSCTIR, SSCRIR SSC transmit/receive interrupt request

flags
SSCEIC SSCEIR SSC error interrupt request flag
SSCCON SSCBSY SSC busy flag
SSCCON SSCBE, SSCPE SSC error flags
SSCCON SSCRE, SSCTE SSC error flags
TFR TFR.15,14,13 Class A trap flags
TFR TFR.7,3,2,1,0 Class B trap flags
XPyIC (y=3...0) XPyIR (y=3...0) X-Peripheral y interrupt request flag
Data Sheet 44 2001-04-19

C161U

Memory Organization
4 Memory Organization
The memory space of the C161U is configured in a “Von Neumann” architecture. This
means that code and data are accessed within the same linear address space. All of the
physically separated memory areas, internal RAM, the internal Special Function
Register Areas (SFRs and ESFRs), the address areas for integrated XBUS peripherals
and external memory are mapped into one common address space.
C161U provides a total addressable memory space of 2 MBytes. This address space is
arranged as 32 segments of 64 KBytes each, and each segment is again subdivided into
four data pages of 16 KBytes each (see Figure 8).

Figure 8 Memory Areas and Address Space

Internal

IRAM/SFR

00’0000H

00’FFFFH

XRAM

SFR Area 00’FFFFH

00’F000H

00’E000H

00’8000H

00’E000H

ESFR Area
00’F200H

Segment 0

00’E800H

Area

SEGMENT 1 SEGMENT 1

00’FE00H

01’0000H

up to 3 KByte
IRAM

XPER/XRAM

Reserved
for XPERs

8 KByte

2 KB

XRAM Extension

00’A000H

Reserved
for
XRAM

Reserved
for
XFLASH

Compatible

Program

Reserved for
Memory
Data Sheet 45 2001-04-19

C161U

Memory Organization
Bytes are stored at even or odd byte addresses. Words are stored in ascending memory
locations with the low byte at an even byte address being followed by the high byte at
the next odd byte address. Double words (code only) are stored in ascending memory
locations as two subsequent words. Single bits are always stored in the specified bit
position at a word address. bit position 0 is the least significant bit of the byte at an even
byte address, and bit position 15 is the most significant bit of the byte at the next odd
byte address. bit addressing is supported for a part of the Special Function Registers, a
part of the internal RAM and for the General Purpose Registers.

Figure 9 Storage of Words, Byte and Bits in a Byte Organized Memory

Note: Byte units forming a single word or a double word must always be stored within
the same physical (internal, external, RAM) and organizational (page, segment)
memory area.

MCD01996

15 14 8

067

Hxxxx6

Bits

Bits

Byte

Byte

Word (High Byte)

Word (Low Byte)

xxxx5H

xxxx4 H

xxxx3 H

xxxx2H

xxxx1 H

xxxx0H

xxxxF H
Data Sheet 46 2001-04-19

C161U

Memory Organization
4.1 Internal RAM and SFR Area
RAM/SFR area is located within data page 3 and provides access to the internal RAM
(IRAM, organized as X*16) and to two 512 Byte blocks of Special Function Registers
(SFRs). C161U provides 3 KByte of IRAM, see Figure 10.
The internal RAM serves for several purposes:
• System Stack (programmable size)
• General Purpose Register Banks (GPRs)
• Source and destination pointers for the Peripheral Event Controller (PEC)
• Variable and other data storage, or
• Code storage.
•

Figure 10 Internal RAM Area and SFR Areas

System Segment 0
64 KByte

Area
ROM

Internal

Data Page 1

Data Page 0

00 0000H’

00 4000’ H

External
Memory

Data Page 3

Data Page 2

00 8000’ H

00

00

00

00

E000

C000’

’

H

H

F000

FFFF

’

’

H

H

RAM/SFR Area
4 KByte

ESFR Area

F200

F000

MCD02233

00’

00’

H

H

RAM
Internal

SFR Area

FE00

FFFF

00

RAM/SFR Area

’

00’

H

H

Data Sheet 47 2001-04-19

C161U

Memory Organization
Note: The upper 256 Bytes of SFR area, ESFR area and internal RAM are bit-
addressable (see shaded blocks in Figure 10).

Code accesses are always made on even byte addresses. The highest possible code
storage location in the internal RAM is either 00’FDFEH for single word instructions or
00’FDFCH for double word instructions. The respective location must contain a branch
instruction (unconditional), because sequential boundary crossing from internal RAM to
the SFR area is not supported and causes erroneous results.
Any word and byte data in the internal RAM can be accessed via indirect or long 16-bit
addressing modes, if the selected DPP register points to data page 3. Any word data
access is made on an even byte address. The highest possible word data storage
location in the internal RAM is 00’FDFEH. For PEC data transfers, the internal RAM can
be accessed independent of the contents of the DPP registers via the PEC source and
destination pointers.
The upper 256 Byte of the internal RAM (00’FD00H through 00’FDFFH) and the GPRs of
the current bank are provided for single bit storage, and thus they are bit addressable.

System Stack
The system stack may be defined within the internal RAM. The size of the system stack
is controlled by bitfield STKSZ in register SYSCON (see table below).

For all system stack operations the on-chip RAM is accessed via the Stack Pointer (SP)
register. The stack grows downward from higher towards lower RAM address locations.
Only word accesses are supported to the system stack. A stack overflow (STKOV) and
a stack underflow (STKUN) register are provided to control the lower and upper limits of
the selected stack area. These two stack boundary registers can be used not only for
protection against data destruction, but also allow to implement a circular stack with
hardware supported system stack flushing and filling (except for option ’111’).

<STKSZ> Stack Size
(Words)

Internal RAM Addresses (Words)

0 0 0 B 256 00’FBFEH...00’FA00H (Default after Reset)
0 0 1 B 128 00’FBFEH...00’FB00H

0 1 0 B 64 00’FBFEH...00’FB80H

0 1 1 B 32 00’FBFEH...00’FBC0H

1 0 0 B 512 00’FBFEH...00’F800H

1 0 1 B --- Reserved. Do not use this combination.
1 1 0 B --- Reserved. Do not use this combination.
1 1 1 B 1024 00’FDFEH...00’F600H (Note: No circular stack)
Data Sheet 48 2001-04-19

C161U

Memory Organization
The technique of implementing this circular stack is described in chapter “System
Programming”.

General Purpose Registers
The General Purpose Registers (GPRs) use a block of 16 consecutive words within the
internal RAM. The Context Pointer (CP) register determines the base address of the
currently active register bank. This register bank may consist of up to 16 word GPRs (R0,
R1, ..., R15) and/or of up to 16 byte GPRs (RL0, RH0, ..., RL7, RH7). The sixteen byte
GPRs are mapped onto the first eight word GPRs (see table below).
In contrast to the system stack, a register bank grows from lower towards higher address
locations and occupies a maximum space of 32 Byte. The GPRs are accessed via short
2-, 4- or 8-bit addressing modes using the Context Pointer (CP) register as base address
(independent of the current DPP register contents). Additionally, each bit in the currently
active register bank can be accessed individually.
Mapping of General Purpose Registers to RAM Addresses

C161U supports fast register bank (context) switching. Multiple register banks can
physically exist within the internal RAM at the same time. Only the register bank selected

Internal RAM
Address

Byte Registers Word Register

<CP> + 1EH --- R15
<CP> + 1CH --- R14
<CP> + 1AH --- R13
<CP> + 18H --- R12
<CP> + 16H --- R11
<CP> + 14H --- R10
<CP> + 12H --- R9
<CP> + 10H --- R8
<CP> + 0EH RH7 RL7 R7
<CP> + 0CH RH6 RL6 R6
<CP> + 0AH RH5 RL5 R5
<CP> + 08H RH4 RL4 R4
<CP> + 06H RH3 RL3 R3
<CP> + 04H RH2 RL2 R2
<CP> + 02H RH1 RL1 R1
<CP> + 00H RH0 RL0 R0
Data Sheet 49 2001-04-19

C161U

Memory Organization
by the Context Pointer register (CP) is active at a given time, however. Selecting a new
active register bank is simply done by updating the CP register. A particular Switch
Context (SCXT) instruction performs register bank switching and an automatic saving of
the previous context. The number of implemented register banks (arbitrary sizes) is only
limited by the size of the available internal RAM.
Details on using, switching and overlapping register banks are described in chapter
“System Programming”.

PEC Source and Destination Pointers
The 16 word locations in the internal RAM from 00’FCE0H to 00’FCFEH (just below the
bit-addressable section) are provided as source and destination address pointers for
data transfers on the eight PEC channels. Each channel uses a pair of pointers stored
in two subsequent word locations with the source pointer (SRCPx) on the lower and the
destination pointer (DSTPx) on the higher word address (x = 7...0).

Figure 11 Location of the PEC Pointers

00’FCE2

00’FCE0 H

H

SRCP0

DSTP0

00’F5FE

00’F600

MCD03903

H

H

Destination

00’FCFC

Pointers

and

H

PEC
Source

SRCP7

00’FCFE H DSTP7

Internal

00’FCE0

00’FCDE

RAM

H

H

00’FCFE

00’FD00

H

H

Data Sheet 50 2001-04-19

C161U

Memory Organization
Whenever a PEC data transfer is performed, the pair of source and destination pointers,
which is selected by the specified PEC channel number, is accessed independent of the
current DPP register contents and also the locations referred to by these pointers are
accessed independent of the current DPP register contents. If a PEC channel is not
used, the corresponding pointer locations area available and can be used for word or
byte data storage.
For more details about the use of the source and destination pointers for PEC data
transfers see section “Interrupt and Trap Functions”.

Special Function Registers
The functions of the CPU, the bus interface, the I/O ports and the on-chip peripherals of
the C161U are controlled via a number of so-called Special Function Registers (SFRs).
These SFRs are arranged within two areas of 512 Byte size each. The first register block,
the SFR area, is located in the 512 Bytes above the internal RAM
(00’FFFFH...00’FE00H), the second register block, the Extended SFR (ESFR) area, is
located in the 512 Bytes below the internal RAM (00’F1FFH...00’F000H).
Special function registers can be addressed via indirect and long 16-bit addressing
modes. Using an 8-bit offset together with an implicit base address allows to address
word SFRs and their respective low bytes. However, this does not work for the
respective high bytes!
Note: Writing to any byte of an SFR causes the non-addressed complementary byte to

be cleared!

The upper half of each register block is bit-addressable, so the respective control/status
bits can directly be modified or checked using bit addressing.
When accessing registers in the ESFR area using 8-bit addresses or direct bit
addressing, an Extend Register (EXTR) instruction is required before, to switch the short
addressing mechanism from the standard SFR area to the Extended SFR area. This is
not required for 16-bit and indirect addresses. The GPRs R15...R0 are duplicated, ie.
they are accessible within both register blocks via short 2-, 4- or 8-bit addresses without
switching.

ESFR_SWITCH_EXAMPLE
EXTR #4 ;Switch to ESFR area for next 4 instr.
MOV ODP2, #data16 ;ODP2 uses 8-bit reg addressing
BFLDL DP6, #mask, #data8 ;Bit addressing for bit fields
BSET DP1H.7 ;Bit addressing for single bits
MOV T8REL, R1 ;T8REL uses 16-bit mem address,

;R1 is duplicated into the ESFR space
;(EXTR is not required for this access)
Data Sheet 51 2001-04-19

C161U

Memory Organization
;---- ;------------------- ;The scope of the EXTR #4 instruction...
;...ends here!

MOV T8REL, R1 ;T8REL uses 16-bit mem address,
;R1 is accessed via the SFR space

In order to minimize the use of the EXTR instructions the ESFR area mostly holds
registers which are mainly required for initialization and mode selection. Registers that
need to be accessed frequently are allocated to the standard SFR area, wherever
possible.
Note: The tools are equipped to monitor accesses to the ESFR area and will

automatically insert EXTR instructions, or issue a warning in case of missing or
excessive EXTR instructions.

4.2 External Memory Space
C161U is capable of using an address space of up to 2 MByte. Only parts of this address
space are occupied by internal memory areas. All addresses which are not used for on-
chip memory (RAM) or for registers may reference external memory locations. This
external memory is accessed via the C161U’s external bus interface.
Four memory bank sizes are supported:

– Non-segmented mode: 64 KByte with A15...A0 on PORT0 or PORT1
– 2-bit segmented mode: 256 KByte with A17...A16 on Port 4 and A15...A0 on

PORT0 or PORT1
– 4-bit segmented mode: 1 MByte with A19...A16 on Port 4 and A15...A0 on

PORT0 or PORT1
– 8-bit segmented mode: 2 MByte with A20...A16 on Port 4 and A15...A0 on

PORT0 or PORT1
Each bank can be directly addressed via the address bus, while the programmable chip
select signals can be used to select various memory banks.
C161U also supports four different bus types:

– Multiplexed 16-bit Bus with address and data on PORT0 (Default after Reset)
– Multiplexed 8-bit Bus with address and data on PORT0/P0L
– Demultiplexed 16-bit Bus with address on PORT1 and data on PORT0
– Demultiplexed 8-bit Bus with address on PORT1 and data on P0L

Memory model and bus mode are selected during reset by pin EA and PORT0 pins. For
further details about the external bus configuration and control please refer to chapter
"The External Bus Interface".
External word and byte data can only be accessed via indirect or long 16-bit addressing
modes using one of the four DPP registers. There is no short addressing mode for
external operands. Any word data access is made to an even byte address.
Data Sheet 52 2001-04-19

C161U

Memory Organization
For PEC data transfers the external memory can be accessed independent of the
contents of the DPP registers via the PEC source and destination pointers.
The external memory is not provided for single bit storage and therefore it is not bit
addressable.

4.3 Crossing Memory Boundaries
The address space of the C161U is implicitly divided into equally sized blocks of different
granularity and into logical memory areas. Crossing the boundaries between these
blocks (code or data) or areas requires special attention to ensure that the controller
executes the desired operations.
Memory Areas are partitions of the address space that represent different kinds of
memory (if provided at all). These memory areas are the internal RAM/SFR area, the on-
chip X-Peripherals and the external memory.
Accessing subsequent data locations that belong to different memory areas is no
problem. However, when executing code, the different memory areas must be switched
explicitly via branch instructions. Sequential boundary crossing is not supported and
leads to erroneous results.
Note: Changing from the external memory area to the internal RAM/SFR area takes

place within segment 0.

Segments are contiguous blocks of 64 KByte each. They are referenced via the code
segment pointer CSP for code fetches and via an explicit segment number for data
accesses overriding the standard DPP scheme.
During code fetching segments are not changed automatically, but rather must be
switched explicitly. The instructions JMPS, CALLS and RETS will do this.
In larger sequential programs make sure that the highest used code location of a
segment contains an unconditional branch instruction to the respective following
segment, to prevent the prefetcher from trying to leave the current segment.
Data Pages are contiguous blocks of 16 KByte each. They are referenced via the data
page pointers DPP3...0 and via an explicit data page number for data accesses
overriding the standard DPP scheme. Each DPP register can select one of the possible
1024 data pages. The DPP register that is used for the current access is selected via the
two upper bits of the 16-bit data address. Subsequent 16-bit data addresses that cross
the 16 KByte data page boundaries therefore will use different data page pointers, while
the physical locations need not be subsequent within memory.
Data Sheet 53 2001-04-19

C161U

Central Processor Unit
5 Central Processor Unit
Basic tasks of the CPU are to fetch and decode instructions, to supply operands for the
arithmetic and logic unit (ALU), to perform operations on these operands in the ALU, and
to store the previously calculated results. As the CPU is the main engine of the C161U
controller, it is also affected by certain actions of the peripheral subsystem.
Since a four stage pipeline is implemented in the C161U, up to four instructions can be
processed in parallel. Most instructions of the C161U are executed in one machine cycle
(2 CPU clock cycles) due to this parallelism. This chapter describes how the pipeline
works for sequential and branch instructions in general, and which hardware provisions
have been made to speed the execution of jump instructions in particular. The general
instruction timing is described including standard and exceptional timing.
While internal memory accesses are normally performed by the CPU itself, external
peripheral or memory accesses are performed by a particular on-chip External Bus
Controller (EBC), which is automatically invoked by the CPU whenever a code or data
address refers to the external address space. If possible, the CPU continues operating
while an external memory access is in progress. If external data are required but are not
yet available, or if a new external memory access is requested by the CPU, before a
previous access has been completed, the CPU will be held by the EBC until the request
can be satisfied. The EBC is described in a dedicated chapter.

Figure 12 CPU Block Diagram

MCB02147

CPU

SP
STKOV
STKUN

Instr. Reg.
Instr. Ptr.

Exec. Unit

4-Stage
Pipeline

MDH
MDL

PSW
SYSCON Context Ptr.

Mul/Div-HW

R15

R0

General

Purpose

Registers

Bit-Mask Gen

Barrel - Shifter

ALU
(16-bit)

Data Page Ptr. Code Seg. Ptr.

Internal
RAM

R15

R0

ROM

16

16

32

BUSCON 0
BUSCON 1
BUSCON 2
BUSCON 3
BUSCON 4 ADDRSEL 4

ADDRSEL 3
ADDRSEL 2
ADDRSEL 1
Data Sheet 54 2001-04-19

C161U

Central Processor Unit
The on-chip peripheral units of the C161U work nearly independent of the CPU with a
separate clock generator. Data and control information is interchanged between the
CPU and these peripherals via Special Function Registers (SFRs). Whenever
peripherals need a non-deterministic CPU action, an on-chip Interrupt Controller
compares all pending peripheral service requests against each other and prioritizes one
of them. If the priority of the current CPU operation is lower than the priority of the
selected peripheral request, an interrupt will occur.
Basically, there are two types of interrupt processing:
• Standard interrupt processing forces the CPU to save the current program status and

the return address on the stack before branching to the interrupt vector jump table.
• PEC interrupt processing steals just one machine cycle from the current CPU activity

to perform a single data transfer via the on-chip Peripheral Event Controller (PEC).
System errors detected during program execution (socalled hardware traps) or an
external non-maskable interrupt are also processed as standard interrupts with a very
high priority.
In contrast to other on-chip peripherals, there is a closer conjunction between the
watchdog timer and the CPU. If enabled, the watchdog timer expects to be serviced by
the CPU within a programmable period of time, otherwise it will reset the chip. Thus, the
watchdog timer is able to prevent the CPU from going totally astray when executing
erroneous code. After reset, the watchdog timer starts counting automatically, but it can
be disabled via software, if desired.
Beside its normal operation there are the following particular CPU states:
• Reset state: Any reset (hardware, software, watchdog) forces the CPU into a

predefined active state.
• IDLE state: The clock signal to the CPU itself is switched off, while the clocks for the

on-chip peripherals keep running.
• POWER DOWN state: All of the on-chip clocks are switched off.
A transition into an active CPU state is forced by an interrupt (if being IDLE) or by a reset
(if being in POWER DOWN mode).
The IDLE, POWER DOWN and RESET states can be entered by particular C161U
system control instructions.
A set of Special Function Registers is dedicated to the functions of the CPU core:
• General System Configuration SYSCON (RP0H)
• CPU Status Indication and Control PSW
• Code Access Control IP, CSP
• Data Paging Control DPP0, DPP1, DPP2, DPP3
• GPRs Access Control CP
• System Stack Access Control SP, STKUN, STKOV
• Multiply and Divide Support MDL, MDH, MDC
• ALU Constants Support ZEROS, ONES
Data Sheet 55 2001-04-19

C161U

Central Processor Unit
5.1 Instruction Pipelining
The instruction pipeline of the C161U partitiones instruction processing into four stages
of which each one has its individual task:
1st –>FETCH
In this stage the instruction selected by the Instruction Pointer (IP) and the Code
Segment Pointer (CSP) is fetched from either the internal RAM, or external memory.
2nd –>DECODE
In this stage the instructions are decoded and, if required, the operand addresses are
calculated and the respective operands are fetched. For all instructions, which implicitly
access the system stack, the SP register is either decremented or incremented, as
specified. For branch instructions the Instruction Pointer and the Code Segment Pointer
are updated with the desired branch target address (provided that the branch is taken).
3rd –>EXECUTE
In this stage an operation is performed on the previously fetched operands in the ALU.
Additionally, the condition flags in the PSW register are updated as specified by the
instruction. All explicit writes to the SFR memory space and all auto-increment or auto-
decrement writes to GPRs used as indirect address pointers are performed during the
execute stage of an instruction, too.
4th –>WRITE BACK
In this stage all external operands and the remaining operands within the internal RAM
space are written back.
A particularity of the C161U are the so-called injected instructions. These injected
instructions are generated internally by the machine to provide the time needed to
process instructions, which cannot be processed within one machine cycle. They are
automatically injected into the decode stage of the pipeline, and then they pass through
the remaining stages like every standard instruction. Program interrupts are performed
by means of injected instructions, too. Although these internally injected instructions will
not be noticed in reality, they are introduced here to ease the explanation of the pipeline
in the following.

Sequential Instruction Processing
Each single instruction has to pass through each of the four pipeline stages regardless
of whether all possible stage operations are really performed or not. Since passing
through one pipeline stage takes at least one machine cycle, any isolated instruction
takes at least four machine cycles to be completed. Pipelining, however, allows parallel
(ie. simultaneous) processing of up to four instructions. Thus, most of the instructions
seem to be processed during one machine cycle as soon as the pipeline has been filled
once after reset (see figure below).
Data Sheet 56 2001-04-19

C161U

Central Processor Unit
Instruction pipelining increases the average instruction throughput considered over a
certain period of time. In the following, any execution time specification of an instruction
always refers to the average execution time due to pipelined parallel instruction
processing.

Figure 13 Sequential Instruction Pipelining

Standard Branch Instruction Processing
Instruction pipelining helps to speed sequential program processing. In the case that a
branch is taken, the instruction which has already been fetched providently is mostly not
the instruction which must be decoded next. Thus, at least one additional machine cycle
is normally required to fetch the branch target instruction. This extra machine cycle is
provided by means of an injected instruction (see Figure 14).

Figure 14 Standard Branch Instruction Pipelining

1 Machine
Cycle

FETCH I2

I1

I3

I2

I1

I4

I3

I2

I1

I6

I5

I4

I3

I5

I4

I3

I2

I1

DECODE

EXECUTE

WRITEBACK

time

1 Machine
Cycle

FETCH In+2

BRANCH

In

. . .

ITARGET

(IINJECT)

BRANCH

In

ITARGET+1

ITARGET

(IINJECT)

BRANCH

ITARGET+3

ITARGET+2

ITARGET+1

ITARGET

ITARGET+2

ITARGET+1

ITARGET

(IINJECT)

BRANCH

In

. . .

. . .

DECODE

EXECUTE

WRITEBACK

time

Injection
Data Sheet 57 2001-04-19

C161U

Central Processor Unit
If a conditional branch is not taken, there is no deviation from the sequential program
flow, and thus no extra time is required. In this case the instruction after the branch
instruction will enter the decode stage of the pipeline at the beginning of the next
machine cycle after decode of the conditional branch instruction.

Cache Jump Instruction Processing
C161U incorporates a jump cache to optimize conditional jumps, which are processed
repeatedly within a loop. Whenever a jump on cache is taken, the extra time to fetch the
branch target instruction can be saved and thus the corresponding cache jump
instruction in most cases takes only one machine cycle.
This performance is achieved by the following mechanism:
Whenever a cache jump instruction passes through the decode stage of the pipeline for
the first time (and provided that the jump condition is met), the jump target instruction is
fetched as usual, causing a time delay of one machine cycle. In contrast to standard
branch instructions, however, the target instruction of a cache jump instruction (JMPA,
JMPR, JB, JBC, JNB, JNBS) is additionally stored in the cache after having been
fetched.
After each repeatedly following execution of the same cache jump instruction, the jump
target instruction is not fetched from progam memory but taken from the cache and
immediatly injected into the decode stage of the pipeline (see Figure 15).
A time saving jump on cache is always taken after the second and any further occurrence
of the same cache jump instruction, unless an instruction which, has the fundamental
capability of changing the CSP register contents (JMPS, CALLS, RETS, TRAP, RETI),
or any standard interrupt has been processed during the period of time between two
following occurrences of the same cache jump instruction.

Figure 15 Cache Jump Instruction Pipelining

In+2

Cache Jmp

In

. . .

ITARGET+1

ITARGET

Cache Jmp

In

ITARGET+2

ITARGET+1

ITARGET

Cache Jmp

In+2

Cache Jmp

In

. . .

ITARGET

(IINJECT)

Cache Jmp

In

ITARGET+1

ITARGET

(IINJECT)

Cache Jmp

1 Machine
Cycle

FETCH

DECODE

EXECUTE

WRITEBACK

1st loop iteration

Injection Injection of cached
Target Instruction

Repeated loop iteration
Data Sheet 58 2001-04-19

C161U

Central Processor Unit
Particular Pipeline Effects
Since up to four different instructions are processed simultaneously, additional hardware
has been spent in the C161U to consider all causal dependencies which may exist on
instructions in different pipeline stages without a loss of performance. This extra
hardware (ie. for 'forwarding' operand read and write values) resolves most of the
possible conflicts (eg. multiple usage of buses) in a time optimized way and thus avoids
that the pipeline becomes noticeable for the user in most cases. However, there are
some very rare cases, where the circumstance that the C161U is a pipelined machine
requires attention by the programmer. In these cases the delays caused by pipeline
conflicts can be used for other instructions in order to optimize performance.

• Context Pointer Updating
An instruction, which calculates a physical GPR operand address via the CP register, is
mostly not capable of using a new CP value, which is to be updated by an immediately
preceding instruction. Thus, to make sure that the new CP value is used, at least one
instruction must be inserted between a CP-changing and a subsequent GPR-using
instruction, as shown in the following example:
In : SCXT CP, #0FC00h ; select a new context
In+1 : ; must not be an instruction using a GPR
In+2 : MOV R0, #dataX ; write to GPR 0 in the new context

• Data Page Pointer Updating
An instruction, which calculates a physical operand address via a particular DPPn (n=0
to 3) register, is mostly not capable of using a new DPPn register value, which is to be
updated by an immediately preceding instruction. Thus, to make sure that the new DPPn
register value is used, at least one instruction must be inserted between a DPPn-
changing instruction and a subsequent instruction which implicitly uses DPPn via a long
or indirect addressing mode, as shown in the following example:
In : MOV DPP0, #4 ; select data page 4 via DPP0
In+1 : ; must not be an instruction using DPP0
In+2 : MOV DPP0:0000H, R1 ; move contents of R1 to address location 01’0000H

; (in data page 4) supposed segmentation is enabled

• Explicit Stack Pointer Updating
None of the RET, RETI, RETS, RETP or POP instructions is capable of correctly using
a new SP register value, which is to be updated by an immediately preceding instruction.
Thus, in order to use the new SP register value without erroneously performed stack
accesses, at least one instruction must be inserted between an explicitly SP-writing and
any subsequent of the just mentioned implicitly SP-using instructions, as shown in the
following example:
Data Sheet 59 2001-04-19

C161U

Central Processor Unit
In : MOV SP, #0FA40H ; select a new top of stack
In+1 : ; must not be an instruction popping operands

; from the system stack
In+2 : POP R0 ; pop word value from new top of stack into R0

Note: Conflicts with instructions writing to the stack (PUSH, CALL, SCXT) are solved
internally by the CPU logic.

• External Memory Access Sequences
The effect described here will only become noticeable, when watching the external
memory access sequences on the external bus (eg. by means of a Logic Analyzer).
Different pipeline stages can simultaneously put a request on the External Bus Controller
(EBC). The sequence of instructions processed by the CPU may diverge from the
sequence of the corresponding external memory accesses performed by the EBC, due
to the predefined priority of external memory accesses:
1st Write Data
2nd Fetch Code
3rd Read Data.

• Controlling Interrupts
Software modifications (implicit or explicit) of the PSW are done in the execute phase of
the respective instructions. In order to maintain fast interrupt responses, however, the
current interrupt prioritization round does not consider these changes, ie. an interrupt
request may be acknowledged after the instruction that disables interrupts via IEN or
ILVL or after the following instructions. Timecritical instruction sequences therefore
should not begin directly after the instruction disabling interrupts, as shown in the
following example:
INT_OFF: BCLR IEN ; globally disable interrupts

IN-1 ; non-critical instruction
CRIT_1ST: IN ; begin of uninterruptable critical sequence

. . .
CRIT_LAST: IN+x ; end of uninterruptable critical sequence
INT_ON: BSET IEN ; globally re-enable interrupts

Note: The described delay of 1 instruction also applies for enabling the interrupts system
ie. no interrupt requests are acknowledged until the instruction following the
enabling instruction.
Data Sheet 60 2001-04-19

C161U

Central Processor Unit
• Initialization of Port Pins
Modifications of the direction of port pins (input or output) become effective only after the
instruction following the modifying instruction. As bit instructions (BSET, BCLR) use
internal read-modify-write sequences accessing the whole port, instructions modifying
the port direction should be followed by an instruction that does not access the same port
(see example below).
WRONG: BSET DP3.13 ; change direction of P3.13 to output

BSET P3.5 ; P3.13 is still input, the rd-mod-wr reads pin P3.13

RIGHT: BSET DP3.13 ; change direction of P3.13 to output
NOP ; any instruction not accessing port 3
BSET P3.5 ; P3.13 is now output,

; the rd-mod-wr reads the P3.13 output latch

• Changing the System Configuration
The instruction following an instruction that changes the system configuration via register
SYSCON (eg. segmentation, stack size) cannot use the new resources (eg. stack). In
these cases an instruction that does not access these resources should be inserted.

• BUSCON/ADDRSEL
The instruction following an instruction that changes the properties of an external
address area cannot access operands within the new area. In these cases an instruction
that does not access this address area should be inserted. Code accesses to the new
address area should be made after an absolute branch to this area.
Note: As a rule, instructions that change external bus properties should not be executed

from the respective external memory area.

• Timing
Instruction pipelining reduces the average instruction processing time in a wide scale
(from four to one machine cycles, mostly). However, there are some rare cases, where
a particular pipeline situation causes the processing time for a single instruction to be
extended either by a half or by one machine cycle. Although this additional time
represents only a tiny part of the total program execution time, it might be of interest to
avoid these pipeline-caused time delays in time critical program modules.
Besides a general execution time description, the following section provides some hints
on how to optimize time-critical program parts with regard to such pipeline-caused timing
particularities.
Data Sheet 61 2001-04-19

C161U

Central Processor Unit
5.2 Bit-Handling and Bit-Protection
C161U provides several mechanisms to manipulate bits. These mechanisms either
manipulate software flags within the internal RAM, control on-chip peripherals via control
bits in their respective SFRs or control I/O functions via port pins.
The instructions BSET, BCLR, BAND, BOR, BXOR, BMOV, BMOVN explicitly set or
clear specific bits. The instructions BFLDL and BFLDH allow to manipulate up to 8 bits
of a specific byte at one time. The instructions JBC and JNBS implicitly clear or set the
specified bit when the jump is taken. The instructions JB and JNB (also conditional jump
instructions that refer to flags) evaluate the specified bit to determine if the jump is to be
taken.
Note: Bit operations on undefined bit locations will always read a bit value of ‘0’, while

the write access will not effect the respective bit location.

All instructions that manipulate single bits or bit groups internally use a read-modify-write
sequence that accesses the whole word, which contains the specified bit(s).
This method has several consequences:
• Bits can only be modified within the internal address areas, ie. internal RAM and SFRs.
External locations cannot be used with bit instructions.
The upper 256 bytes of the SFR area, the ESFR area and the internal RAM are bit-
addressable (see chapter “Memory Organization”), ie. those register bits located within
the respective sections can be directly manipulated using bit instructions. The other
SFRs must be accessed byte/word wise.
Note: All GPRs are bit-addressable independent of the allocation of the register bank via

the context pointer CP. Even GPRs which are allocated to not bit-addressable
RAM locations provide this feature.

• The read-modify-write approach may be critical with hardware-effected bits. In these
cases the hardware may change specific bits while the read-modify-write operation is in
progress, where the writeback would overwrite the new bit value generated by the
hardware. The solution is either the implemented hardware protection (see below) or
realized through special programming (see “Particular Pipeline Effects”).
Protected bits are not changed during the read-modify-write sequence, ie. when
hardware sets eg. an interrupt request flag between the read and the write of the read-
modify-write sequence. The hardware protection logic guarantees that only the intended
bit(s) is/are effected by the write-back operation.
Note: If a conflict occurs between a bit manipulation generated by hardware and an

intended software access the software access has priority and determines the
final value of the respective bit.

A summary of the protected bits implemented in the C161U can be found at the end of
chapter “Architectural Overview”.
Data Sheet 62 2001-04-19

C161U

Central Processor Unit
5.3 Instruction State Times
Basically, the time to execute an instruction depends on where the instruction is fetched
from, and where possible operands are read from or written to. The fastest processing
mode of the C161U is to execute a program fetched from the internal code memory. In
that case most of the instructions can be processed within just one machine cycle, which
is also the general minimum execution time.
All external memory accesses are performed by the C161U’s on-chip External Bus
Controller (EBC), which works in parallel with the CPU.
This section summarizes the execution times in a very condensed way. A detailled
description of the execution times for the various instructions and the specific exceptions
can be found in the “C16x Family Instruction Set Manual”.
The table below shows the minimum execution times required to process a C161U
instruction fetched from the internal RAM or from external memory. These execution
times apply to most of the C161U instructions - except some of the branches, the
multiplication, the division and a special move instruction. The numbers in the table are
in units of [ns], refer to a CPU clock of 20 MHz and assume no waitstates.
Data Sheet 63 2001-04-19

C161U

Central Processor Unit
Table 9 Minimum Execution Times

Execution from the internal RAM provides flexibility in terms of loadable and modifyable
code on the account of execution time.
Execution from external memory strongly depends on the selected bus mode and the
programming of the bus cycles (waitstates).
The operand and instruction accesses listed below can extend the execution time of an
instruction:
• Internal RAM operand reads via indirect addressing modes
• Internal SFR operand reads immediately after writing
• External operand reads
• External operand writes
• Jumps to non-aligned double word instructions in the internal ROM space
• Testing Branch Conditions immediately after PSW writes

5.4 CPU Special Function Registers
The core CPU requires a set of Special Function Registers (SFRs) to maintain the
system state information, to supply the ALU with register-addressable constants and to
control system and bus configuration, multiply and divide ALU operations, code memory
segmentation, data memory paging, and accesses to the General Purpose Registers
and the System Stack.
The access mechanism for these SFRs in the CPU core is identical to the access
mechanism for any other SFR. Since all SFRs can simply be controlled by means of any
instruction, which is capable of addressing the SFR memory space, a lot of flexibility has
been gained, without the need to create a set of system-specific instructions.
Note, however, that there are user access restrictions for some of the CPU core SFRs
to ensure proper processor operations. The instruction pointer IP and code segment
pointer CSP cannot be accessed directly at all. They can only be changed indirectly via
branch instructions.

Instruction Fetch Word Operand Access
Memory Area Word

Instruction
Doubleword
Instruction

Read from Write to

Internal RAM 6 8 0/1 0
16-bit Demux Bus 2 4 2 2
16-bit Mux Bus 3 6 3 3
8-bit Demux Bus 4 8 4 4
8-bit Mux Bus 6 12 6 6
Data Sheet 64 2001-04-19

C161U

Central Processor Unit
The PSW, SP, and MDC registers can be modified not only explicitly by the programmer,
but also implicitly by the CPU during normal instruction processing. Note that any explicit
write request (via software) to an SFR supersedes a simultaneous modification by
hardware of the same register.

Note: Any write operation to a single byte of an SFR clears the non-addressed
complementary byte within the specified SFR.
Non-implemented (reserved) SFR bits cannot be modified, and will always supply
a read value of '0'.

System Configuration Register SYSCON
This bit-addressable register provides general system configuration and control
functions. The reset value for register SYSCON depends on the state of the PORT0 pins
during reset (see hardware effectable bits).
Data Sheet 65 2001-04-19

C161U

Central Processor Unit
SYSCON (FF12H / 89H) SFR Reset Value: 0XX0H

Bit Function
XPER-
SHARE

Reserved
The XPER-SHARE mode, known from other C16x Infineon derivatives,
is not supported in the C161U. This bit must be set to ’0’ signal.

VISIBLE Visible Mode Control
’0’: Accesses to XBUS peripherals are done internally
’1’: XBUS peripheral accesses are made visible on the external pins

XPEN XBUS Peripheral Enable Bit
’0’: Accesses to the on-chip X-Peripherals and their functions are

disabled
’1’: The on-chip X-Peripherals are enabled and can be accessed
Note: This bit is valid only for derivatives that contain X-Peripherals.

OSCENBL Oscillator Watchdog Enable Bit
‘0’: The oscillator watchdog is disabled. Default configuration.
‘1’: The oscillator watchdog is enabled.

CSCFG Chip Select Configuration Control
‘0’: Latched CS mode. The CS signals are latched internally and

driven to the enabled port pins synchronously.
‘1’: Unlatched CS mode. The CS signals are directly derived from

the address and driven to the enabled port pins.
WRCFG Write Configuration Control (Set according to pin P0H.0 during reset)

’0’: Pins WR and BHE retain their normal function
’1’: Pin WR acts as WRL, pin BHE acts as WRH

CLKEN System Clock Output Enable (CLKOUT)
’0’: CLKOUT disabled: pin may be used for general purpose I/O
’1’: CLKOUT enabled: pin outputs the system clock signal

BYTDIS Disable/Enable Control for Pin BHE (Set according to data bus width)
’0’: Pin BHE enabled
’1’: Pin BHE disabled, pin may be used for general purpose I/O

XPEN
XPER-
SHARE

VISI
BLE- -

ROM
S1

WR
CFG

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rwrw rw rwrw rw

STKSZ
SGT
DIS

ROM
EN

rw

BYT
DIS

CLK
EN

rw rw rw rwrw

OSC
ENBL

CS
CFG
Data Sheet 66 2001-04-19

C161U

Central Processor Unit
Note: Register SYSCON cannot be changed after execution of the EINIT instruction.

System Clock Output Enable (CLKEN)
The system clock output function is enabled by setting bit CLKEN in register SYSCON
to '1'. If enabled, port pin P3.15 takes on its alternate function as CLKOUT output pin.
The clock output is a 50 % duty cycle clock whose frequency equals the CPU operating
frequency (fOUT = fCPU).
Note: The output driver of port pin P3.15 is switched on automatically, when the

CLKOUT function is enabled. The port direction bit is disregarded.
After reset, the clock output function is disabled (CLKEN = ‘0’).

Segmentation Disable/Enable Control (SGTDIS)
Bit SGTDIS allows to select either the segmented or non-segmented memory mode.
In non-segmented memory mode (SGTDIS='1') it is assumed that the code address
space is restricted to 64 KBytes (segment 0) and thus 16 bits are sufficient to represent
all code addresses. For implicit stack operations (CALL or RET) the CSP register is
totally ignored and only the IP is saved to and restored from the stack.
In segmented memory mode (SGTDIS='0') it is assumed that the whole address space
is available for instructions. For implicit stack operations (CALL or RET) the CSP register

ROMEN Internal Boot-ROM Enable
’0’: Internal Boot-ROM is disabled. Access of the lower 32k address

space will be linked to external memory. During normal
operation, bit ROMEN must always be set to ’0’ signal

’1’: Internal Boot-ROM is enabled. This bit is only set in BSL mode.
During BSL mode, if the lowest 32k of external memory needs
to be programmed, bit ROMEN must be set to ’0’ signal. After
BSL mode, make sure that bit ROMEN is cleared.

SGTDIS Segmentation Disable/Enable Control
’0’: Segmentation enabled

(CSP and IP are saved/restored during interrupt entry/exit)
’1’: Segmentation disabled (Only IP is saved/restored)

ROMS1 Reserved
The ROMS1, known from other C16x Infineon derivatives, is not
supported in the C161U. This bit must be set to ’0’ signal.

STKSZ System Stack Size
Selects the size of the system stack (in the internal RAM) from 32 to 1024
words

Bit Function
Data Sheet 67 2001-04-19

C161U

Central Processor Unit
and the IP are saved to and restored from the stack. After reset the segmented memory
mode is selected.
Note: Bit SGTDIS controls if the CSP register is pushed onto the system stack in addition

to the IP register before an interrupt service routine is entered, and it is repopped
when the interrupt service routine is left again.

System Stack Size (STKSZ)
This bitfield defines the size of the physical system stack, which is located in the internal
RAM of the C161U. An area of 32...512 words or all of the internal RAM may be
dedicated to the system stack. A so-called “circular stack” mechanism allows to use a
bigger virtual stack than this dedicated RAM area.
These techniques as well as the encoding of bitfield STKSZ are described in more detail
in chapter “System Programming”.

Processor Status Word PSW
This bit-addressable register reflects the current state of the microcontroller. Two groups
of bits represent the current ALU status, and the current CPU interrupt status. A separate
bit (USR0) within register PSW is provided as a general purpose user flag.
Data Sheet 68 2001-04-19

C161U

Central Processor Unit
PSW (FF10H / 88H) SFR Reset Value: 0000H

ALU Status (N, C, V, Z, E, MULIP)
The condition flags (N, C, V, Z, E) within the PSW indicate the ALU status due to the last
recently performed ALU operation. They are set by most of the instructions due to
specific rules, which depend on the ALU or data movement operation performed by an
instruction.
After execution of an instruction which explicitly updates the PSW register, the condition
flags cannot be interpreted as described in the following, because any explicit write to
the PSW register supersedes the condition flag values, which are implicitly generated by
the CPU. Explicitly reading the PSW register supplies a read value which represents the
state of the PSW register after execution of the immediately preceding instruction.
Note: After reset, all of the ALU status bits are cleared.

• N-Flag: For most of the ALU operations, the N-flag is set to '1', if the most significant
bit of the result contains a '1', otherwise it is cleared. In the case of integer operations

Bit Function
N Negative Result

Set, when the result of an ALU operation is negative.
C Carry Flag

Set, when the result of an ALU operation produces a carry bit.
V Overflow Result

Set, when the result of an ALU operation produces an overflow.
Z Zero Flag

Set, when the result of an ALU operation is zero.
E End of Table Flag

Set, when the source operand of an instruction is 8000H or 80H.
MULIP Multiplication/Division In Progress

‘0’: There is no multiplication/division in progress.
‘1’: A multiplication/division has been interrupted.

USR0 User General Purpose Flag
May be used by the application software.

HLDEN,
ILVL, IEN

Interrupt and EBC Control Fields
Define the response to interrupt requests and enable external bus
arbitration. (Described in section “Interrupt and Trap Functions”)

HLD
EN

MUL
IPUSR0- NZ CVE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw- rw rw rw-rw -rw

IEN --ILVL

rw
Data Sheet 69 2001-04-19

C161U

Central Processor Unit
the N-flag can be interpreted as the sign bit of the result (negative: N=’1’, positive:
N=’0’). Negative numbers are always represented as the 2's complement of the
corresponding positive number. The range of signed numbers extends from '–8000H'
to '+7FFFH' for the word data type, or from '–80H' to '+7FH' for the byte data type.For
Boolean bit operations with only one operand the N-flag represents the previous state
of the specified bit. For Boolean bit operations with two operands the N-flag
represents the logical XORing of the two specified bits.

• C-Flag: After an addition the C-flag indicates that a carry from the most significant bit
of the specified word or byte data type has been generated. After a subtraction or a
comparison the C-flag indicates a borrow, which represents the logical negation of a
carry for the addition.
This means that the C-flag is set to '1', if no carry from the most significant bit of the
specified word or byte data type has been generated during a subtraction, which is
performed internally by the ALU as a 2's complement addition, and the C-flag is
cleared when this complement addition caused a carry.
The C-flag is always cleared for logical, multiply and divide ALU operations, because
these operations cannot cause a carry anyhow.
For shift and rotate operations the C-flag represents the value of the bit shifted out
last. If a shift count of zero is specified, the C-flag will be cleared. The C-flag is also
cleared for a prioritize ALU operation, because a '1' is never shifted out of the MSB
during the normalization of an operand.
For Boolean bit operations with only one operand the C-flag is always cleared. For
Boolean bit operations with two operands the C-flag represents the logical ANDing of
the two specified bits.

• V-Flag: For addition, subtraction and 2's complementation the V-flag is always set to
'1', if the result overflows the maximum range of signed numbers, which are
representable by either 16 bits for word operations ('–8000H' to '+7FFFH'), or by 8 bits
for byte operations ('–80H' to '+7FH'), otherwise the V-flag is cleared. Note that the
result of an integer addition, integer subtraction, or 2's complement is not valid, if the
V-flag indicates an arithmetic overflow.
For multiplication and division the V-flag is set to '1', if the result cannot be represented
in a word data type, otherwise it is cleared. Note that a division by zero will always
cause an overflow. In contrast to the result of a division, the result of a multiplication
is valid regardless of whether the V-flag is set to '1' or not.
Since logical ALU operations cannot produce an invalid result, the V-flag is cleared by
these operations.

The V-flag is also used as 'Sticky Bit' for rotate right and shift right operations. With only
using the C-flag, a rounding error caused by a shift right operation can be estimated up
to a quantity of one half of the LSB of the result. In conjunction with the V-flag, the C-flag
allows evaluating the rounding error with a finer resolution (see table below).
For Boolean bit operations with only one operand the V-flag is always cleared.
Data Sheet 70 2001-04-19

C161U

Central Processor Unit
For Boolean bit operations with two operands the V-flag represents the logical ORing of
the two specified bits.

Table 10 Shift Right Rounding Error Evaluation

• Z-Flag: The Z-flag is normally set to '1', if the result of an ALU operation equals zero,
otherwise it is cleared.
For the addition and subtraction with carry the Z-flag is only set to '1', if the Z-flag
already contains a '1' and the result of the current ALU operation additionally equals
zero. This mechanism is provided for the support of multiple precision calculations.
For Boolean bit operations with only one operand the Z-flag represents the logical
negation of the previous state of the specified bit. For Boolean bit operations with two
operands the Z-flag represents the logical NORing of the two specified bits. For the
prioritize ALU operation the Z-flag indicates, if the second operand was zero or not.

• E-Flag: The E-flag can be altered by instructions, which perform ALU or data
movement operations. The E-flag is cleared by those instructions which cannot be
reasonably used for table search operations. In all other cases the E-flag is set
depending on the value of the source operand to signify whether the end of a search
table is reached or not. If the value of the source operand of an instruction equals the
lowest negative number, which is representable by the data format of the
corresponding instruction ('8000H' for the word data type, or '80H' for the byte data
type), the E-flag is set to '1', otherwise it is cleared.

• MULIP-Flag: The MULIP-flag will be set to '1' by hardware upon the entrance into an
interrupt service routine, when a multiply or divide ALU operation was interrupted
before completion. Depending on the state of the MULIP bit, the hardware decides
whether a multiplication or division must be continued or not after the end of an
interrupt service. The MULIP bit is overwritten with the contents of the stacked MULIP-
flag when the return-from-interrupt-instruction (RETI) is executed. This normally
means that the MULIP-flag is cleared again after that.

Note: The MULIP flag is a part of the task environment! When the interrupting service
routine does not return to the interrupted multiply/divide instruction (ie. in case of
a task scheduler that switches between independent tasks), the MULIP flag must
be saved as part of the task environment and must be updated accordingly for the
new task before this task is entered.

C-Flag V-Flag Rounding Error Quantity
0
0
1
1

0
1
0
1

- No rounding error -
0 < Rounding error < 1/2 LSB

Rounding error = 1/2 LSB
Rounding error > 1/2 LSB
Data Sheet 71 2001-04-19

C161U

Central Processor Unit
CPU Interrupt Status (IEN, ILVL)
The Interrupt Enable bit allows to globally enable (IEN=’1’) or disable (IEN=’0’) interrupts.
The four-bit Interrupt Level field (ILVL) specifies the priority of the current CPU activity.
The interrupt level is updated by hardware upon entry into an interrupt service routine,
but it can also be modified via software to prevent other interrupts from being
acknowledged. In case an interrupt level '15' has been assigned to the CPU, it has the
highest possible priority, and thus the current CPU operation cannot be interrupted
except by hardware traps or external non-maskable interrupts. For details please refer
to chapter “Interrupt and Trap Functions”.
After reset all interrupts are globally disabled, and the lowest priority (ILVL=0) is
assigned to the initial CPU activity.

Instruction Pointer IP
This register determines the 16-bit intra-segment address of the currently fetched
instruction within the code segment selected by the CSP register. The IP register is not
mapped into the C161U's address space, and thus it is not directly accessable by the
programmer. The IP can, however, be modified indirectly via the stack by means of a
return instruction.
The IP register is implicitly updated by the CPU for branch instructions and after
instruction fetch operations.

IP (---- / --) --- Reset Value: 0000H

Code Segment Pointer CSP
This non-bit addressable register selects the code segment being used at run-time to
access instructions. The lower 8 bits of register CSP select one of up to 256 segments
of 64 KBytes each, while the upper 8 bits are reserved for future use.

Bit Function
ip Specifies the intra segment offset, from where the current instruction is

to be fetched. IP refers to the current segment <SEGNR>.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

(r)(w)

ip
Data Sheet 72 2001-04-19

C161U

Central Processor Unit
CSP (FE08H / 04H) SFR Reset Value: 0000H

Code memory addresses are generated by directly extending the 16-bit contents of the
IP register by the contents of the CSP register as shown in the figure below.
In case of the segmented memory mode the selected number of segment address bits
(via bitfield SALSEL) of register CSP is output on the respective segment address pins
of Port 4 for all external code accesses. For non-segmented memory mode or Single
Chip Mode the content of this register is not significant, because all code acccesses are
automatically restricted to segment 0.
Note: The CSP register can only be read but not written by data operations. It is,

however, modified either directly by means of the JMPS and CALLS instructions,
or indirectly via the stack by means of the RETS and RETI instructions.
Upon the acceptance of an interrupt or the execution of a software TRAP
instruction, the CSP register is automatically set to zero.

Bit Function
SEGNR Segment Number

Specifies the code segment, from where the current instruction is to be
fetched. SEGNR is ignored, when segmentation is disabled.

- -- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - r-- --

- --

-

SEGNR
Data Sheet 73 2001-04-19

C161U

Central Processor Unit

Figure 16 Addressing via the Code Segment Pointer

Note: When segmentation is disabled, the IP value is used directly as the 16-bit address.

Data Page Pointers DPP0, DPP1, DPP2, DPP3
These four non-bit addressable registers select up to four different data pages being
active simultaneously at run-time. The lower 10 bits of each DPP register select one of
the 1024 possible 16-Kbyte data pages while the upper 6 bits are reserved for future use.
The DPP registers allow to access the entire memory space in pages of 16 Kbytes each.
The DPP registers are implicitly used, whenever data accesses to any memory location
are made via indirect or direct long 16-bit addressing modes (except for override
accesses via EXTended instructions and PEC data transfers). After reset, the Data Page
Pointers are initialized in a way that all indirect or direct long 16-bit addresses result in
identical 18-bit addresses. This allows to access data pages 3...0 within segment 0 as
shown in the figure below. If the user does not want to use any data paging, no further
action is required.

MCA02265

255

1

15 0
IP Register

254

0

Code Segment
FF’FFFFH

FE’0000H

01’0000H

00’0000H

CSP Register
15 0

24/20/18-Bit Physical Code Address
Data Sheet 74 2001-04-19

C161U

Central Processor Unit
DPP0 (FE00H / 00H) SFR Reset Value: 0000H

DPP1 (FE02H / 01H) SFR Reset Value: 0001H

DPP2 (FE04H / 02H) SFR Reset Value: 0002H

DPP3 (FE06H / 03H) SFR Reset Value: 0003H

Data paging is performed by concatenating the lower 14 bits of an indirect or direct long
16-bit address with the contents of the DPP register selected by the upper two bits of the
16-bit address. The content of the selected DPP register specifies one of the 1024
possible data pages. This data page base address together with the 14-bit page offset
forms the physical 24-bit address (selectable part is driven to the address pins).
In case of non-segmented memory mode, only the two least significant bits of the
implicitly selected DPP register are used to generate the physical address. Thus,
extreme care should be taken when changing the content of a DPP register, if a non-
segmented memory model is selected, because otherwise unexpected results could
occur.

Bit Function
DPPxPN Data Page Number of DPPx

Specifies the data page selected via DPPx. Only the least significant two
bits of DPPx are significant, when segmentation is disabled.

- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw-- --

- --

-

DPP0PN

- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw-- --

- --

-

DPP1PN

- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw-- --

- --

-

DPP2PN

- --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw-- --

- --

-

DPP3PN
Data Sheet 75 2001-04-19

C161U

Central Processor Unit
In case of the segmented memory mode the selected number of segment address bits
(via bitfield SALSEL) of the respective DPP register is output on the respective segment
address pins of Port 4 for all external data accesses.
A DPP register can be updated via any instruction, which is capable of modifying an
SFR.
Note: Due to the internal instruction pipeline, a new DPP value is not yet usable for the

operand address calculation of the instruction immediately following the
instruction updating the DPP register.

Figure 17 Addressing via the Data Page Pointers

Context Pointer CP
This non-bit addressable register is used to select the current register context. This
means that the CP register value determines the address of the first General Purpose
Register (GPR) within the current register bank of up to 16 wordwide and/or bytewide
GPRs.

MCA02264

1023

Data Pages

1022

1021

3

2

1

0

DPP Registers

DPP3-11

DPP2-10

DPP1-01

DPP0-00

15 14 0
16-Bit Data Address

14-Bit
Intra-Page Address
(concatenated with
content of DPPx).

Affer reset or with segmentation disabled the DPP registers select data pages 3...0.
All of the internal memory is accessible in these cases.
Data Sheet 76 2001-04-19

C161U

Central Processor Unit
CP (FE10H / 08H) SFR Reset Value: FC00H

Note: It is the user's responsibility that the physical GPR address specified via CP
register plus short GPR address must always be an internal RAM location. If this
condition is not met, unexpected results may occur.
• Do not set CP below the IRAM start address, ie. 00’FA00H/00’F600H/00’F200H
(1/2/3 KB)
• Do not set CP above 00’FDFEH
• Be careful using the upper GPRs with CP above 00’FDE0H

The CP register can be updated via any instruction which is capable of modifying an
SFR.
Note: Due to the internal instruction pipeline, a new CP value is not yet usable for GPR

address calculations of the instruction immediately following the instruction
updating the CP register.

The Switch Context instruction (SCXT) allows to save the content of register CP on the
stack and updating it with a new value in just one machine cycle.

Bit Function
cp Modifiable portion of register CP

Specifies the (word) base address of the current register bank.
When writing a value to register CP with bits CP.11...CP.9 = ‘000’, bits
CP.11...CP.10 are set to ‘11’ by hardware, in all other cases all bits of bit
field “cp” receive the written value.

1 01

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rrwr rr

1 1

r

cp
Data Sheet 77 2001-04-19

C161U

Central Processor Unit

Figure 18 Register Bank Selection via Register CP

Several addressing modes use register CP implicitly for address calculations. The
addressing modes mentioned below are described in chapter “Instruction Set
Summary”.
Short 4-Bit GPR Addresses (mnemonic: Rw or Rb) specify an address relative to the
memory location specified by the contents of the CP register, ie. the base of the current
register bank.
Depending on whether a relative word (Rw) or byte (Rb) GPR address is specified, the
short 4-bit GPR address is either multiplied by two or not before it is added to the content
of register CP (see figure below). Thus, both byte and word GPR accesses are possible
in this way.
GPRs used as indirect address pointers are always accessed wordwise. For some
instructions only the first four GPRs can be used as indirect address pointers. These
GPRs are specified via short 2-bit GPR addresses. The respective physical address
calculation is identical to that for the short 4-bit GPR addresses.

MCD02003

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Context
Pointer

(CP) + 30

(CP) + 28

(CP) + 2

(CP)

Internal RAM

...
Data Sheet 78 2001-04-19

C161U

Central Processor Unit
Short 8-Bit Register Addresses (mnemonic: reg or bitoff) within a range from F0H to
FFH interpret the four least significant bits as short 4-bit GPR address, while the four
most significant bits are ignored. The respective physical GPR address calculation is
identical to that for the short 4-bit GPR addresses. For single bit accesses on a GPR, the
GPR's word address is calculated as just described, but the position of the bit within the
word is specified by a separate additional 4-bit value.

Figure 19 Implicit CP Use by Short GPR Addressing Modes

Stack Pointer SP
This non-bit addressable register is used to point to the top of the internal system stack
(TOS). The SP register is pre-decremented whenever data is to be pushed onto the
stack, and it is post-incremented whenever data is to be popped from the stack. Thus,
the system stack grows from higher toward lower memory locations.
Since the least significant bit of register SP is tied to '0' and bits 15 through 12 are tied
to '1' by hardware, the SP register can only contain values from F000H to FFFEH. This
allows to access a physical stack within the internal RAM of the C161U. A virtual stack
(usually bigger) can be realized via software. This mechanism is supported by registers
STKOV and STKUN (see respective descriptions below).
The SP register can be updated via any instruction, which is capable of modifying an
SFR.
Note: Due to the internal instruction pipeline, a POP or RETURN instruction must not

immediately follow an instruction updating the SP register.

For word GPR
accessesaccesses

For byte GPR

Control

1111

Specified by reg or bitoff

Context
Pointer

+

4-Bit GPR
Address

2*

MCD02005

Internal

GPRs

RAM

Must be
within the

RAM area
internal
Data Sheet 79 2001-04-19

C161U

Central Processor Unit
SP (FE12H / 09H) SFR Reset Value: FC00H

Stack Overflow Pointer STKOV
This non-bit addressable register is compared against the SP register after each
operation, which pushes data onto the system stack (eg. PUSH and CALL instructions
or interrupts) and after each subtraction from the SP register. If the content of the SP
register is less than the content of the STKOV register, a stack overflow hardware trap
will occur.
Since the least significant bit of register STKOV is tied to '0' and bits 15 through 12 are
tied to '1' by hardware, the STKOV register can only contain values from F000H to
FFFEH.

STKOV (FE14H / 0AH) SFR Reset Value: FA00H

The Stack Overflow Trap (entered when (SP) < (STKOV)) may be used in two different
ways:
• Fatal error indication treats the stack overflow as a system error through the

associated trap service routine. Under these circumstances data in the bottom of the
stack may have been overwritten by the status information stacked upon servicing the
stack overflow trap.

• Automatic system stack flushing allows to use the system stack as a 'Stack Cache'
for a bigger external user stack. In this case register STKOV should be initialized to a
value, which represents the desired lowest Top of Stack address plus 12 according to
the selected maximum stack size. This considers the worst case that will occur, when
a stack overflow condition is detected just during entry into an interrupt service routine.

Bit Function
sp Modifiable portion of register SP

Specifies the top of the internal system stack.

Bit Function
stkov Modifiable portion of register STKOV

Specifies the lower limit of the internal system stack.

1 01

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rrwr rr

1 1

r

sp

1 01

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rrwr rr

1 1

r

stkov
Data Sheet 80 2001-04-19

C161U

Central Processor Unit
Then, six additional stack word locations are required to push IP, PSW, and CSP for
both the interrupt service routine and the hardware trap service routine.

More details about the stack overflow trap service routine and virtual stack management
are given in chapter “System Programming”.

Stack Underflow Pointer STKUN
This non-bit addressable register is compared against the SP register after each
operation, which pops data from the system stack (eg. POP and RET instructions) and
after each addition to the SP register. If the content of the SP register is greater than the
the content of the STKUN register, a stack underflow hardware trap will occur.
Since the least significant bit of register STKUN is tied to '0' and bits 15 through 12 are
tied to '1' by hardware, the STKUN register can only contain values from F000H to
FFFEH.

STKUN (FE16H / 0BH) SFR Reset Value: FC00H

The Stack Underflow Trap (entered when (SP) > (STKUN)) may be used in two different
ways:
• Fatal error indication treats the stack underflow as a system error through the

associated trap service routine.
• Automatic system stack refilling allows to use the system stack as a 'Stack Cache'

for a bigger external user stack. In this case register STKUN should be initialized to a
value, which represents the desired highest Bottom of Stack address.

More details about the stack underflow trap service routine and virtual stack
management are given in chapter “System Programming”.

Scope of Stack Limit Control
The stack limit control realized by the register pair STKOV and STKUN detects cases
where the stack pointer SP is moved outside the defined stack area either by ADD or
SUB instructions or by PUSH or POP operations (explicit or implicit, ie. CALL or RET
instructions).

Bit Function
stkun Modifiable portion of register STKUN

Specifies the upper limit of the internal system stack.

1 01

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rrwr rr

1 1

r

stkun
Data Sheet 81 2001-04-19

C161U

Central Processor Unit
This control mechanism is not triggered, ie. no stack trap is generated, when
• the stack pointer SP is directly updated via MOV instructions
• the limits of the stack area (STKOV, STKUN) are changed, so that SP is outside of the

new limits.

Multiply/Divide High Register MDH
This register is a part of the 32-bit multiply/divide register, which is implicitly used by the
CPU, when it performs a multiplication or a division. After a multiplication, this non-bit
addressable register represents the high order 16 bits of the 32-bit result. For long
divisions, the MDH register must be loaded with the high order 16 bits of the 32-bit
dividend before the division is started. After any division, register MDH represents the
16-bit remainder.

MDH (FE0CH / 06H) SFR Reset Value: 0000H

Whenever this register is updated via software, the Multiply/Divide Register In Use
(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to '1'.
When a multiplication or division is interrupted before its completion and when a new
multiply or divide operation is to be performed within the interrupt service routine, register
MDH must be saved along with registers MDL and MDC to avoid erroneous results.
A detailed description of how to use the MDH register for programming multiply and
divide algorithms can be found in chapter “System Programming”.

Multiply/Divide Low Register MDL
This register is a part of the 32-bit multiply/divide register, which is implicitly used by the
CPU, when it performs a multiplication or a division. After a multiplication, this non-bit
addressable register represents the low order 16 bits of the 32-bit result. For long
divisions, the MDL register must be loaded with the low order 16 bits of the 32-bit
dividend before the division is started. After any division, register MDL represents the 16-
bit quotient.

Bit Function
mdh Specifies the high order 16 bits of the 32-bit multiply and divide register

MD.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

mdh
Data Sheet 82 2001-04-19

C161U

Central Processor Unit
MDL (FE0EH / 07H) SFR Reset Value: 0000H

Whenever this register is updated via software, the Multiply/Divide Register In Use
(MDRIU) flag in the Multiply/Divide Control register (MDC) is set to '1'. The MDRIU flag
is cleared, whenever the MDL register is read via software.
When a multiplication or division is interrupted before its completion and when a new
multiply or divide operation is to be performed within the interrupt service routine, register
MDL must be saved along with registers MDH and MDC to avoid erroneous results.
A detailed description of how to use the MDL register for programming multiply and
divide algorithms can be found in chapter “System Programming”.

Multiply/Divide Control Register MDC
This bit addressable 16-bit register is implicitly used by the CPU, when it performs a
multiplication or a division. It is used to store the required control information for the
corresponding multiply or divide operation. Register MDC is updated by hardware during
each single cycle of a multiply or divide instruction.

Bit Function
mdl Specifies the low order 16 bits of the 32-bit multiply and divide register

MD.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

mdl
Data Sheet 83 2001-04-19

C161U

Central Processor Unit
MDC (FF0EH / 87H) SFR Reset Value: 0000H

When a division or multiplication was interrupted before its completion and the multiply/
divide unit is required, the MDC register must first be saved along with registers MDH
and MDL (to be able to restart the interrupted operation later), and then it must be
cleared prepare it for the new calculation. After completion of the new division or
multiplication, the state of the interrupted multiply or divide operation must be restored.
The MDRIU flag is the only portion of the MDC register which might be of interest for the
user. The remaining portions of the MDC register are reserved for dedicated use by the
hardware, and should never be modified by the user in another way than described
above. Otherwise, a correct continuation of an interrupted multiply or divide operation
cannot be guaranteed.
A detailed description of how to use the MDC register for programming multiply and
divide algorithms can be found in chapter “System Programming”.

Constant Zeros Register ZEROS
All bits of this bit-addressable register are fixed to '0' by hardware. This register can be
read only. Register ZEROS can be used as a register-addressable constant of all zeros,
ie. for bit manipulation or mask generation. It can be accessed via any instruction, which
is capable of addressing an SFR.

Bit Function
MDRIU Multiply/Divide Register In Use

‘0’: Cleared, when register MDL is read via software.
‘1’: Set when register MDL or MDH is written via software, or when

a multiply or divide instruction is executed.
!! Internal Machine Status

The multiply/divide unit uses these bits to control internal operations.
Never modify these bits without saving and restoring register MDC.

- !!--

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- r(w)-- --

- --

-

!!!!!!!!!!!!- -

- - r(w) r(w) r(w) r(w) r(w) r(w) r(w)

MDR
IU
Data Sheet 84 2001-04-19

C161U

Central Processor Unit
ZEROS (FF1CH / 8EH) SFR Reset Value: 0000H

Constant Ones Register ONES
All bits of this bit-addressable register are fixed to '1' by hardware. This register can be
read only. Register ONES can be used as a register-addressable constant of all ones,
ie. for bit manipulation or mask generation. It can be accessed via any instruction, which
is capable of addressing an SFR.

ONES (FF1EH / 8FH) SFR Reset Value: FFFFH

5.5 PEC - Extension of Functionality

Introduction

Compared to existing C16x architecture, the PEC transfer function is enhanced by
extended functionality. The extended PEC function is a further step into DMA control
functionality. It especially supports integrated system design with XBUS as system bus.
Note: The device address decoding structure is always based on 24-bit addresses. But

due to the limited number of port P4 pins, only the address bits A20:A16 can be
made visible on the external X-Bus interface.

The extended PEC functions are defined as follows:
– Source pointer and destination pointer are extended to 24-bit pointer, thus enabling

PEC controlled data transfer between any two locations within the total address
space. Both 8-bit segment numbers of every source/destination pointer pair are
defined in one 16-bit SFR register; thus, 8 PEC segment number registers are
available for the 8 PEC channels.

– Two of the PEC channels are expanded by additional 16-bit transfer count registers;
when enabled, the original 8-bit bytecount in the control register serves as package
length count, thus defining the amount of bytes or words to be transferred with one
request. In C161U the package size is always limited to one transfer.

– For always two channels a chaining feature is provided. When enabled in the PEC
control register, a termination interrupt of one channel will automatically switch
transfer control to the other channel of the channel pair.

0 0 000

5 4 3 2 1 011 10 9 8 7 615 14 13 12

r rrr rr

0 00

r

0000000 0

r r r r r r r r r

1 1 111

5 4 3 2 1 011 10 9 8 7 615 14 13 12

r rrr rr

1 11

r

1111111 1

r r r r r r r r r
Data Sheet 85 2001-04-19

C161U

Central Processor Unit
24-bit Extension of Source and Destination Pointers

The source and destination pointers specify the locations between which the data is to
be moved. For each of the eight PEC channels the source and destination pointers are
specified by one SFR register and two IRAM memory locations. One SFR register stores
the 8-bit segment number of the source (PECSSN) and the 8-bit segment number of the
destination (PECDSN) location in a respective 16-bit PEC Segment Number register
(PECSNx). The respective segment offset of source and destination are stored in IRAM
memory location identical to the IRAM locations of SRCPx and DSTPx pointers of Full-
Custom C16x standard PEC channels - thus the extension is fully compatible. With the
segment number extension of source and destination, data can be transferred by a PEC
transfer between any two locations within the 2 MByte address space of the C161U.
Note: The segment number extension of source and destination is provided for all 8 PEC

channels. After reset, all 8 segment number registers PECSNx are cleared,
providing full compatibility to FC-C16x PEC channels.

The PEC segment number registers PECSNx are defined as follows:

PECSNx (Addresses see table) SFR Reset Value: 0000H

Bit Function
PECSSN PEC Source Segment Number

8-bit Segment Number used for addressing the source of the respective
PEC transfer.
Bits 4:0 can be used externally (address bits A20:A16). Due to the limited
number of pins, the upper bits 7:5 can not be used externally but can still
be used for chip select (CS) generation.

PECDSN PEC Destination Segment Number
8-bit Segment Number used for addressing the destination of the
respective PEC transfer.
Bits 12:8 can be used externally (address bits A20:A16). Due to the
limited number of pins, the upper bits 15:13 can not be used externally
but can still be used for chip select (CS) generation.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

PECSSN

rw

PECDSN
Data Sheet 86 2001-04-19

C161U

Central Processor Unit
Table 11 PEC Segment Number Register Addresses

Register Address Reg. Space Register Address Reg. Space
PECSN0 FED0H / 68H SFR PECSN4 FED8H / 6CH SFR
PECSN1 FED2H / 69H SFR PECSN5 FEDAH / 6DH SFR
PECSN2 FED4H / 6AH SFR PECSN6 FEDCH / 6EH SFR
PECSN3 FED6H / 6BH SFR PECSN7 FEDEH / 6FH SFR
Data Sheet 87 2001-04-19

C161U

Central Processor Unit
Extended PEC Channel Control
The PEC control registers with the extended functionality and their application for new
PEC control are defined as follows:
PECCx (Addresses: see table) SFR Reset Value: 0000H

Bit Function
COUNT PEC Transfer Count

Counts PEC transfers (bytes or words) and influences the channel’s
action

BWT Byte / Word Transfer Selection
0: Transfer a Word
1: Transfer a Byte

INC Increment Control (Modification of SRCPx or DSTPx)
0 0: Pointers are not modified
0 1: Increment DSTPx by 1 or 2 (BWT)
1 0: Increment SRCPx by 1 or 2 (BWT)
1 1: Reserved. Do not use this combination. (changed to 10 by
hardware)

CL Channel Link Control
0: PEC channels work independent
1: Pairs of channels are linked together

CLT Channel Link Toggle State
0: Even numbered PEC channel of linked channels active
1: Odd numbered PEC channel of linked channels active

PT Package Transfer
0: Single Transfer; extended Count2 not enabled
1: Package Transfer; extended Count2 enabled

(only for channels 0 and 2)
Package Transfer is only supported in PECC0 and PECC2

BWT-PT

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrwrw

CL

rwrwrw-rw

CLT- INC COUNT
Data Sheet 88 2001-04-19

C161U

Central Processor Unit
PEC Control Register Addresses

Byte/Word Transfer bit BWT controls, if a byte or a word is moved during a PEC service
cycle. This selection controls the transferred data size and the increment step for the
modified pointer.
Increment Control Field INC controls, if one of the PEC pointers is incremented after
the PEC transfer. It is not possible to increment both pointers, however. If the pointers
are not modified (INC=’00’), the respective channel will always move data from the same
source to the same destination.
Note: The reserved combination ‘11’ is changed to ‘10’ by hardware. However, it is not

recommended to use this combination.

The PEC Transfer Count Field COUNT controls the action of a respective PEC channel,
where the content of bit field COUNT at the time the request is activated selects the
action. COUNT may allow a specified number of PEC transfers, unlimited transfers or no
PEC service at all.
The table below summarizes, how the COUNT field itself, the interrupt requests flag IR
and the PEC channel action depends on the previous content of COUNT.

Register Address Reg. Space Register Address Reg. Space
PECC0 FEC0H /

60H

SFR PECC4 FEC8H /
64H

SFR

PECC1 FEC2H /
61H

SFR PECC5 FECAH /
65H

SFR

PECC2 FEC4H /
62H

SFR PECC6 FECCH /
66H

SFR

PECC3 FEC6H /
63H

SFR PECC7 FECEH /
67H

SFR

Previous
COUNT

Modified
COUNT

IR after
PEC
service

Action of PEC Channel
and Comments

FFH FFH ‘0’ Move a Byte / Word. Continuous transfer mode, ie.
COUNT is not modified

FEH..02H FDH..01H ‘0’ Move a Byte / Word and decrement COUNT
01H 00H ‘1’ Move a Byte / Word. Leave request flag set, which

triggers another request
00H 00H (‘1’) No action! Activate interrupt service routine rather

than PEC channel.
Data Sheet 89 2001-04-19

C161U

Central Processor Unit
The PEC transfer counter allows to service a specified number of requests by the
respective PEC channel, and then (when COUNT reaches 00H) activate the interrupt
service routine, which is associated with the priority level. After each PEC transfer the
COUNT field is decremented and the request flag is cleared to indicate that the request
has been serviced.
Continuous transfers are selected by the value FFH in bit field COUNT. In this case
COUNT is not modified and the respective PEC channel services any request until it is
disabled again.
When COUNT is decremented from 01H to 00H after a transfer, the request flag is not
cleared, which generates another request from the same source. When COUNT already
contains the value 00H, the respective PEC channel remains idle and the associated
interrupt service routine is activated instead. This allows to choose, if a level 15 or 14
request is to be serviced by the PEC or by the interrupt service routine.
Note: PEC transfers are only executed, if their priority level is higher than the CPU level,

ie. only PEC channels 7...4 are processed, while the CPU executes on level 14.
All interrupt request sources that are enabled and programmed for PEC service
should use different channels. Otherwise only one transfer will be performed for
all simultaneous requests. When COUNT is decremented to 00H, and the CPU is
to be interrupted, an incorrect interrupt vector will be generated.

Channel Link control bit CL controls the channel link mode. In this mode PEC
channels work by pair (channels 0 and 1, 2 and 3, 4 and 5, 6 and 7). The channel link
mode is enabled for one pair when the CL bit is set in any of the 2 PECCx registers. In
this case, the 2 channels handle PEC requests alternative to each other. The whole data
transfer is divided into several block transfers where each block is controlled by a PEC
channel. When a block transfer is completed, a channel link interrupt is generated and
the request processing is switched to the other PEC channel of the pair. This mechanism
allows to set up shadow and multiple buffers for PEC transfers by changing pointers and
count values of one channel when the other channel is active.
The very first transfer is always initiated with the even channel (called channel A, that is
channel 0, 2, 4 or 6). When the associated count field reaches 0 (COUNT or COUNT2
depending on the selected mode), the request service is transfered to the odd channel
(channel B, that is channel 1, 3, 5 or 7). If the CL bit of the "linked" channel is set and the
count field is different from 0, the next PEC requests will be serviced by this channel.
The channel link interrupts share one common interrupt node (Trap number 4CH - vector
location 00’0130H). This node is controlled by the Channel Link Interrupt Sub-Node
Control (CLISNC) register. It raises an interrupt request in case of one or more channel
link request flag and the respective enable control bit is set in CLISNC register. These
flags signal a PEC condition of the PEC linked channels which requires an action from
the CPU. The following conditions are possible:
1. In single transfer mode, a COUNT value change from 01H to 00H in a linked PEC

channel and the CL flag is set in the respective PEC control register,
Data Sheet 90 2001-04-19

C161U

Central Processor Unit
2. In packet transfer mode, a COUNT2 value change from 0001H to 0000H in a linked
PEC channel and the CL flag is set in the respective PEC control register.

In these cases the CPU is requested to update the PEC control and pointer registers
while the next block transfer is executed. The last block transfer is determined by the
missing link bit in the linked PEC control register. If a service request hits a linked
channel with a COUNT field equal to 00H and the channel link flag disabled, a standard
interrupt is performed as known from standard PEC channels.

CLISNC (FFA8H / D4H) SFR Reset Value: 0000H

Packet Transfer control bit PT is implemented only in PECC0 and PECC2. When set
to ’1’, this bit enables the Packet Transfer mode. In this mode, each service request
initiates the transfer of an entire data packet of a fixed size. The COUNT field in the
PECCx register is used to define the size of the packet (in number of bytes or words
depending on the value of BWT). Therefore packets up to 256 bytes/words may be
transfered.
The register PECXC0/2 is then used to specify the number of requests to be serviced by
a PEC packet transfer before activating the interrupt service routine, which is associated
with the priority level. After each PEC packet transfer, the COUNT2 field is decremented
and the request flag is cleared, and then when COUNT2 reaches 0000H, an interrupt
request is generated to the corresponding interrupt vector.
Note: In the C161U, the packet size is limited to 1. Packet transfers are not supported,

but the extended transfer count COUNT2 is used when PT bit is set.

Bit Function
xxIE Channel Link Interrupt Enable Bit (individual for each pair of linked

channels)
’0’: Interrupt request disabled
’1’: Interrupt request enabled

xxIR Channel Service Request Flag
’0’: No channel link service request pending
’1’: The channel pair has raised a request to service a PEC channel

after channel link

-- ---

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rw rw- - rw rwrw- rw--

C6
IR

C2
IE

C0
IR- --

rw-

C6
IE

rw

C2
IR

C0
IE

C4
IR

C4
IE
Data Sheet 91 2001-04-19

C161U

Central Processor Unit
PECXCx (FEFyH / 7zH, see table) SFR Reset Value: 0000H

PEC Extended Control Register Addresses

Source and destination pointers specifiy the locations between which the data is to be
moved. For PEC transfer description refer to Chapter 7.3, page 115, where the PEC
operation is descriped more in detail.

Channel Link Mode for Data Chaining

Data chaining with linked PEC channels is enabled, if the Channel Link Control Bit in
PECCx register is set to ’1’, either in one or both PEC channel control registers of a
channel pair. In this case, two PEC channels are linked together and handle chained
block transfers alternatively to each other. The whole data transfer is divided into several
block transfers where each block is controlled by one PEC channel of a channel pair.
When a data block is completely transferred a channel link interrupt is generated and
the PEC service request processing is automatically switched to the ’other’ PEC channel
of the channel-pair. Thus, PEC service requests addressed to a linked PEC channel are
either handled by linked PEC channel A or by linked PEC channel B. This channel toggle
allows to set up shadow and multiple buffers for PEC transfers by changing pointer and
count values of one channel while the other channel is active. The following table list the
channels that can be linked together and the channel numbers to address the linked
channels.

Bit Function
COUNT2 Extended PEC Transfer Count

Counts PEC transfers and influences the channel’s action in Packet
transfer mode

Register Address Reg. Space Register Address Reg. Space
PECXC0 FEF0H /

78H

SFR PECXC2 FEF2H /
79H

SFR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

COUNT2
Data Sheet 92 2001-04-19

C161U

Central Processor Unit
For each pair of linked channels, an internal channel flag, the Channel Link Toggle flag

CLT identifies which of the two PEC channels will serve the next PEC request. The CLT
flag is indicated in both PECCx registers of two linked PEC channels, where the CLT bit
in channel B always is inverse to the CLT bit in channel A. The very first transfer is
always started with the channel A if the CLT bit was not programmed otherwise before.
The CLT bit is only valid in case of linked PEC channels, indicated by the CL bits of linked
channels. If linking is not enabled, the CLT bit of both channels is always zero
(compatibility!).
The internal channel link flag CLT toggles, and the other channel begins service with the
next request if the "old" channel stops the service (COUNT=0 or COUNT2=0, dependent
on the mode), and if the new channel has in its PEC control register the CL flag enabled
and its transfer count is more than zero. Note: With the last transfer of a block transfer
(COUNT=0 or COUNT2=0), the channel link control flag CL of that channel is cleared in
its PECCx register. If the channel link flag CL of the new (chained) PEC control register
is found to be zero the whole data transfer is finished and the channel link interrupt is
coincidently a termination interrupt. The channel link mode is finished and the internal
channel toggle flag is cleared after the last transfer of the block, if the CL flags of both
pair channels are cleared.

Table 12 PEC Channels which could be linked together

Linked PEC Channels Linked PEC Channel
PEC Channel
A

PEC Channel
B

channel 0 channel 1 channel 0
channel 2 channel 3 channel 2
channel 4 channel 5 channel 4
channel 6 channel 7 channel 6
Data Sheet 93 2001-04-19

C161U

DMA - External PEC (EPEC)
6 DMA - External PEC (EPEC)
EPEC provides fast and easy means to transfer single data between any memory
location within the address space by using the XBUS. The advantages are reduced
XBUS protocol handling and capability of addressing all system resources including
internal RAM and SFR.

6.1 EPEC Functionality
EPEC provides a DMA controller for the USB device core to provide fast and flexible data
tranfer capability. EPEC is implemented as a 16 channel controller with a 24-bit source
pointer, a 24-bit destination pointer and a 10-bit Transmit Byte Length Counter with auto-
increment support of two bytes (one word) per channel with Terminal Count (TC)
indication (Interrupt pulse valid for one clock cycle). After TC is reached, the counter
stops itself.
EPEC is connected to the XBUS and to a proprietary 24-bit bus connected directly to the
C166 CBC. EPEC has the highest priority among other interrupts and PECs and does
not participate in the interrupt priorization round. In case of an DPEC/EPEC collision, the
DPEC will get priority and one instruction cycle later the EPEC is processed. EPEC
provides DMA like functionality by injecting a memory transfer instruction (mov [dest],
[src]) into the decode stage of the pipeline and thus only needs one additional instruction
cycle. Even in IDLE mode, the EPEC will be processed waking up the CPU for one
instruction cycle and immediately going back to IDLE state.

6.2 EPEC Implementation
EPEC control block is located in the CBC core with its main purpose to synchronize the
external EPEC request to the internal T1-T4 states of the CPU and the priorization
between DPEC and EPEC. It also drives the externally provided 24-bit source and
destination pointer values on the internal memory address bus, thus controlling the
whole timing with respect to the CPU.
Data Sheet 94 2001-04-19

C161U

DMA - External PEC (EPEC)
The EPEC Block diagram is shown in Figure 20 below.

Figure 20 DMA/EPEC Block Diagram

The TX_REQn and RX_REQn shown in Figure 20 will be generated by the USBD to
request a word transfer over the XBUS from/to the FIFOs.
Besides the transfer request interrupts the EPEC provides a 10-bit transmit counter
register per channel, which will be written by SW. After the terminal count value is
reached, the counter stops and generates and TX_DONE pulse to the USBD. For each
endpoint an EPEC_CTRL register is provided to control the endpoint.

Core

PEC EPEC

XBUS

Request Decoder TX_REQn
RX_REQn
TX_DONEn

epec_ack

epec_ptr(23:0)

Source Pointer#7

Destination Pointer#7

Source Pointer#0

Destination Pointer#0

sm
if/

bp
i

M
U

X

and Controlepec_req

10-bit TX_COUNTER#0

10-bit TX_COUNTER#7St
ar

t R
eg

is
te

r

RX_DONE

epec_int
Data Sheet 95 2001-04-19

C161U

DMA - External PEC (EPEC)
6.3 EPEC Register Description
The EPEC register description below shows the individual channel assignments
between requesting USB source interrupts and each individual EPEC channel. The
EPEC Register Base address is 00ED00H.
The detailed register description is shown below.
Table 13 EPEC Register Summary
00ED00H+ Name Function
00H EPECCLC EPEC Clock Control Register
08H EPECID EPEC Identification Register
10H EPEC_SPTR_IN_R00 16 LSBs of USB endpoint#0 source pointer IN
12H EPEC_SPTR_IN_R01 8 MSBs of USB endpoint#0 source pointer IN
14H EPEC_SPTR_OUT_R0

0
16 LSBs of USB endpoint#0 source pointer
OUT

16H EPEC_SPTR_OUT_R0
1

8 MSBs of USB endpoint#0 source pointer
OUT

18H EPEC_SPTR_REG10 16 LSBs of USB endpoint#1 source pointer
1AH EPEC_SPTR_REG11 8 MSBs of USB endpoint#1 source pointer
1CH EPEC_SPTR_REG20 16 LSBs of USB endpoint#2 source pointer
1EH EPEC_SPTR_REG21 8 MSBs of USB endpoint#2 source pointer
20H EPEC_SPTR_REG30 16 LSBs of USB endpoint#3 source pointer
22H EPEC_SPTR_REG31 8 MSBs of USB endpoint#3 source pointer
24H EPEC_SPTR_REG40 16 LSBs of USB endpoint#4 source pointer
26H EPEC_SPTR_REG41 8 MSBs of USB endpoint#4 source pointer
28H EPEC_SPTR_REG50 16 LSBs of USB endpoint#5 source pointer
2AH EPEC_SPTR_REG51 8 MSBs of USB endpoint#5 source pointer
2CH EPEC_SPTR_REG60 16 LSBs of USB endpoint#6 source pointer
2EH EPEC_SPTR_REG61 8 MSBs of USB endpoint#6 source pointer
30H EPEC_SPTR_REG70 16 LSBs of USB endpoint#7 source pointer
32H EPEC_SPTR_REG71 8 MSBs of USB endpoint#7 source pointer
34H EPEC_DPTR_IN_R00 16 LSBs of USB endpoint#0 destination

pointer IN
36H EPEC_DPTR_IN_R01 8 MSBs of USB endpoint#0 destination pointer

IN
Data Sheet 96 2001-04-19

C161U

DMA - External PEC (EPEC)
38H EPEC_DPTR_OUT_R0
0

16 LSBs of USB endpoint#0 destination
pointer OUT

3AH EPEC_DPTR_OUT_R0
1

8 MSBs of USB endpoint#0 destination pointer
OUT

3CH EPEC_DPTR_REG10 16 LSBs of USB endpoint#1 destination
pointer

3EH EPEC_DPTR_REG11 8 MSBs of USB endpoint#1 destination pointer
40H EPEC_DPTR_REG20 16 LSBs of USB endpoint#2 destination

pointer
42H EPEC_DPTR_REG21 8 MSBs of USB endpoint#2 destination pointer
44H EPEC_DPTR_REG30 16 LSBs of USB endpoint#3 destination

pointer
46H EPEC_DPTR_REG31 8 MSBs of USB endpoint#3 destination pointer
48H EPEC_DPTR_REG40 16 LSBs of USB endpoint#4 destination

pointer
4AH EPEC_DPTR_REG41 8 MSBs of USB endpoint#4 destination pointer
4CH EPEC_DPTR_REG50 16 LSBs of USB endpoint#5 destination

pointer
4EH EPEC_DPTR_REG51 8 MSBs of USB endpoint#5 destination pointer
50H EPEC_DPTR_REG60 16 LSBs of USB endpoint#6 destination

pointer
52H EPEC_DPTR_REG61 8 MSBs of USB endpoint#6 destination pointer
54H EPEC_DPTR_REG70 16 LSBs of USB endpoint#7 destination

pointer
56H EPEC_DPTR_REG71 8 MSBs of USB endpoint#7 destination pointer
58H EPEC_CTRL_IN_R0 Control and Status register for USB

endpoint#0 IN
5AH EPEC_CTRL_OUT_R0 Control and Status register for USB

endpoint#0 OUT
5CH EPEC_CTRL_REG1 Control and Status register for USB

endpoint#1
5EH EPEC_CTRL_REG2 Control and Status register for USB

endpoint#2

Table 13 EPEC Register Summary (cont’d)
00ED00H+ Name Function
Data Sheet 97 2001-04-19

C161U

DMA - External PEC (EPEC)
60H EPEC_CTRL_REG3 Control and Status register for USB
endpoint#3

62H EPEC_CTRL_REG4 Control and Status register for USB
endpoint#4

64H EPEC_CTRL_REG5 Control and Status register for USB
endpoint#5

66H EPEC_CTRL_REG6 Control and Status register for USB
endpoint#6

68H EPEC_CTRL_REG7 Control and Status register for USB
endpoint#7

6AH EPEC_INT_REG EPEC Interrupt
6CH EPEC_INTMSK_REG EPEC Interrupt Mask Register
6E..FFH These registers are all reserved

Table 13 EPEC Register Summary (cont’d)
00ED00H+ Name Function
Data Sheet 98 2001-04-19

C161U

DMA - External PEC (EPEC)
EPEC Clock Control Register

The register EPECCLC is clocked with the bus clock to be able to switch the EPEC
interface controller clock on again, if it was off. If required, switching off the clock can be
prevented by the EPEC controller.
The state of the EPEC interface controller clock is controlled by the register bit
EPECDISR. The actual clock state will be shown by the state bit EPECDIS.

Address: ED00H

Name: EPECCLC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EPEC

EX_DIS
EPEC

GPSEN
EPEC
DIS

EPEC
DISR

Field Bits Type Value Description

EPECEX_DIS 3 R/W 0 EPEC Controller Clock Disable
0: The clock of the EPEC interface

controller can be switched off using the
SYSCON register.

1: The clock of the EPEC interface
controller can NOT be switched off
using the SYSCON registers.

EPECGPSEN 2 R/W 0 EPEC Controller Clock OCDS Disable
0: The clock of the EPEC interface

controller is enabled, normal operation.
1: The clock of the EPEC interface

controller is disabled during debugging
mode (OCDS)

EPECDIS 1 R 0 EPEC Controller Clock Status
0: The status of the EPEC interface

controller clock is ’enabled’.
1: The status of the EPEC interface

controller clock is ’disabled’.

EPECDISR 0 R/W 0 EPEC Controller Clock Disable
0: The clock of the EPEC interface

controller is enabled, normal operation.
1: The clock of the EPEC interface

controller is disabled.

RESERVED 15:4 - 0 These bits are reserved
Data Sheet 99 2001-04-19

C161U

DMA - External PEC (EPEC)
For on chip debugging support (OCDS) an additional bit EPECGPSEN is introduced to
stop the peripheral clock for arbitrary lengths of time during debugging if this function is
enabled. If debugging mode is active, the peripheral core rejects write access to
registers connected to the peripheral clock.
To be compatible with previous C16x products an EPECEX_DISR signal is provided to
disable the peripheral clock.

EPEC Identification Register

EPEC_SPTR_REGx0 (x=7..0) Reset Value: 0000H
.

The EPEC source pointer registers (x0) provide the least significant 16-bits of the 24-bit
source pointer address for USB endpoints

EPEC_SPTR_REGx1 (x=7..0) Reset Value: 0000H

Address: ED08H

Name: EPECID

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ID

Field Bits Type Value Description

ID 15:0 R 0 EPEC Identification Register.

Note: The value of the EPECID register is
hardwired to ZERO in the C161U.

Table 14 EPEC_SPTR_REGx0 Source Pointer Register
Bit No. Name Function
15:0 SPTRx(15:0) 16 LSBs of USB endpoint#x source pointer

Table 15 EPEC_SPTR_REGx1 Source Pointer Register
Bit No. Name Function
15:8 reserved always 00H

7:0 SPTRx(23:16) 8 MSBs of USB endpoint#x source pointer
Data Sheet 100 2001-04-19

C161U

DMA - External PEC (EPEC)
The EPEC source pointer registers (x1) provide the most significant 8-bits of the 24-bit
source pointer for USB endpoints.

EPEC_DPTR_REGx0 (x=7..0) Reset Value: 0000H

The EPEC destination pointer registers (x0) provide the least significant 16-bits of the
24-bit destination Pointer address for USB endpoints.

EPEC_DPTR_REGx1 (x=7..0) Reset Value: 0000H

The EPEC destination pointer registers (x1) provide the most significant 8-bits of the 24-
bit destination pointer for USB endpoints.

EPEC_CTRL_REGx (x=7..0) Reset Value: 0000H

Table 16 EPEC_DPTR_REGx0 Destination Pointer Register
Bit No. Name Function
15:0 DPTRx(15:0) 16 LSBs of USB endpoint#x destination pointer

Table 17 EPEC_DPTR_REG01 Destination Pointer Register
Bit No. Name Function
15:8 reserved always 00H

7:0 DPTRx(23:16) 8 MSBs of USB endpoint#x source pointer

Table 18 EPEC_CTRL_REGx Source Pointer Register
Bit No. Name Function
15 TXR_ENAx Transfer / Receive Enable control bit, set by SW

and cleared by EPEC after transfer complete
’1’: Transmitter / Receiver enabled
’0’: Transmitter / Receiver disabled

14 EXT_SRC External Source
’1’: Reserved (program memory)
’0’: External source is selected
EXT_SRC must be set to ’0’
Data Sheet 101 2001-04-19

C161U

DMA - External PEC (EPEC)
The EPEC Transmit Byte Length registers (x) provide the 10-bit Transmit bytes length of
the actual packet to be send to the USB endpoint#x and the related bit. Each EPEC
channel can be cleared by SW, if necessary.
All USB source and destination pointers will be used in either receive or transmit
direction, since the USB endpoint’s direction of data is SW-configurable as IN, OUT or
bidirectional (except endpoint 0) after USB device controller reset.

EPEC_INT_REG Reset Value: 0000H

The EPEC interrupt register indicates the end of an TX-packet transfer for an USB
endpoint.

13:12 REQ_SRC EPEC request sourceRX/TX Fifo
’10’: EPEC is connected to TX Fifo Request (IN)
’01’: EPEC is connected to RX Fifo Request
(OUT)
’11’: EPEC is connected to RX and TX Fifo
Request (BI) for Control endpoint 0.
’00’: reserved

11 CNT_UP_DN Byte Counter direction select
’1’: Rx
’0’: Tx

10 CLR Clear EPEC channel
’1’: Clears EPEC channel settings into idle
mode
’0’: no action

9:0 BYTE_CNT Number of bytes to be transmitted

Table 19 EPEC_INT_REG Interrupt Register
Bit No. Name Function
15:8 RxTxSTART Rx / Tx Start

Signal ’1’ indicates channel has started
transfering data.

7:0 TXDONE_INTx (x=7..0) TX packet transfer completed by EPEC
’1’: transfer complete
’0’: busy or idle

Table 18 EPEC_CTRL_REGx Source Pointer Register
Bit No. Name Function
Data Sheet 102 2001-04-19

C161U

DMA - External PEC (EPEC)
EPEC_INTMSK_REG Reset Value: 0000H

The EPEC interrupt mask register masks out the end of an TX-packet transfer interrupt
for an USB endpoint.

6.4 EPEC Transfer Example
The EPEC (external peripheral event controller, external in the sense that it is external
to the CPU block) controls the transfer of data between the USB block and the external
or internal RAM.
Note: If the EPEC is not enabled, then no transfer is possible.

The sequence of operations is as follows:
1. The USB block will generate FIFO request signals as soon as the system reset was

deasserted. It thus signals to the EPEC that the USB FIFOs are ready to receive data.
2. Now the USB has to be configured. The EPEC channel that serves USB

endpoint_0_IN is setup with source and destination pointer, the EPEC control register
is programmed with the number of bytes that need to be transfered and the bit for
external/ internal source has to be set according to the application.

3. Now the EPEC channel for endpoint_0_IN can be activated by setting the enable bit
in EPEC control register for endpoint_0_IN.

4. The transfer of configuration data to the USB FIFO for endpoint_0_IN starts because
the USB FIFO has signaled that there is space available and the EPEC channel has
been enabled.

5. After the EPEC byte counter has reached the number of bytes that have to be
transfered, the EPEC channel disables itself and indicates the transmit end of data
condition in the EPEC interrupt register.

6. The indication of the transmit end of data condition triggers the generation of the
EPEC interrupt pulse to the CPU on the irq(40) line.

Table 20 EPEC_INTMSK_REG Interrupt Register
Bit No. Name Function
15:8 RxTxSTARTMSK Rx / Tx Start Mask

’1’: masked
’0’: not masked

7:0 TXDONE_INTMSKx
(x=7..0)

Mask interrupt TX packet transfer completed by
EPEC
’1’: masked
’0’: not masked
Data Sheet 103 2001-04-19

C161U

DMA - External PEC (EPEC)
7. After the interrupt generation unit has generated the interrupt pulse it waits for a write
to the interrupt register. It then is ready to generate the next interrupt pulse to the CPU.
If no write to the interrupt register takes place, no new interrupt pulse can be asserted.

6.5 Implementation of EPEC Interrupt Generation Unit
Currently the EPEC interrupt controller implements a clear on write functionality.
This implies the following for the interrupt routine:
1. One of two conditions generates an entry into the EPEC interrupt register: either a

channel start or a channel transmit end of data (for endpoint 0 this functionality is
reduced to start for direction in, EPEC transmit; and end for direction out, EPEC
receive; otherwise we would have more than 16 interrupts). The generation of the
entries into the EPEC interrupt register can be controled by programming the EPEC
interrupt mask register.

2. The interrupt routine is triggered by the interrupt pulse that the EPEC interrupt
controller gernerates on irq(40).

3. The routine should then read the EPEC interrupt register to determine the source of
the interrupt.

4. The interrupt has to be acknowledged by writing a ‘1’ to the position of the interrupt
source in the EPEC interrupt register.

5. Now the interrupt controller is ready to generate the next interrupt pulse.
Data Sheet 104 2001-04-19

C161U

Interrupt and Trap Functions
7 Interrupt and Trap Functions
The architecture of the C161U supports several mechanisms for fast and flexible
response to service requests that can be generated from various sources internal or
external to the microcontroller. These mechanisms include:
Normal Interrupt Processing
The CPU temporarily suspends the current program execution and branches to an
interrupt service routine in order to service an interrupt requesting device. The current
program status (IP, PSW, in segmentation mode also CSP) is saved on the internal
system stack. A prioritization scheme with 16 priority levels allows the user to specify the
order in which multiple interrupt requests are to be handled.

Interrupt Processing via the Peripheral Event Controller (PEC)
A faster alternative to normal software controlled interrupt processing is servicing an
interrupt requesting device with the C161U's integrated Peripheral Event Controller
(PEC). Triggered by an interrupt request, the PEC performs a single word or byte data
transfer between any two locations in segment 0 (data pages 0 through 3) through one
of eight programmable PEC Service Channels. During a PEC transfer the normal
program execution of the CPU is halted for just 1 instruction cycle. No internal program
status information needs to be saved. The same prioritization scheme is used for PEC
service as for normal interrupt processing. PEC transfers share the 2 highest priority
levels.

Trap Functions
Trap functions are activated in response to special conditions that occur during the
execution of instructions. A trap can also be caused externally by the Non-Maskable
Interrupt pin NMI. Several hardware trap functions are provided for handling erroneous
conditions and exceptions that arise during the execution of an instruction. Hardware
traps always have highest priority and cause immediate system reaction. The software
trap function is invoked by the TRAP instruction, which generates a software interrupt for
a specified interrupt vector. For all types of traps the current program status is saved on
the system stack.

External Interrupt Processing
Although the C161U does not provide dedicated interrupt pins, it allows to connect
external interrupt sources and provides several mechanisms to react on external events,
including standard inputs, non-maskable interrupts and fast external interrupts. These
interrupt functions are alternate port functions, except for the non-maskable interrupt and
the reset input.
Data Sheet 105 2001-04-19

C161U

Interrupt and Trap Functions
7.1 Interrupt System Structure
C161U provides up to 64 separate interrupt nodes that may be assigned to 16 priority
levels. The 4 lowest nodes are reserved for the CPU - thus, up to 60 nodes are available
for all interrupts. In order to support modular and consistent software design techniques,
each source of an interrupt or PEC request is supplied with a separate interrupt control
register and interrupt vector. The control register contains the interrupt request flag, the
interrupt enable bit, and the interrupt priority of the associated source. Each source
request is activated by one specific event, depending on the selected operating mode of
the respective device. The only exceptions are the two serial channels of the table,
where an error interrupt request can be generated by different kinds of error, and the two
subnode interrupts controlled by the ISNC and CLISNC registers (see Interrupt and PEC
descriptions). However, specific status flags which identify the type of error are
implemented in the serial channels’ control registers.
The C161U provides a vectored interrupt system. In this system specific vector locations
in the memory space are reserved for the reset, trap, and interrupt service functions.
Whenever a request occurs, the CPU branches to the location that is associated with the
respective interrupt source. This allows direct identification of the source that caused the
request. The only exceptions are the class B hardware traps, which all share the same
interrupt vector. The status flags in the Trap Flag Register (TFR) can then be used to
determine which exception caused the trap. For the special software TRAP instruction,
the vector address is specified by the operand field of the instruction, which is a seven
bit trap number.
The reserved vector locations build a jump table in the low end of the C161U’s address
space (segment 0). The jump table is made up of the appropriate jump instructions that
transfer control to the interrupt or trap service routines, which may be located anywhere
within the address space. The entries of the jump table are located at the lowest
addresses in code segment 0 of the address space. Each entry occupies 2 words,
except for the reset vector and the hardware trap vectors, which occupy 4 or 8 words.
The table below lists all sources that are capable of requesting interrupt or PEC service
in the C161U, the associated interrupt vectors, their locations, their trap numbers and the
SFR addresses of associated interrupt control registers. It also lists the mnemonics of
the corresponding Interrupt Enable flags. The mnemonics are composed of a part that
specifies the respective source, followed by a part that specifies their function
(IE=Interrupt Enable flag). The same composition is used for the mnemonics of
according interrupt request flags (IR=Interrupt Request flag; example: CC0IR belongs to
interrupt source CC0INT) and for the names of according interrupt control registers
(IC=Interrupt Control; example: CC0IC) which are not included in Table 21.
Data Sheet 106 2001-04-19

C161U

Interrupt and Trap Functions
Table 21 C161U Interrupts and PEC Service Requests

Nr. Source of Interrupt
or PEC Service
Request

Interrupt
Name

Enable
Flag

Vector
Location

Trap
Number

SFR hex
Address

irq(0) GPT Timer 2 T2INT T2IE 00’0088H 22H / 34D FF60
irq(1) GPT Timer 3 T3INT T3IE 00’008CH 23H / 35D FF62
irq(2) GPT Timer 4 T4INT T4IE 00’0090H 24H / 36D FF64
irq(3) GPT Timer 5 T5INT T5IE 00’0094H 25H / 37D FF66
irq(4) GPT Timer 6 T6INT T6IE 00’0098H 26H / 38D FF68
irq(5) GPT CAPREL

Register
CRINT CRIE 00’009CH 27H / 39D FF6A

irq(6) ASC Transmit S0TINT S0TIE 00’00A8H 2AH / 42D FF6C
irq(7) ASC Receive S0RINT S0RIE 00’00ACH 2BH / 43D FF6E
irq(8) ASC Error S0EINT S0EIE 00’00B0H 2CH / 44D FF70
irq(9) ASC Transmit Buffer S0TBINT S0TBIE 00’011CH 47H / 71D F19C
irq(10) SSC Transmit SSCTINT SSCTIE 00’00B4H 2DH / 45D FF72
irq(11) SSC Receive SSCRINT SSCRIE 00’00B8H 2EH / 46D FF74
irq(12) SSC Error SSCEINT SSCEIE 00’00BCH 2FH / 47D FF76
irq(13) ASC Autobaud Start ABSTINT ABSTIE 00’0118H 46H / 70D F194
irq(14) ASC Autobaud End ABENDINT ABENDIE 00’0114H 45H / 69D F18C
irq(15) rRTC Interrupt RTC_INT RTCIE 00’0110H 44H / 68D F184
irq(16) UDC SETUP USETINT USETIE 00’00F0H 3CH / 60D F178
irq(17) UDC Load Config

Done
ULCDINT ULCDIE 00’00ECH 3BH / 59D F176

irq(18) UDC Suspend USSINT USSIE 00’00E8H 3AH / 58D F174
irq(19) UDC Suspend off USSOINT USSOIE 00’00E4H 39H / 57D F172
irq(20) UDC Start of Frame USOFINT USOFIE 00’00E0H 38H / 56D F170
irq(21) UDC Config Val UCFGVINT UCFGVI

E
00’00DCH 37H / 55D F16E

irq(22) UDC TXWR UTXRINT UTXRIE 00’00D8H 36H / 54D F16C
irq(23) UDC RXRR URXRINT URXRIE 00’00D4H 35H / 53D F16A
irq(24) UDC TX Done7 UTD7INT UTD7IE 00’00D0H 34H / 52D F168
irq(25) UDC TX Done6 UTD6INT UTD6IE 00’00CCH 33H / 51D F166
Data Sheet 107 2001-04-19

C161U

Interrupt and Trap Functions
irq(26) UDC TX Done5 UTD5INT UTD5IE 00’00C8H 32H / 50D F164
irq(27) UDC TX Done4 UTD4INT UTD4IE 00’00C4H 31H / 49D F162
irq(28) UDC TX Done3 UTD3INT UTD3IE 00’00C0H 30H / 48D F160
irq(29) UDC TX Done2 UTD2INT UTD2IE 00’005CH 17H / 23D FF86
irq(30) UDC TX Done1 UTD1INT UTD1IE 00’0058H 16H / 22D FF84
irq(31) UDC TX Done0 UTD0INT UTD0IE 00’0054H 15H / 21D FF82
irq(32) UDC RX Done7 URD7INT URD7IE 00’0050H 14H / 20D FF80
irq(33) UDC RX Done6 URD6INT URD6IE 00’004CH 13H / 19D FF7E
irq(34) UDC RX Done5 URD5INT URD5IE 00’0048H 12H / 18D FF7C
irq(35) UDC RX Done4 URD4INT URD4IE 00’0044H 11H / 17D FF7A
irq(36) UDC RX Done3 URD3INT URD3IE 00’0040H 10H / 16D FF78
irq(37) UDC RX Done2 URD2INT URD2IE 00’0080H 20H / 32D FF9C
irq(38) UDC RX Done1 URD1INT URD1IE 00’0084H 21H / 33D FF9E
irq(39) UDC RX Done0 URD0INT URD0IE 00’00F4H 3DH / 61D F17A
irq(40) EPEC EPECINT EPECIE 00’00F8H 3EH / 62D F17C
irq(41) reserved 00’00A0H 28H / 40D FF98
firq(0) Fast ext. Interrupt EX0INT EX0IE 00’0060H 18H / 24D FF88
firq(1) Fast ext. Interrupt EX1INT EX1IE 00’0064H 19H / 25D FF8A
firq(2) Fast ext. Interrupt EX2INT EX2IE 00’0068H 1AH / 26D FF8C
firq(3) Fast ext. Interrupt EX3INT EX3IE 00’006CH 1BH / 27D FF8E
firq(4) Fast ext. Interrupt EX4INT EX4IE 00’0070H 1CH / 28D FF90
firq(5) Fast ext. Interrupt EX5INT EX5IE 00’0074H 1DH / 29D FF92
firq(6) Fast ext. Interrupt EX6INT EX6IE 00’0078H 1EH / 30D FF94
firq(7) Fast ext. Interrupt EX7INT EX7IE 00’007CH 1FH / 31D FF96
xb(0) UDC TXWR UTXRINT UTXRIE 00’0100H 40H / 64D F186
xb(1) EPEC EPECINT EPECIE 00’0104H 41H / 65D F18E
xb(3) internal PLL Lock /

RTC
XP3INT XP3IE 00’010CH 43H / 67D F19E

CLISN Interrupt CLISNINT CLISNIE 00’0130H 4CH / 76D FFA8

Nr. Source of Interrupt
or PEC Service
Request

Interrupt
Name

Enable
Flag

Vector
Location

Trap
Number

SFR hex
Address
Data Sheet 108 2001-04-19

C161U

Interrupt and Trap Functions
Note: The X-Bus interrupts xb(0) and xb(1), known from C16x device’s, are connected
to the main interrupt node of the respective X-Bus peripheral: UTXRINT (xb(0) and
irq(22)) and EPECINT (xb(1) and irq(40).

Note: Each entry of the interrupt vector table provides space for two word instructions or
one doubleword instruction. The respective vector location results from multiplying
the trap number by 4 (4 bytes per entry).

Note: One interrupt control register is provided for each interrupt node. All IC registers
of the C161U can be found in the SFR list.

Table 22 lists the vector locations for hardware traps and the corresponding status flags
in register TFR. It also lists the priorities of trap service for cases, where more than one
trap condition might be detected within the same instruction. After any reset (hardware
reset, software reset instruction SRST, or reset by watchdog timer overflow) program
execution starts at the reset vector at location 00’0000H. Reset conditions have priority
over every other system activity and therefore have the highest priority (trap priority III).
Software traps may be initiated to any vector location between 00’0000H and 00’01FCH.
A service routine entered via a software TRAP instruction is always executed on the
current CPU priority level which is indicated in bit field ILVL in register PSW. This means
that routines entered via the software TRAP instruction can be interrupted by all
hardware traps or higher level interrupt requests.

Table 22 Hardware Traps and Vector Locations

Exception Condition Trap
Flag

Trap
Vector

Vector
Location

Trap
Number

Trap
Prio.

Reset Functions:
Hardware Reset
Software Reset
Watchdog Timer
Overflow

RESET
RESET
RESET

00’0000H
00’0000H
00’0000H

00H
00H
00H

III
III
III

Class A Hardware Traps:
Non-Maskable Interrupt
Stack Overflow
Stack Underflow
Debug Trap

NMI
STKOF
STKUF
DEBUG

NMITRAP
STOTRAP
STUTRAP
DEBTRAP

00’0008H
00’0010H
00’0018H
00’0020H

02H
04H
06H
08H

II
II
II
II
Data Sheet 109 2001-04-19

C161U

Interrupt and Trap Functions
Normal Interrupt Processing and PEC Service
During each instruction cycle one out of all sources which require PEC or interrupt
processing is selected according to its interrupt priority. This priority of interrupts and
PEC requests is programmable in two levels. Each requesting source can be assigned
to a specific priority. A second level (called “group priority”) allows to specify an internal
order for simultaneous requests from a group of different sources on the same priority
level. At the end of each instruction cycle the one source request with the highest current
priority will be determined by the interrupt system. This request will then be serviced, if
its priority is higher than the current CPU priority in register PSW.

Interrupt System Register Description
Interrupt processing is controlled globally by register PSW through a general interrupt
enable bit (IEN) and the CPU priority field (ILVL). Additionally the different interrupt
sources are controlled individually by their specific interrupt control registers (...IC).
Thus, the acceptance of requests by the CPU is determined by both the individual
interrupt control registers and the PSW. PEC services are controlled by the respective
PECCx register and the source and destination pointers, which specify the task of the
respective PEC service channel.

Class B Hardware Traps:
Undefined Opcode
Protected Instruction
Fault
Illegal Word Operand
Access
Illegal Instruction Access
Illegal External Bus
Access

UNDOPC
PRTFLT
#
ILLOPA

ILLINA
ILLBUS

BTRAP
BTRAP

BTRAP

BTRAP
BTRAP

00’0028H
00’0028H

00’0028H

00’0028H
00’0028H

0AH
0AH

0AH

0AH
0AH

I
I

I

I
I

Reserved [2CH –
3CH]

[0BH –
0FH]

Software Traps
TRAP Instruction

Any
[00’0000H
–
00’01FCH]
in steps
of 4H

Any
[00H –
7FH]

Curr
ent
CPU
Prio.

Exception Condition Trap
Flag

Trap
Vector

Vector
Location

Trap
Number

Trap
Prio.
Data Sheet 110 2001-04-19

C161U

Interrupt and Trap Functions
7.2 Interrupt Control Registers
All interrupt control registers are organized identically. The lower 8 bits of an interrupt
control register contain the complete interrupt status information of the associated
source, which is required during one round of prioritization, the upper 8 bits of the
respective register are reserved. All interrupt control registers are bit-addressable and all
bits can be read or written via software. This allows each interrupt source to be
programmed or modified with just one instruction. When accessing interrupt control
registers through instructions which operate on word data types, their upper 8 bits
(15...8) will return zeros, when read, and will discard written data.
The layout of the Interrupt Control registers shown below applies to each xxIC register,
where xx stands for the mnemonic for the respective source.

xxIC (yyyyH / zzH) <SFR area> Reset Value: - - 00H

Interrupt Request Flag is set by hardware whenever a service request from the
respective source occurs. It is cleared automatically upon entry into the interrupt service
routine or upon a PEC service. In the case of PEC service the Interrupt Request flag
remains set, if the COUNT field in register PECCx of the selected PEC channel

Bit Function
GLVL Group Level

Defines the internal order for simultaneous requests of the same priority.
3: Highest group priority
0: Lowest group priority

ILVL Interrupt Priority Level
Defines the priority level for the arbitration of requests.
FH: Highest priority level
0H: Lowest priority level

xxIE Interrupt Enable Control Bit (individually enables/disables a specific
source)
‘0’: Interrupt request is disabled
‘1’: Interrupt Request is enabled

xxIR Interrupt Request Flag
‘0’: No request pending
‘1’: This source has raised an interrupt request

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

xxIExxIR GLVLILVL
Data Sheet 111 2001-04-19

C161U

Interrupt and Trap Functions
decrements to zero. This allows a normal CPU interrupt to respond to a completed PEC
block transfer.
Note: Modifying the Interrupt Request flag via software causes the same effects as if it

had been set or cleared by hardware.

Interrupt Priority Level and Group Level
The four bits of bit field ILVL specify the priority level of a service request for the
arbitration of simultaneous requests. The priority increases with the numerical value of
ILVL, so 0000B is the lowest and 1111B is the highest priority level.
When more than one interrupt request on a specific level gets active at the same time,
the values in the respective bit fields GLVL are used for second level arbitration to select
one request for being serviced. Again the group priority increases with the numerical
value of GLVL, so 00B is the lowest and 11B is the highest group priority.
Note: All interrupt request sources that are enabled and programmed to the same

priority level must always be programmed to different group priorities. Otherwise
an incorrect interrupt vector will be generated.

Upon entry into the interrupt service routine, the priority level of the source that won the
arbitration and who’s priority level is higher than the current CPU level, is copied into bit
field ILVL of register PSW after pushing the old PSW contents on the stack.
The interrupt system of the C161U allows nesting of up to 15 interrupt service routines
of different priority levels (level 0 cannot be arbitrated).
Interrupt requests that are programmed to priority levels 15 or 14 (ie, ILVL=111XB) will
be serviced by the PEC, unless the COUNT field of the associated PECC register
contains zero. In this case the request will instead be serviced by normal interrupt
processing. Interrupt requests that are programmed to priority levels 13 through 1 will
always be serviced by normal interrupt processing.
Note: Priority level 0000B is the default level of the CPU. Therefore a request on level 0

will never be serviced, because it can never interrupt the CPU. However, an
enabled interrupt request on level 0000B will terminate the C161U’s Idle mode and
reactivate the CPU.

For interrupt requests which are to be serviced by the PEC, the associated PEC channel
number is derived from the respective ILVL (LSB) and GLVL (see figure below). So
programming a source to priority level 15 (ILVL=1111B) selects the PEC channel group
7...4, programming a source to priority level 14 (ILVL=1110B) selects the PEC channel
group 3...0. The actual PEC channel number is then determined by the group priority
field GLVL.
Data Sheet 112 2001-04-19

C161U

Interrupt and Trap Functions

Figure 21 Priority Levels and PEC Channels

Simultaneous requests for PEC channels are prioritized according to the PEC channel
number, where channel 0 has lowest and channel 7 has highest priority.
Note: All sources that request PEC service must be programmed to different PEC

channels. Otherwise an incorrect PEC channel may be activated.

The table below shows in a few examples, which action is executed with a given
programming of an interrupt control register.

Table 23 Programming Example

Priority Level Type of Service
ILVL GLVL COUNT = 00H COUNT ≠ 00H

1 1 1 1 1 1 CPU interrupt,
level 15, group priority 3

PEC service,
channel 7

1 1 1 1 1 0 CPU interrupt,
level 15, group priority 2

PEC service,
channel 6

1 1 1 0 1 0 CPU interrupt,
level 14, group priority 2

PEC service,
channel 2

1 1 0 1 1 0 CPU interrupt,
level 13, group priority 2

CPU interrupt,
level 13, group priority 2

0 0 0 1 1 1 CPU interrupt,
level 1, group priority 3

CPU interrupt,
level 1, group priority 3

0 0 0 1 0 0 CPU interrupt,
level 1, group priority 0

CPU interrupt,
level 1, group priority 0

0 0 0 0 X X No service! No service!

MCD02006

ILVL GLVL

PEC Channel

Interrupt
Control Register

PEC Control
Data Sheet 113 2001-04-19

C161U

Interrupt and Trap Functions
Note: All requests on levels 13...1 cannot initiate PEC transfers. They are always
serviced by an interrupt service routine. No PECC register is associated and no
COUNT field is checked.

Interrupt Control Functions in the PSW
The Processor Status Word (PSW) is functionally divided into 2 parts: the lower byte of
the PSW basically represents the arithmetic status of the CPU, the upper byte of the
PSW controls the interrupt system of the C161U and the arbitration mechanism for the
external bus interface.
Note: Pipeline effects have to be considered when enabling/disabling interrupt requests

via modifications of register PSW (see chapter “The Central Processing Unit”).

PSW (FF10H / 88H) SFR Reset Value: 0000H

CPU Priority ILVL defines the current level for the operation of the CPU. This bit field
reflects the priority level of the routine that is currently executed. Upon entry into an
interrupt service routine this bit field is updated with the priority level of the request that
is being serviced. The PSW is saved on the system stack before. The CPU level

Bit Function
N, C, V, Z,
E, MULIP,
USR0

CPU status flags (Described in section “The Central Processing Unit”)
Define the current status of the CPU (ALU, multiplication unit).

HLDEN HOLD Enable (Enables External Bus Arbitration)
0: Bus arbitration disabled, P6.7...P6.5 may be used for general

purpose I/O
1: Bus arbitration enabled, P6.7...P6.5 serve as BREQ, HLDA,

HOLD, resp.
ILVL CPU Priority Level

Defines the current priority level for the CPU
FH: Highest priority level
0H: Lowest priority level

IEN Interrupt Enable Control Bit (globally enables/disables interrupt
requests)
‘0’: Interrupt requests are disabled
‘1’: Interrupt requests are enabled

HLD
EN -

MUL
IPUSR0 NZ CVE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw- rw rw rw-rw -rw

IEN --ILVL

rw
Data Sheet 114 2001-04-19

C161U

Interrupt and Trap Functions
determines the minimum interrupt priority level that will be serviced. Any request on the
same or a lower level will not be acknowledged.
The current CPU priority level may be adjusted via software to control which interrupt
request sources will be acknowledged.
PEC transfers do not really interrupt the CPU, but rather “steal” a single cycle, so PEC
services do not influence the ILVL field in the PSW.
Hardware traps switch the CPU level to maximum priority (ie. 15) so no interrupt or PEC
requests will be acknowledged while an exception trap service routine is executed.
Note: The TRAP instruction does not change the CPU level, so software invoked trap

service routines may be interrupted by higher requests.

Interrupt Enable bit IEN globally enables or disables PEC operation and the
acceptance of interrupts by the CPU. When IEN is cleared, no interrupt requests are
accepted by the CPU. When IEN is set to '1', all interrupt sources, which have been
individually enabled by the interrupt enable bits in their associated control registers, are
globally enabled.
Note: Traps are non-maskable and are therefore not affected by the IEN bit.

7.3 Operation of the PEC Channels
C161U's Peripheral Event Controller (PEC) provides 8 PEC service channels, which
move a single byte or word. This is the fastest possible interrupt response and in many
cases is sufficient to service the respective peripheral request (eg. serial channels, etc.).
Each channel is controlled by a dedicated PEC Channel Counter/Control register
(PECCx) and a pair of pointers for source (SRCPx) and destination (DSTPx) of the data
transfer.
The PECC registers control the action that is performed by the respective PEC channel.
Note: For the PECCx register description, please also refer to page 88 of Sub-

Chapter "Extended PEC Channel Control".

Byte/Word Transfer bit BWT controls, if a byte or a word is moved during a PEC service
cycle. This selection controls the transferred data size and the increment step for the
modified pointer.
Increment Control Field INC controls, if one of the PEC pointers is incremented after
the PEC transfer. It is not possible to increment both pointers, however. If the pointers
are not modified (INC=’00’), the respective channel will always move data from the same
source to the same destination.
Note: The reserved combination ‘11’ is changed to ‘10’ by hardware. However, it is not

recommended to use this combination.

The PEC Transfer Count Field COUNT controls the action of a respective PEC channel,
where the content of bit field COUNT at the time the request is activated selects the
Data Sheet 115 2001-04-19

C161U

Interrupt and Trap Functions
action. COUNT may allow a specified number of PEC transfers, unlimited transfers or no
PEC service at all.
The table below summarizes, how the COUNT field itself, the interrupt requests flag IR
and the PEC channel action depends on the previous content of COUNT.

The PEC transfer counter allows to service a specified number of requests by the
respective PEC channel, and then (when COUNT reaches 00H) activate the interrupt
service routine, which is associated with the priority level. After each PEC transfer the
COUNT field is decremented and the request flag is cleared to indicate that the request
has been serviced.
Continuous transfers are selected by the value FFH in bit field COUNT. In this case
COUNT is not modified and the respective PEC channel services any request until it is
disabled again.
When COUNT is decremented from 01H to 00H after a transfer, the request flag is not
cleared, which generates another request from the same source. When COUNT already
contains the value 00H, the respective PEC channel remains idle and the associated
interrupt service routine is activated instead. This allows to choose, if a level 15 or 14
request is to be serviced by the PEC or by the interrupt service routine.
Note: PEC transfers are only executed, if their priority level is higher than the CPU level,

ie. only PEC channels 7...4 are processed, while the CPU executes on level 14.
All interrupt request sources that are enabled and programmed for PEC service
should use different channels. Otherwise only one transfer will be performed for
all simultaneous requests. When COUNT is decremented to 00H, and the CPU is
to be interrupted, an incorrect interrupt vector will be generated.

Previous
COUNT

Modified
COUNT

IR after
PEC
service

Action of PEC Channel
and Comments

FFH FFH ‘0’ Move a Byte / Word. Continuous transfer mode, ie.
COUNT is not modified

FEH..02H FDH..01H ‘0’ Move a Byte / Word and decrement COUNT
01H 00H ‘1’ Move a Byte / Word. Leave request flag set, which

triggers another request
00H 00H (‘1’) No action! Activate interrupt service routine rather

than PEC channel.
Data Sheet 116 2001-04-19

C161U

Interrupt and Trap Functions
Source and destination pointers specifiy the locations between which the data is to be
moved. A pair of pointers (SRCPx and DSTPx) is associated with each of the 8 PEC
channels. These pointers do not reside in specific SFRs, but are mapped into the internal
RAM of the C161U just below the bit-addressable area (see figure below).

Figure 22 Mapping of PEC Pointers into the Internal RAM

PEC data transfers do not use the data page pointers DPP3...DPP0, see also
Chapter 5.5, "PEC - Extension of Functionality". The PEC source and destination
pointers are used as 16-bit intra-segment addresses within segment 0, so data can be
transferred between any two locations within the first four data pages 3...0.
The pointer locations for inactive PEC channels may be used for general data storage.
Only the required pointers occupy RAM locations.
Note: If word data transfer is selected for a specific PEC channel (ie. BWT=’0’), the

respective source and destination pointers must both contain a valid word address
which points to an even byte boundary. Otherwise the Illegal Word Access trap will
be invoked, when this channel is used.

DSTP7 00’FCFEH

SRCP7 00’FCFCH

DSTP6 00’FCFAH

SRCP6 00’FCF8H

DSTP5 00’FCF6H

SRCP5 00’FCF4H

DSTP4 00’FCF2H

SRCP4 00’FCF0H

DSTP3 00’FCEEH

SRCP3 00’FCECH

DSTP2 00’FCEAH

SRCP2 00’FCE8H

DSTP1 00’FCE6H

SRCP1 00’FCE4H

DSTP0 00’FCE2H

SRCP0 00’FCE0H
Data Sheet 117 2001-04-19

C161U

Interrupt and Trap Functions
7.4 Prioritization of Interrupt and PEC Service Requests
Interrupt and PEC service requests from all sources can be enabled, so they are
arbitrated and serviced (if they win), or they may be disabled, so their requests are
disregarded and not serviced.
Enabling and disabling interrupt requests may be done via three mechanisms:

Control Bits allow to switch each individual source “ON” or “OFF”, so it may generate a
request or not. The control bits (xxIE) are located in the respective interrupt control
registers. All interrupt requests may be enabled or disabled generally via bit IEN in
register PSW. This control bit is the “main switch” that selects, if requests from any
source are accepted or not.
For a specific request to be arbitrated the respective source’s enable bit and the global
enable bit must both be set.
Priority Level automatically selects a certain group of interrupt requests that will be
acknowledged, disclosing all other requests. The priority level of the source that won the
arbitration is compared against the CPU’s current level and the source is only serviced,
if its level is higher than the current CPU level. Changing the CPU level to a specific value
via software blocks all requests on the same or a lower level. An interrupt source that is
assigned to level 0 will be disabled and never be serviced.
ATOMIC and EXTend instructions automatically disable all interrupt requests for the
duration of the following 1...4 instructions. This is useful eg. for semaphore handling and
does not require to re-enable the interrupt system after the unseparable instruction
sequence (see chapter “System Programming”).

Interrupt Class Management
An interrupt class covers a set of interrupt sources with the same importance, ie. the
same priority from the system’s viewpoint. Interrupts of the same class must not interrupt
each other. C161U supports this function with two features:
Classes with up to 4 members can be established by using the same interrupt priority
(ILVL) and assigning a dedicated group level (GLVL) to each member. This functionality
is built-in and handled automatically by the interrupt controller.
Classes with more than 4 members can be established by using a number of adjacent
interrupt priorities (ILVL) and the respective group levels (4 per ILVL). Each interrupt
service routine within this class sets the CPU level to the highest interrupt priority within
the class. All requests from the same or any lower level are blocked now, ie. no request
of this class will be accepted.
The example below establishes 3 interrupt classes which cover 2 or 3 interrupt priorities,
depending on the number of members in a class. A level 6 interrupt disables all other
sources in class 2 by changing the current CPU level to 8, which is the highest priority
(ILVL) in class 2. Class 1 requests or PEC requests are still serviced in this case.
Data Sheet 118 2001-04-19

C161U

Interrupt and Trap Functions
The 19 interrupt sources (excluding PEC requests) are so assigned to 3 classes of
priority rather than to 7 different levels, as the hardware support would do.

Table 24 Software controlled Interrupt Classes (Example)

ILVL
(Priority
)

GLVL Interpretation
3 2 1 0

15 PEC service on up to 8 channels
14
13
12 X X X X Interrupt Class 1

5 sources on 2 levels11 X
10
9
8 X X X X Interrupt Class 2

9 sources on 3 levels7 X X X X
6 X
5 X X X X Interrupt Class 3

5 sources on 2 levels4 X
3
2
1
0 No service!
Data Sheet 119 2001-04-19

C161U

Interrupt and Trap Functions
7.5 Saving the Status during Interrupt Service
Before an interrupt request that has been arbitrated is actually serviced, the status of the
current task is automatically saved on the system stack. The CPU status (PSW) is saved
along with the location, where the execution of the interrupted task is to be resumed after
returning from the service routine. This return location is specified through the Instruction
Pointer (IP) and, in case of a segmented memory model, the Code Segment Pointer
(CSP). Bit SGTDIS in register SYSCON controls, how the return location is stored.
The system stack receives the PSW first, followed by the IP (unsegmented) or followed
by CSP and then IP (segmented mode). This optimizes the usage of the system stack,
if segmentation is disabled.
The CPU priority field (ILVL in PSW) is updated with the priority of the interrupt request
that is to be serviced, so the CPU now executes on the new level. If a multiplication or
division was in progress at the time the interrupt request was acknowledged, bit MULIP
in register PSW is set to ‘1’. In this case the return location that is saved on the stack is
not the next instruction in the instruction flow, but rather the multiply or divide instruction
itself, as this instruction has been interrupted and will be completed after returning from
the service routine.

Figure 23 Task Status saved on the System Stack

The interrupt request flag of the source that is being serviced is cleared. The IP is loaded
with the vector associated with the requesting source (the CSP is cleared in case of
segmentation) and the first instruction of the service routine is fetched from the
respective vector location, which is expected to branch to the service routine itself. The
data page pointers and the context pointer are not affected.

(Unsegmented)

PSW

System Stack after
Interrupt EntryInterrupt Entry

System Stack beforea) b)

SP

High
Addresses

Low
Addresses

--

--

--

SP IP

--

MCD02226

c)
Interrupt Entry
System Stack after

(Segmented)

Task
Interrupted
Status of

CSP

PSW

IP SP
Data Sheet 120 2001-04-19

C161U

Interrupt and Trap Functions
When the interrupt service routine is left (RETI is executed), the status information is
popped from the system stack in the reverse order, taking into account the value of bit
SGTDIS.

Context Switching
An interrupt service routine usually saves all the registers it uses on the stack, and
restores them before returning. The more registers a routine uses, the more time is
wasted with saving and restoring. C161U allows to switch the complete bank of CPU
registers (GPRs) with a single instruction, so the service routine executes within its own,
separate context.
The instruction “SCXT CP, #New_Bank” pushes the content of the context pointer (CP)
on the system stack and loads CP with the immediate value “New_Bank”, which selects
a new register bank. The service routine may now use its “own registers”. This register
bank is preserved, when the service routine terminates, ie. its contents are available on
the next call.
Before returning (RETI) the previous CP is simply POPped from the system stack, which
returns the registers to the original bank.
Note: The first instruction following the SCXT instruction must not use a GPR.

Resources that are used by the interrupting program must eventually be saved and
restored, eg. the DPPs and the registers of the MUL/DIV unit.
Data Sheet 121 2001-04-19

C161U

Interrupt and Trap Functions
7.6 Interrupt Response Times
The interrupt response time defines the time from an interrupt request flag of an enabled
interrupt source being set until the first instruction (I1) being fetched from the interrupt
vector location. The basic interrupt response time for the C161U is 3 instruction cycles.

Figure 24 Pipeline Diagram for Interrupt Response Time

All instructions in the pipeline including instruction N (during which the interrupt request
flag is set) are completed before entering the service routine. The actual execution time
for these instructions (eg. waitstates) therefore influences the interrupt response time.
In the figure above the respective interrupt request flag is set in cycle 1 (fetching of
instruction N). The indicated source wins the prioritization round (during cycle 2). In cycle
3 a TRAP instruction is injected into the decode stage of the pipeline, replacing
instruction N+1 and clearing the source's interrupt request flag to '0'. Cycle 4 completes
the injected TRAP instruction (save PSW, IP and CSP, if segmented mode) and fetches
the first instruction (I1) from the respective vector location.
All instructions that entered the pipeline after setting of the interrupt request flag (N+1,
N+2) will be executed after returning from the interrupt service routine.
The minimum interrupt response time is 5 states (10 TCL). This requires program
execution from the internal code memory, no external operand read requests and setting
the interrupt request flag during the last state of an instruction cycle. When the interrupt
request flag is set during the first state of an instruction cycle, the minimum interrupt
response time under these conditions is 6 state times (12 TCL).
The interrupt response time is increased by all delays of the instructions in the pipeline
that are executed before entering the service routine (including N).

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4
FETCH N N + 1 N + 2 I1
DECODE N - 1 N TRAP (1) TRAP (2)
EXECUTE N - 2 N - 1 N TRAP
WRITEBACK N - 3 N - 2 N - 1 N

Interrupt Response Time

1
0

IR-Flag
Data Sheet 122 2001-04-19

C161U

Interrupt and Trap Functions
• When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, or
instruction N explicitly writes to the PSW or the SP, the minimum interrupt response
time may be extended by 1 state time for each of these conditions.

• When instruction N reads an operand from the internal code memory, or when N is a
call, return, trap, or MOV Rn, [Rm+ #data16] instruction, the minimum interrupt
response time may additionally be extended by 2 state times during internal code
memory program execution.

• In case instruction N reads the PSW and instruction N-1 has an effect on the condition
flags, the interrupt response time may additionally be extended by 2 state times.

The worst case interrupt response time during internal code memory program execution
adds to 12 state times (24 TCL).
Any reference to external locations increases the interrupt response time due to pipeline
related access priorities. The following conditions have to be considered:
• Instruction fetch from an external location
• Operand read from an external location
• Result write-back to an external location
Depending on where the instructions, source and destination operands are located,
there are a number of combinations. Note, however, that only access conflicts contribute
to the delay.
A few examples illustrate these delays:
• The worst case interrupt response time including external accesses will occur, when

instructions N, N+1 and N+2 are executed out of external memory, instructions N-1
and N require external operand read accesses, instructions N-3 through N write back
external operands, and the interrupt vector also points to an external location. In this
case the interrupt response time is the time to perform 9 word bus accesses, because
instruction I1 cannot be fetched via the external bus until all write, fetch and read
requests of preceding instructions in the pipeline are terminated.

• When the above example has the interrupt vector pointing into the internal code
memory, the interrupt response time is 7 word bus accesses plus 2 states, because
fetching of instruction I1 from internal code memory can start earlier.

• When instructions N, N+1 and N+2 are executed out of external memory and the
interrupt vector also points to an external location, but all operands for instructions N-
3 through N are in internal memory, then the interrupt response time is the time to
perform 3 word bus accesses.

• When the above example has the interrupt vector pointing into the internal code
memory, the interrupt response time is 1 word bus access plus 4 states.

After an interrupt service routine has been terminated by executing the RETI instruction,
and if further interrupts are pending, the next interrupt service routine will not be entered
until at least two instruction cycles have been executed of the program that was
interrupted. In most cases two instructions will be executed during this time. Only one
instruction will typically be executed, if the first instruction following the RETI instruction
Data Sheet 123 2001-04-19

C161U

Interrupt and Trap Functions
is a branch instruction (without cache hit), or if it reads an operand from internal code
memory, or if it is executed out of the internal RAM.
Note: A bus access in this context includes all delays which can occur during an external

bus cycle.

7.7 PEC Response Times
PEC response time defines the time from an interrupt request flag of an enabled interrupt
source being set until the PEC data transfer being started. The basic PEC response time
for the C161U is 2 instruction cycles.

Figure 25 Pipeline Diagram for PEC Response Time

In Figure 25 the respective interrupt request flag is set in cycle 1 (fetching of instruction
N). The indicated source wins the prioritization round (during cycle 2). In cycle 3 a PEC
transfer “instruction” is injected into the decode stage of the pipeline, suspending
instruction N+1 and clearing the source's interrupt request flag to '0'. Cycle 4 completes
the injected PEC transfer and resumes the execution of instruction N+1.
All instructions that entered the pipeline after setting of the interrupt request flag (N+1,
N+2) will be executed after the PEC data transfer.
Note: When instruction N reads any of the PEC control registers PECC7...PECC0, while

a PEC request wins the current round of prioritization, this round is repeated and
the PEC data transfer is started one cycle later.

The minimum PEC response time is 3 states (6 TCL). This requires program execution
from the internal code memory, no external operand read requests and setting the
interrupt request flag during the last state of an instruction cycle. When the interrupt
request flag is set during the first state of an instruction cycle, the minimum PEC
response time under these conditions is 4 state times (8 TCL).

Pipeline Stage Cycle 1 Cycle 2 Cycle 3 Cycle 4
FETCH N N + 1 N + 2 N + 2
DECODE N - 1 N PEC N + 1
EXECUTE N - 2 N - 1 N PEC
WRITEBACK N - 3 N - 2 N - 1 N

PEC Response Time

1
0

IR-Flag
Data Sheet 124 2001-04-19

C161U

Interrupt and Trap Functions
The PEC response time is increased by all delays of the instructions in the pipeline that
are executed before starting the data transfer (including N).
• When internal hold conditions between instruction pairs N-2/N-1 or N-1/N occur, the

minimum PEC response time may be extended by 1 state time for each of these
conditions.

• When instruction N reads an operand from the internal code memory, or when N is a
call, return, trap, or MOV Rn, [Rm+ #data16] instruction, the minimum PEC response
time may additionally be extended by 2 state times during internal code memory
program execution.

• In case instruction N reads the PSW and instruction N-1 has an effect on the condition
flags, the PEC response time may additionally be extended by 2 state times.

The worst case PEC response time during internal code memory program execution
adds to 9 state times (18 TCL).
Any reference to external locations increases the PEC response time due to pipeline
related access priorities. The following conditions have to be considered:
• Instruction fetch from an external location
• Operand read from an external location
• Result write-back to an external location
Depending on where the instructions, source and destination operands are located,
there are a number of combinations. Note, however, that only access conflicts contribute
to the delay.
A few examples illustrate these delays:
• The worst case interrupt response time including external accesses will occur, when

instructions N and N+1 are executed out of external memory, instructions N-1 and N
require external operand read accesses and instructions N-3, N-2 and N-1 write back
external operands. In this case the PEC response time is the time to perform 7 word
bus accesses.

• When instructions N and N+1 are executed out of external memory, but all operands
for instructions N-3 through N-1 are in internal memory, then the PEC response time
is the time to perform 1 word bus access plus 2 state times.

Once a request for PEC service has been acknowledged by the CPU, the execution of
the next instruction is delayed by 2 state times plus the additional time it might take to
fetch the source operand from internal code memory or external memory and to write the
destination operand over the external bus in an external program environment.
Note: A bus access in this context includes all delays which can occur during an external

bus cycle.
Data Sheet 125 2001-04-19

C161U

Interrupt and Trap Functions
7.8 External Interrupts
Although the C161U has no dedicated INTR input pins, it provides many possibilities to
react on external asynchronous events by using a number of I/O lines for interrupt input.
The interrupt function may either be combined with the pin’s main function or may be
used instead of it, ie. if the main pin function is not required.
Interrupt signals may be connected to:
• EX1IN...EX0IN, the fast external interrupt input pins,
• T4IN, the timer input pin,
For each of these pins either a positive, a negative, or both a positive and a negative
external transition can be selected to cause an interrupt or PEC service request. The
edge selection is performed in the control register of the peripheral device associated
with the respective port pin. The peripheral must be programmed to a specific operating
mode to allow generation of an interrupt by the external signal. The priority of the
interrupt request is determined by the interrupt control register of the respective
peripheral interrupt source, and the interrupt vector of this source will be used to service
the external interrupt request.
Note: In order to use any of the listed pins as external interrupt input, it must be switched

to input mode via its direction control bit DPx.y in the respective port direction
control register DPx.

Pin T4IN can be used as external interrupt input pin when the associated auxiliary timer
T4 in block GPT1 is configured for capture mode. This mode is selected by programming
the mode control field T4M in control register T4CON to 101B. The active edge of the
external input signal is determined by bit field T4I. When these field are programmed to
X01B, interrupt request flag T4IR in register T4IC will be set on a positive external
transition at pin T4IN. When T4I is programmed to X10B, then a negative external
transition will set the corresponding request flag. When T4I is programmed to X11B, both
a positive and a negative transition will set the request flag. In all three cases, the
contents of the core timer T3 will be captured into the auxiliary timer register T4 based
on the transition at pin T4IN. When the interrupt enable bit T4IE are set, a PEC request
or an interrupt request for vector T4INT will be generated.

Table 25 Pins to be used as External Interrupt Inputs

Port Pin Original Function Control Register
P2.1-0/EX1-0IN Fast external interrupt input pin EXICON
P3.5/T4IN Auxiliary timer T4 input pin T4CON
Data Sheet 126 2001-04-19

C161U

Interrupt and Trap Functions
Note: The non-maskable interrupt input pin NMI and the reset input RSTIN provide
another possibility for the CPU to react on an external input signal. NMI and RSTIN
are dedicated input pins, which cause hardware traps.

7.8.1 Fast External Interrupts
The input pins that may be used for external interrupts are sampled every 16 TCL, ie.
external events are scanned and detected in timeframes of 16 TCL. C161U provides 2
external interrupt inputs that are sampled every 2 TCL, so external events are captured
faster than with standard interrupt inputs.
The pins of Port 2 (P2.1...P2.0) can individually be programmed to this fast interrupt
mode, where also the trigger transition (rising, falling or both) can be selected. The
External Interrupt Control register EXICON controls this feature for all 8 pins.

EXICON (F1C0H / E0H) ESFR Reset Value: 0000H

Note:
1. Although the C161U provides only two pins of Port 2 which can be used for fast

external interrupts, bit fields EXI7ES..EXI2ES must be set in order to use alternate
sources as fast external interrupts. For alternate sources, refer to register EXISEL on
page 128.

2. The fast external interrupt inputs are sampled every 2 TCL. The interrupt request
arbitration and processing, however, is executed every 8 TCL.

3. In Sleep mode, no clock is available. Therefore sampling is performed with
asynchronous structures.

4. In Sleep mode fast external interrupts as well as the NMI input are controlled for spike
suppression in the System Control Block. Input signals shorter than 10 ns are
suppressed, detection is guaranteed for minimum 150 ns input signals.

Bit Function
EXIxES External Interrupt x Edge Selection Field (x=7...0)

0 0: Fast external interrupts disabled: standard mode
0 1: Interrupt on positive edge (rising)
1 0: Interrupt on negative edge (falling)
1 1: Interrupt on any edge (rising or falling)

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrwrw

EXI2ES EXI0ESEXI1ES

rwrwrw

EXI7ES EXI5ESEXI6ES

rwrw

EXI3ESEXI4ES
Data Sheet 127 2001-04-19

C161U

Interrupt and Trap Functions
7.8.2 External Interrupt Source Control
Fast external interrupts may also have interrupt sources selected from other peripherals.
This function is very advantageous in Slow Down mode or in Sleep mode, if for example
the SSC interface shall be used to wake-up the system. The register EXISEL is used to
switch the receive inputs of the serial interfaces to the fast external interrupts, in order to
detect incomming messages in case of disabled serial interface modules.
EXISEL register is defined as follows:

EXISEL (F1DAH / EDH) ESFR-bReset Value: 0000H

Bit Function
EXI0SS 0 0: Must be set to ’00’.

0 1: Not allowed.
1 0: Not allowed.
1 1: Not allowed.

EXI1SS 0 0: Must be set to ’00’.
0 1: Not allowed.
1 0: Not allowed.
1 1: Not allowed.

EXI2SS 0 0: Not allowed.
0 1: Input from source ASC_RxD @ P3.11.
1 0: Not allowed.
1 1: Not allowed.

EXI3SS 0 0: Not allowed.
0 1: Input from source SSC_RxD @ P3.9.
1 0: Not allowed.
1 1: Not allowed.

EXI4SS 0 0: Not allowed.
0 1: Input from source SSC_SCLK @ P3.13.
1 0: Not allowed.
1 1: Not allowed.

EXI5SS 0 0: Not allowed.
0 1: Input from source USB_suspend interrupt.
1 0: Not allowed.
1 1: Not allowed.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrwrw

01 0000

rwrwrw

01 0100

rwrw

0101
Data Sheet 128 2001-04-19

C161U

Interrupt and Trap Functions
7.8.3 Interrupt Subnode Control
The Real Time Clock (RTC) interrupt T14INT and the PLL/OWD interrupt share one
interrupt node, the XPER3 interrupt node. In order to enable the interrupt handler to
determine the source of that shared interrupt request, the subnode interrupt control
register ISNC is provided. The separate interrupt request and enable flags of register
ISNC (see below) for the PLL (PLLIR, PLLIE) as well as for the RTC (T14IR, T14IE) are
used as shown in Figure 26.

Figure 26 Interrupt Subnode Control for PLL / RTC Interrupts

EXI6SS 0 0: Must be set to ’00’.
0 1: Not allowed.
1 0: Not allowed.
1 1: Not allowed.

EXI7SS 0 0: Not allowed.
0 1: Input from source RTC_INT.
1 0: Not allowed.
1 1: Not allowed.

Bit Function

Note: The Interrupt Service Routine must clear the IR flag in register ISNC manually.
Otherwise no further interrupts can be detected.
All request flags are bit protected.

Diff.
Circuit

ISNC

&

Pulse
Generation

T14

PLLINT

Diff.
Circuit

T14INT
&

IE

T14
IR1)

PLL
IE

PLL
IR1)

1
 INT
Data Sheet 129 2001-04-19

C161U

Interrupt and Trap Functions
ISNC register is defined as follows:

7.8.4 Interrupt Control Register
The interrupt control registers listed below (FEI1IC..FEI0IC) control the fast external
interrupts of the C161U.

ISNC (F1DEH / EFH) ESFR-bReset Value : 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PLL
IE

PLL
IR

RTC
T14
IE

RTC
T14
IR

Bit Function
T14IR T14 Overflow Interrupt Request Flag

‘0’: No request pending
‘1’: This source has raised an interrupt request

T14IE T14 Overflow Interrupt Enable Control Bit
‘0’: Interrupt request is disabled
‘1’: Interrupt request is enabled

PLLIR PLL Interrupt Request Flag
‘0’: No request pending
‘1’: This source has raised an interrupt request

PLLIE PLL Interrupt Enable Control Bit
‘0’: Interrupt request is disabled
‘1’: Interrupt request is enabled
Data Sheet 130 2001-04-19

C161U

Interrupt and Trap Functions
FEIxIC (See Table) SFR Reset Value: - - 00HH

Note: Please refer to the general Interrupt Control Register description for an
explanation of the control fields.

Table 26 Fast External Interrupt Control Register Addresses

7.9 Trap Functions
Traps interrupt the current execution similar to standard interrupts. However, trap
functions offer the possibility to bypass the interrupt system's prioritization process in
cases where immediate system reaction is required. Trap functions are not maskable
and always have priority over interrupt requests on any priority level.
C161U provides two different kinds of trapping mechanisms. Hardware traps are
triggered by events that occur during program execution (eg. illegal access or undefined
opcode), software traps are initiated via an instruction within the current execution flow.

Software Traps
TRAP instruction is used to cause a software call to an interrupt service routine. The trap
number that is specified in the operand field of the trap instruction determines which
vector location in the address range from 00’0000H through 00’01FCH will be branched
to.
Executing a TRAP instruction causes a similar effect as if an interrupt at the same vector
had occurred. PSW, CSP (in segmentation mode), and IP are pushed on the internal
system stack and a jump is taken to the specified vector location. When segmentation is
enabled and a trap is executed, the CSP for the trap service routine is set to code
segment 0. No Interrupt Request flags are affected by the TRAP instruction. The
interrupt service routine called by a TRAP instruction must be terminated with a RETI
(return from interrupt) instruction to ensure correct operation.
Note: The CPU level in register PSW is not modified by the TRAP instruction, so the

service routine is executed on the same priority level from which it was invoked.
Therefore, the service routine entered by the TRAP instruction can be interrupted

Register Address External Interrupt
FEI0IC FF88H / C4H EX0IN
FEI1IC FF8AH / C5H EX1IN

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

FEIx
IE

FEIx
IR ILVL GLVL
Data Sheet 131 2001-04-19

C161U

Interrupt and Trap Functions
by other traps or higher priority interrupts, other than when triggered by a
hardware trap.

Hardware Traps
Hardware traps are issued by faults or specific system states that occur during runtime
of a program (not identified at assembly time). A hardware trap may also be triggered
intentionally, eg. to emulate additional instructions by generating an Illegal Opcode trap.
C161U distinguishes eight different hardware trap functions. When a hardware trap
condition has been detected, the CPU branches to the trap vector location for the
respective trap condition. Depending on the trap condition, the instruction which caused
the trap is either completed or cancelled (ie. it has no effect on the system state) before
the trap handling routine is entered.
Hardware traps are non-maskable and always have priority over every other CPU
activity. If several hardware trap conditions are detected within the same instruction
cycle, the highest priority trap is serviced (see table in section “Interrupt System
Structure”).
PSW, CSP (in segmentation mode), and IP are pushed on the internal system stack and
the CPU level in register PSW is set to the highest possible priority level (ie. level 15),
disabling all interrupts. The CSP is set to code segment zero, if segmentation is enabled.
A trap service routine must be terminated with the RETI instruction.
The eight hardware trap functions of the C161U are divided into two classes:
Class A traps are
• external Non-Maskable Interrupt (NMI)
• Stack Overflow
• Stack Underflow trap
These traps share the same trap priority, but have an individual vector address.
Class B traps are
• Undefined Opcode
• Protection Fault
• Illegal Word Operand Access
• llegal Instruction Access
• Illegal External Bus Access Trap
These traps share the same trap priority, and the same vector address.
The bit-addressable Trap Flag Register (TFR) allows a trap service routine to identify the
kind of trap which caused the exception. Each trap function is indicated by a separate
request flag. When a hardware trap occurs, the corresponding request flag in register
TFR is set to '1'.
Data Sheet 132 2001-04-19

C161U

Interrupt and Trap Functions
TFR (FFACH / D6H) SFR Reset Value: 0000H

Note: The trap service routine must clear the respective trap flag, otherwise a new trap
will be requested after exiting the service routine. Setting a trap request flag by
software causes the same effects as if it had been set by hardware.

The reset functions (hardware, software, watchdog) may be regarded as a type of trap.
Reset functions have the highest system priority (trap priority III).
Class A traps have the second highest priority (trap priority II), on the 3rd rank are class
B traps, so a class A trap can interrupt a class B trap. If more than one class A trap occur
at a time, they are prioritized internally, with the NMI trap on the highest and the stack
underflow trap on the lowest priority.
All class B traps have the same trap priority (trap priority I). When several class B traps
get active at a time, the corresponding flags in the TFR register are set and the trap
service routine is entered. Since all class B traps have the same vector, the priority of

Bit Function
ILLBUS Illegal External Bus Access Flag

An external access has been attempted with no external bus defined.
ILLINA Illegal Instruction Access Flag

A branch to an odd address has been attempted.
ILLOPA Illegal Word Operand Access Flag

A word operand access (read or write) to an odd address has been
attempted.

PRTFLT Protection Fault Flag
A protected instruction with an illegal format has been detected.

UNDOPC Undefined Opcode Flag
The currently decoded instruction has no valid C161U opcode.

STKUF Stack Underflow Flag
The current stack pointer value exceeds the content of register STKUN.

STKOF Stack Overflow Flag
The current stack pointer value falls below the content of register
STKOV.

NMI Non Maskable Interrupt Flag
A negative transition (falling edge) has been detected on pin NMI.

NMI

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rwrw - - --rw ---

STK
UF

ILL
BUS

ILL
INA

ILL
OPA

PRT
FLT

UND
OPC

STK
OF - - - - - - --

-rwrw
Data Sheet 133 2001-04-19

C161U

Interrupt and Trap Functions
service of simultaneously occurring class B traps is determined by software in the trap
service routine.
A class A trap occurring during the execution of a class B trap service routine will be
serviced immediately. During the execution of a class A trap service routine, however,
any class B trap occurring will not be serviced until the class A trap service routine is
exited with a RETI instruction. In this case, the occurrence of the class B trap condition
is stored in the TFR register, but the IP value of the instruction which caused this trap is
lost.
In the case where e.g. an Undefined Opcode trap (class B) occurs simultaneously with
an NMI trap (class A), both the NMI and the UNDOPC flag is set, the IP of the instruction
with the undefined opcode is pushed onto the system stack, but the NMI trap is executed.
After return from the NMI service routine, the IP is popped from the stack and
immediately pushed again because of the pending UNDOPC trap.

External NMI Trap
Whenever a high to low transition on the dedicated external NMI pin (Non-Maskable
Interrupt) is detected, the NMI flag in register TFR is set and the CPU will enter the NMI
trap routine. The IP value pushed on the system stack is the address of the instruction
following the one after which normal processing was interrupted by the NMI trap.

Stack Overflow Trap
Whenever the stack pointer is decremented to a value which is less than the value in the
stack overflow register STKOV, the STKOF flag in register TFR is set and the CPU will
enter the stack overflow trap routine. Which IP value will be pushed onto the system
stack depends on which operation caused the decrement of the SP. When an implicit
decrement of the SP is made through a PUSH or CALL instruction, or upon interrupt or
trap entry, the IP value pushed is the address of the following instruction. When the SP
is decremented by a subtract instruction, the IP value pushed represents the address of
the instruction after the instruction following the subtract instruction.
For recovery from stack overflow it must be ensured that there is enough excess space
on the stack for saving the current system state (PSW, IP, in segmented mode also CSP)
twice. Otherwise, a system reset should be generated.

Stack Underflow Trap
Whenever the stack pointer is incremented to a value which is greater than the value in
the stack underflow register STKUN, the STKUF flag is set in register TFR and the CPU
will enter the stack underflow trap routine. Again, which IP value will be pushed onto the
system stack depends on which operation caused the increment of the SP. When an
implicit increment of the SP is made through a POP or return instruction, the IP value
pushed is the address of the following instruction. When the SP is incremented by an
Data Sheet 134 2001-04-19

C161U

Interrupt and Trap Functions
add instruction, the pushed IP value represents the address of the instruction after the
instruction following the add instruction.

Undefined Opcode Trap
When the instruction currently decoded by the CPU does not contain a valid C161U
opcode, the UNDOPC flag is set in register TFR and the CPU enters the undefined
opcode trap routine. The IP value pushed onto the system stack is the address of the
instruction that caused the trap.
This can be used to emulate unimplemented instructions. The trap service routine can
examine the faulting instruction to decode operands for unimplemented opcodes based
on the stacked IP. In order to resume processing, the stacked IP value must be
incremented by the size of the undefined instruction, which is determined by the user,
before a RETI instruction is executed.

Protection Fault Trap
Whenever one of the special protected instructions is executed where the opcode of that
instruction is not repeated twice in the second word of the instruction and the byte
following the opcode is not the complement of the opcode, the PRTFLT flag in register
TFR is set and the CPU enters the protection fault trap routine. The protected
instructions include DISWDT, EINIT, IDLE, PWRDN, SRST, and SRVWDT. The IP value
pushed onto the system stack for the protection fault trap is the address of the instruction
that caused the trap.

Illegal Word Operand Access Trap
Whenever a word operand read or write access is attempted to an odd byte address, the
ILLOPA flag in register TFR is set and the CPU enters the illegal word operand access
trap routine. The IP value pushed onto the system stack is the address of the instruction
following the one which caused the trap.

Illegal Instruction Access Trap
Whenever a branch is made to an odd byte address, the ILLINA flag in register TFR is
set and the CPU enters the illegal instruction access trap routine. The IP value pushed
onto the system stack is the illegal odd target address of the branch instruction.

Illegal External Bus Access Trap
Whenever the CPU requests an external instruction fetch, data read or data write, and
no external bus configuration has been specified, the ILLBUS flag in register TFR is set
and the CPU enters the illegal bus access trap routine. The IP value pushed onto the
system stack is the address of the instruction following the one which caused the trap.
Data Sheet 135 2001-04-19

C161U

Parallel Ports
8 Parallel Ports
In order to accept or generate single external control signals or parallel data, the C161U
provides up to 56 parallel I/O lines. C161U features Port 0 (inculdes 8 bit P0H and 8 bit
P0L), Port 1 (8 bit P1H and 8 bit P1L), Port 2 (2 bit), Port 3 (10 bit), Port 4 (5 bit) and
Port 6 (7 bit).
These port lines may be used for general purpose Input/Output controlled via software
or may be used implicitly by C161U’s integrated peripherals or the External Bus
Controller.
All port lines are bit addressable, and all input/output lines are individually (bit-wise)
programmable as inputs or outputs via direction registers. The I/O ports are true
bidirectional ports which are switched to high impedance state when configured as
inputs. The output drivers of the I/O ports (P0H, P1, P2, P3, P4, P6) can be configured
(pin by pin) for push/pull operation or open-drain operation via control registers. The logic
level of a pin is clocked into the input latch once per state time, regardless whether the
port is configured for input or output.
A write operation to a port pin configured as an input (DPx.y = ’0’) causes the value to
be written into the port output latch, while a read operation returns the latched state of
the pin itself. A read-modify-write operation reads the value of the pin, modifies it, and
writes it back to the output latch.
Writing to a pin configured as an output (DPx.y=‘1’) causes the output latch and the pin
to have the written value, since the output buffer is enabled. Reading this pin returns the
value of the output latch. A read-modify-write operation reads the value of the output
latch, modifies it, and writes it back to the output latch, thus also modifying the level at
the pin.
Data Sheet 136 2001-04-19

C161U

Parallel Ports

Figure 27 SFRs and Pins associated with the Parallel Ports

In the C161U certain ports provide Open Drain Control, which allows to switch the output
driver of a port pin from a push/pull configuration to an open drain configuration. In push/
pull mode a port output driver has an upper and a lower transistor, thus it can actively
drive the line either to a high or a low level. In open drain mode the upper transistor is
always switched off, and the output driver can only actively drive the line to a low level.
When writing a ‘1’ to the port latch, the lower transistor is switched off and the output
enters a high-impedance state. The high level must then be provided by an external
pullup device. With this feature, it is possible to connect several port pins together to a
Wired-AND configuration, saving external glue logic and/or additional software overhead
for enabling/disabling output signals.
This feature is implemented for all ports except P0L, and is controlled through the
respective Open Drain Control Registers ODPx. These registers allow the individual bit-
wise selection of the open drain mode for each port line. If the respective control bit
ODPx.y is ‘0’ (default after reset), the output driver is in the push/pull mode. If ODPx.y is
‘1’, the open drain configuration is selected. Note that all ODPx registers are located in
the ESFR space.

ODP2
ODP3

ODP1L
ODP1H

ODP4
ODP6

ODP0H

DP2
DP3

DP0L
DP0H

DP4

DP1H
DP1L

DP6

P2
P3

P0L
P0H

P4

P1L
P1H

P6

Data Input / Output
Registers

Direction Control
Registers

Open Drain Control
Registers

PxPUDSEL:
P0L, P0H, P1L,
P1H, P2, P3,
P4, P6

PxPUDEN:
P0L, P0H, P1L,
P1H, P2, P3,
P4, P6

PxPHEN:
P0L, P0H, P1L,
P1H, P2, P3,
P4, P6

Pull Up/Down Control
Registers
Data Sheet 137 2001-04-19

C161U

Parallel Ports

Figure 28 Output Drivers in Push/Pull Mode and in Open Drain Mode

Alternate Port Functions
Each port line has one programmable alternate input or output function associated.
PORT0 and PORT1 may be used as the address and data lines when accessing
external memory.
Port 2 is used for fast external interrupt inputs.
Port 3 includes alternate input/output functions of timers, serial interfaces, the optional
bus control signal BHE/WRH and the system clock output (CLKOUT).
Port 4 outputs the additional segment address bits A20/A19/A17...A16 in systems where
more than 64 KBytes of memory are to be accessed directly.
Port 6 provides the optional chip select outputs and the bus arbitration lines.
If an alternate output function of a pin is to be used, the direction of this pin must be
programmed for output (DPx.y=‘1’), except for some signals that are used directly after
reset and are configured automatically. Otherwise the pin remains in the high-impedance
state and is not effected by the alternate output function. The respective port latch should
hold a ‘1’, because its output is ANDed with the alternate output data.
Note: DP0L and, if a 16 bit external XBus data bus is used, also DP0H must be ’0’ as

long as the XBUS is active.

If an alternate input function of a pin is used, the direction of the pin must be programmed
for input (DPx.y=‘0’) if an external device is driving the pin. The input direction is the
default after reset. If no external device is connected to the pin, however, one can also
set the direction for this pin to output. In this case, the pin reflects the state of the port
output latch. Thus, the alternate input function reads the value stored in the port output

MCS01975

Open Drain Output Driver

External
Pullup

Q

Push/Pull Output Driver

Q

Pin Pin
Data Sheet 138 2001-04-19

C161U

Parallel Ports
latch. This can be used for testing purposes to allow a software trigger of an alternate
input function by writing to the port output latch.
On most of the port lines, the user software is responsible for setting the proper direction
when using an alternate input or output function of a pin. This is done by setting or
clearing the direction control bit DPx.y of the pin before enabling the alternate function.
There are port lines, however, where the direction of the port line is switched
automatically. For instance, in the multiplexed external bus modes of PORT0, the
direction must be switched several times for an instruction fetch in order to output the
addresses and to input the data. Obviously, this cannot be done through instructions. In
these cases, the direction of the port line is switched automatically by hardware if the
alternate function of such a pin is enabled.
Note: In this case, make sure DP0 is set to ’0’ signal.

To determine the appropriate level of the port output latches check how the alternate
data output is combined with the respective port latch output.
There is one basic structure for all port lines with only an alternate input function. Port
lines with only an alternate output function, however, have different structures due to the
way the direction of the pin is switched and depending on whether the pin is accessible
by the user software or not in the alternate function mode.
All port lines that are not used for these alternate functions may be used as general
purpose I/O lines. When using port pins for general purpose output, the initial output
value should be written to the port latch prior to enabling the output drivers, in order to
avoid undesired transitions on the output pins. This applies to single pins as well as to
pin groups (see examples below).

OUTPUT_ENABLE_SINGLE_PIN:
BSET P4.0 ;Initial output level is ’high’
BSET DP4.0 ;Switch on the output driver

OUTPUT_ENABLE_PIN_GROUP:
BFLDL P4, #05H, #05H ;Initial output level is ’high’
BFLDL DP4, #05H, #05H ;Switch on the output drivers

Each of these ports and the alternate input and output functions are described in detail
in the following subsections.
Data Sheet 139 2001-04-19

C161U

Parallel Ports
8.1 PORT0
The two 8-bit ports P0H and P0L represent the higher and lower part of PORT0,
respectively. Both halfs of PORT0 can be written (eg. via a PEC transfer) without
effecting the other half.
If this port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction registers DP0H and DP0L.
Each port line of PORT0H can be switched into push/pull or open drain mode via the
open drain control register ODP0H.
For port pins configured as input (via DP0x or alternate function), an internal pull
transistor is connected to the pad if register P0xPUDEN = ’1’, no matter whether the
C161U is in normal operation mode or in power down mode. Either pulldown transistor
or pullup transistor will be selected via P0xPUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P0xPHEN = ’1’.
After reset, P0xPUDEN and P0xPUDSEL are set to HIGH signal, thereby providing the
default reset configuration 1111H to the C161U during reset.
Note: While this feature allows the user to start the C161U after reset in default

configuration without external pull devices, the default configuration may be
overwritten by stronger external pulldown devices. In this case, Software should
isable the internal pull’s after reset (see also next chapter ’Alternate Function’).
Data Sheet 140 2001-04-19

C161U

Parallel Ports
P0L (FF00H / 80H) SFR Reset Value: - - 00H

P0H (FF02H / 81H) SFR Reset Value: - - 00H

DP0L (F100H / 80H) ESFR Reset Value: - - 00H

DP0H (F102H / 81H) ESFR Reset Value: - - 00H

Bit Function

P0X.y Port data register P0H or P0L bit y

Bit Function
DP0X.y Port direction register DP0H or DP0L bit y

DP0X.y = 0: Port line P0X.y is an input (high-impedance)
DP0X.y = 1: Port line P0X.y is an output

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0L.0P0L.1P0L.2P0L.3P0L.4P0L.5P0L.6P0L.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0H.0P0H.1P0H.2P0H.3P0H.4P0H.5P0H.6P0H.7

DP0L
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP0L
.7

DP0L
.6

DP0L
.5

DP0L
.4

DP0L
.3

DP0L
.2

DP0L
.1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP0H
.7

DP0H
.6

DP0H
.5

DP0H
.4

DP0H
.3

DP0H
.2

DP0H
.1

DP0H
.0
Data Sheet 141 2001-04-19

C161U

Parallel Ports
ODP0H (FE22H / 11H) SFR Reset Value: - - 00H

P0LPUDSEL (FE60H / 30H) SFR Reset Value: - - FFH

P0HPUDSEL (FE62H / 31H) SFR Reset Value: - - FFH

Bit Function
ODP0H.y Port0H Open Drain control register bit y

ODP0H.y = 0: Port line P0H.y output driver in push/pull mode
ODP0H.y = 1: Port line P0H.y output driver in open drain mode

Bit Function
P0xPUDSEL.y Pulldown/Pullup Selection

0: internal programmable pulldown transistor is selected
1: internal programmable pullup transistor is selected

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

ODP0
H.7

ODP0
H.6

ODP0
H.5

ODP0
H.4

ODP0
H.3

ODP0
H.2

ODP0
H.1

ODP0
H.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0L
PUD
SEL.7

P0L
PUD
SEL.6

P0L
PUD
SEL.5

P0L
PUD
SEL.4

P0L
PUD
SEL.3

P0L
PUD
SEL.2

P0L
PUD
SEL.1

P0L
PUD
SEL.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0H
PUD
SEL.7

P0H
PUD
SEL.6

P0H
PUD
SEL.5

P0H
PUD
SEL.4

P0H
PUD
SEL.3

P0H
PUD
SEL.2

P0H
PUD
SEL.1

P0H
PUD
SEL.0
Data Sheet 142 2001-04-19

C161U

Parallel Ports
P0LPUDEN (FE64H / 32H) SFR Reset Value: - - FFH

P0HPUDEN (FE66H / 33H) SFR Reset Value: - - FFH

P0LPHEN (FE68H / 34H) SFR Reset Value: - - 00H

P0HPHEN (FE6AH / 35H) SFR Reset Value: - - 00H

Bit Function
P0xPUDEN.y Pulldown/Pullup Enable

0: internal programmable pull transistor is disabled
1: internal programmable pull transistor is enabled

Bit Function
P0xPHEN.y Output Driver Enable in Power Down Mode

0: output driver is disabled in power down mode
1: output driver is enabled in power down mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0L
PUD
EN.7

P0L
PUD
EN.6

P0L
PUD
EN.5

P0L
PUD
EN.4

P0L
PUD
EN.3

P0L
PUD
EN.2

P0L
PUD
EN.1

P0L
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0H
PUD
EN.7

P0H
PUD
EN.6

P0H
PUD
EN.5

P0H
PUD
EN.4

P0H
PUD
EN.3

P0H
PUD
EN.2

P0H
PUD
EN.1

P0H
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0L
PHEN
.7

P0L
PHEN
.6

P0L
PHEN
.5

P0L
PHEN
.4

P0L
PHEN
.3

P0L
PHEN
.2

P0L
PHEN
.1

P0L
PHEN
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P0H
PHEN
.7

P0H
PHEN
.6

P0H
PHEN
.5

P0H
PHEN
.4

P0H
PHEN
.3

P0H
PHEN
.2

P0H
PHEN
.1

P0H
PHEN
.0
Data Sheet 143 2001-04-19

C161U

Parallel Ports
8.1.1 Alternate Functions of PORT0
When an external bus is enabled, PORT0 is used as data bus or address/data bus.
Note that an external 8-bit demultiplexed bus only uses P0L, while P0H is free for I/O
(provided that no other bus mode is enabled).
PORT0 is also used to select the system startup configuration. During reset, PORT0 is
configured to input, and each line is held high through an internal pullup device. Each
line can now be individually pulled to a low level (see DC-level specifications in the
respective Data Sheets) through an external pulldown device. A default configuration is
selected when the respective PORT0 lines are at a high level. Through pulling individual
lines to a low level, this default can be changed according to the needs of the
applications.
The internal pullup devices are designed such that an external pulldown resistors (see
specification) can be used to apply a correct low level. These external pulldown resistors
can remain connected to the PORT0 pins also during normal operation, however, care
has to be taken such that they do not disturb the normal function of PORT0 (this might
be the case, for example, if the external resistor is too strong).
With the end of reset, the selected bus configuration will be written to the BUSCON0
register. The configuration of the high byte of PORT0, will be copied into the special
register RP0H. This read-only register holds the selection for the number of chip selects
and segment addresses. Software can read this register in order to react according to
the selected configuration, if required.
Note: When the reset is terminated, the internal pullup devices must be switched off by

Software and PORT0 will be switched to the appropriate operating mode.

During external accesses in multiplexed bus modes PORT0 first outputs the 16-bit intra-
segment address as an alternate output function. PORT0 is then switched to high-
impedance input mode to read the incoming instruction or data. In 8-bit data bus mode,
two memory cycles are required for word accesses, the first for the low byte and the
second for the high byte of the word. During write cycles PORT0 outputs the data byte
or word after outputting the address.
During external accesses in demultiplexed bus modes PORT0 reads the incoming
instruction or data word or outputs the data byte or word.
Data Sheet 144 2001-04-19

C161U

Parallel Ports

Figure 29 PORT0 I/O and Alternate Functions

When an external bus mode is enabled, the direction of the port pin and the loading of
data into the port output latch are controlled by the bus controller hardware. The input of
the port output latch is disconnected from the internal bus and is switched to the line
labeled “Alternate Data Output” via a multiplexer. The alternate data can be the 16-bit
intrasegment address or the 8/16-bit data information. The incoming data on PORT0 is
read on the line “Alternate Data Input”. While an external bus mode is enabled, the user
software should not write to the port output latch, otherwise unpredictable results may
occur. When the external bus modes are disabled, the contents of the direction register
last written by the user becomes active.
Figure 30 shows the structure of a PORT0 pin.

P0H.7
P0H.6
P0H.5
P0H.4
P0H.3
P0H.2
P0H.1
P0H.0
P0L.7
P0L.6
P0L.5
P0L.4
P0L.3
P0L.2
P0L.1
P0L.0

PORT0 D7
D6
D5
D4
D3
D2
D1
D0

P0H

P0L

D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

AD15
AD14
AD13
AD12
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

AD15
AD14
AD13
AD12
AD11
AD10
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0

Alternate Function a) b) c) d)

General Purpose
Input/Output

8-bit
Demux Bus

16-bit
Demux Bus

8-bit
MUX Bus

16-bit
MUX Bus
Data Sheet 145 2001-04-19

C161U

Parallel Ports

Figure 30 Block Diagram of a PORT0 Pin

MCB02231

Output
Buffer

MUX
1

0

Alternate
Data

Output

Latch
Port Output

0

1
MUX

Write P0H.y/P0L.y

Read P0H.y/P0L.y

Enable
Function
Alternate

0

1
MUX

Read DP0H.y/DP0L.y

Write DP0H.y/DP0L.y

Direction

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

P0H.y
P0L.y

Direction
Alternate

y = 7...0
Data Sheet 146 2001-04-19

C161U

Parallel Ports
8.2 PORT1
The two 8-bit ports P1H and P1L represent the higher and lower part of PORT1,
respectively. Both halfs of PORT1 can be written (eg. via a PEC transfer) without
effecting the other half.
If this port is used for general purpose I/O, the direction of each line can be configured
via the corresponding direction registers DP1H and DP1L.
Each port line can be switched into push/pull or open drain mode via the open drain
control register ODP1L and ODP1H.
For port pins configured as input (via DP1x or alternate function), an internal pull
transistor is connected to the pad if register P1xPUDEN = ’1’, no matter wheter the
C161U is in normal operation mode or in power down mode. Either pulldown transistor
or pullup transistor will be selected via P1xPUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P1xPHEN = ’1’.
After reset, P1xPUDEN and P1xPUDSEL are set to LOW signal.
Data Sheet 147 2001-04-19

C161U

Parallel Ports
P1L (FF04H / 82H) SFR Reset Value: - - 00H

P1H (FF06H / 83H) SFR Reset Value: - - 00H

DP1L (F104H / 82H) ESFR Reset Value: - - 00H

DP1H (F106H / 83H) ESFR Reset Value: - - 00H

ODP1L (FE24H / 12H) SFR Reset Value: - - 00H

Bit Function
P1X.y Port data register P1H or P1L bit y

Bit Function
DP1X.y Port direction register DP1H or DP1L bit y

DP1X.y = 0: Port line P1X.y is an input (high-impedance)
DP1X.y = 1: Port line P1X.y is an output

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1L.0P1L.1P1L.2P1L.3P1L.4P1L.5P1L.6P1L.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1H.0P1H.1P1H.2P1H.3P1H.4P1H.5P1H.6P1H.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP1L
.7

DP1L
.6

DP1L
.5

DP1L
.4

DP1L
.3

DP1L
.2

DP1L
.1

DP1L
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

DP1H
.7

DP1H
.6

DP1H
.5

DP1H
.4

DP1H
.3

DP1H
.2

DP1H
.1

DP1H
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

ODP1
L.7

ODP1
L.6

ODP1
L.5

ODP1
L.4

ODP1
L.3

ODP1
L.2

ODP1
L.1

ODP1
L.0
Data Sheet 148 2001-04-19

C161U

Parallel Ports
ODP1H (FE26H / 13H) SFR Reset Value: - - 00H

P1LPUDSEL (FE6CH / 36H) SFR Reset Value: - - 00H

P1HPUDSEL (FE6EH / 37H) SFR Reset Value: - - 00H

Bit Function
ODP1x.y Port1x Open Drain control register bit y

ODP1x.y = 0: Port line P1x.y output driver in push/pull mode
ODP1x.y = 1: Port line P1x.y output driver in open drain mode

Bit Function
P1xPUDSEL.y Pulldown/Pullup Selection

0: internal programmable pulldown transistor is selected
1: internal programmable pullup transistor is selected

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

ODP1
H.7

ODP1
H.6

ODP1
H.5

ODP1
H.4

ODP1
H.3

ODP1
H.2

ODP1
H.1

ODP1
H.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1L
PUD
SEL.7

P1L
PUD
SEL.6

P1L
PUD
SEL.5

P1L
PUD
SEL.4

P1L
PUD
SEL.3

P1L
PUD
SEL.2

P1L
PUD
SEL.1

P1L
PUD
SEL.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1H
PUD
SEL.7

P1H
PUD
SEL.6

P1H
PUD
SEL.5

P1H
PUD
SEL.4

P1H
PUD
SEL.3

P1H
PUD
SEL.2

P1H
PUD
SEL.1

P1H
PUD
SEL.0
Data Sheet 149 2001-04-19

C161U

Parallel Ports
P1LPUDEN (FE70H / 38H) SFR Reset Value: - - 00H

P1HPUDEN (FE72H / 39H) SFR Reset Value: - - 00H

P1LPHEN (FE74H / 3AH) SFR Reset Value: - - 00H

P1HPHEN (FE76H / 3BH) SFR Reset Value: - - 00H

Bit Function
P1xPUDEN.y Pulldown/Pullup Enable

P1xPUDEN.y = 0: internal programmable pull transistor is disabled
P1xPUDEN.y = 1: internal programmable pull transistor is enabled

Bit Function
P1xPHEN.y Output Driver Enable in Power Down Mode

P1xPHEN.y = 0: output driver is disabled in power down mode
P1xPHEN.y = 1: output driver is enabled in power down mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1L
PUD
EN.7

P1L
PUD
EN.6

P1L
PUD
EN.5

P1L
PUD
EN.4

P1L
PUD
EN.3

P1L
PUD
EN.2

P1L
PUD
EN.1

P1L
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1H
PUD
EN.7

P1H
PUD
EN.6

P1H
PUD
EN.5

P1H
PUD
EN.4

P1H
PUD
EN.3

P1H
PUD
EN.2

P1H
PUD
EN.1

P1H
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1L
PHEN
.7

P1L
PHEN
.6

P1L
PHEN
.5

P1L
PHEN
.4

P1L
PHEN
.3

P1L
PHEN
.2

P1L
PHEN
.1

P1L
PHEN
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rw rw rw rw- - - - rw rw- - - -

P1H
PHEN
.7

P1H
PHEN
.6

P1H
PHEN
.5

P1H
PHEN
.4

P1H
PHEN
.3

P1H
PHEN
.2

P1H
PHEN
.1

P1H
PHEN
.0
Data Sheet 150 2001-04-19

C161U

Parallel Ports
8.2.1 Alternate Functions of PORT1
When a demultiplexed external bus is enabled, PORT1 is used as address bus.
Note that demultiplexed bus modes use PORT1 as a 16-bit port. Otherwise all 16 port
lines can be used for general purpose I/O.
During external accesses in demultiplexed bus modes PORT1 outputs the 16-bit intra-
segment address as an alternate output function.
During external accesses in multiplexed bus modes, when no BUSCON register selects
a demultiplexed bus mode, PORT1 is not used and is available for general purpose I/O.

Figure 31 PORT1 I/O and Alternate Functions

When an external bus mode is enabled, the direction of the port pin and the loading of
data into the port output latch are controlled by the bus controller hardware. The input of
the port output latch is disconnected from the internal bus and is switched to the line
labeled “Alternate Data Output” via a multiplexer. The alternate data is the 16-bit
intrasegment address. While an external bus mode is enabled, the user software should
not write to the port output latch, otherwise unpredictable results may occur. When the
external bus modes are disabled, the contents of the direction register last written by the
user becomes active.
Figure 32 shows the structure of a PORT1 pin.

P1H.7
P1H.6
P1H.5
P1H.4
P1H.3
P1H.2
P1H.1
P1H.0
P1L.7
P1L.6
P1L.5
P1L.4
P1L.3
P1L.2
P1L.1
P1L.0

PORT1

P1H

P1L

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

Alternate Function a)

General Purpose
Input/Output

8/16-bit
Demux Bus
Data Sheet 151 2001-04-19

C161U

Parallel Ports

Figure 32 Block Diagram of a PORT1 Pin

8.3 PORT2
In the C161U Port 2 is an 2 -bit port. If Port 2 is used for general purpose I/O, the direction
of each line can be configured via the corresponding direction register DP2. Each port
line can be switched into push/pull or open drain mode via the open drain control register
ODP2.
For port pins configured as input (via DP2 or alternate function), an internal pull transistor
is connected to the pad if register P2PUDEN = ’1’, no matter wheter the C161U is in
normal operation mode or in power down mode. Either pulldown transistor or pullup
transistor will be selected via P2PUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P2PHEN = ’1’.
After reset, P2PUDEN and P2PUDSEL are set to LOW signal.

MCB02232

Output
Buffer

MUX
1

0

Alternate
Data

Output

Latch
Port Output

0

1
MUX

Write P1H.y/P1L.y

Read P1H.y/P1L.y

Enable
Function
Alternate

0

1
MUX

Read DP1H.y/DP1L.y

Write DP1H.y/DP1L.y

Direction

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

P1H.y
P1L.y

’1’

y = 7...0
Data Sheet 152 2001-04-19

C161U

Parallel Ports
P2 (FFC0H / E0H) SFR Reset Value: - - 00H

DP2 (FFC2H / E1H) SFR Reset Value: - - 00H

ODP2 (F1C2H / E1H) ESFR Reset Value: - - 00H

P2PUDSEL (FE78H / 3CH) SFR Reset Value: - - 00H

Bit Function
P2.y Port data register P2 bit y

Bit Function
DP2.y Port direction register DP2 bit y

DP2.y = 0: Port line P2.y is an input (high-impedance)
DP2.y = 1: Port line P2.y is an output

Bit Function
ODP2.y Port 2 Open Drain control register bit y

ODP2.y = 0: Port line P2.y output driver in push/pull mode
ODP2.y = 1: Port line P2.y output driver in open drain mode

P2.0P2.1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

DP2.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

DP2.1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

ODP2
.1

ODP2
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

P2
PUD
SEL.1

P2
PUD
SEL.0
Data Sheet 153 2001-04-19

C161U

Parallel Ports
P2PUDEN (FE7AH / 3DH) SFR Reset Value: - - 00H

P2PHEN (FE7CH / 3EH) SFR Reset Value: - - 00H

8.3.1 Alternate Functions of PORT2
All Port 2 lines (P2.1..P2.0) can serve as Fast External Interrupt inputs (EX1IN...EX0IN).
Table 27 summarizes the alternate functions of Port 2.

Table 27 Port 2 Alternate Functions: Fast External Interrupts

Bit Function
P2PUDSEL.y Pulldown/Pullup Selection

P2PUDSEL.y = 0: internal programmable pulldown transistor is
selected
P2PUDSEL.y = 1: internal programmable pullup transistor is selected

Bit Function
P2PUDEN.y Pulldown/Pullup Enable

P2PUDEN.y = 0: internal programmable pull transistor is disabled
P2PUDEN.y = 1: internal programmable pull transistor is enabled

Bit Function
P2PHEN.y Output Driver Enable in Power Down Mode

P2PHEN.y = 0: output driver is disabled in power down mode
P2PHEN.y = 1: output driver is enabled in power down mode

Port 2 Pin Alternate Function
P2.0
P2.1

EX0IN Fast External Interrupt 0 Input
EX1IN Fast External Interrupt 1 Input

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

P2
PUD
EN.1

P2
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - - rw rw- - - - - -- - - -

P2
PHEN
.1

P2
PHEN
.0
Data Sheet 154 2001-04-19

C161U

Parallel Ports

Figure 33 Port 2 I/O and Alternate Functions

The pins of Port 2 combine internal bus data and alternate data output before the port
latch input.
Note: As opposed to the C161U, in other existing Infineon C16x devices EX0IN is

assigned to P2.8 and EX1IN is assigned to P2.9 using the higher byte of Port 2
instead of using the lower byte of Port 2.

-
-
-
-
-
-
-
-
-
-
-
-
-
-
P2.1
P2.0

Port 2

-
-
-
-
-
-
-
-
-
-
-
-
-
-
EX1IN
EX0IN

Alternate Function a)

General Purpose
Input/Output

Fast External
Interrupt Input
Data Sheet 155 2001-04-19

C161U

Parallel Ports

Figure 34 Block Diagram of a Port 2 Pin (y = 1...0)

MCB02230

Output
Buffer

Alternate
Data Input

Latch
Port Output

0

1
MUX

Write P2.y

Read P2.y

Read DP2.y

Write DP2.y

Direction

Write ODP2.y

Read ODP2.y

Open Drain
Latch

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

P2.y

XzIn
Data Sheet 156 2001-04-19

C161U

Parallel Ports
8.4 PORT3
If this 10-bit port is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP3. Each port lines can be switched
into push/pull or open drain mode via the open drain control register ODP3.
Note: Due to pin limitations register bit P3.0..P3.2, P3.4, P3.7 and P3.14 is not

connected to an output pin. The Port 3 bit-assignment is not consecutive to for
compatibility with other C16x devices.

For port pins configured as input (via DP3 or alternate function), an internal pull transistor
is connected to the pad if register P3PUDEN = ’1’, no matter wheter the C161U is in
normal operation mode or in power down mode. Either pulldown transistor or pullup
transistor will be selected via P3PUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P3PHEN = ’1’.
After reset, P3PUDEN and P3PUDSEL are set to LOW signal.
Data Sheet 157 2001-04-19

C161U

Parallel Ports
P3 (FFC4H / E2H) SFR Reset Value: 0000H

DP3 (FFC6H / E3H) SFR Reset Value: 0000H

ODP3 (F1C6H / E3H) ESFR Reset Value: 0000H

P3PUDSEL (FE7EH / 3FH) SFR Reset Value: - - 00H

Bit Function
P3.y Port data register P3 bit y

Bit Function
DP3.y Port direction register DP3 bit y

DP3.y = 0: Port line P3.y is an input (high-impedance)
DP3.y = 1: Port line P3.y is an output

Bit Function
ODP3.y Port 3 Open Drain control register bit y

ODP3.y = 0: Port line P3.y output driver in push/pull mode
ODP3.y = 1: Port line P3.y output driver in open drain mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw - - -rw rw rw rw - rwrw - rw rw

---P3.3-P3.5P3.6-P3.8P3.9P3.10P3.11P3.12P3.13-P3.15

- - -

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw - - -rw rw rw rw - rwrw - rw rw

DP3
.13

DP3
.11

DP3
.10

DP3
.9

DP3
.8 -

DP3
.6

DP3
.5 -

DP3
.3 - - --

DP3
.12

DP3
.15

- - -

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw - - -rw rw rw rw - rwrw - rw rw

ODP3
.13

ODP3
.11

ODP3
.10

ODP3
.9

ODP3
.8 -

ODP3
.6

ODP3
.5 -

ODP3
.3 - - --

ODP3
.15

ODP3
.12

5 4 3 2 1 011 10 9 8 7 615 14 13 12
P3PU
DSEL.
15

P3PU
DSEL.
13

P3PU
DSEL.

5

P3PU
DSEL.

6

P3PU
DSEL.

8

P3PU
DSEL.

3

P3PU
DSEL.

9

P3PU
DSEL.

10

P3PU
DSEL.
11

- - - - -

rw - rw - - -rw rw rw rw - rwrw - rw rw

P3PU
DSEL.

12
-

Data Sheet 158 2001-04-19

C161U

Parallel Ports
P3PUDEN (FE80H / 40H) SFR Reset Value: - - 00H

P3PHEN (FE82H / 41H) SFR Reset Value: - - 00H

8.4.1 Alternate Functions of PORT3
The pins of Port 3 serve for various functions which include external timer control lines,
the two serial interfaces and the control lines BHE and CLKOUT.
Table 28 summarizes the alternate functions of Port 3.

Bit Function
P3PUDSEL.y Pulldown/Pullup Selection

P3PUDSEL.y = 0: internal programmable pulldown transistor is
selected
P3PUDSEL.y = 1: internal programmable pullup transistor is selected

Bit Function
P3PUDEN.y Pulldown/Pullup Enable

P3PUDEN.y = 0: internal programmable pull transistor is disabled
P3PUDEN.y = 1: internal programmable pull transistor is enabled

Bit Function
P3PHEN.y Output Driver Enable in Power Down Mode

P3PHEN.y = 0: output driver is disabled in power down mode
P3PHEN.y = 1: output driver is enabled in power down mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12
P3PU
DEN.

15

P3PU
DEN.
13

P3PU
DEN.

5

P3PU
DEN.

6

P3PU
DEN.

8

P3PU
DEN.

3

P3PU
DEN.

9

P3PU
DEN.
10

P3PU
DEN.
11

- - - - -

rw - rw - - -rw rw rw rw - rwrw - rw rw

P3PU
DEN.
12

-

5 4 3 2 1 011 10 9 8 7 615 14 13 12
P3
PHEN
.15

P3
PHEN
.13

P3
PHEN
.5

P3
PHEN
.6

P3
PHEN
.8

P3
PHEN
.3

P3
PHEN
.9

P3
PHEN
.10

P3
PHEN
.11

- - - - -

rw - rw - - -rw rw rw rw rw rwrw - rw rw

P3
PHEN
.12

-

Data Sheet 159 2001-04-19

C161U

Parallel Ports
Table 28 Alternate Functions of Port 3

Figure 35 Port 3 I/O and Alternate Functions

Port 3
Pin

Alternate Function

P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
P3.12
P3.13
P3.14
P3.15

--- No pin assigned
--- No pin assigned
--- No pin assigned
T3OUT Timer 3 Toggle Output
--- No pin assigned!
T4IN Timer 4 Count Input (T3EUD Input, T2EUD Input)
T3IN Timer 3 Count Input
--- No pin assigned
MRST SSC Master Receive / Slave Transmit
MTSR SSC Master Transmit / Slave Receive
TxD0 ASC Transmit Data Output
RxD0 ASC Receive Data Input
BHE/WRH Byte High Enable / Write High Output
SCLK SSC Shift Clock Input/Output
--- No pin assigned
CLKOUT System Clock Output

P3.15

P3.13
P3.12
P3.11
P3.10
P3.9
P3.8

P3.6
P3.5

P3.3

Port 3

No Pin
CLKOUT

SCLK
BHE
RxD0Tx
D0
MTSR
MRST

T3IN
T4IN

T3OUT

WRH

Alternate Function a) b)

General Purpose
Input/Output

No Pin

No Pin
No Pin
No Pin

No Pin
Data Sheet 160 2001-04-19

C161U

Parallel Ports
The port structure of the Port 3 pins depends on their alternate function (see figures
below).
When the on-chip peripheral associated with a Port 3 pin is configured to use the
alternate input function, it reads the input latch, which represents the state of the pin, via
the line labeled “Alternate Data Input”. Port 3 pins with alternate input functions are:
T3IN and T4IN/T3EUD/T2EUD.
When the on-chip peripheral associated with a Port 3 pin is configured to use the
alternate output function, its “Alternate Data Output” line is ANDed with the port output
latch line. When using these alternate functions, the user must set the direction of the
port line to output (DP3.y=1) and must set the port output latch (P3.y=1). Otherwise the
pin is in its high-impedance state (when configured as input) or the pin is stuck at '0'
(when the port output latch is cleared). When the alternate output functions are not used,
the “Alternate Data Output” line is in its inactive state, which is a high level ('1'). Port 3
pins with alternate output functions are:
T6OUT, T3OUT, TxD0 and CLKOUT.
When the on-chip peripheral associated with a Port 3 pin is configured to use both the
alternate input and output function, the descriptions above apply to the respective
current operating mode. The direction must be set accordingly. Port 3 pins with alternate
input/output functions are:
MTSR, MRST, RxD0 and SCLK.

Note: Enabling the CLKOUT function automatically enables the P3.15 output driver.
Setting bit DP3.15=’1’ is not required.
Data Sheet 161 2001-04-19

C161U

Parallel Ports

Figure 36 Block Diagram of a Port 3 Pin with Alternate Input or Alternate
Output Function (y = 13, 11...8, 6, 5, 3)

MCB02229

Output
Buffer

Alternate
Data

Latch
Port Output

0

1
MUX

Write P3.y

Read P3.y

Read DP3.y

Write DP3.y

Direction

Write ODP3.y

Read ODP3.y

Open Drain
Latch

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

Input

&

Output
Data

Alternate

P3.y

y = 13, 11...5, 3
Data Sheet 162 2001-04-19

C161U

Parallel Ports
Pin P3.12 (BHE/WRH) is one more pin with an alternate output function. However, its
structure is slightly different (see figure below), because after reset the BHE or WRH
function must be used depending on the system startup configuration. In these cases
there is no possibility to program any port latches before. Thus the appropriate alternate
function is selected automatically. If BHE/WRH is not used in the system, this pin can be
used for general purpose I/O by disabling the alternate function (BYTDIS = ‘1’ /
WRCFG=’0’).

Figure 37 Block Diagram of Pins P3.15 (CLKOUT) and P3.12 (BHE/WRH)

Note: Enabling the BHE or WRH function automatically enables the P3.12 output driver.
Setting bit DP3.12=’1’ is not required.
During bus hold pin P3.12 is switched back to its standard function and is then
controlled by DP3.12 and P3.12. Keep DP3.12 = ’0’ in this case to ensure floating
in hold mode.

MCB02073

Output
Buffer

MUX
1

0

Alternate
Data

Output

Latch
Port Output

0

1
MUX

Write P3.x

Read P3.x

Enable
Function
Alternate

0

1
MUX

Read DP3.x

Write DP3.x

Direction

’1’

Input
Latch

Clock

Latch

Ι
n
t
e
r
n
a
l

B
u
s

P3.12/BHE
P3.15/CLKOUT

x = 15, 12
Data Sheet 163 2001-04-19

C161U

Parallel Ports
8.5 PORT4
If this 5-bit port is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP4.
Each port line can be switched into push/pull or open drain mode via the open drain
control register ODP4.
For port pins configured as input (via DP4 or alternate function), an internal pull transistor
is connected to the pad if register P4PUDEN = ’1’, no matter wheter the C161U is in
normal operation mode or in power down mode. Either pulldown transistor or pullup
transistor will be selected via P4PUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P4PHEN = ’1’.
After reset, P4PUDEN and P4PUDSEL are set to LOW signal.

P4 (FFC8H / E4H) SFR Reset Value: - - 00H

Bit Function
P4.y Port data register P4 bit y

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

P4.0P4.1P4.2P4.3P4.4
Data Sheet 164 2001-04-19

C161U

Parallel Ports
DP4 (FFCAH / E5H) SFR Reset Value: - - 00H

ODP4 (F1CAH / E5H) ESFR Reset Value: - - 00H

P4PUDSEL (FE84H / 42H) SFR Reset Value: - - 00H

Bit Function
DP4.y Port direction register DP4 bit y

DP4.y = 0: Port line P4.y is an input (high-impedance)
DP4.y = 1: Port line P4.y is an output

Bit Function
ODP4.y Port 4 Open Drain control register bit y

ODP4.y = 0: Port line P4.y output driver in push/pull mode
ODP4.y = 1: Port line P4.y output driver in open drain mode

Bit Function
P4PUDSEL.
y

Pulldown/Pullup Selection
P4PUDSEL.y = 0: internal programmable pulldown transistor is
selected
P4PUDSEL.y = 1: internal programmable pullup transistor is selected

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

DP4.0DP4.1DP4.2DP4.3DP4.4

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

ODP2
.4

ODP2
.3

ODP2
.2

ODP2
.1

ODP2
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

P4
PUD
SEL.4

P4
PUD
SEL.3

P4
PUD
SEL.2

P4
PUD
SEL.1

P4
PUD
SEL.0
Data Sheet 165 2001-04-19

C161U

Parallel Ports
P4PUDEN (FE86H / 43H) SFR Reset Value: - - 00H

P4PHEN (FE88H / 44H) SFR Reset Value: - - 00H

8.5.1 Alternate Functions of PORT4
During external bus cycles that use segmentation (ie. an address space above
64 KByte) a number of Port 4 pins may output the segment address lines. The number
of pins that is used for segment address output determines the external address space
which is directly accessible. The other pins of Port 4 (if any) may be used for general
purpose I/O. If segment address lines are selected, the alternate function of Port 4 may
be necessary to access eg. external memory directly after reset. For this reason Port 4
will be switched to its alternate function automatically.
The number of segment address lines is selected via PORT0 during reset. The selected
value can be read from bitfield SALSEL in register RP0H (read only) eg. in order to check
the configuration during run time.
Table 29 summarizes the alternate functions of Port 4 depending on the number of
selected segment address lines (coded via bitfield SALSEL).

Bit Function
P4PUDEN.y Pulldown/Pullup Enable

P4PUDEN.y = 0: internal programmable pull transistor is disabled
P4PUDEN.y = 1: internal programmable pull transistor is enabled

Bit Function
P4PHEN.y Output Driver Enable in Power Down Mode

P4PHEN.y = 0: output driver is disabled in power down mode
P4PHEN.y = 1: output driver is enabled in power down mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

P4
PUD
EN.4

P4
PUD
EN.3

P4
PUD
EN.2

P4
PUD
EN.1

P4
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- rw rw rw rw rw- - - - - -- - - -

P4
PHEN
.4

P4
PHEN
.3

P4
PHEN
.2

P4
PHEN
.1

P4
PHEN
.0
Data Sheet 166 2001-04-19

C161U

Parallel Ports
Table 29 Alternate Functions of Port 4

396

Figure 38 Block Diagram of a Port 4 Pin (y = 4...0)

Port 4
Pin

Std. Function
SALSEL=0164
KB

Altern. Function
SALSEL=11
256KB

Altern. Function
SALSEL=001
MB

Altern. Function
SALSEL=102
MB

P4.0
P4.1
P4.2
P4.3
P4.4

Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O

Seg. Address
A16
Seg. Address
A17
Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O

Seg. Address
A16
Seg. Address
A17
Seg. Address
A18
Seg. Address
A19
Gen. purpose I/O

Seg. Address
A16
Seg. Address
A17
Seg. Address
A18
Seg. Address
A19
Seg. Address
A20

MCB02075

Output
Buffer

MUX
1

0

Alternate
Data

Output

Latch
Port Output

0

1
MUX

Write P4.y

Read P4.y

Enable
Function
Alternate

0

1
MUX

Read DP4.y

Write DP4.y

Direction

’1’

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

P4.y
Data Sheet 167 2001-04-19

C161U

Parallel Ports
8.6 PORT6
If this 7-bit port is used for general purpose I/O, the direction of each line can be
configured via the corresponding direction register DP6. Each port line can be switched
into push/pull or open drain mode via the open drain control register ODP6.
For port pins configured as input (via DP6 or alternate function), an internal pull transistor
is connected to the pad if register P6PUDEN = ’1’, no matter wheter the C161U is in
normal operation mode or in power down mode. Either pulldown transistor or pullup
transistor will be selected via P6PUDSEL.
For port pins configured as output, the internal pull transistors are always disabled. The
output driver is disabled in power down mode unless P6PHEN = ’1’.
After reset, P6PUDEN and P6PUDSEL are set to LOW signal.
Data Sheet 168 2001-04-19

C161U

Parallel Ports
P6 (FFCCH / E6H) SFR Reset Value: - - 00H

DP6 (FFCEH / E7H) SFR Reset Value: - - 00H

ODP6 (F1CEH / E7H) ESFR Reset Value: - - 00H

P6PUDSEL (FE90H / 48H) SFR Reset Value: - - 00H

Bit Function
P6.y Port data register P6 bit y

Bit Function
DP6.y Port direction register DP6 bit y

DP6.y = 0: Port line P6.y is an input (high-impedance)
DP6.y = 1: Port line P6.y is an output

Bit Function
ODP6.y Port 6 Open Drain control register bit y

ODP6.y = 0: Port line P6.y output driver in push/pull mode
ODP6.y = 1: Port line P6.y output driver in open drain mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

P6.0P6.1P6.2P6.3-P6.5P6.6P6.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

DP6.0DP6.1DP6.2DP6.3-DP6.5DP6.6DP6.7

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

ODP6
.7

ODP6
.6

ODP6
.5 -

ODP6
.3

ODP6
.2

ODP6
.1

ODP6
.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

P6
PUD
SEL.7

P6
PUD
SEL.6

P6
PUD
SEL.5

-
P6
PUD
SEL.3

P6
PUD
SEL.2

P6
PUD
SEL.1

P6
PUD
SEL.0
Data Sheet 169 2001-04-19

C161U

Parallel Ports
P6PUDEN (FE92H / 49H) SFR Reset Value: - - 00H

P6PHEN (FE94H / 4AH) SFR Reset Value: - - 00H

8.6.1 Alternate Functions of PORT6
A programmable number of chip select signals (CS3...CS0) derived from the bus control
registers (BUSCON3...BUSCON0) can be output on 4 pins of Port 6. The other 3 pins
may be used for bus arbitration to accomodate additional masters in a C161U system.
The number of chip select signals is selected via PORT0 during reset. The selected
value can be read from bitfield CSSEL in register RP0H (read only) eg. in order to check
the configuration during run time.
Table 30 summarizes the alternate functions of Port 6 depending on the number of
selected chip select lines (coded via bitfield CSSEL).

Bit Function
P6PUDSEL.y Pulldown/Pullup Selection

P6PUDSEL.y = 0: internal programmable pulldown transistor is
selected
P6PUDSEL.y = 1: internal programmable pullup transistor is selected

Bit Function
P6PUDEN.y Pulldown/Pullup Enable

P6PUDEN.y = 0: internal programmable pull transistor is disabled
P6PUDEN.y = 1: internal programmable pull transistor is enabled

Bit Function
P6PHEN.y Output Driver Enable in Power Down Mode

P6PHEN.y = 0: output driver is disabled in power down mode
P6PHEN.y = 1: output driver is enabled in power down mode

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

P6
PUD
EN.7

P6
PUD
EN.6

P6
PUD
EN.5

-
P6
PUD
EN.3

P6
PUD
EN.2

P6
PUD
EN.1

P6
PUD
EN.0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw - rw rw rw rw- - - - rw rw- - - -

P6
PHEN
.7

P6
PHEN
.6

P6
PHEN
.5

-
P6
PHEN
.3

P6
PHEN
.2

P6
PHEN
.1

P6
PHEN
.0
Data Sheet 170 2001-04-19

C161U

Parallel Ports
Table 30 Alternate Functions of Port 6

Figure 39 Port 6 I/O and Alternate Functions

The chip select lines of Port 6 additionally have an internal weak pullup device. This
device is switched on under the following conditions:
• Always during reset
• If the Port 6 line is used as a chip select output, and the C161U is in Hold mode

(invoked through HOLD), and the respective pin driver is in push/pull mode (ODP6.x
= ‘0’).

This feature is implemented to drive the chip select lines high during reset in order to
avoid multiple chip selection, and to allow another master to access the external memory
via the same chip select lines (Wired-AND), while the C161U is in Hold mode.

Port 6
Pin

Altern. Function
CSSEL = 10

Altern. Function
CSSEL = 01

Altern. Function
CSSEL = 00

Altern. Function
CSSEL = 11

P6.0
P6.1
P6.2
P6.3

Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O
Gen. purpose I/O

Chip select CS0
Chip select CS1
Gen. purpose I/O
Gen. purpose I/O

Chip select CS0
Chip select CS1
Chip select CS2
Gen. purpose I/O

Chip select CS0
Chip select CS1
Chip select CS2
Chip select CS3

P6.5
P6.6
P6.7

HOLDExternal hold request input
HLDAHold acknowledge output
BREQBus request output

-
-
-
-
-
-
-
-
P6.7
P6.6
P6.5
-
P6.3
P6.2
P6.1
P6.0

Port 6

-
-
-
-
-
-
-
-
BREQ
HLDA
HOLD
-
CS3
CS2
CS1
CS0

Alternate Function a)

General Purpose
Input/Output
Data Sheet 171 2001-04-19

C161U

Parallel Ports
With ODP6.x = ‘1’ (open drain output selected), the internal pullup device will not be
active during Hold mode; external pullup devices must be used in this case.
When entering Hold mode the CS lines are actively driven high for one clock phase, then
the output level is controlled by the pullup devices (if activated).
After reset the CS function must be used, if selected so. In this case there is no possibility
to program any port latches before. Thus the alternate function (CS) is selected
automatically in this case.
Note: The open drain output option can only be selected via software earliest during the

initialization routine; at least signal CS0 will be in push/pull output driver mode
directly after reset.

Figure 40 Block Diagram of Port 6 Pins with an alternate output function

MCB01982

Output
Buffer

MUX
1

0

Alternate
Data
Output

Latch
Port Output

0

1
MUX

Write P6.y

Read P6.y

Enable
Function
Alternate

0

1
MUX

Read DP6.y

Write DP6.y

Direction

Write ODP6.y

Read ODP6.y

Open Drain
Latch

’1’

Input
Latch

Clock

Latch

Ι
n
t
e
r
n
a
l

B
u
s P6.y
Data Sheet 172 2001-04-19

C161U

Parallel Ports
The bus arbitration signals HOLD, HLDA and BREQ are selected with bit HLDEN in
register PSW. When the bus arbitration signals are enabled via HLDEN, also these pins
are switched automatically to the appropriate direction. Note that the pin drivers for
HLDA and BREQ are automatically enabled, while the pin driver for HOLD is
automatically disabled.

Figure 41 Block Diagram of Pin P6.5 (HOLD)

MCB01983

Output
Buffer

Alternate
Data Input

Latch
Port Output

0

1
MUX

Write P6.y

Read P6.y

Read DP6.y

Write DP6.y

Direction

Write ODP6.y

Read ODP6.y

Open Drain
Latch

Input
Latch

Clock

Latch

s
u
B

l
a
n
r
e
t
n
Ι

P6.5/HOLD
Data Sheet 173 2001-04-19

C161U

Dedicated Pins
9 Dedicated Pins
Most of the input/output or control signals of the functional the C161U are realized as
alternate functions of pins of the parallel ports. There is, however, a number of signals
that use separate pins, including the USB interface, the oscillator, special control signals
and the power supply. Table 31 summarizes all dedicated pins of the C161U.

Table 31 Dedicated Pins

Address Latch Enable signal ALE controls external address latches that provide a
stable address in multiplexed bus modes.
ALE is activated for every external bus cycle independent of the selected bus mode, ie.
it is also activated for bus cycles with a demultiplexed address bus. When an external
bus is enabled (one or more of the BUSACT bits set) also X-Peripheral accesses will
generate an active ALE signal.
ALE is not activated for internal accesses, ie. the internal RAM and the special function
registers. In single chip mode, ie. when no external bus is enabled (no BUSACT bit set),
ALE will also remain inactive for X-Peripheral accesses.

Pin(s) Function
ALE Address Latch Enable
RD External Read Strobe
WR/WRL External Write/Write Low Strobe
READY Ready Input
EA External Access Enable
NMI Non-Maskable Interrupt Input
RSTIN Reset Input
RSTOUT Reset Output
XTAL1, XTAL2 Oscillator Input/Output
CLKMODE Oscillator Clock Input Mode Select
DMNS, DPLS USB
BRKIN, BRKOUT OCDS
TDI, TDO, TCK, TMS,
TRST

JTAG Interface

TEST Test Mode Enable
VDD, GND Power Supply and Ground (11 pins VDD, 12 pins GND)
Data Sheet 174 2001-04-19

C161U

Dedicated Pins
External Read Strobe RD controls the output drivers of external memory or peripherals
when the C161U reads data from these external devices. During reset and during Hold
mode an internal pullup ensures an inactive (high) level on the RD output.
External Write Strobe WR/WRL controls the data transfer from the C161U to an
external memory or peripheral device. This pin may either provide an general WR signal
activated for both byte and word write accesses, or specifically control the low byte of an
external 16-bit device (WRL) together with the signal WRH (alternate function of P3.12/
BHE). During reset and during Hold mode an internal pullup ensures an inactive (high)
level on the WR/WRL output.
Note: Whether RD and WR/WRL remain idle during X-peripheral accesses depends on

the value of bit VISIBLE of register SYSCON.

Ready Input READY receives a control signal from an external memory or peripheral
device that is used to terminate an external bus cycle, provided that this function is
enabled for the current bus cycle. READY may be used as synchronous READY or may
be evaluated asynchronously. When waitstates are defined for a READY controlled
address window the READY input is not evaluated during these waitstates.
External Access Enable Pin EA is dedicated for on-chip ROM derivates. In this case it
determines, if the chip after reset starts fetching code from the internal ROM area
(EA=’1’) or via the external bus interface (EA=’0’). For the ROM-less C161U be sure to
hold this input low.
Non-Maskable Interrupt Input NMI allows to trigger a high priority trap via an external
signal (eg. a power-fail signal). It also serves to validate the PWRDN instruction that
switches the C161U into Power-Down mode. The NMI pin is sampled with every CPU
clock cycle to detect transitions.
Oscillator Input XTAL1 and Output XTAL2 connect the internal Pierce oscillator to the
external crystal. The oscillator provides an inverter and a feedback element. The
standard external oscillator circuitry (see figure below) comprises the crystal, two low
end capacitors and series resistor to limit the current through the crystal. The additional
LC combination is only required for 3rd overtone crystals to suppress oscillation in the
fundamental mode. A test resistor (RQ) may be temporarily inserted to measure the
oscillation allowance of the oscillator circuitry.
An external clock signal may be fed to the input XTAL1, leaving XTAL2 open.
Note: It is strongly recommended to measure the oscillation allowance (or margin) in the

final target system (layout) to determine the optimum parameters for the oscillator
operation.

The following starting configuration is recommended to be used for the C161U:
Quarz: CL = 30 pF (max.), RS = 70 Ohm (max.), Accuracy: 96ppm or better
External: Circuitry: CA = CB = 47 pF (max.), no serial resistor (Rx2 = 0)
Note: Please check the Infineon Application Notes in addition to this recommendation.
Data Sheet 175 2001-04-19

C161U

Dedicated Pins

Figure 42 External Oscillator Circuitry

Clock Mode Select CLKMODE CLKMODE must be LOW if an external crystal is used.
HIGH signal enables the direct clock input path and switches the internal oscillator in
power down mode..
Reset Input RSTIN allows to put the C161U into the well defined reset condition either
at power-up or external events like a hardware failure or manual reset. The input voltage
threshold of the RSTIN pin is raised compared to the standard pins in order to minimize
the noise sensitivity of the reset input.
Reset Output RSTOUT provides a special reset signal for external circuitry. RSTOUT
is activated at the beginning of the reset sequence, triggered via RSTIN, a watchdog
timer overflow or by the SRST instruction. RSTOUT remains active (low) until the EINIT
instruction is executed. This allows to initialize the controller before the external circuitry
is activated.
Power Supply pins VDD and GND provide the power supply for the digital logic of the
C161U. The respective VCC/VSS pairs should be decoupled as close to the pins as
possible. For best results it is recommended to implement two-level decoupling, eg. (the
widely used) 100 nF in parallel with 30...40 pF capacitors which deliver the peak
currents.
Note: All VDD pins and all GND pins must be connected to the power supply and ground,

respectively.

XTAL1 XTAL2

Rx2RQ

CA CB
Data Sheet 176 2001-04-19

C161U

External Bus Interface
10 External Bus Interface
Although the C161U provides a powerful set of on-chip peripherals and on-chip RAM
areas, these internal units only cover a small fraction of its address space of up to 2
MByte. The external bus interface allows to access external peripherals and additional
volatile and non-volatile memory. The external bus interface provides a number of
configurations, so it can be taylored to fit perfectly into a given application system.

Figure 43 SFRs and Port Pins Associated with the External Bus Interface

Accesses to external memory or peripherals are executed by the integrated External Bus
Controller (EBC). The function of the EBC is controlled via the SYSCON register and the
BUSCONx and ADDRSELx registers. The BUSCONx registers specify the external bus
cycles in terms of address (mux/demux), data (16-bit/8-bit), chip selects and length
(waitstates / READY control / ALE / RW delay). These parameters are used for accesses
within a specific address area which is defined via the corresponding register
ADDRSELx.
The four pairs BUSCON1/ADDRSEL1...BUSCON4/ADDRSEL4 allow to define four
independent “address windows”, while all external accesses outside these windows are
controlled via register BUSCON0.

P4

BUSCON0
BUSCON1
BUSCON2

ADDRSEL4

P0L / P0H

P6

ADDRSEL1

ODP6

P0L/P0H PORT0 Data Registers
P1L/P1H PORT1 Data Registers
DP3 Port 3 Direction Control Register
P3 Port 3 Data Register
P4 Port 4 Data Register
ODP6 Port 6 Open Drain Control Register
DP6 Port 6 Direction Control Register
P6 Port 6 Data Register

PORT0 EA
PORT1 RSTIN
ALE READY
RD
WR/WRL
BHE/WRH

SYSCON

Control Registers

ADDRSELx Address Range Select Register 1...4
BUSCONx Bus Mode Control Register 0...4
SYSCON System Control Register
RP0H Port P0H Reset Configuration Register

Ports & Direction Control
Alternate Functions

Address Registers Mode Registers Control Registers

BUSCON3

P1L / P1H

BUSCON4

ADDRSEL2
RP0H

DP6

DP3
P3 ADDRSEL3
Data Sheet 177 2001-04-19

C161U

External Bus Interface
Single Chip Mode
Single chip mode is entered, when pin EA is high during reset. In this case register
BUSCON0 is initialized with 0000H, which also resets bit BUSACT0, so no external bus
is enabled.
In single chip mode the C161U operates only with and out of internal resources. No
external bus is configured and no external peripherals and/or memory can be accessed.
Also no port lines are occupied for the bus interface. When running in single chip mode,
however, external access may be enabled by configuring an external bus under software
control.
Note: Any attempt to access a location in the external memory space in single chip mode

results in the hardware trap ILLBUS.

10.1 External Bus Modes
When the external bus interface is enabled (bit BUSACTx=’1’) and configured (bitfield
BTYP), the C161U uses a subset of its port lines together with some control lines to build
the external bus.

The bus configuration (BTYP) for the address windows (BUSCON4...BUSCON1) is
selected via software typically during the initialization of the system.
The bus configuration (BTYP) for the default address range (BUSCON0) is selected via
PORT0 during reset, provided that pin EA is low during reset. Otherwise BUSCON0 may
be programmed via software just like the other BUSCON registers.
The 16 MByte address space of the C161U is divided into 256 segments of 64 KByte
each. The 16-bit intra-segment address is output on PORT0 for multiplexed bus modes
or on PORT1 for demultiplexed bus modes. When segmentation is disabled, only one 64
KByte segment can be used and accessed. Otherwise additional address lines may be
output on Port 4, and/or several chip select lines may be used to select different memory
banks or peripherals. These functions are selected during reset via bitfields SALSEL and
CSSEL of register RP0H, respectively.
Note: Bit SGTDIS of register SYSCON defines, if the CSP register is saved during

interrupt entry (segmentation active) or not (segmentation disabled).

BTYP
Encoding

External Data Bus Width External Address Bus Mode

0 0 8-bit Data Demultiplexed Addresses
0 1 8-bit Data Multiplexed Addresses
1 0 16-bit Data Demultiplexed Addresses
1 1 16-bit Data Multiplexed Addresses
Data Sheet 178 2001-04-19

C161U

External Bus Interface
Multiplexed Bus Modes
In the multiplexed bus modes the 16-bit intra-segment address as well as the data use
PORT0. The address is time-multiplexed with the data and has to be latched externally.
The width of the required latch depends on the selected data bus width, ie. an 8-bit data
bus requires a byte latch (the address bits A15...A8 on P0H do not change, while P0L
multiplexes address and data), a 16-bit data bus requires a word latch (the least
significant address line A0 is not relevant for word accesses).
The upper address lines (An...A16) are permanently output on Port 4 (if segmentation is
enabled) and do not require latches.
The EBC initiates an external access by generating the Address Latch Enable signal
(ALE) and then placing an address on the bus. The falling edge of ALE triggers an
external latch to capture the address. After a period of time during which the address
must have been latched externally, the address is removed from the bus. The EBC now
activates the respective command signal (RD, WR, WRL, WRH). Data is driven onto the
bus either by the EBC (for write cycles) or by the external memory/peripheral (for read
cycles). After a period of time, which is determined by the access time of the memory/
peripheral, data become valid.
Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the bus which is then tri-stated
again.
Write cycles: The command signal is now deactivated. The data remain valid on the bus
until the next external bus cycle is started.
Data Sheet 179 2001-04-19

C161U

External Bus Interface

Figure 44 Multiplexed Bus Cycle

Demultiplexed Bus Modes
In the demultiplexed bus modes the 16-bit intra-segment address is permanently output
on PORT1, while the data uses PORT0 (16-bit data) or P0L (8-bit data).
The upper address lines are permanently output on Port 4 (if selected via SALSEL during
reset). No address latches are required.
The EBC initiates an external access by placing an address on the address bus. After a
programmable period of time the EBC activates the respective command signal (RD,
WR, WRL, WRH). Data is driven onto the data bus either by the EBC (for write cycles)
or by the external memory/peripheral (for read cycles). After a period of time, which is
determined by the access time of the memory/peripheral, data become valid.
Read cycles: Input data is latched and the command signal is now deactivated. This
causes the accessed device to remove its data from the data bus which is then tri-stated
again.
Write cycles: The command signal is now deactivated. If a subsequent external bus
cycle is required, the EBC places the respective address on the address bus. The data
remain valid on the bus until the next external bus cycle is started.

MCT02060

AddressSegment (P4)

ALE

BUS (P0) Data/Instr.Address

RD

Address DataBUS (P0)

WR

Bus Cycle
Data Sheet 180 2001-04-19

C161U

External Bus Interface

Figure 45 Demultiplexed Bus Cycle

Switching between the Bus Modes
The EBC allows to switch between different bus modes dynamically, ie. subsequent
external bus cycles may be executed in different ways. Certain address areas may use
multiplexed or demultiplexed buses or use READY control or predefined waitstates.
A change of the external bus characteristics can be initiated in two different ways:
Reprogramming the BUSCON and/or ADDRSEL registers allows to either change
the bus mode for a given address window, or change the size of an address window that
uses a certain bus mode. Reprogramming allows to use a great number of different
address windows (more than BUSCONs are available) on the expense of the overhead
for changing the registers and keeping appropriate tables.
Switching between predefined address windows automatically selects the bus mode
that is associated with the respective window. Predefined address windows allow to use
different bus modes without any overhead, but restrict their number to the number of
BUSCONs. However, as BUSCON0 controls all address areas, which are not covered
by the other BUSCONs, this allows to have gaps between these windows, which use the
bus mode of BUSCON0.
PORT1 will output the intra-segment address, when any of the BUSCON registers
selects a demultiplexed bus mode, even if the current bus cycle uses a multiplexed bus
mode. This allows to have an external address decoder connected to PORT1 only, while
using it for all kinds of bus cycles.

MCD02061

Address
Address (P1)

ALE

BUS (P0)

RD

DataBUS (P0)

WR

Segment (P4)

Bus Cycle

Data/Instr.
Data Sheet 181 2001-04-19

C161U

External Bus Interface
Note: Never change the configuration for an address area that currently supplies the
instruction stream. Due to the internal pipelining it is very difficult to determine the
first instruction fetch that will use the new configuration. Only change the
configuration for address areas that are not currently accessed. This applies to
BUSCON registers as well as to ADDRSEL registers.

The usage of the BUSCON/ADDRSEL registers is controlled via the issued addresses.
When an access (code fetch or data) is initiated, the respective generated physical
address defines, if the access is made internally, uses one of the address windows
defined by ADDRSEL4...1, or uses the default configuration in BUSCON0. After
initializing the active registers, they are selected and evaluated automatically by
interpreting the physical address. No additional switching or selecting is necessary
during run time, except when more than the four address windows plus the default is to
be used.
Switching from demultiplexed to multiplexed bus mode represents a special case.
The bus cycle is started by activating ALE and driving the address to Port 4 and PORT1
as usual, if another BUSCON register selects a demultiplexed bus. However, in the
multiplexed bus modes the address is also required on PORT0. In this special case the
address on PORT0 is delayed by one CPU clock cycle, which delays the complete
(multiplexed) bus cycle and extends the corresponding ALE signal (see figure below).
This extra time is required to allow the previously selected device (via demultiplexed bus)
to release the data bus, which would be available in a demultiplexed bus cycle.
Data Sheet 182 2001-04-19

C161U

External Bus Interface

Figure 46 Switching from Demultiplexed to Multiplexed Bus Mode

External Data Bus Width
EBC can operate on 8-bit or 16-bit wide external memory/peripherals. A 16-bit data bus
uses PORT0, while an 8-bit data bus only uses P0L, the lower byte of PORT0. This
saves on address latches, bus transceivers, bus routing and memory cost on the
expense of transfer time. EBC can control word accesses on an 8-bit data bus as well
as byte accesses on a 16-bit data bus.
Word accesses on an 8-bit data bus are automatically split into two subsequent byte
accesses, where the low byte is accessed first, then the high byte. The assembly of bytes
to words and the disassembly of words into bytes is handled by the EBC and is
transparent to the CPU and the programmer.
Byte accesses on a 16-bit data bus require that the upper and lower half of the memory
can be accessed individually. In this case the upper byte is selected with the BHE signal,
while the lower byte is selected with the A0 signal. So the two bytes of the memory can
be enabled independent from each other, or together when accessing words.
When writing bytes to an external 16-bit device, which has a single CS input, but two WR
enable inputs (for the two bytes), the EBC can directly generate these two write control
signals. This saves the external combination of the WR signal with A0 or BHE. In this
case pin WR serves as WRL (write low byte) and pin BHE serves as WRH (write high

MCD02234

Address

Data/Instr.Address

Address Data

Bus Cycle

Address
Address (P1)

ALE

RD

Data

WR

Segment (P4)

Bus Cycle

BUS (P0)

BUS (P0)

Demultiplexed MultiplexedIdle State

Data/Instr.
Data Sheet 183 2001-04-19

C161U

External Bus Interface
byte). Bit WRCFG in register SYSCON selects the operating mode for pins WR and
BHE. The respective byte will be written on both data bus halfs.
When reading bytes from an external 16-bit device, whole words may be read and the
C161U automatically selects the byte to be input and discards the other. However, care
must be taken when reading devices that change state when being read, like FIFOs,
interrupt status registers, etc. In this case individual bytes should be selected using BHE
and A0.

Note: PORT1 gets available for general purpose I/O, when none of the BUSCON
registers selects a demultiplexed bus mode.

Disable/Enable Control for Pin BHE (BYTDIS)
Bit BYTDIS is provided for controlling the active low Byte High Enable (BHE) pin. The
function of the BHE pin is enabled, if the BYTDIS bit contains a '0'. Otherwise, it is
disabled and the pin can be used as standard I/O pin. The BHE pin is implicitly used by
the External Bus Controller to select one of two byte-organized memory chips, which are
connected to the C161U via a word-wide external data bus. After reset the BHE function
is automatically enabled (BYTDIS = '0'), if a 16-bit data bus is selected during reset,
otherwise it is disabled (BYTDIS=’1’). It may be disabled, if byte access to 16-bit memory
is not required, and the BHE signal is not used.

Segment Address Generation
During external accesses the EBC generates a (programmable) number of address lines
on Port 4, which extend the 16-bit address output on PORT0 or PORT1, and so increase
the accessible address space. The number of segment address lines is selected during
reset and coded in bit field SALSEL in register RP0H (see table below).
Note: The total accessible address space may be increased by accessing several banks

which are distinguished by individual chip select signals.

Bus Mode Transfer Rate (Speed
factor for byte/word/dword
access)

System Requirements Free I/O
Lines

8-bit
Multiplexed

Very low (1.5 / 3 / 6) Low
(8-bit latch, byte bus)

P1H, P1L

8-bit
Demultipl.

Low (1 / 2 / 4) Very low
(no latch, byte bus)

P0H

16-bit
Multiplexed

High (1.5 / 1.5 / 3) High
(16-bit latch, word bus)

P1H, P1L

16-bit
Demultipl.

Very high (1 / 1 / 2) Low
(no latch, word bus)

Data Sheet 184 2001-04-19

C161U

External Bus Interface
CS Signal Generation
During external accesses the EBC can generate a (programmable) number of CS lines
on Port 6, which allow to directly select external peripherals or memory banks without
requiring an external decoder. The number of CS lines is selected during reset and
coded in bit field CSSEL in register RP0H (see table below).

The CSx outputs are associated with the BUSCONx registers and are driven active (low)
for any access within the address area defined for the respective BUSCON register. For
any access outside this defined address area the respective CSx signal will go inactive
(high). At the beginning of each external bus cycle the corresponding valid CS signal is
determined and activated. All other CS lines are deactivated (driven high) at the same
time.
Note: The CSx signals will not be updated for an access to any internal address area (ie.

when no external bus cycle is started), even if this area is covered by the
respective ADDRSELx register. An access to an on-chip X-Peripheral deactivates
all external CS signals.
Upon accesses to address windows without a selected CS line all selected CS
lines are deactivated.

The chip select signals allow to be operated in four different modes, which are selected
via bits CSWENx and CSRENx in the respective BUSCONx register.

SALSEL Segment Address Lines Directly accessible Address Space
1 1 Two: A17...A16 256 KByte (Default without pull-downs)
1 0 Seven: A20...A16 2 MByte (Maximum)
0 1 None 64 KByte (Minimum)
0 0 Four: A19...A16 1 MByte

CSSEL Chip Select Lines Note
1 1 Four: CS3...CS0 Default without pull-downs
1 0 None Port 6 pins free for I/O
0 1 Two: CS1...CS0
0 0 Three: CS2...CS0

CSWEN
x

CSREN
x

Chip Select Mode

0 0 Address Chip Select (Default after Reset, mode for CS0)
0 1 Read Chip Select
Data Sheet 185 2001-04-19

C161U

External Bus Interface
Address Chip Select signals remain active until an access to another address window.
An address chip select becomes active with the falling edge of ALE and becomes
inactive with the falling edge of ALE of an external bus cycle that accesses a different
address area. No spikes will be generated on the chip select lines.
Read or Write Chip Select signals remain active only as long as the associated control
signal (RD or WR) is active. This also includes the programmable read/write delay. Read
chip select is only activated for read cycles, write chip select is only activated for write
cycles, read/write chip select is activated for both read and write cycles (write cycles are
assumed, if any of the signals WRH or WRL gets active). These modes save external
glue logic, when accessing external devices like latches or drivers that only provide a
single enable input.
Note: CS0 provides an address chip select directly after reset (except for single chip

mode) when the first instruction is fetched.

Internal pullup devices hold all CS lines high during reset. After the end of a reset
sequence the pullup devices are switched off and the pin drivers control the pin levels
on the selected CS lines. Not selected CS lines will enter the high-impedance state and
are available for general purpose I/O.
The pullup devices are also active during bus hold on the selected CS lines, while HLDA
is active and the respective pin is switched to push/pull mode. Open drain outputs will
float during bus hold. In this case external pullup devices are required or the new bus
master is responsible for driving appropriate levels on the CS lines.

Segment Address versus Chip Select
The external bus interface of the C161U supports many configurations for the external
memory. By increasing the number of segment address lines the C161U can address a
linear address space of 256 KByte, 1 MByte or 2 MByte. This allows to implement a large
sequential memory area, and also allows to access a great number of external devices,
using an external decoder. By increasing the number of CS lines the C161U can access
memory banks or peripherals without external glue logic. These two features may be
combined to optimize the overall system performance. Enabling 4 segment address lines
and 4 chip select lines eg. allows to access four memory banks of 2 MByte each. So the
available address space is 8 MByte (without glue logic).
Note: Bit SGTDIS of register SYSCON defines, if the CSP register is saved during

interrupt entry (segmentation active) or not (segmentation disabled).

1 0 Write Chip Select
1 1 Read/Write Chip Select

CSWEN
x

CSREN
x

Chip Select Mode
Data Sheet 186 2001-04-19

C161U

External Bus Interface
10.2 Programmable Bus Characteristics
Important timing characteristics of the external bus interface have been made user
programmable to allow to adapt it to a wide range of different external bus and memory
configurations with different types of memories and/or peripherals.
The following parameters of an external bus cycle are programmable:
• LE Control defines the ALE signal length and the address hold time after its falling

edge
• Memory Cycle Time (extendable with 1...15 waitstates) defines the allowable access

time
• Memory Tri-State Time (extendable with 1 waitstate) defines the time for a data driver

to float
• Read/Write Delay Time defines when a command is activated after the falling edge of

ALE
• READY Control defines, if a bus cycle is terminated internally or externally
Note: Internal accesses are executed with maximum speed and therefore are not

programmable.
External acceses use the slowest possible bus cycle after reset. The bus cycle
timing may then be optimized by the initialization software.
Data Sheet 187 2001-04-19

C161U

External Bus Interface

Figure 47 Programmable External Bus Cycle

ALE Length Control
The length of the ALE signal and the address hold time after its falling edge are
controlled by the ALECTLx bits in the BUSCON registers. When bit ALECTL is set to ‘1’,
external bus cycles accessing the respective address window will have their ALE signal
prolonged by half a CPU clock. Also the address hold time after the falling edge of ALE
(on a multiplexed bus) will be prolonged by half a CPU clock, so the data transfer within
a bus cycle refers to the same CLKOUT edges as usual (ie. the data transfer is delayed
by one CPU clock). This allows more time for the address to be latched.
Note: ALECTL0 is ‘1’ after reset to select the slowest possible bus cycle, the other

ALECTLx are ‘0’ after reset.

RD/WR

DATA

ADDR

ALE

ALECTL

DATA

RD/WR

ADDR

ALE

MTTCMCTC MCD02225
Data Sheet 188 2001-04-19

C161U

External Bus Interface

Figure 48 ALE Length Control

Programmable Memory Cycle Time
C161U allows the user to adjust the controller's external bus cycles to the access time
of the respective memory or peripheral. This access time is the total time required to
move the data to the destination. It represents the period of time during which the
controller’s signals do not change.

Setup

(P0)

WR

BUS Address Data

(P0)BUS

RD

(P4)

ALE

Segment

Normal Multiplexed
Bus Cycle

Address

Address

Data/Instr.

Address Data

MCD02235

Lengthened Multiplexed
Bus Cycle

Address

Address

Hold

Data/Instr.
Data Sheet 189 2001-04-19

C161U

External Bus Interface

Figure 49 Memory Cycle Time

The external bus cycles of the C161U can be extended for a memory or peripheral, which
cannot keep pace with the controller’s maximum speed, by introducing wait states during
the access (see figure above). During these memory cycle time wait states, the CPU is
idle, if this access is required for the execution of the current instruction.
The memory cycle time wait states can be programmed in increments of one CPU clock
within a range from 0 to 15 (default after reset) via the MCTC fields of the BUSCON
registers. 15-<MCTC> waitstates will be inserted.

Programmable Memory Tri-State Time
C161U allows the user to adjust the time between two subsequent external accesses to
account for the tri-state time of the external device. The tri-state time defines, when the
external device has released the bus after deactivation of the read command (RD).

MCT02063

AddressSegment

ALE

BUS (P0) Address

RD

Address DataBUS (P0)

WR

MCTC Wait States (1...15)

Bus Cycle

Data/Instr.
Data Sheet 190 2001-04-19

C161U

External Bus Interface

Figure 50 Memory Tri-State Time

The output of the next address on the external bus can be delayed for a memory or
peripheral, which needs more time to switch off its bus drivers, by introducing a wait state
after the previous bus cycle (see figure above). During this memory tri-state time wait
state, the CPU is not idle, so CPU operations will only be slowed down if a subsequent
external instruction or data fetch operation is required during the next instruction cycle.
The memory tri-state time waitstate requires one CPU clock (28 ns at fCPU = 36 MHz)
and is controlled via the MTTCx bits of the BUSCON registers. A waitstate will be
inserted, if bit MTTCx is ‘0’ (default after reset).
Note: External bus cycles in multiplexed bus modes implicitly add one tri-state time

waitstate in addition to the programmable MTTC waitstate.

Read/Write Signal Delay
C161U allows the user to adjust the timing of the read and write commands to account
for timing requirements of external peripherals. The read/write delay controls the time
between the falling edge of ALE and the falling edge of the command. Without read/write
delay the falling edges of ALE and command(s) are coincident (except for propagation
delays). With the delay enabled, the command(s) become active half a CPU clock after
the falling edge of ALE.
The read/write delay does not extend the memory cycle time, and does not slow down
the controller in general. In multiplexed bus modes, however, the data drivers of an
external device may conflict with the C161U’s address, when the early RD signal is used.
Therefore multiplexed bus cycles should always be programmed with read/write delay.

MCT02065

Segment

ALE

BUS (P0) Address

RD

MTTC Wait State

Address

Bus Cycle

Data/Instr.
Data Sheet 191 2001-04-19

C161U

External Bus Interface

Figure 51 Read/Write Delay

The read/write delay is controlled via the RWDCx bits in the BUSCON registers. The
command(s) will be delayed, if bit RWDCx is ‘0’ (default after reset).

Early WR Signal Deactivation
The duration of an external write access can be shortened by one TCL. The WR signal
is activated (driven low) in the standard way, but can be deactivated (driven high) one
TCL earlier than defined in the standard timing. In this case, also the data output drivers
will be deactivated one TCL earlier.
This is especially useful in systems which operate on higher CPU clock frequencies and
employ external modules (memories, peripherals, etc.) which switch on their own data
drivers very fast in response to e.g. a chip select signal.
Conflicts between the C161U and the external peripheral’s output drivers can be avoided
then by selecting early WR for the C161U.
Note: Make sure that the reduced WR low time then still matches the requirements of

the external peripheral/memory.

MCT02066

AddressSegment

ALE

BUS (P0) 1)

RD

Address DataBUS (P0)

WR

Read/Write
Delay

Bus Cycle

Data/Instr.

The Data drivers from the previous bus cycle should be disabled when the RD signal becomes active.
1)
Data Sheet 192 2001-04-19

C161U

External Bus Interface
Early WR deactivation is controlled via the EWENx bits in the BUSCON registers (see
page 196). The WR signal will be shortened if bit EWENx is set to ’1’ signal. Default after
reset is a standard WR signal (EWENx = ’0’).

10.3 READY Controlled Bus Cycles
For situations, where the programmable waitstates are not enough, or where the
response (access) time of a peripheral is not constant, the C161U provides external bus
cycles that are terminated via a READY input signal (synchronous or asynchronous). In
this case the C161U first inserts a programmable number of waitstates (0...7) and then
monitors the READY line to determine the actual end of the current bus cycle. The
external device drives READY low in order to indicate that data have been latched (write
cycle) or are available (read cycle).

Figure 52 READY Controlled Bus Cycles

The READY function is enabled via the RDYENx bits in the BUSCON registers. When
this function is selected (RDYENx = ‘1’), only the lower 3 bits of the respective MCTC bit
field define the number of inserted waitstates (0...7), while the MSB of bit field MCTC
selects the READY operation:
MCTC.3 = ‘0’: Synchronous READY, ie. the READY signal must meet setup and hold
times.
MCTC.3 = ‘1’: Asynchronous READY, ie. the READY signal is synchronized internally.

Evaluation (sampling) of the READY input

AREADY

SREADY

:

RD/WR

ALE
2. WS

with active READY

1. WS

Bus Cycle

MCD02237

extended via READY

1. WS 2. WS

Bus Cycle
Data Sheet 193 2001-04-19

C161U

External Bus Interface
Synchronous READY provides the fastest bus cycles, but requires setup and hold
times to be met. The CLKOUT signal should be enabled and may be used by the
peripheral logic to control the READY timing in this case.
Asynchronous READY is less restrictive, but requires additional waitstates caused by
the internal synchronization. As the asynchronous READY is sampled earlier (see figure
above) programmed waitstates may be necessary to provide proper bus cycles (see also
notes on “normally-ready” peripherals below).
A READY signal (especially asynchronous READY) that has been activated by an
external device may be deactivated in response to the trailing (rising) edge of the
respective command (RD or WR).
Note: When the READY function is enabled for a specific address window, each bus

cycle within this window must be terminated with an active READY signal.
Otherwise the controller hangs until the next reset. A timeout function is only
provided by the watchdog timer.

Combining the READY function with predefined waitstates is advantageous in two
cases:
Memory components with a fixed access time and peripherals operating with READY
may be grouped into the same address window. The (external) waitstate control logic in
this case would activate READY either upon the memory’s chip select or with the
peripheral’s READY output. After the predefined number of waitstates the C161U will
check its READY line to determine the end of the bus cycle. For a memory access it will
be low already (see example a) in the figure above), for a peripheral access it may be
delayed (see example b) in the figure above). As memories tend to be faster than
peripherals, there should be no impact on system performance.
When using the READY function with so-called “normally-ready” peripherals, it may lead
to erroneous bus cycles, if the READY line is sampled too early. These peripherals pull
their READY output low, while they are idle. When they are accessed, they deactivate
READY until the bus cycle is complete, then drive it low again. If, however, the peripheral
deactivates READY after the first sample point of the C161U, the controller samples an
active READY and terminates the current bus cycle, which, of course, is too early. By
inserting predefined waitstates the first READY sample point can be shifted to a time,
where the peripheral has safely controlled the READY line (eg. after 2 waitstates in the
figure above).
Data Sheet 194 2001-04-19

C161U

External Bus Interface
10.4 Controlling the External Bus Controller
A set of registers controls the functions of the EBC. General features like the usage of
interface pins (WR, BHE), segmentation are controlled via register SYSCON.
Note: For SYSCON register description, refer to page 66.

The properties of a bus cycle like chip select mode, usage of READY, length of ALE,
external bus mode, read/write delay and waitstates are controlled via registers
BUSCON4...BUSCON0. Four of these registers (BUSCON4...BUSCON1) have an
address select register (ADDRSEL4...ADDRSEL1) associated with them, which allows
to specify up to four address areas and the individual bus characteristics within these
areas. All accesses that are not covered by these four areas are then controlled via
BUSCON0. This allows to use memory components or peripherals with different
interfaces within the same system, while optimizing accesses to each of them.
The layout of the five BUSCON registers is identical. Registers BUSCON4...BUSCON1,
which control the selected address windows, are completely under software control,
while register BUSCON0, which eg. is also used for the very first code access after reset,
is partly controlled by hardware, ie. it is initialized via PORT0 during the reset sequence.
This hardware control allows to define an appropriate external bus for systems, where
no internal program memory is provided.

Data Sheet 195 2001-04-19

C161U

External Bus Interface
BUSCON0 (FF0CH / 86H) SFR Reset Value: 0000H

BUSCON1 (FF14H / 8AH) SFR Reset Value: 0000H

BUSCON2 (FF16H / 8BH) SFR Reset Value: 0000H

BUSCON3 (FF18H / 8CH) SFR Reset Value: 0000H

BUSCON4 (FF1AH / 8DH) SFR Reset Value: 0000H

Bit Function
MCTCx Memory Cycle Time Control (Number of memory cycle time wait

states)
’0000’ : 15 waitstates (Number = 15 - <MCTC>)
’1111’ : No waitstates

RWDCx Read/Write Delay Control for BUSCONx
‘0’: With read/write delay: activate command 1 TCL after falling edge of
ALE
‘1’: No read/write delay: activate command with falling edge of ALE

-
CSW
EN0

CSR
EN0

MTT
C0

RWD
C0

RDY
EN0

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rwrw - -

-
BUS
ACT0

rw

ALE
CTL0

rw rw

BTYP MCTC
EW
EN0

--
MTT
C1

RWD
C1

RDY
EN1

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT1

rw

ALE
CTL1

rw rw

CSW
EN1

CSR
EN1

EW
EN1

--
MTT
C2

RWD
C2

RDY
EN2

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT2

rw

ALE
CTL2

rw rw

CSW
EN2

CSR
EN2

EW
EN2

--
MTT
C3

RWD
C3

RDY
EN3

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT3

rw

ALE
CTL3

rw rw

CSW
EN3

CSR
EN3

EW
EN3

--
MTT
C4

RWD
C4

RDY
EN4

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rwrw rw

BTYP MCTC

rw - -

BUS
ACT4

rw

ALE
CTL4

rw rw

CSW
EN4

CSR
EN4

EW
EN4
Data Sheet 196 2001-04-19

C161U

External Bus Interface
Note: BUSCON0 is initialized with 0000H, if pin EA is high during reset. If pin EA is low
during reset, bits BUSACT0 and ALECTL0 are set (‘1’) and bit field BTYP is loaded
with the bus configuration selected via PORT0.

MTTCx Memory Tristate Time Control
‘0’: 1 waitstate
‘1’: No waitstate

EWENx Early Write Enable Bit
‘0’: Normal write
‘1’: Early write is enabled. The write signal turns off one TCL earlier.
In order to have no overlapping with the following ALE signal, the write
control signal is shortened by one TCL by setting bit EWEN.

BTYPx External Bus Configuration
0 0 : 8-bit Demultiplexed Bus
0 1 : 8-bit Multiplexed Bus
1 0 : 16-bit Demultiplexed Bus
1 1 : 16-bit Multiplexed Bus
Note: For BUSCON0 BTYP is defined via PORT0 during reset.

ALECTLx ALE Lengthening Control
‘0’: Normal ALE signal
‘1’: Lengthened ALE signal

BUSACTx Bus Active Control
‘0’: External bus disabled
‘1’: External bus enabled (within the respective address window, see
ADDRSEL)

RDYENx READY Input Enable
‘0’: External bus cycle is controlled by bit field MCTC only
‘1’: External bus cycle is controlled by the READY input signal

CSRENx Read Chip Select Enable
‘0’: The CS signal is independent of the read command (RD)
‘1’: The CS signal is generated for the duration of the read command

CSWENx Write Chip Select Enable
‘0’: The CS signal is independent of the write command (WR,WRL,WRH)
‘1’: The CS signal is generated for the duration of the write command

Bit Function
Data Sheet 197 2001-04-19

C161U

External Bus Interface
Bus Access Control
CPU accesses to internal and external busses, e.g. to internal or external memories or
peripherals, are controlled with the respective address ranges. These address ranges
are supported by ’chip select’ functions for XBUS resources or for external off-chip
resources. In the C161U six address ranges with according bus definitions can be
programmed for XBUS peripherals (including memories) and additionally five ranges for
external bus peripherals.
Note: In contrast to previous Infineon devices the XADRS/XBCON registers are not

hardwired but fully programmable.

Address ranges and address mapping of memories or peripherals on XBUS or external
bus are controlled with the address selection registers XADRSx for XBUS and
ADDRSELx for external bus. The respective bus type definitions are controlled with
registers XBCONx and BUSCONx.
In comparison to previous devices, C161U has 3 more address selection registers for
XBUS:
• The new register pair XADRS4 / XBCON4 use the same standard scheme of address

selection and XCS control as the XADRS1-3 registers; smallest possible address
range is 256 bytes.

• The new register pairs XADRS5 / XBCON5 and XADRS6 / XBCON6 control address
selections as defined for external peripherals (as contolled by ADDRSEL); thus,
mapping of XPER addresses to the total address space is provided, with smallest
possible address range of 4 KBytes. XBCON5/6 and XCS5/6 control are identical to
the standard XBUS address ranges.

After reset, no address selection register is selected; thus the default address range is
enabled and controlled with BUSCON0 and additionally the chip select output CS0 is
activated (as in standard C16x architecture).
Data Sheet 198 2001-04-19

C161U

External Bus Interface
ADDRSEL1 (FE18H / 0CH) SFR Reset Value: 0000H

ADDRSEL2 (FE1AH / 0DH) SFR Reset Value: 0000H

ADDRSEL3(FE1CH / 0EH) SFR Reset Value: 0000H

ADDRSEL4 (FE1EH / 0FH) SFR Reset Value: 0000H

Note: There is no register ADDRSEL0, as register BUSCON0 controls all external
accesses outside the four address windows of BUSCON4...BUSCON1 within the
complete address space.

Definition of Address Areas
The four register pairs BUSCON4/ADDRSEL4...BUSCON1/ADDRSEL1 allow to define
4 separate address areas within the address space of the C161U. Within each of these
address areas external accesses can be controlled by one of the four different bus
modes, independent of each other and of the bus mode specified in register BUSCON0.
Each ADDRSELx register in a way cuts out an address window, within which the
parameters in register BUSCONx are used to control external accesses. The range start

Bit Function
RGSZ Range Size Selection
RGSAD Range Start Address

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

RGSAD RGSZ

rw
Data Sheet 199 2001-04-19

C161U

External Bus Interface
address of such a window defines the upper address bits, which are not used within the
address window of the specified size (see table below). For a given window size only
those upper address bits of the start address are used (marked “R”), which are not
implicitly used for addresses inside the window. The lower bits of the start address
(marked “x”) are disregarded.

XADRS1(2/3/4/5/6) (F014H / 0AH) ESFRx Reset Value: 0000H

The respective SFR addresses of XADRS registers can be found in list of SFRs.
Due to the different range size options, address mapping of XPERs is possible only
within the first MByte of the total address range if XADRS1 to XADRS4 is used. The
upper four address lines (A23:A20) are set to zero. Note that the range start address can
be only on boundaries specified by the selected range size.

Bit field
RGSZ

Resulting Window
Size

Relevant Bits (R) of Start Address
(A20...A12)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 x x

4 KBytes
8 KBytes
16 KBytes
32 KBytes
64 KBytes
128 KBytes
256 KBytes
512 KBytes
1 MBytes
2 MBytes
Reserved
Reserved
Reserved.

R R R R R R R R R
R R R R R R R R x
R R R R R R R x x
R R R R R R x x x
R R R R R x x x x
R R R R x x x x x
R R R x x x x x x
R R x x x x x x x
R x x x x x x x x
x x x x x x x x x

Bit Function
RGSAD Address Range Start Address Selection
RGSZ Address Range Size Selection

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw- - - -

RGSZ

-

RGSAD
Data Sheet 200 2001-04-19

C161U

External Bus Interface
The following tables show the different definitions of range size selections and range
start addresses for the two types of address selections:

Range
Size
RGSZ

Selected
Address
Range

Relvant(R) bits of
RGSAD

Selected Range Start Address
(Relevant(R) bits of RGSAD)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
11xx

256 Byte
512 Bytes
1 KB
2 KB
4 KB
8 KB
16 KB
32 KB
64 KB
128 KB
256 KB
512 KB
- reserved

RRRR RRRR RRRR
RRRR RRRR RRR0
RRRR RRRR RR00
RRRR RRRR R000
RRRR RRRR 0000
RRRR RRR0 0000
RRRR RR00 0000
RRRR R000 0000
RRRR 0000 0000
RRR0 0000 0000
RR00 0000 0000
R000 0000 0000

0000 RRRR RRRR RRRR 0000 0000
0000 RRRR RRRR RRR0 0000 0000
0000 RRRR RRRR RR00 0000 0000
0000 RRRR RRRR R000 0000 0000
0000 RRRR RRRR 0000 0000 0000
0000 RRRR RRR0 0000 0000 0000
0000 RRRR RR00 0000 0000 0000
0000 RRRR R000 0000 0000 0000
0000 RRRR 0000 0000 0000 0000
0000 RRR0 0000 0000 0000 0000
0000 RR00 0000 0000 0000 0000
0000 R000 0000 0000 0000 0000

Table 32 Address Range and Address Range Start Definition of XADRS1/2/3/
4 register
Data Sheet 201 2001-04-19

C161U

External Bus Interface
The XBCONx registers are defined as follows:

Range
Size
RGSZ

Selected
Address
Range

Relvant(R) bits of
RGSAD

Selected Range Start Address
(Relevant(R) bits of RGSAD)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
11xx

4 KB
8 KB
16 KB
32 KB
64 KB
128 KB
256 KB
512 KB
1 MB
2 MB
4 MB
8 MB
- reserved

RRRR RRRR RRRR
RRRR RRRR RRR0
RRRR RRRR RR00
RRRR RRRR R000
RRRR RRRR 0000
RRRR RRR0 0000
RRRR RR00 0000
RRRR R000 0000
RRRR 0000 0000
RRR0 0000 0000
RR00 0000 0000
R000 0000 0000

 RRRR RRRR RRRR 0000 0000 0000
 RRRR RRRR RRR 0 0000 0000 0000
 RRRR RRRR RR 00 0000 0000 0000
 RRRR RRRR R 000 0000 0000 0000
 RRRR RRRR 0000 0000 0000 0000
 RRRR RRR 0 0000 0000 0000 0000
 RRRR RR 00 0000 0000 0000 0000
 RRRR R 000 0000 0000 0000 0000
 RRRR 0000 0000 0000 0000 0000
 RRR 0 0000 0000 0000 0000 0000
 RR 00 0000 0000 0000 0000 0000
 R 000 0000 0000 0000 0000 0000

Table 33 Address Range and Address Range Start Definition of XADRS5/6
register
Data Sheet 202 2001-04-19

C161U

External Bus Interface
XBCON/2/3 (F114H / 8AH) ESFR-b Reset Value: 0000H

Note: The ’BUSCON switch control’ BSWC is a new function, which is necessary due to
the execution with higher frequencies, to avoid bus collisions on data bus in case
of peripheral change (see BUSCON).

Bit Function
MCTCx Memory Cycle Time Control (see BUSCON)
RWDCx READ/WRITE Delay Control (see BUSCON)
MTTCx Memory Tri-state Time Control (see BUSCON)
BTYPx Bus Type Selection; only demultiplexed busses are supported on

XBUS;
’00’: 8 bit bus
’10’: 16 bit bus; ’x1’: reserved.

EWENx Early Write Enable
’0’: Standard write enable signal control
’1’: Write active state is disabled one TCL earlier

ALECTLx ALE Lengthening Control Bit (see BUSCON)
BUSACTx* Bus Active Control

‘0’: XBUS (peripheral) disabled
‘1’: XBUS (peripheral) enabled
Enables the XBUS and the according chip select XCSx for the respective
address window (respective XBUS peripheral), selected with according
XADRSx window; after reset, all address windows on XBUS are
disabled.
 *not used in FC-Cores, where XBCON is hardwired.

BSWCx BUSCON Switch Control
’0’: Standard switch of bustype (switch of XBCON)
’1’: A bus wait state (Tri-state cycle) is included after execution of last
old-bustype cycle and before the first new-bustype cycle after switch of
XBCON or BUSCON; the BSWC bit is indicated in the old-bustype
XBCON/BUSCON.

RDYENx READY Enable
’0’: The bus cycle length is controlled by the bus controller using MCTC
’1’: The bus cycle length is controlled by the peripheral using READY

BS
WCx- - -

RDY
ENx

BUS
ACTx

ALE
CTLx

EW
ENx

MT
TCx

RW
DCx

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrw rw rw- - - rw

MCTCx

rw rw rw

BTYPx

rw
Data Sheet 203 2001-04-19

C161U

External Bus Interface
Note: All XADRSx/ADDRSELx registers as well as XBCONx/BUSCONx registers are
user programmable SFR registers. All BUSCONx registers are mapped into the
bitaddressable SFR memory space, all XBCONx registers are located in the
bitaddressable ESFR memory space. Although they are free programmable,
programming should be performed during the initialisation phase before the first
accesses are controlled with XBCONx or BUSCONx.

Note: The respective SFR addresses of XBCON registers can be found in list of SFRs.

Note: Within the C161U, register XBCON2 is related to the USB module and register
XBCON2 is related to the EPEC module. For configuration, please also refer to
Chapter 10.8, "Initialization of the C161U’s X-peripherals" on page 212.

Address Window Arbitration
For each access the EBC compares the current address with all address select registers
(programmable ADDRSELx and hardwired XADRSx). This comparison is done in four
levels.
Priority 1:The XADRSx registers are evaluated first. A match with one of these registers
directs the access to the respective X-Peripheral using the corresponding XBCONx
register and ignoring all other ADDRSELx registers.
Priority 2:Registers ADDRSEL2 and ADDRSEL4 are evaluated before ADDRSEL1 and
ADDRSEL3, respectively. A match with one of these registers directs the access to the
respective external area using the corresponding BUSCONx register and ignoring
registers ADDRSEL1/3 (see figure below).
Priority 3:A match with registers ADDRSEL1 or ADDRSEL3 directs the access to the
respective external area using the corresponding BUSCONx register.
Priority 4:If there is no match with any XADRSx or ADDRSELx register the access to
the external bus uses register BUSCON0.

Figure 53 Address Window Arbitration

Active
Window

Inactive
Window

BUSCON0

BUSCON1

BUSCON2

XBCON0

BUSCON3

BUSCON4
Data Sheet 204 2001-04-19

C161U

External Bus Interface
Note: Only the indicated overlaps are defined. All other overlaps lead to erroneous bus
cycles. Eg. ADDRSEL4 may not overlap ADDRSEL2 or ADDRSEL1. The
hardwired XADRSx registers are defined non-overlapping.
Data Sheet 205 2001-04-19

C161U

External Bus Interface
RP0H (F108H / 84H) SFR Reset Value: - - XXH

Note: RP0H cannot be changed via software, but rather allows to check the current
configuration.

Precautions and Hints
• The external bus interface is enabled as long as at least one of the BUSCON registers

has its BUSACT bit set.
• PORT1 will output the intra-segment address as long as at least one of the BUSCON

registers selects a demultiplexed external bus, even for multiplexed bus cycles.
• Not all address areas defined via registers ADDRSELx may overlap each other. The

operation of the EBC will be unpredictable in such a case. See chapter „Address
Window Arbitration“.

• The address areas defined via registers ADDRSELx may overlap internal address
areas. Internal accesses will be executed in this case.

• For any access to an internal address area the EBC will remain inactive (see EBC Idle
State).

Bit Function
WRC Write Configuration

0: Pins WR and BHE operate as WRL and WRH signals
1: Pins WR and BHE operate as WR and BHE signals

CSSEL Chip Select Line Selection (Number of active CS outputs)
0 0: 3 CS lines: CS2...CS0
0 1: 2 CS lines: CS1...CS0
1 0: No CS lines at all
1 1: 4 CS lines: CS3...CS0 (Default without pulldowns)

SALSEL Segment Address Line Selection (Number of active segment address
outputs)
0 0: 4-bit segment address: A19...A16
0 1: No segment address lines at all
1 0: 5-bit segment address: A20...A16
1 1: 2-bit segment address: A17...A16 (Default without pulldowns)

CLKCFG Clock Generation Mode Configuration
These pins define the clock generation mode, ie. the mechanism how the
the internal CPU clock is generated from the externally applied (XTAL1)
input clock.

WRC

5 4 3 2 1 011 10 9 8 7 615 14 13 12

r r- - - - r- - - -

CSSELSALSEL

r

CLKCFG
Data Sheet 206 2001-04-19

C161U

External Bus Interface
10.5 EBC Idle State
When the external bus interface is enabled, but no external access is currently executed,
the EBC is idle. As long as only internal resources (from an architecture point of view)
like IRAM, GPRs or SFRs, etc. are used the external bus interface does not change (see
table below).
Accesses to on-chip X-Peripherals are also controlled by the EBC. However, even
though an X-Peripheral appears like an external peripheral to the controller, the
respective accesses do not generate valid external bus cycles.
Due to timing constraints address and write data of an XBUS cycle are reflected on the
external bus interface (see table below). The „address“ mentioned above includes
PORT1, Port 4, BHE and ALE which also pulses for an XBUS cycle. The external CS
signals on Port 6 are driven inactive (high) because the EBC switches to an internal XCS
signal.
The external control signals (RD and WR or WRL/WRH if enabled) remain inactive
(high).

Table 34 Status of the external bus interface during EBC idle state:

Pins Internal accesses only XBUS accesses
PORT0 Tristated (floating) Tristated (floating) for read

accesses
XBUS write data for write accesses

PORT1 Last used external address
(if used for the bus interface)

Last used XBUS address
(if used for the bus interface)

Port 4 Last used external segment address
(on selected pins)

Last used XBUS segment address
(on selected pins)

Port 6 Active external CS signal
corresponding to last used address

Inactive (high) for selected CS
signals

BHE Level corresponding to last external
access

Level corresponding to last XBUS
access

ALE Inactive (low) Pulses as defined for X-Peripheral
RD Inactive (high) Inactive (high)
WR/WRL Inactive (high) Inactive (high)
WRH Inactive (high) Inactive (high)
Data Sheet 207 2001-04-19

C161U

External Bus Interface
10.6 External Bus Arbitration
In high performance systems it may be efficient to share external resources like memory
banks or peripheral devices among more than one controller. C161U supports this
approach with the possibility to arbitrate the access to its external bus, ie. to the external
devices.
This bus arbitration allows an external master to request the C161U’s bus via the HOLD
input. C161U acknowledges this request via the HLDA output and will float its bus lines
in this case. The CS outputs provide internal pullup devices. The new master may now
access the peripheral devices or memory banks via the same interface lines as the
C161U. During this time the C161U can keep on executing, as long as it does not need
access to the external bus. All actions that just require internal resources like instruction
or data memory and on-chip peripherals, may be executed in parallel.
When the C161U needs access to its external bus while it is occupied by another bus
master, it demands it via the BREQ output.
The external bus arbitration is enabled by setting bit HLDEN in register PSW to ‘1’. In
this case the three bus arbitration pins HOLD, HLDA and BREQ are automatically
controlled by the EBC independent of their I/O configuration. Bit HLDEN may be cleared
during the execution of program sequences, where the external resources are required
but cannot be shared with other bus masters. In this case the C161U will not answer to
HOLD requests from other external masters. If HLDEN is cleared while the C161U is in
Hold State (code execution from internal RAM) this Hold State is left only after HOLD has
been deactivated again. Ie. in this case the current Hold State continues and only the
next HOLD request is not answered.
Connecting eg. two C161Us in this way would require additional logic to combine the
respective output signals HLDA and BREQ. This can be avoided by switching one of the
controllers into Slave Mode where pin HLDA is switched to input. This allows to directly
connect the slave controller to another master controller without glue logic. The Slave
Mode is selected by setting bit DP6.7 to ’1’. DP6.7=’0’ (default after reset) selects the
Master Mode.
Note: The pins HOLD, HLDA and BREQ keep their alternate function (bus arbitration)

even after the arbitration mechanism has been switched off by clearing HLDEN.
All three pins are used for bus arbitration after bit HLDEN was set once.

Connecting Bus Masters
When multiple C161Us or a C161U and another bus master shall share external
resources some glue logic is required that defines the currently active bus master and
also enables a C161U which has surrendered its bus interface to regain control of it in
case it must access the shared external resources. This glue logic is required if the
„other“ bus master does not automatically remove its hold request after having used the
shared resources.
Data Sheet 208 2001-04-19

C161U

External Bus Interface
When two C161Us are to be connected in this way the external glue logic can be left out.
In this case one of the controllers must be operated in its Master Mode (default after
reset, DP6.7=’0’) while the other one must be operated in its Slave Mode (selected with
DP6.7=’1’).
In Slave Mode the C161U inverts the direction of its HLDA pin and uses it as an input,
while the master’s HLDA pin remains an output. This approach does not require any
additional glue logic for the bus arbitration (see figure below).

Figure 54 Sharing External Resources using Slave Mode

When the bus arbitration is enabled (HLDEN=’1’) the three corresponding pins are
automatically controlled by the EBC. Normally the respective port direction register bits
retain their reset value which is ’0’. This selects Master Mode where the device operates
compatible with earlier versions. Slave Mode is enabled by intentionally switching pin
BREQ to output (DP6.7=’1’) which is neither required for Master Mode nor for earlier
devices.

Entering the Hold State
Access to the C161U’s external bus is requested by driving its HOLD input low. After
synchronizing this signal the C161U will complete a current external bus cycle (if any is
active), release the external bus and grant access to it by driving the HLDA output low.
During hold state the C161U treats the external bus interface as follows:
• Address and data bus(es) float to tri-state
• ALE is pulled low by an internal pulldown device
• Command lines are pulled high by internal pullup devices (RD, WR/WRL, BHE/WRH)
• CSx outputs are pulled high (push/pull mode) or float to tri-state (open drain mode)

C
16

1U
 in

M
as

te
r

M
o

d
e

BREQ

HLDA

HOLD

C
16

1U
 in

S
la

ve
 M

o
d

e

BREQ

HLDA

HOLD
Data Sheet 209 2001-04-19

C161U

External Bus Interface
Should the C161U require access to its external bus during hold mode, it activates its
bus request output BREQ to notify the arbitration circuitry. BREQ is activated only during
hold mode. It will be inactive during normal operation.

Figure 55 External Bus Arbitration, Releasing the Bus

Note: C161U will complete the currently running bus cycle before granting bus access
as indicated by the broken lines. This may delay hold acknowledge compared to
this figure.
The figure above shows the first possibility for BREQ to get active.
During bus hold pin P3.12 is switched back to its standard function and is then
controlled by DP3.12 and P3.12. Keep DP3.12 = ’0’ in this case to ensure floating
in hold mode.

Exiting the Hold State
The external bus master returns the access rights to the C161U by driving the HOLD
input high. After synchronizing this signal the C161U will drive the HLDA output high,
actively drive the control signals and resume executing external bus cycles if required.
Depending on the arbitration logic, the external bus can be returned to the C161U under
two circumstances:
• The external master does no more require access to the shared resources and gives
up its own access rights, or

MCD02238

HOLD

HLDA

BREQ

CSx

~ ~
~~

~ ~
~~

~ ~

Signals ~~
~ ~

Other
Data Sheet 210 2001-04-19

C161U

External Bus Interface
• C161U needs access to the shared resources and demands this by activating its BREQ
output. The arbitration logic may then deactivate the other master’s HLDA and so free
the external bus for the C161U, depending on the priority of the different masters.
Note: The Hold State is not terminated by clearing bit HLDEN.

Figure 56 External Bus Arbitration, (Regaining the Bus)

Note: The falling BREQ edge shows the last chance for BREQ to trigger the indicated
regain-sequence. Even if BREQ is activated earlier the regain-sequence is
initiated by HOLD going high. BREQ and HOLD are connected via an external
arbitration circuitry. Please note that HOLD may also be deactivated without the
C161U requesting the bus.

10.7 XBUS Interface
C161U provides an on-chip interface (the XBUS interface), which allows to connect
integrated customer/application specific peripherals to the standard controller core. The
XBUS is an internal representation of the external bus interface, ie. it is operated in the
same way.
The current XBUS interface is prepared to support up to 3 X-Peripherals.
For each peripheral on the XBUS (X-Peripheral) there is a separate address window
controlled by an XBCON and an XADRS register. As an interface to a peripheral in many
cases is represented by just a few registers, the XADRS registers select smaller address

MCD02236

Other
Signals

CSx

BREQ

HLDA

HOLD
Data Sheet 211 2001-04-19

C161U

External Bus Interface
windows than the standard ADDRSEL registers. As the register pairs control integrated
peripherals rather than externally connected ones, they are fixed by mask programming
rather than being user programmable.
X-Peripheral accesses provide the same choices as external accesses, so these
peripherals may be bytewide or wordwide, with or without a separate address bus.
Interrupt nodes and configuration pins (on PORT0) are provided for X-Peripherals to be
integrated.

10.8 Initialization of the C161U’s X-peripherals
The following registers must be set for initialization of the C161U X-peripherals:
XPERCON-Register (Addr. F024, default: 0000):

Bit 6: '1': USB module active '0': USB module switched-off
Bit 7: '1': EPEC active '0': EPEC switched-off

SYSCON-Register (Addr. FF12, default: 0xx0):
Bit 2: '1': X-Peripherals enable '0': X-Peripherals disable
Bit 1: '1': X-Per accesses visible at externalXBUS '0': X-Per accesses not visible

SYSCON3-Register (Addr. F1D4, default: 0000):
Bit 15: '1': All peripheral clocks disabled '0': Individual disable control by

bits 14 thru 0
Bit 12:11: '00': USB transceiver in normal operation

’01’: Suspend mode, differential USB receiver switched off
’10’: Reserved, do not use this combination
’11’: USB transceiver switched off - full power down mode

Bit 8: '1': Disable EPEC clock '0': Enable EPEC clock
Bit 7: '1': Disable USB clock '0': Enable USB clock
Bit 3: '1': Disable GPT12 clock '0': Enable GPT12 clock
Bit 2: '1': Disable SSC clock '0': Enable SSC clock
Bit 1: '1': Disable ASC clock '0': Enable ASC clock
Bit 0: '1': Disable RTC clock '0': Enable RTC clock

XBCON1-Register (Addr.F114, default: 0000H):
This register is not used. Must be set to ’0000H’).

XBCON2-Register (Addr.F116, default: 0000H):
Definition of the USB bus protocol.
Must be set to ’048xH’. Recommended using 0 waitstates: ’048FH’.
XBCON3-Register (Addr.F118, default: 0000H):
Definition of the EPEC bus protocol.
Must be set to ’048xH’. Recommended using 0 waitstates: ’048FH’.
Data Sheet 212 2001-04-19

C161U

External Bus Interface
XADRS2-Register (Addr.F016, default: UUUU):
Definition of the USB address space.
Should be initialized with ’0EE0H’ before writing to XBCON2.

XADRS3-Register (Addr.F018, default: UUUU):
Definition of the EPEC address space.
Should be initialized with ’0ED0H’ before writing to XBCON3.
Note: Bits (12:11) of register SYSCON3 are related to the analog USB transceiver only

and not to the digital USB module.
Data Sheet 213 2001-04-19

C161U

General Purpose Timer Unit
11 General Purpose Timer Unit
General Purpose Timer Unit (GPT) represents very flexible multifunctional timer
structures which may be used for timing, event counting, pulse width measurement,
pulse generation, frequency multiplication, and other purposes.
In the C161U, there are following alternate function pins available: P3.3/T3OUT, P3.5/
T4IN/T3EUD/T2EUD and P3.6/T3IN, as shown in Figure 57.

Figure 57 GPT module external pins

GPT1 Core
Timer 3

GPT1 Core
Timer 4

GPT2 Core
Timer 5

GPT1 Core
Timer 2

GPT2 Core
Timer 6

P3.6

P3.5

T2EUD

T3IN

T3EUD

T4IN

P3.3T3OUT

gpt12C161Uimpl

T3OTL

interrupt request
T2IC.T2IR

interrupt request
T4IC.T4IR

interrupt request
T5IC.T5IR

interrupt request
T6IC.T6IR

interrupt request
T3IC.T3IR

T6OTL

GPT2 CAPREL interrupt request
CRIC.CRIR

Note: In the C161U, there are no external pins connected to Timer 5 and Timer 6.
Additional, there is no second external connection to Timer 4 (T4EUD), no
second external connection to Timer 2 (T2IN) and no external connection to
the register GPT2 CAPREL.
Data Sheet 214 2001-04-19

C161U

General Purpose Timer Unit
GPT incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and
GPT2. Each timer in each block may operate independently in a number of different
modes such as gated timer or counter mode, or may be concatenated with another timer
of the same block.
Block 1 contains 3 timers/counters with a maximum resolution of fTimer/4. The auxiliary
timers of GPT1 may optionally be configured as reload or capture registers for the core
timer.
Block 2 contains 2 internal timers/counters with a maximum resolution of fTimer/2. An
additional CAPREL register supports capture and reload operation with extended
functionality.
The following enumeration summarizes all features to be supported:
Timer Block 1:
fTimer/4 maximum resolution.
3 independent timers/counters.
Timers/counters can be concatenated.
4 operating modes (timer, gated timer, counter, incremental).
Separate interrupt nodes.
Timer Block 2:
fTimer/2 maximum resolution.
2 independent timers/counters.
Timers/counters can be concatenated.
2 operating modes (timer, counter).
Capture/reload functions via 16-bit Capture/Reload register CAPREL.
Separate interrupt nodes.

11.1 Kernel Description

11.1.1 Functional Description of Timer Block 1
All three timers of block 1 (T2, T3, T4) can run in 4 basic modes, which are timer, gated
timer, counter and incremental interface mode, and all timers can either count up or
down.
The input line (TxIN) associated with it which serves as the gate control in gated timer
mode, or as the count input in counter mode. The count direction (Up / Down) may be
programmed via software or may be dynamically altered by a signal at an external
control input line. An overflow/underflow of core timer T3 is indicated by the output toggle
latch T3OTL whose state may be output on related line T3OUT.
Data Sheet 215 2001-04-19

C161U

General Purpose Timer Unit
The auxiliary timers T2 and T4 may additionally be concatenated with the core timer, or
used as capture or reload registers for the core timer.
The current contents of each timer can be read or modified by the CPU by accessing the
corresponding timer registers T2, T3, or T4, which are located in the non-bitaddressable
SFR space. When any of the timer registers is written to by the CPU in the state
immediately before a timer increment, decrement, reload, or capture is to be performed,
the CPU write operation has priority in order to guarantee correct results.

Figure 58 Structure of Timer Block 1

T3
Mode

Control

2n : 1

2n : 1fhw_clk T2
Mode

Control

GPT1 Timer T2

Reload

Capture

2n : 1

T4
Mode

Control GPT1 Timer T4

Reload

Capture

GPT1 Timer T3 T3OTL

U/D

T2EUD

T3IN

T3EUD

T4IN

T3OUT

Toggle FF

U/D

U/D

Interrupt
Request

Interrupt
Request

Interrupt
Request

MCT02141C161U

fhw_clk

fhw_clk

T3OTL

T3OTL
Data Sheet 216 2001-04-19

C161U

General Purpose Timer Unit
11.1.1.1 Core Timer T3
The operation of the core timer T3 is controlled by its bitaddressable control register
T3CON.

Run Control
The timer can be started or stopped by software through bit T3R (Timer T3 Run Bit).
Setting bit T3R to ‘1’ will start the timer, clearing T3R stops the timer.
In gated timer mode, the timer will only run if T3R = ‘1’ and the gate is active (high or low,
as programmed).
Note: When bit T2RC/T4RC in timer control register T2CON/T4CON is set to ’1’, T3R

will also control (start and stop) auxiliary timer T2/T4.

Count Direction Control
The count direction of the core timer can be controlled either by software or by the
external input line T3EUD (Timer T3 External Up/Down Control Input). These options are
selected by bits T3UD and T3UDE in control register T3CON. When the up/down control
is done by software (bit T3UDE = ‘0’), the count direction can be altered by setting or
clearing bit T3UD. When T3UDE = ‘1’, line T3EUD is selected to be the controlling
source of the count direction. However, bit T3UD can still be used to reverse the actual
count direction, as shown in the table below. If T3UD = ‘0’ and line T3EUD shows a low
level, the timer is counting up. With a high level at T3EUD the timer is counting down. If
T3UD = ‘1’, a high level at line T3EUD specifies counting up, and a low level specifies
counting down. The count direction can be changed regardless of whether the timer is
running or not.
When line T3EUD is used as external count direction control input, its associated port
pin must be configured as input.

Table 35 GPT1 Core Timer T3 Count Direction Control

Line
TxEUD

Bit TxUDE Bit TxUD Count Direction

X 0 0 Count Up
X 0 1 Count Down
0 1 0 Count Up
1 1 0 Count Down
0 1 1 Count Down
1 1 1 Count Up
Data Sheet 217 2001-04-19

C161U

General Purpose Timer Unit
Timer 2 and Timer 4 can be controlled by software only, since no second timer input
exist, see also Figure 57.

Timer 3 Overflow/Underflow Monitoring
An overflow or underflow of timer T3 will clock the overflow toggle latch T3OTL in control
register T3CON. T3OTL can also be set or reset by software. Bit T3OE (Overflow/
Underflow Output Enable) in register T3CON enables the state of T3OTL to be
monitored via an external line T3OUT. If this line is linked to an external port pin, which
has to be configured as output, T3OTL can be used to control external HW.
In addition, T3OTL can be used in conjunction with the timer over/underflows as an input
for the counter function or as a trigger source for the reload function of the auxiliary
timers T2 and T4. For this purpose, the state of T3OTL does not have to be available at
any port pin, because an internal connection is provided for this option.

Timer 3 in Timer Mode
Timer mode for the core timer T3 is selected by setting bit field T3M in register T3CON
to ‘000B’.
In this mode, T3 is clocked with the module clock fTimer divided by a programmable
prescaler, which is controlled by bit field T3I and bit FM1. The input frequency fT3 for timer
T3 and its resolution rT3 are scaled linearly with lower module clock frequencies, as can
be seen from the following formula:

This formula also applies to the Gated Timer Mode of T3 and to the auxiliary timers T2
and T4 in timer and gated timer mode, where applicable.

Table 36 Example for Timer 3 Frequencies and Resolutions

fTimer [MHz] T3I FM1 fT3 [KHz] rT3 [µs]
24 ’111’ 0 23.44 42.67
24 ’000’ 1 6000.0 0.17
36 ’000’ 0 4500.0 0.22
36 ’100’ 0 281.25 3.55
36 ’111’ 1 70.31 14.22

fT3 =
 fTimer

8 * 2<T3I - FM1>
rT3 [µs] =

 fTimer [MHz]
8 * 2<T3I - FM1>
Data Sheet 218 2001-04-19

C161U

General Purpose Timer Unit

Figure 59 Block Diagram of Core Timer T3 in Timer Mode

Timer 3 in Gated Timer Mode
Gated timer mode for the core timer T3 is selected by setting bit field T3M in register
T3CON to ‘010B’ or ‘011B’.
Bit T3M.0 (T3CON.3) selects the active level of the gate input. In gated timer mode the
same options for the input frequency as for the timer mode are available. However, the
input clock to the timer in this mode is gated by the external input line T3IN (Timer T3
External Input), which is an alternate function of P3.6.
To enable this operation pin P3.6/T3IN must be configured as input, ie. direction control
bit DP3.6 must contain ’0’.

Core Timer Tx

TxOTL

Interrupt
Request

TxR

2n : 1

Txl

Up/
Down

TxUDE
MCB02028

fhw_clk

TxUD x=3
Data Sheet 219 2001-04-19

C161U

General Purpose Timer Unit

Figure 60 Block Diagram of Core Timer T3 in Gated Timer Mode

If T3M = ‘010B’, the timer is enabled when T3IN shows a low level. A high level at this
line stops the timer. If T3M = ‘011B’, line T3IN must have a high level in order to enable
the timer. In addition, the timer can be turned on or off by software using bit T3R. The
timer will only run, if T3R = ‘1’ and the gate is active. It will stop, if either T3R = ‘0’ or the
gate is inactive.
Note: A transition of the gate signal at line T3IN does not cause an interrupt request.

Timer 3 in Counter Mode
Counter mode for the core timer T3 is selected by setting bit field T3M in register T3CON
to ‘001B’. In counter mode timer T3 is clocked by a transition at the external input pin
T3IN, which is an alternate function of P3.6. The event causing an increment or
decrement of the timer can be a positive, a negative, or both a positive and a negative
transition at this line. Bit field T3I in control register T3CON selects the triggering
transition (see Table 37 below).

C ore T im er T x T xO T L

In te rrup t
R eques t

T xO E

T xO U T

T xR

M U X

XO R

0

M U X

1

U p/
D own

T xE U D

T xU D E M C B02029

T xU D

2n : 1

T xI

fhw _c lk

T xM

T xIN

x=3
Data Sheet 220 2001-04-19

C161U

General Purpose Timer Unit

Figure 61 Block Diagram of Core Timer T3 in Counter Mode

Table 37 Core Timer T3 (Counter Mode) Input Edge Selection

For counter operation, a port pin P3.6/T3IN must be configured as input. The maximum
input frequency which is allowed in counter mode is fTimer/8 (FM1 = ’1’). To ensure that a
transition of the count input signal which is applied to T3IN is correctly recognized, its
level should be held high or low for at least 4 fTimer cycles (FM1 = ’1’) before it changes.

Timer 3 in Incremental Interface Mode
Incremental Interface mode for the core timer T3 is selected by setting bit field T3M in
register T3CON to ‘110B’ or ‘111B’. In incremental interface mode pin P3.6/T3IN
(configured as timer input T3IN) and pin P3.5/T3EUD (configured as timer input) are
used to interface to an incremental encoder.
Note: In the C161U, the T3EUD timer input is connected to P3.5. In this case, Timer 4

input T4IN can be used by Software only.

T3I Triggering Edge for Counter Increment / Decrement
0 0 0 None. Counter T3 is disabled
0 0 1 Positive transition (rising edge) on T3IN
0 1 0 Negative transition (falling edge) on T3IN
0 1 1 Any transition (rising or falling edge) on T3IN
1 X X Reserved. Do not use this combination

Core Timer Tx

TxR

XOR

0

MUX

1

Up/
Down

TxEUD

TxUDE MCB02030

Txl

TxIN

Edge
Select

TxOTL

Interrupt
Request

TxOE

TxOUT

TxUD

x=3
Data Sheet 221 2001-04-19

C161U

General Purpose Timer Unit
T3 is clocked by each transition on one or both of the external input lines which gives 2-
fold or 4-fold resolution of the encoder input.

Figure 62 Block Diagram of Core Timer T3 in Incremental Interface Mode

Bit field T3I in control register T3CON selects the triggering transitions (see table below).
In this mode the sequence of the transitions of the two input signals is evaluated and
generates count pulses as well as the direction signal. Depending on the chosen
Incremental Intrerface Mode, Rotation detection ‘110B’ or Edge Detection ‘111B’, an
interrupt can be generated. This interrupt is only generated if it’s enabled by setting bit
T3IREN in register T3CON. For the Rotation detection an interrupt will be generated
each time the count direction of timer 3 changes. For the Edge detection an interrupt will
be generated each time a count action for timer 3 occurs. Count direction, changes in
the count direction and count requests are monitored through the status bits T3RDIR,
T3CHDIR and T3EDGE in register T3CON. T3 is modified automatically according to the
speed and the direction of the incremental encoder. Therefore, the contents of timer T3
always represents the encoder’s current position.

E dge
S elect T im er T 3

XO R
M U X

T 3E U D

T 3U D E
M C B03998

T 3 l

T 3IN
T 3O T L

Inte rrupt
R equest

T 3O U T

P hase
D etec t

T 3O ET 3R

E dge
In terrup t

T 3
E dge

T 3U D

T 3
C H D IR

0

1

C hange
D etection

T 3
R D IR

R otation
In terrup t

T 3M

U p/
D own

T 3M
Data Sheet 222 2001-04-19

C161U

General Purpose Timer Unit

The incremental encoder can be connected directly to the microcontroller without
external interface logic. In a standard system, however, comparators will be employed
to convert the encoder’s differential outputs (e.g. A, A) to digital signals (e.g. A). This
greatly increases noise immunity.
Note: The third encoder output T0, which indicates the mechanical zero position, may

be connected to an external interrupt input and trigger a reset of timer T3.

Figure 63 Interfacing the Encoder to the Microcontroller

For incremental interface operation the following conditions must be met:
Bitfield T3M must be ’110B’ or ‘111B’.
Pins associated to lines T3IN and T3EUD must be configured as input.
Bit T3UDE must be ’1’ to enable automatic direction control.
The maximum input frequency which is allowed in incremental interface mode is fTimer/8
(FM = 1). To ensure that a transition of any input signal is correctly recognized, its level
should be held high or low for at least 4 fTimer cycles (FM = 1) before it changes.
In Incremental Interface Mode the count direction is automatically derived from the
sequence in which the input signals change, which corresponds to the rotation direction
of the connected sensor. The table below summarizes the possible combinations.

Table 38 Core Timer T3 (Incremental Interface Mode) Input Edge Selection

T3I Triggering Edge for Counter Increment / Decrement
0 0 0 None. Counter T3 stops.
0 0 1 Any transition (rising or falling edge) on T3IN.
0 1 0 Any transition (rising or falling edge) on T3EUD.
0 1 1 Any transition (rising or falling edge) on any T3 input (T3IN or T3EUD).
1 X X Reserved. Do not use this combination

A
A

B
B

T0
T0

A

B

T0

External

T3input

T3input

Interrupt

Encoder

Signal Conditioning

+-

+-

+-

Micro-
controller
Data Sheet 223 2001-04-19

C161U

General Purpose Timer Unit
The figures below give examples of T3’s operation, visualizing count signal generation
and direction control. It also shows how input jitter is compensated which might occur if
the sensor rests near to one of its switching points.

Figure 64 Evaluation of the Incremental Encoder Signals

Table 39 Core Timer T3 (Incremental Interface Mode) Count Direction

Level on respective
other input

T3IN Input T3EUD Input
Rising Falling Rising Falling

High Down Up Up Down
Low Up Down Down Up

T3IN

T3EUD

Contents
of T3

Forward ForwardBackward JitterJitter

Up Down
Up

Note: This example shows the timer behavior assuming that T3 counts upon any
transition on any input, i.e. T3I = ’011B’.
Data Sheet 224 2001-04-19

C161U

General Purpose Timer Unit

Figure 65 Evaluation of the Incremental Encoder Signals

Note: Timer T3 operating in incremental interface mode automatically provides
information on the sensor’s current position. Dynamic information (speed,
acceleration, deceleration) may be obtained by measuring the incoming signal
periods.

11.1.1.2 Auxiliary Timers T2 and T4
Note: For the external pin connection of the timer T2 and timer T4, please refer to

Figure 57, page 214.

Both auxiliary timers T2 and T4 have exactly the same functionality with the only
restriction of the availibility of external pins connected to each timer. Timer T2 can be
configured for timer, gated timer, counter, or incremental interface mode. Timer T4 can
be configured for timer, gated timer and counter mode. In addition, the auxiliary timers
can be concatenated with the core timer, or they may be used as reload or capture
registers in conjunction with the core timer.
Note: Timer 2 input T2IN is not connected to any external pin because of the limited

number of pins of the C161U.

Note: Timer 2 input T2EUD is connected to P3.5. When the external input for T2EUD is
used (P3.5 configured as input), T4IN and T3EUD can be used by Software
(internal) only.

The individual configuration for timers T2 and T4 is determined by their bitaddressable
control registers T2CON and T4CON, which are both organized identically. Note that
functions which are present in all 3 timers of timer block 1 are controlled in the same bit
positions and in the same manner in each of the specific control registers.

T3IN

T3EUD

Contents
of T3

Forward ForwardBackward JitterJitter

Up Down Up

Note: This example shows the timer behavior assuming that T3 counts upon any
transition on input T3IN, i.e. T3I = ’001B’.
Data Sheet 225 2001-04-19

C161U

General Purpose Timer Unit
Run control for auxiliary timers T2 and T4 can be handled by the associated Run Control
Bit T2R, T4R in register T2CON/T4CON. Alternatively, a remote control option (T2RC,
T4RC = ’1’) may be enabled to start and stop T2/T4 via the run bit T3R of core timer T3.

Timers T2 and T4 in Timer Mode or Gated Timer Mode
When the auxiliary timers T2 and T4 are programmed to timer mode or gated timer
mode, their operation is the same as described for the core timer T3. The descriptions,
figures and tables apply accordingly with two exceptions:
There is no TxOUT output line for T2 and T4.
There is no T4EUD input, and no T2IN input. Therefore Software must be programmed
accordingly.
Overflow/Underflow Monitoring is not supported (no output toggle latch).

Timer T4 in Counter Mode
In counter mode timer T4 can be clocked either by a transition at the respective external
input line T4IN, or by a transition of timer T3’s output toggle latch T3OTL.

Figure 66 Block Diagram of the Auxiliary Timer T4 in Counter Mode

The event causing an increment or decrement of the timer T4 can be a positive, a
negative, or both a positive and a negative transition at either the input line, or at the
output toggle latch T3OTL.
Bit field T4I in the respective control register T4CON selects the triggering transition (see
table below).

Auxiliary Timer T4
Interrupt
Request

T4R
Up/
Down

T4UD

T4UDE
MCB02221C161U

T4l

T4IN/
T3OTL

Edge
Select
Data Sheet 226 2001-04-19

C161U

General Purpose Timer Unit

Note: Only state transitions of T3OTL which are caused by the overflows/underflows of
T3 will trigger the counter function of T4. Modifications of T3OTL via software will
NOT trigger the counter function of T4.

For counter operation, an external pin associated to line T4IN must be configured as
input. The maximum input frequency which is allowed in counter mode is fTimer/8 (FM1 =
’1’). To ensure that a transition of the count input signal which is applied to T4IN is
correctly recognized, its level should be held for at least 4 fTimer cycles (FM1 = ’1’) before
it changes.

Timer T2 in Counter Mode
The operation of Timer T2 in counter mode is the same as described above for Timer T4
in Chapter "Timer T4 in Counter Mode", with the following exeption:
• For Timer T2 there is no external input T2IN. Therefore, the counter function of T2 can

only be triggered by state transitions of T3OTL, which are caused by the overflows/
underflows of T3. Modifications of T3OTL via software will NOT trigger the counter
function of T2.

11.1.1.3 Timer Concatenation
Using the output toggle latch T3OTL as a clock source for an auxiliary timer in counter
mode concatenates the core timer T3 with the respective auxiliary timer. Depending on
which transition of T3OTL is selected to clock the auxiliary timer, this concatenation
forms a 32-bit or a 33-bit timer/counter.
32-bit Timer/Counter: If both a positive and a negative transition of T3OTL is used to
clock the auxiliary timer, this timer is clocked on every overflow/underflow of the core
timer T3. Thus, the two timers form a 32-bit timer.
33-bit Timer/Counter: If either a positive or a negative transition of T3OTL is selected
to clock the auxiliary timer, this timer is clocked on every second overflow/underflow of

Table 40 Auxiliary Timer T4 (Counter Mode) Input Edge Selection

T4I Triggering Edge for Counter Increment / Decrement
X 0 0 None. Counter T4 is disabled
0 0 1 Positive transition (rising edge) on T4IN
0 1 0 Negative transition (falling edge) on T4IN
0 1 1 Any transition (rising or falling edge) on T4IN
1 0 1 Positive transition (rising edge) of output toggle latch T3OTL
1 1 0 Negative transition (falling edge) of output toggle latch T3OTL
1 1 1 Any transition (rising or falling edge) of output toggle latch T3OTL
Data Sheet 227 2001-04-19

C161U

General Purpose Timer Unit
the core timer T3. This configuration forms a 33-bit timer (16-bit core timer+T3OTL+16-
bit auxiliary timer).
The count directions of the two concatenated timers are not required to be the same.
This offers a wide variety of different configurations.
T3 can operate in timer, gated timer or counter mode in this case.

Figure 67 Concatenation of Core Timer T3 and an Auxiliary Timer

Auxiliary Timer in Reload Mode
Reload mode for the auxiliary timers T2 and T4 is selected by setting bit field TxM in the
respective register TxCON to ‘100B’. In reload mode the core timer T3 is reloaded with
the contents of an auxiliary timer register, triggered by one of two different signals for
Timer T4 and by one signal (T3OFL/T3OTL) for Timer T2. The trigger signal is selected
the same way as the clock source for counter mode (see table above), i.e. a transition of
the auxiliary timer’s input or the output toggle latch T3OTL may trigger the reload.
Note: As opposed to Timer T4, for Timer T2 there is no input signal T2IN. Therefore, the

reload mode for Timer T2 can only be triggered by Timer T3 signal T3OFL (which
will set the toggle latch T3OTL as well).

Note: When programmed for reload mode, the respective auxiliary timer (T2 or T4) stops
independent of its run flag T2R or T4R.

Core Timer T3 T3OTL

Interrupt
Request

T3R

2n : 1

T3l

MCB02034gpt1

fhw_clk

Up/Down

Auxiliary Timer Tx

TxR

Txl

Edge
Select

TxIR
Interrupt
Request

*)

T3OE

T3OUT

Note: Line ’*’ only affected by over/underflows of T3, but NOT by software
modifications of T3OTL.

x = 2,4
Data Sheet 228 2001-04-19

C161U

General Purpose Timer Unit

Figure 68 GPT1 Auxiliary Timer in Reload Mode

Note: Line ’*’ only affected by over/underflows of T3, but NOT by software modifications
of T3OTL.

Upon a trigger signal T3 is loaded with the contents of the respective timer register (T2
or T4) and the interrupt request flag (T2IR or T4IR) is set.
Note: When a T3OTL transition is selected for the trigger signal, also the interrupt

request flag T3IR will be set upon a trigger, indicating T3’s overflow or underflow.
Modifications of T3OTL via software will NOT trigger the counter function of T2/T4.

The reload mode triggered by T3OTL can be used in a number of different
configurations. Depending on the selected active transition the following functions can
be performed:
If both a positive and a negative transition of T3OTL is selected to trigger a reload, the
core timer will be reloaded with the contents of the auxiliary timer each time it overflows
or underflows. This is the standard reload mode (reload on overflow/underflow).
If either a positive or a negative transition of T3OTL is selected to trigger a reload, the
core timer will be reloaded with the contents of the auxiliary timer on every second
overflow or underflow.
Using this “single-transition” mode for both auxiliary timers allows to perform very flexible
pulse width modulation (PWM). One of the auxiliary timers is programmed to reload the
core timer on a positive transition of T3OTL, the other is programmed for a reload on a
negative transition of T3OTL. With this combination the core timer is alternately reloaded
from the two auxiliary timers.

Reload Register Tx

Core Timer T3

Up/Down

Source/Edge
Select

T3OTL

Interrupt
Request

T3OE

T3OUT

T4IN

Input
Clock

TxI

*)

Interrupt
Request

MCB02035C161U

x = (2, 4)
Data Sheet 229 2001-04-19

C161U

General Purpose Timer Unit
The figure below shows an example for the generation of a PWM signal using the
alternate reload mechanism. T2 defines the high time of the PWM signal (reloaded on
positive transitions) and T4 defines the low time of the PWM signal (reloaded on negative
transitions). The PWM signal can be output on line T3OUT if the control bit T3OE is set
to ‘1’. With this method the high and low time of the PWM signal can be varied in a wide
range.
Note:
1. The output toggle latch T3OTL is accessible via software and may be changed, if

required, to modify the PWM signal. However, this will NOT trigger the reloading of T3.
2. An associated port pin linked to line T3OUT should be configured as output.

Figure 69 GPT1 Timer Reload Configuration for PWM Generation

Note: Although it is possible, it should be avoided to select the same reload trigger event
for both auxiliary timers. In this case both reload registers would try to load the
core timer at the same time. If this combination is selected, T2 is disregarded and
the contents of T4 is reloaded.

C ore T im er T 3

U p/D ow n

T3O TL

In te rrup t
R equest

T 3O E

T3O U T

In te rrup t
R equest

R e load R eg is te r T 2

In te rrup t
R equest

R e load R eg is te r T 4

T 2I*)

*)

T 4I

Inpu t
C lock

M CB02037

Note: Lines ’*’ only affected by over/underflows of T3, but NOT by software
modifications of T3OTL.
Data Sheet 230 2001-04-19

C161U

General Purpose Timer Unit
Auxiliary Timer T4 in Capture Mode
Capture mode for the auxiliary timer T4 is selected by setting bit field T4M in the register
T4CON to ‘101B’. In capture mode the contents of the core timer are latched into the
auxiliary timer register in response to a signal transition at the auxiliary timer's external
input line T4IN. The capture trigger signal can be a positive, a negative, or both a positive
and a negative transition.
The two least significant bits of bit field T4I are used to select the active transition (see
table in the counter mode section), while the most significant bit T4I.2 is irrelevant for
capture mode. It is recommended to keep this bit cleared (T4I.2 = ‘0’).
Note: When programmed for capture mode, the auxiliary timer T4 stops independent of

its run flag T4R.

Figure 70 Auxiliary Timer T4 of Timer Block 1 in Capture Mode

Upon a trigger (selected transition) at the input line T4IN the contents of the core timer
is loaded into the auxiliary timer register and the associated interrupt request flag T4IR
will be set.
Note: The direction control for T4IN must be set to 'Input', and the level of the capture

trigger signal should be held high or low for at least 4 fTimer (FM1 = ’1’) cycles
before it changes to ensure correct edge detection.

C apture R egiste r T x

C ore T im er T 3

U p/D own

E dge
S elect

T3O TL

Interrup t
R equest

T3O E

T3O U T

TxIN

Inpu t
C lock

In terrup t
R equest

M CB 02038

T xI

x = 4
Data Sheet 231 2001-04-19

C161U

General Purpose Timer Unit
11.1.2 Functional Description of Timer Block 2
Timer block 2 includes the two timers T5 (referred to as the auxiliary timer) and T6
(referred to as the core timer), and the 16-bit capture/reload register CAPREL.
Note: The block 2 Timer T5 and Timer T6 can be used by Software only. There exist no

external pin for timer T5 and T6. Additional, there is no external pin connected to
register CAPREL, see also Figure 57, page 214.

The count direction (Up / Down) must be programmed via software. An overflow/
underflow of core timer T6 is indicated by the output toggle latch T6OTL whose state may
be output on line T6OFL. The auxiliary timer T6 may be reloaded with the contents of
CAPREL.
The toggle bit also supports the concatenation of T6 with auxiliary timer T5, while
concatenation of T6 with other timers is provided through line T6OFL. Triggered by an
external signal, T3IN or T3EUD, the contents of timer T5 can be captured into register
CAPREL, and T5 may optionally be cleared. Both timer T6 and T5 can count up or down,
and the current timer value can be read or modified by the CPU in the non-
bitaddressable SFRs T5 and T6.
Data Sheet 232 2001-04-19

C161U

General Purpose Timer Unit

Figure 71 Structure of Timer Block 2

11.1.2.1 Core Timer T6
The operation of the core timer T6 is controlled by its bitaddressable control register
T6CON.

Timer 6 Run Bit
The timer can be started or stopped by software through bit T6R (Timer T6 Run Bit).
Setting bit T6R to ‘1’ will start the timer, clearing T6R stops the timer.

Count Direction Control
The count direction of the core timer can be controlled by software only. The count
direction can be altered by setting or clearing bit T6UD.
Note: Bit T6UDE of register T6CON must be always set to ’0’.

The count direction can be changed regardless of whether the timer is running or not.

2n : 1fh w _c lk T 5
M ode

C ontro l

G P T 2 T im er T 5

2n : 1fh w _c lk

T 6
M ode

C ontro l

G P T 2 T im er T 6

G P T 2 C A P R E L

T 6O T L

T 3IN /
T 3E U D

U /D

U /D

In te rrupt
R equest

In te rrupt
R equest

In te rrupt
R equest

T 6O FL

C lear

C ap tu re

C T 3

M CB 03999

C lea r
Data Sheet 233 2001-04-19

C161U

General Purpose Timer Unit
Note: The direction control works the same for core timer T6 and for auxiliary timer T5.
Therefore the lines and bits are named Tx...

Timer 6 Overflow/Underflow Monitoring
An overflow or underflow of timer T6 will clock the toggle latch T6OTL in control register
T6CON. T6OTL can also be set or reset by software.
In addition, T6OTL can be used in conjunction with the timer over/underflows as an input
for the counter function of the auxiliary timer T5. For this purpose, an internal connection
is provided for this option.
An overflow or underflow of timer T6 can also be used to clock other timers. For this
purpose, there is the special output line T6OFL.

Timer 6 in Timer Mode
Timer mode for the core timer T6 is selected by setting bit field T6M in register T6CON
to ‘000B’. In this mode, T6 is clocked with the module clock divided by a programmable
prescaler, which is selected by bit field T6I. The input frequency fT6 for timer T6 and its
resolution rT6 are scaled linearly with lower clock frequencies fTimer, as can be seen from
the following formula:

Table 41 Core Timer T6 Count Direction Control

Bit TxUDE Bit TxUD Count Direction
0 0 Count Up
0 1 Count Down

fT6 =
fTimer

4 * 2<T6I - FM2>
rT6 [µs] =

fTimer [MHz]

4 * 2<T6I - FM2>
Data Sheet 234 2001-04-19

C161U

General Purpose Timer Unit

Figure 72 Block Diagram of Core Timer T6 in Timer Mode

11.1.2.2 Auxiliary Timer T5
The auxiliary timer T5 can be configured for timer mode with the same options for the
timer frequencies and the count signal as the core timer T6. In addition, the auxiliary
timer can be concatenated with the core timer.
The individual configuration for timer T5 is determined by its bitaddressable control
register T5CON. Note that functions which are present in both timers of timer block 2 are
controlled in the same bit positions and in the same manner in each of the specific control
registers.
Run control for auxiliary timer T5 can be handled by the associated Run Control Bit T5R
in register T5CON. Alternatively, a remote control option (T5RC = ’1’) may be enabled
to start and stop T5 via the run bit T6R of core timer T6.
Note: The auxiliary timer has no overflow/underflow toggle latch. Therefore, an output

line for Overflow/Underflow Monitoring is not provided.

Count Direction Control for Auxiliary Timer
The count direction of the auxiliary timer can be controlled in the same way as for the
core timer T6. The description and the table apply accordingly.

Timer T5 in Counter Mode
Counter mode for the auxiliary timer T5 is selected by setting bit field T5M in register
T5CON to ‘001B’. In counter mode, timer T5 can be clocked by a transition of timer T6’s
output signal T6OFL only.

Core Timer Tx

TxOTL

Interrupt
Request

TxR

2n : 1

Txl

Up/
Down

TxUDE
MCB02028

fhw_clk

TxUD

x = 6
Data Sheet 235 2001-04-19

C161U

General Purpose Timer Unit

Figure 73 Block Diagram of Auxiliary Timer T5 in Counter Mode

The event causing an increment or decrement of the timer can be a positive, a negative,
or both a positive and a negative transition at signal T6OFL (toggle latch T6OTL).
Bit field T5P in control register T5CON selects the triggering transition (see table below).

Note: Only state transitions of T6OTL which are caused by the overflows/underflows of
T6 will trigger the counter function of T5. Modifications of T6OTL via software will
NOT trigger the counter function of T5.

Table 42 Auxiliary Timer (Counter Mode) Input Edge Selection

T5P Triggering Edge for Counter Increment / Decrement
X 0 0 None. Counter T5 is disabled
0 0 1 reserved, do not use this combination
0 1 0 reserved, do not use this combination
0 1 1 reserved, do not use this combination
1 0 1 Positive transition (rising edge) of output toggle latch T6OTL
1 1 0 Negative transition (falling edge) of output toggle latch T6OTL
1 1 1 Any transition (rising or falling edge) of output toggle latch T6OTL

Auxiliary Timer Tx
Interrupt
Request

TxR
Up/
Down

TxUD

TxUDE
MCB02221

Txl

T6OFL

Edge
Select

x = 5
Data Sheet 236 2001-04-19

C161U

General Purpose Timer Unit
11.1.2.3 Timer Concatenation
Using the toggle bit T6OTL as a clock source for the auxiliary timer in counter mode
concatenates the core timer T6 with the auxiliary timer. Depending on which transition of
T6OTL is selected to clock the auxiliary timer, this concatenation forms a 32-bit or a 33-
bit timer / counter.
32-bit Timer/Counter: If both a positive and a negative transition of T6OTL is used to
clock the auxiliary timer, this timer is clocked on every overflow/underflow of the core
timer T6. Thus, the two timers form a 32-bit timer.
33-bit Timer/Counter: If either a positive or a negative transition of T6OTL is selected to
clock the auxiliary timer, this timer is clocked on every second overflow/underflow of the
core timer T6. This configuration forms a 33-bit timer (16-bit core timer+T6OTL+16-bit
auxiliary timer).
The count directions of the two concatenated timers are not required to be the same.
This offers a wide variety of different configurations.

Figure 74 Concatenation of Core Timer T6 and Auxiliary Timer T5

C ore T im er Ty T yO TL

In te rrup t
Request

T yR

2 n : 1

Tyl

M CB02034

fhw _c lk

U p/D own

A uxilia ry T im er Tx

TxR

Txl

E dge
S elec t

TxIR
In te rrup t
Request

*)

Note: Line ’*’ only affected by over/underflows of T6, but NOT by software
modifications of T6OTL.
Data Sheet 237 2001-04-19

C161U

General Purpose Timer Unit
Timer Block 2 Capture/Reload Register CAPREL in Reload Mode
The 16-bit capture/reload register CAPREL can be used as a reload register for the core
timer T6. This mode is selected by setting bit T6SR = ‘1’ in register T6CON. The event
causing a reload in this mode is an overflow or underflow of the core timer T6.
When timer T6 overflows from FFFFH to 0000H (when counting up) or when it underflows
from 0000H to FFFFH (when counting down), the value stored in register CAPREL is
loaded into timer T6. This will not set the interrupt request flag CRIR associated with the
CAPREL register. However, interrupt request flag T6IR will be set indicating the
overflow/underflow of T6.

Figure 75 Timer Block 2 Register CAPREL in Reload Mode

C ore T im er T 6

U p/D own

Inte rrupt
R equest

Inpu t
C lock

M CB02045

T6O TL

T 6S R

C A P R E L R egiste r

T 6O FL
Data Sheet 238 2001-04-19

C161U

General Purpose Timer Unit
11.1.3 GPT Register Set
All GPT12 related registers are summarized in the overview table below.

Table 43 GPT Register Overview

Name Description Address Reset Value
GPTCLC GPT Clock Control Register FE4CH 0000H

T2CON Timer 2 Function Control Register FF40H 0000H

T3CON Timer 3 Function Control Register FF42H 0000H

T4CON Timer 4 Function Control Register FF44H 0000H

T5CON Timer 5 Function Control Register FF46H 0000H

T6CON Timer 6 Function Control Register FF48H 0000H

T2 GPT1 Timer 2 Register FE40H 0000H

T3 GPT1 Timer 3 Register FE42H 0000H

T4 GPT1 Timer 4 Register FE44H 0000H

T5 GPT2 Timer 5 Register FE46H 0000H

T6 GPT2 Timer 6 Register FE48H 0000H

CAPREL Capture Reload Register FE4AH 0000H

T2IC1)

1) For the Interrupt Control Register description, please refer to Chapter 7.2, page 111.

GPT1 Timer 2 Interrupt Control Register FF60H 0000H

T3IC1) GPT1 Timer 3 Interrupt Control Register FF62H 0000H

T4IC1) GPT1 Timer 4 Interrupt Control Register FF64H 0000H

T5IC1) GPT2 Timer 5 Interrupt Control Register FF66H 0000H

T6IC1) GPT2 Timer 6 Interrupt Control Register FF68H 0000H

CRIC1) GPT2 CAPREL Interrupt Control Register FF6AH 0000H
Data Sheet 239 2001-04-19

C161U

General Purpose Timer Unit
GPT Clock Control Register

GPTCLC (FE4CH) Reset Value: 0000H

Function Control Registers
The operating mode of the core timer T3 is configured and controlled via its
bitaddressable control register T3CON.

Bit Function
GPTDISR GPT Disable Request Bit

GPTDISR = ‘0’: GPT clock disable not requested
GPTDISR = ‘1’: GPT clock disable requested

GPTDISS GPT Disable Status Bit
GPTDISS = ‘0’: GPT clock enabled
GPTDISS = ‘1’: GPT clock disabled

SUSPEN Peripheral Suspend Enable Bit for OCDS
SUSPEN = ‘0’: Peripheral suspend disabled
SUSPEN = ‘1’: Peripheral suspend enabled

EXDISR External Disable Request
EXRDIS = ‘0’: External clock disable Request is enabled
EXRDIS = ‘1’: External clock disable Request is disabled

T3CON
Timer 3 Control Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T3
IREN

T3
RDIR

T3CH
DIR

T3
EDG

E
FM1 T3

OTL T3OE T3
UDE T3UD T3R T3M T3I

Field Bits Type Value Description
T3I [2:0] rw Timer 3 Input Parameter Selection

Timer mode see Table 44 for encoding
Gated Timer see Table 44 for encoding
Counter mode see Table 45 for encoding
Incremental Interface mode see Table 46 for
encoding

5 4 3 2 1 011 10 9 8 7 615 14 13 12

GPT
DISR

GPT
DISS000000

rw rrw rw

0000 00 SUS
PEN

EX
DISR
Data Sheet 240 2001-04-19

C161U

General Purpose Timer Unit
T3M [5:3] rw
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Timer 3 Mode Control
Timer Mode
Counter Mode
Gated Timer with Gate active low
Gated Timer with Gate active high
Reserved. Do not use this combination!
Reserved. Do not use this combination!
Incremental Interface Mode (Rotation detection)
Incremental Interface Mode (Edge detection)

T3R 6 rw
0
1

Timer 3 Run Bit
Timer / Counter 3 stops
Timer / Counter 3 runs

T3UD 7 rw

0
1

Timer 3 Up / Down Control
(when T3UDE = ’0)
Counting ’Up’
Counting ’Down’

T3UDE 8 rw
0
1

Timer 3 External Up/Down Enable
Counting direction is internally controlled by SW
Counting direction is externally controlled by line
T3EUD

T3OE 9 rw
0

1

Overflow/Underflow Output Enable
T3 overflow/underflow can not be externally
monitored
T3 overflow/underflow may be externally monitored
via T3OUT

T3OTL 10 rw
0 / 1

Timer 3 Output Toggle Latch
Toggles on each overflow / underflow of T3. Can be
set or reset by software.

FM1 11 rw
0

1

Fast Mode for Timer Block 1
The maximum input frequency
for Timer 2/3/4 is fTimer / 8.
The maximum input frequency
for Timer 2/3/4 is fTimer / 4.

T3EDGE 12 rw

0
1

Timer 3 Edge Detection
The bit is set on each successful edge detection.
The bit has to be reset by SW.
No count edge was detected
A count edge was detected

Field Bits Type Value Description
Data Sheet 241 2001-04-19

C161U

General Purpose Timer Unit

T3CHDIR 13 rw

0
1

Timer 3 Count Direction Change
The bit is set on a change of the countdirection of
timer 3. The bit has to be reset by SW.
No change in count direction was detected
A change in count direction was detected

T3RDIR 14 r
0
1

Timer 3 Rotation Direction
Timer 3 counts up.
Timer 3 counts down.

T3IREN 15 rw
0

1

Timer 3 Interrupt Enable
Interrupt generation for T3CHDIR and T3EDGE
is disabled.
Interrupt generation for T3CHDIR and T3EDGE
is enabled.

Table 44 Timer 3 Input Parameter Selection for Timer mode and Gated mode

T3I Prescaler for fTimer (FM1 = 0) Prescaler for fTimer (FM1 = 1)
000 8 4
001 16 8
010 32 16
011 64 32
100 128 64
101 256 128
110 512 256
111 1014 512

Table 45 Timer 3 Input Parameter Selection for Counter mode

T3I Triggering Edge for Counter Update
000 None. Counter T3 is disabled
001 Positive transition (raising edge) on T3IN
010 Negative transition (falling edge) on T3IN
011 Any transition (raising or falling edge) on T3IN
1XX Reserved. Do not use this combination!

Field Bits Type Value Description
Data Sheet 242 2001-04-19

C161U

General Purpose Timer Unit
Table 46 Timer 3 Input Parameter Selection for Incremental Interface mode

T3I Triggering Edge for Counter Update
000 None. Counter T3 stops
001 Any transition (raising or falling edge) on T3IN
010 Any transition (raising or falling edge) on T3EUD
011 Any transition (raising or falling edge) on T3IN or T3EUD
1XX Reserved. Do not use this combination!

T2CON
Timer 2 Control Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T2
IREN

T2
RDIR

T2CH
DIR

T2
EDG

E
’0’ T2RC T2

UDE T2UD T2R T2M T2I

Field Bits Type Value Description
T2I [2:0] rw Timer 2 Input Parameter Selection

Timer mode see Table 47 for encoding
Gated Timer see Table 47 for encoding
Counter mode see Table 48 for encoding
Incremental Interface mode see Table 49 for
encoding

T2M [5:3] rw
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Timer 2 Mode Control (Basic Operating
Mode)
Timer Mode
Counter Mode
Gated Timer with Gate active low
Gated Timer with Gate active high
Reload Mode
Capture Mode
Incremental Interface Mode (Rotation
detection)
Incermental Interface Mode (Edge detection)

T2R 6 rw
0
1

Timer 2 Run Bit
Timer / Counter 2 stops
Timer / Counter 2 runs
Data Sheet 243 2001-04-19

C161U

General Purpose Timer Unit
T2UD 7 rw

0
1

Timer 2 Up / Down Control
(when T2UDE = ’0)
Counting ’Up’
Counting ’Down’

T2UDE 8 rw
0
1

Timer 2 External Up/Down Enable
Counting direction is internally controlled by
SW
Counting direction is externally controlled by
line T2EUD
Pin P3.5 connected to T2EUD is also
connected to T4IN and to T3EUD.

T2RC 9 rw
0

1

Timer 2 Remote Control
Timer / Counter 2 is controlled by
its own run bit T2R
Timer / Counter 2 is controlled by
the run bit of core timer 3

0 [11:1
0]

r reserved for future use; reading returns 0;
writing to these bit positions has no effect.

T2EDGE 12 rw

0
1

Timer 2 Edge Detection
The bit is set on each successful edge
detection. The bit has to be reset by SW.
No count edge was detected
A count edge was detected

T2CHDIR 13 rw

0
1

Timer 2 Count Direction Change
The bit is set on a change of the countdirection
of timer 2. The bit has to be reset by SW.
No change in count direction was detected
A change in count direction was detected

T2RDIR 14 r
0
1

Timer 2 Rotation Direction
Timer 2 counts up.
Timer 2 counts down.

T2IREN 15 rw
0

1

Timer 2 Interrupt Enable
Interrupt generation for T2CHDIR and
T2EDGE is disabled.
Interrupt generation for T2CHDIR and
T2EDGE is enabled.

Field Bits Type Value Description
Data Sheet 244 2001-04-19

C161U

General Purpose Timer Unit

Table 47 Timer 2 Input Parameter Selection for Timer mode and Gated mode

T2I Prescaler for fTimer (FM1 = 0) Prescaler for fTimer (FM1 = 1)
000 8 4
001 16 8
010 32 16
011 64 32
100 128 64
101 256 128
110 512 256
111 1014 512

Table 48 Timer 2 Input Parameter Selection for Counter mode

T2I Triggering Edge for Counter Update
X 0 0 None. Counter T2 is disabled
0 0 1 Reserved. Do not use this combination!
0 1 0 Reserved. Do not use this combination!
0 1 1 Reserved. Do not use this combination!
1 0 1 Positive transition (rising edge) of output toggle latch T3OTL
1 1 0 Negative transition (falling edge) of output toggle latch T3OTL
1 1 1 Any transition (rising or falling edge) of output toggle latch

T3OTL

Table 49 Timer 2 Input Parameter Selection for Incremental Interface mode

T2I Triggering Edge for Counter Update
000 None. Counter T2 stops
001 Reserved. Do not use this combination!
010 Any transition (raising or falling edge) on T2EUD
011 Reserved. Do not use this combination!
1XX Reserved. Do not use this combination!
Data Sheet 245 2001-04-19

C161U

General Purpose Timer Unit
T4CON
Timer 4 Control Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T4
IREN

T4
RDIR

T4CH
DIR

T4
EDG

E
’0’ T4RC

’0’
(T4

UDE)
T4UD T4R T4M T4I

Field Bits Type Value Description
T4I [2:0] rw Timer 4 Input Parameter Selection

Timer mode see Table 50 for encoding
Gated Timer see Table 50 for encoding
Counter mode see Table 51 for encoding

T4M [5:3] rw
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Timer 4 Mode Control (Basic Operating
Mode)
Timer Mode
Counter Mode
Gated Timer with Gate active low
Gated Timer with Gate active high
Reload Mode
Capture Mode
Reserved. Do not use this combination.
Reserved. Do not use this combination.

T4R 6 rw
0
1

Timer 4 Run Bit
Timer / Counter 4 stops
Timer / Counter 4 runs

T4UD 7 rw
0
1

Timer 4 Up / Down Control
Counting ’Up’
Counting ’Down’

’0’ (T4UDE-
bit)

8 rw
0

Timer 4 External Up/Down Enable
This bit must be set to ’0’ signal.

T4RC 9 rw
0

1

Timer 4 Remote Control
Timer / Counter 4 is controlled by
its own run bit T4R
Timer / Counter 4 is controlled by
the run bit of core timer 3

’0’ [11:1
0]

r reserved for future use; reading returns 0;
writing to these bit positions has no effect.
Data Sheet 246 2001-04-19

C161U

General Purpose Timer Unit

T4EDGE 12 rw

0
1

Timer 4 Edge Detection
The bit is set on each successful edge
detection. The bit has to be reset by SW.
No count edge was detected
A count edge was detected

T4CHDIR 13 rw

0
1

Timer 4 Count Direction Change
The bit is set on a change of the countdirection
of timer 4. The bit has to be reset by SW.
No change in count direction was detected
A change in count direction was detected

T4RDIR 14 r
0
1

Timer 4 Rotation Direction
Timer 4 counts up.
Timer 4 counts down.

T4IREN 15 rw
0

1

Timer 4 Interrupt Enable
Interrupt generation for T4CHDIR and
T4EDGE is disabled.
Interrupt generation for T4CHDIR and
T4EDGE is enabled.

Table 50 Timer 4 Input Parameter Selection for Timer mode and Gated mode

T4I Prescaler for fTimer (FM1 = 0) Prescaler for fTimer (FM1 = 1)
000 8 4
001 16 8
010 32 16
011 64 32
100 128 64
101 256 128
110 512 256
111 1014 512

Field Bits Type Value Description
Data Sheet 247 2001-04-19

C161U

General Purpose Timer Unit
Table 51 Timer 4 Input Parameter Selection for Counter mode

T4I Triggering Edge for Counter Update
X 0 0 None. Counter T4 is disabled
0 0 1 Positive transition (rising edge) on T4IN
0 1 0 Negative transition (falling edge) on T4IN
0 1 1 Any transition (rising or falling edge) on T4IN
1 0 1 Positive transition (rising edge) of output toggle latch T3OTL
1 1 0 Negative transition (falling edge) of output toggle latch T3OTL
1 1 1 Any transition (rising or falling edge) of output toggle latch

T3OTL

T6CON
Timer 6 Control Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T6SR T6
CLR ’0’ FM2 T6

OTL
’0’
(T6
OE)

’0’
(T6

UDE)
T6UD T6R T6M T6I

Field Bits Type Value Description
T6I [2:0] rw Timer 6 Input Parameter Selection

Timer mode see Table 52 for encoding
T6M [5:3] rw

0 0 0
0 0 1
0 1 0
0 1 1
1 x x

Timer 6 Mode Control (Basic Operating Mode)
Timer Mode
Reserved. Do not use this combination!
Reserved. Do not use this combination!
Reserved. Do not use this combination!
Reserved. Do not use this combination!

T6R 6 rw
0
1

Timer 6 Run Bit
Timer / Counter 6 stops
Timer / Counter 6 runs

T6UD 7 rw
0
1

Timer 6 Up / Down Control
Counting ’Up’
Counting ’Down’

’0’ (T6UDE) 8 rw
0

Timer 6 External Up/Down Enable
This bit must be set to ’0’ signal
Data Sheet 248 2001-04-19

C161U

General Purpose Timer Unit

’0’ (T6OE) 9 rw
0

Overflow/Underflow Output Enable
This bit must be set to ’0’ signal

T6OTL 10 rw
0 / 1

Timer 6 Output Toggle Latch
Toggles on each overflow / underflow of T6.
Can be set or reset by software.

FM2 11 rw
0

1

Fast Mode for Timer Block 2
The maximum input frequency
for Timer 5/6 is fTimer / 4.
The maximum input frequency
for Timer 5/6 is fTimer / 2.

’0’ [13:1
2]

r reserved for future use; reading returns 0;
writing to these bit positions has no effect.

T6CLR 14 rw
0
1

Timer 6 Clear Bit
Timer 6 is not cleared on a capture event
Timer 6 is cleared on a capture event

T6SR 15 rw
0
1

Timer 6 Reload Mode Enable
Reload from register CAPREL Disabled
Reload from register CAPREL Enabled

Table 52 Timer 6 Input Parameter Selection for Timer mode and Gated mode

T6I Prescaler for fTimer (FM2 = 0) Prescaler for fTimer (FM2 = 1)
000 4 2
001 8 4
010 16 8
011 32 16
100 64 32
101 128 64
110 256 128
111 512 256

Field Bits Type Value Description
Data Sheet 249 2001-04-19

C161U

General Purpose Timer Unit

T5CON
Timer 5 Control Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T5SC T5
CLR CI CC ’1’

(CT3) T5RC
’0’
(T5

UDE)
T5UD T5R ’0’ T5M T5I

Field Bits Type Value Description
T5I [2:0] rw Timer 5 Input Parameter Selection

Timer mode see Table 53 for encoding
Counter mode see Table 54 for encoding

T5M [4:3] rw
0 0
0 1
1 0
1 1

Timer 5 Mode Control (Basic Operating Mode)
Timer Mode
Counter Mode
Reserved. Do not use this configuration
Reserved. Do not use this configuration

’0’ 5 r reserved for future use; reading returns 0;
writing to these bit positions has no effect.

T5R 6 rw
0
1

Timer 5 Run Bit
Timer / Counter 5 stops
Timer / Counter 5 runs

T5UD 7 rw
0
1

Timer 5 Up / Down Control
Counting ’Up’
Counting ’Down’

’0’ (T5UDE) 8 rw
0

Timer 5 External Up/Down Enable
This bit must be set to ’0’ signal

T5RC 9 rw
0

1

Timer 5 Remote Control
Timer / Counter x is controlled by
its own run bit T5R
Timer / Counter 5 is controlled by
the run bit of core timer 6 (T6R)

’1’ (CT3) 10 rw
0

Timer 3 Capture Trigger Enable
This bit must be set to ’1’ signal

CC 11 rw
0
1

Capture Correction
T5 is just captured
T5 is decremented by 1 before being captured
Data Sheet 250 2001-04-19

C161U

General Purpose Timer Unit

CI [13:1
2]

rw
0 0
0 1
1 0
1 1

Register CAPREL Capture Trigger
Selection Capture disabled
Any transition on T3IN
Any transition on T3EUD
Any transition on T3IN or T3EUD

T5CLR 14 rw
0
1

Timer 5 Clear Bit
Timer 5 not cleared on a capture
Timer 5 is cleared on a capture

T5SC 15 rw
0
1

Timer 5 Capture Mode Enable
Capture into register CAPREL Disabled
Capture into register CAPREL Enabled

Table 53 Timer 5 Input Parameter Selection for Timer mode

T5I Prescaler for fTimer (FM2 = 0) Prescaler for fTimer (FM2 = 1)
000 4 2
001 8 4
010 16 8
011 32 16
100 64 32
101 128 64
110 256 128
111 512 256

Table 54 Timer 5 Input Parameter Selection for Counter mode

T5I Triggering Edge for Counter Update
X 0 0 None. Counter T5 is disabled
0 0 1 Reserved, do not use this combination
0 1 0 Reserved, do not use this combination

Field Bits Type Value Description
Data Sheet 251 2001-04-19

C161U

General Purpose Timer Unit

0 1 1 Reserved, do not use this combination
1 0 1 Positive transition (rising edge) of output toggle latch T6OTL
1 1 0 Negative transition (falling edge) of output toggle latch T6OTL
1 1 1 Any transition (rising or falling edge) of output toggle latch

T6OTL

T2/T3/T4/T5/T6
Timer Tx Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

value

Field Bits Type Value Description
value [15:0] rw Timer Tx Register

16 bit register contains the actual timer value of
the respective Timer Tx.

CAPREL
GPT2 CAPREL Register Reset Value: 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

value

Field Bits Type Value Description
value [15:0] rw GPT2 CAPREL Register

16 bit register contains the actual value of the
CAPREL register.

Table 54 Timer 5 Input Parameter Selection for Counter mode

T5I Triggering Edge for Counter Update
Data Sheet 252 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12 Asynchronous/Synchr. Serial Interface
Asynchronous/Synchronous Serial Interface (ASC) provides serial communication
between the C161U and other microcontrollers, microprocessors or external peripherals.
The ASC supports a certain protocol to transfer data via a serial interconnection.

12.1 Functional Description
ASC supports full-duplex asynchronous communication up to 2.25 MBaud and half-
duplex synchronous communication up to 4.5 MBaud (@ 36 MHz CPU clock which is
equal to the ASC module clock). In synchronous mode, data are transmitted or received
synchronous to a shift clock which is generated by the microcontroller. In asynchronous
mode, 8- or 9-bit data transfer, parity generation, and the number of stop bits can be
selected.

12.1.1 Features
• Full duplex asynchronous operating modes

– 8- or 9-bit data frames, LSB first
– Parity bit generation/checking
– One or two stop bits
– Baudrate from 2.25 MBaud to 0.5364 Baud (@ 36 MHz module clock = CPU clock)
– Multiprocessor mode for automatic address/data byte detection
– Loop-back capability
– Support for IrDA data transmission/reception up to max. 115.2 kBaud

• Autobaud detection unit for asynchronous operating modes
– Detection of standard baudrates

1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400 Baud
– Detection of non-standard baudrates
– Detection of asynchronous modes

7-bit, even parity; 7-bit, odd parity;
8-bit, even parity; 8-bit, odd parity; 8-bit, no parity

– Automatic initialization of control bits and baudrate generator after detection
– Detection of a serial two-byte ASCII character frame

• Recently introduced fractional divider
– The fractional divider drastically improves the accuracy of the adjustment for

baudrates
– Standard Baud Rates generation with very small deviation (230.4 kBaud < 0.01%,

460.8 kBaud < 0.15 %, 691.2 kBaud < 0.04 %, 921.6 kBaud < 0.15 %) @ 36 MHz
Data Sheet 253 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
• Half-duplex 8-bit synchronous operating mode
– Baudrate from 4.5 MBaud to 366.21 Baud (@ 36 MHz module clock = CPU clock)

• Double buffered transmitter/receiver

• Interrupt generation
– on a transmitter buffer empty condition
– on a transmit last bit of a frame condition
– on a receiver buffer full condition
– on an error condition (frame, parity, overrun error)
– on the start and the end of a autobaud detection
Data Sheet 254 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.2 Overview
Figure 76 shows a block diagram of the ASC with its operating modes (asynchronous
and synchronous mode.).

Figure 76 Block Diagram of the ASC

fMOD Baudrate
Timer

Serial Port
Control

Receive / Transmit
Buffers and

Shift Registers

RXDO
TXD

Synchronous
Mode

Shift Clock

fMOD Baudrate
Timer

Serial Port
Control

Receive / Transmit
Buffers and

Shift Registers
IrDA

Coding
Mux

IrDA
Decoding

Mux
RXD TXD

Prescaler /
Fractional

Divider

Asynchronous
Mode

fDIV

Autobaud
Detection

÷ 2
or
÷ 3

RXDI

Note: RXDI and RXDO are concatenated
in the port logic to pin RXD.
Data Sheet 255 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.3 Register Description
ASC registers can be basically divided into four types of registers as shown in Figure 77.

Figure 77 SFRs associated with ASC

S0CLC Clock Control Register
S0ID Identification Register
S0CON Control Register
ABS0CON Autobaud Control Register
ABSTAT Autobaud Status Register
S0TIC ASC Transmit Interrupt Control Register
S0RIC ASC Receive Interrupt Control Registe
S0BG Baudrate Timer Reload Register
S0FDV Fractional Divider Register
S0PMW IrDA Pulse Mode and Width Register
S0TBUF Transmit Buffer Register
S0RBUF Receive Buffer Register (read only)
S0EIC ASC Error Interrupt Control Register
S0TBIC ASC Transmit Buffer Interrupt Control Register

Data RegistersControl Register

S0CON S0TBUF
S0RBUF

S0BG
S0FDV
S0PMW

S0CLC

System Registers

ABS0CON
ABSTAT

Interrupt Control

S0TIC
S0RIC
S0EIC
S0TBIC
Data Sheet 256 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Table 55 ASC Register Summary

Name Address Reset Value Type Description
S0CLC FFBAH 0000H rw / r ASC Clock Control Register
S0CON FFB0H 0000H rwh Control Register
ABS0CON FEF8H 0000H rwh Autobaud Control Register
ABSTAT FEFEH 0000H rwh Autobaud Status Register
S0BG FEB4H 0000H rw Baudrate Timer Reload Register
S0FDV FEB6H 0000H rw Fractional Divider Register
S0PMW FEAAH 0000H rw IrDA Pulse Mode and Width

Register
S0TBUF FEB0H 0000H rw Transmit Buffer Register
S0RBUF FEB2H 0000H r Receive Buffer Register
S0TIC FF6CH 0000H rw Serial Channel 0 Transmit

Interrupt Control Register
S0RIC FF6EH 0000H rw Serial Channel 0 Receive

Interrupt Control Register
S0EIC FF70H 0000H rw Serial Channel 0 Error Interrupt

Control Register
S0TBIC F19CH 0000H rw Serial Channel 0 Transmit Buffer

IC Register
Data Sheet 257 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
ASC Clock Control Register

S0CLC (FFBAH) Reset Value: 0000H

The serial operating modes of the ASC module are controlled by its control register
S0CON. This register contains control bits for mode and error check selection, and
status flags for error identification.

Note: Serial data transmission or reception is only possible when the run bit S0CON.R
is set to ‘1’. Otherwise the serial interface is idle.
Do not program the mode control field S0CON.M to one of the reserved
combinations to avoid unpredictable behaviour of the serial interface.

Bit Function
S0DISR ASC Disable Request Bit

S0DISR = ‘0’: ASC clock disable not requested
S0DISR = ‘1’: ASC clock disable requested

S0DISS ASC Disable Status Bit
S0DISS = ‘0’: ASC clock enabled
S0DISS = ‘1’: ASC clock disabled

SUSPEN Peripheral Suspend Enable Bit for OCDS
SUSPEN = ‘0’: Peripheral suspend disabled
SUSPEN = ‘1’: Peripheral suspend enabled

EXDISR External Disable Request
EXRDIS = ‘0’: External clock disable Request is enabled
EXRDIS = ‘1’: External clock disable Request is disabled

S0CON
Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R LB BRS ODD FDE OE FE PE OEN FEN PEN/
RXDI REN STP M

5 4 3 2 1 011 10 9 8 7 615 14 13 12

S0
DISR

S0
DISS000000

rw rrw rw

0000 00 SUS
PEN

EX
DISR
Data Sheet 258 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Field Bits Type Value Description
M 2-0 rwh

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Mode Selection
8-bit data synchronous operation
8-bit data async. operation
IrDA mode, 8-bit data async. operation
7-bit data + parity async. operation
9-bit data async. operation
8-bit data + wake up bitasync. operation
Reserved. Do not use this combination!
8-bit data + parity async. operation
Bits are set/cleared by hardware after a
successfull autobaud detection operation.
In synchronous operation (M=’000’), the
Fractional Divider is always disabled.

STP 3 rw
0
1

Number of Stop Bit Selection
One stop bit
Two stop bits

REN 4 rwh
0
1

Receiver Enable Control
Receiver diabled
Receiver enabled
Bit can be affected during autobaud detection
operation when bit ABEN_AUREN is set.
Bit is reset by hardware after reception of byte
in synchronous mode.

PEN
RXDI

5 rw

0
1

0
1

Parity Check Enable /
IrDA Input Inverter Enable
All asynchronous modes without IrDA mode:
Ignore parity
Check parity
Only in IrDA mode (M=010):
RXD input is not inverted
RXD input is inverted

FEN 6 rw
0
1

Framing Check Enable (async. modes only)
Ignore framing errors
Check framing errors

OEN 7 rw
0
1

Overrun Check Enable
Ignore overrun errors
Check overrun errors
Data Sheet 259 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
PE 8 rwh Parity Error Flag
Set by hardware on a parity error (PEN=’1’).
Must be reset by software.

FE 9 rwh Framing Error Flag
Set by hardware on a framing error (FEN=’1’).
Must be reset by software.

OE 10 rwh Overrun Error Flag
Set by hardware on an overrun error (OEN=’1’).
Must be reset by software.

FDE 11 rw
0
1

Fractional Divider Enable
Fractional divider disabled
Fractional divider is enabled and used as
prescaler for baudrate timer (bit BRS is don’t
care)

ODD 12 rwh
0

1

Parity Selection
Even parity selected (parity bit set on odd
number of ‘1’s in data)
Odd parity selected (parity bit set on even
number of ‘1’s in data)
Bit is be set/cleared by hardware after a
successfull autobaud detection operation.

BRS 13 rw
0
1

Baudrate Selection
Baudrate timer prescaler divide-by-2 selected
Baudrate timer prescaler divide-by-3 selected
BRS is don’t care if FDE=1 (fractional divider
enabled)

LB 14 rw
0
1

Loopback Mode Enable
Loopback mode disabled
Loopback mode enabled

R 15 rw
0
1

Baudrate Generator Run Control
Baudrate generator disabled (ASC_P inactive)
Baudrate generator enabled
BG should only be written if R=’0’.

Field Bits Type Value Description
Data Sheet 260 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The autobaud control register ABS0CON of the ASC module is used to control the
autobaud detection operation. It contains its general enable bit, the interrupt enable
control bits, and data path control bits.

ABS0CON
Autobaud Control Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 RX
INV

TX
INV ABEM 0 0 0

FC
DET
EN

AB
DET
EN

ABST
EN

AUR
EN

AB
EN

Field Bits Type Value Description
ABEN 0 rwh

0
1

Autobaud Detection Enable
Autobaud detection is disabled
Autobaud detection is enabled
ABEN is reset by hardware after a successful
autobaud detection; (with the stop bit detection
of the second character). Resetting ABEN by
software if it was set aborts the autobaud
detection.

AUREN 1 rw
0

1

Automatic Autobaud Control of CON_REN
CON_REN is not affected during autobaud
detection
CON_REN is cleared (receiver disabled) when
ABEN and AUREN are set together. CON_REN
is set (receiver enabled) after a successful
autobaud detection (with the stop bit detection
of the second character).

ABSTEN 2 rw
0
1

Start of Autobaud Detection Interrupt Enable
Start of autobaud detection interrupt disabled
Start of autobaud detection interrupt enabled

ABDETEN 3 rw
0
1

Autobaud Detection Interrupt Enable
Autobaud detection interrupt disabled
Autobaud detection interrupt enabled
Data Sheet 261 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The autobaud status register ABSTAT of the ASC module indicates the status of the
autobaud detection operation.

Note: SCSDET or SCCDET are set when the second character has been recognized.
CON_ABEN is reset and ABDETIR set after SCSDET or SCCDET have seen set.

FCDETEN 4 rw

0

1

First Character of Two-Byte Frame Detected
Enable
Autobaud detection interrupt ABDETIR
becomes active after the two-byte frame
recognition
Autobaud detection interrupt ABDETIR
becomes active after detection of the first and
second byte of the two-byte frame.

ABEM 8-9 rw

0 0
0 1

1 0
1 1

Autobaud Echo Mode Enable
In echo mode the serial data at RXD is switched
to TXD output.
Echo mode disabled
Echo mode is enabled during autobaud
detection
Echo mode is always enabled
reserved;

TXINV 10 rw
0
1

Transmit Inverter Enable
Transmit inverter disabled
Transmit inverter enabled

RXINV 11 rw
0
1

Receive Inverter Enable
Receive inverter disabled
Receive inverter enabled

– 7-5,
15-12

0 all reserved

ABSTAT
Autobaud Status Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 DET
WAIT

SCC
DET

SCS
DET

FCC
DET

FCS
DET

Field Bits Type Value Description
Data Sheet 262 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Field Bits Type Value Description
FCSDET 0 rwh

0
1

First Character with Small Letter Detected
no small ’a’ character detected
small ’a’ character detected
Bit is cleared by hardware when
ABCON_ABEN is set or if FCCDET or
SCSDET or SCCDET is set. Bit can be also
cleared by software.

FCCDET 1 rwh
0
1

First Character with Capital Letter Detected
no capital ’A’ character detected
capital ’A’ character detected
Bit is cleared by hardware when
ABCON_ABEN is set or if FCSDET or
SCSDET or SCCDET is set. Bit can be also
cleared by software.

SCSDET 2 rwh
0
1

Second Character with Small Letter Detected
no small ’t’ character detected
small ’t’ character detected
Bit is cleared by hardware when
ABCON_ABEN is set or if FCSDET or
FCCDET or SCCDET is set. Bit can be also
cleared by software.

SCCDET 3 rwh
0
1

Second Character with Capital Letter Detected
no capital ’T’ character detected
capital ’T’ character detected
Bit is cleared by hardware when
ABCON_ABEN is set or if FCSDET or
FCCDET or SCSDET is set. Bit can be also
cleared by software.

DETWAIT 4 rwh
0

1

Autobaud Detection is Waiting
Either character ’a’, ’A’, ’t’, or ’T’ has been
detected.
The autobaud detection unit waits for the first
’a’ or ’A’
Bit is cleared when either FCSDET or FCCDET
is set (’a’ or ’A’ detected). Bit can be also
cleared by software. DETWAIT is set by
hardware when ABCON_ABEN is set.

– 15-5 0 all reserved
Data Sheet 263 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The baudrate timer reload register S0BG of the ASC module contains the 13-bit reload
value for the baudrate timer in asynchronous and sychronous mode.

The fractional divider register S0FDV of the ASC module contains the 9-bit divider value
for the fractional divider (asynchronous mode only). It is also used for reference clock
generation of the autobaud detection unit.

S0BG
Baudrate Timer/Reload Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 BR_VALUE

Field Bits Type Value Description
BR_VALUE 12-0 rw all Baudrate Timer/Reload Register Value

Reading BG returns the 13-bit content of the
baudrate timer (bits 15....13 return 0); writing
BG loads the baudrate timer reload register
(bits 15....13 are don’t care). BG should only be
written if CON_R=’0’.

– 15-13 0 all reserved

S0FDV
Fractional Divider Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 FD_VALUE

Field Bits Type Value Description
FD_VALUE 8-0 rw all Fractional Divider Register Value

FDV contains the 9-bit value n of the fractional
divider which defines the fractional divider ratio:
n/512 n=0-511). With n=0, the fractional divider
is switched off (input=output frequency,
fDIV = fMOD, see Figure 86).

– 15-9 0 all reserved
Data Sheet 264 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The IrDA pulse mode and width register S0PMW of the ASC module contains the 8-bit
IrDA pulse width value and the IrDA pulse width mode select bit. This register is only
required in the IrDA operating mode.

The transmitter buffer register S0TBUF of the ASC module contains the transmit data
value in asynchronous and synchronous modes.

S0PMW
IrDA Pulse Mode/Width Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 IRPW PW_VALUE

Field Bits Type Value Description
PW_VALUE 7-0 rw all IrDA Pulse Width Value

PW_VALUE is the 8-bit value n, which defines
the variable pulse width of an IrDA pulse.
Depending on the ASC_P input frequency fMOD,
this value can be used to adjust the IrDA pulse
width to value which is not equal 3/16 bit time
(e.g. 1.6 µs).

IRPW 8 rw
0
1

IrDA Pulse Width Mode Control
IrDA pulse width is 3/16 of the bit time
IrDA pulse width is defined by PW_VALUE

– 15-9 0 all reserved

S0TBUF
Transmitter Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 TD_VALUE
Data Sheet 265 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The receiver buffer register S0RBUF of the ASC module contains the receive data value
in asynchronous and synchronous modes.

S0TIC SFR Reset Value: - - 00H

Field Bits Type Value Description
TD_VALUE 8-0 rw all Transmit Data Register Value

TBUF contains the data to be transmitted in
asynchronous and synchronous operating
mode of the ASC. Data transmission is double
buffered, Therefore, a new value can be written
to TBUF before the transmission of the previous
value is complete.

– 15-9 0 all reserved

S0RBUF
Receive Buffer Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 RD_VALUE

Field Bits Type Value Description
RD_VALUE 8-0 rw all Receive Data Register Value

S0RBUF contains the reveived data bits and,
depending on the selected mode, the parity bit
in asynchronous and synchronous operating
mode of the ASC.
In asynchronous operating mode with M=011
(7-bit data + parity) the received parity bit is
written into RD7.
In asynchronous operating mode with M=111
(8-bit data + parity) the received parity bit is
written into RD8.

– 15-9 0 all reserved

S0
TIE

S0
TIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
Data Sheet 266 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
S0RIC SFR Reset Value: - - 00H

S0EIC SFR Reset Value: - - 00H

S0TBIC SFR Reset Value: - - 00H

Note: Please refer to the general Interrupt Control Register description on page 111 for
an explanation of the control fields.

12.1.4 General Operation
ASC supports full-duplex asynchronous communication up to 2.25 MBaud and half-
duplex synchronous communication up to 4.5 MBaud (@ 36 MHz CPU clock which is
equal to the ASC module clock). In synchronous mode, data are transmitted or received
synchronous to a shift clock which is generated by the microcontroller. In asynchronous
mode, 8- or 9-bit data transfer, parity generation, and the number of stop bits can be
selected. Parity, framing, and overrun error detection is provided to increase the
reliability of data transfers. Transmission and reception of data is double-buffered. For
multiprocessor communication, a mechanism to distinguish address from data bytes is
included. Testing is supported by a loop-back option. A 13-bit baudrate timer with a
versatile input clock divider circuitry provides the ASC with the serial clock signal. In a
special asynchronous mode, the ASC supports IrDA data transmission up to 115.2
kBaud with fixed or programmable IrDA pulse width. A autobaud detection unit allows to
detect asynchronous data frames with its baudrate and mode with automatic initialization
of the baudrate generator and the mode controll bits.
A transmission is started by writing to the Transmit Buffer register S0TBUF. Only the
number of data bits which is determined by the selected operating mode will actually be
transmitted, ie. bits written to positions 9 through 15 of register S0TBUF are always
insignificant.

S0
RIE

S0
RIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

S0
EIR

S0
EIE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

S0
EIR

S0
EIE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL
Data Sheet 267 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Data transmission is double-buffered, so a new character may be written to the transmit
buffer register, before the transmission of the previous character is complete. This allows
the transmission of characters back-to-back without gaps.
Data reception is enabled by the Receiver Enable Bit CON_REN. After reception of a
character has been completed, the received data and, if provided by the selected
operating mode, the received parity bit can be read from the (read-only) Receive Buffer
register S0RBUF. Bits in the upper half of S0RBUF which are not valid in the selected
operating mode will be read as zeros.
Data reception is double-buffered, so that reception of a second character may already
begin before the previously received character has been read out of the receive buffer
register. In all modes, receive buffer overrun error detection can be selected through bit
CON_OEN. When enabled, the overrun error status flag CON_OE and the error interrupt
request line EIR will be acitvated when the receive buffer register has not been read by
the time reception of a second character is complete. The previously received character
in the receive buffer is overwritten.
The Loop-Back option (selected by bit CON_LB) allows the data currently being
transmitted to be received simultaneously in the receive buffer. This may be used to test
serial communication routines at an early stage without having to provide an external
network. In loop-back mode the alternate input/output function of port pins is not
required.
Note: Serial data transmission or reception is only possible when the Baudrate

Generator Run Bit CON_R is set to ‘1’. Otherwise the serial interface is idle.
Do not program the mode control field COM_M to one of the reserved
combinations to avoid unpredictable behaviour of the serial interface

12.1.5 Asynchronous Operation
Asynchronous mode supports full-duplex communication, where both transmitter and
receiver use the same data frame format and the same baudrate. Data is transmitted on
pin P3.10/TXD and received on pin P3.11/RXD. IrDA data transmission/reception is
supported up to 115.2 KBit/s. Figure 78 shows the block diagram of the ASC when
operating in asynchronous mode.
Data Sheet 268 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Figure 78 Asynchronous Mode of Serial Channel ASC

÷16
÷2

fMOD

R

13-Bit Reload Register

13-Bit Baudrate Timer

Fractional
Divider

MUX

FDE BRS

Serial Port Control

Shift Clock

M STP
FE OE

PE

REN
FEN
PEN
OEN
LB

Receive Int.
Request
Transmit Int.
Request
Transmit Buffer
Int. Request
Error Int.
Request

 Transmit Buffer Reg.
TBUF

Receive Shift
Register

Transmit Shift
Register

IrDA
Coding

TXD

Internal Bus

Samp-
lingMux

 RXD

IrDA
Decoding

fDIV

fBRT

Shift Clock

fBR

Receive Buffer Reg.
RBUF

Mux

RIR

TIR

TBIR

EIR

Autobaud
Detection

ODD

÷3

ABSTIRI

ABDETIR

Autobaud
Start Int.
Autobaud
Detect Int.

11 Mux

Mux
Data Sheet 269 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.5.1 Asynchronous Data Frames

8-Bit Data Frames
8-bit data frames either consist of 8 data bits D7...D0 (CON_M=’001B’), or of 7 data bits
D6...D0 plus an automatically generated parity bit (CON_M=’011B’). Parity may be odd
or even, depending on bit CON_ODD. An even parity bit will be set, if the modulo-2-sum
of the 7 data bits is ‘1’. An odd parity bit will be cleared in this case. Parity checking is
enabled via bit CON_PEN (always OFF in 8-bit data mode). The parity error flag
CON_PE will be set along with the error interrupt request flag, if a wrong parity bit is
received. The parity bit itself will be stored in bit RBUF.7.

Figure 79 Asynchronous 8-Bit Frames

9-Bit Data Frames
9-bit data frames either consist of 9 data bits D8...D0 (CON_M=’100B’), of 8 data bits
D7...D0 plus an automatically generated parity bit (CON_M=’111B’) or of 8 data bits
D7...D0 plus wake-up bit (CON_M=’101B’). Parity may be odd or even, depending on bit
CON_ODD. An even parity bit will be set, if the modulo-2-sum of the 8 data bits is ‘1’. An
odd parity bit will be cleared in this case. Parity checking is enabled via bit CON_PEN
(always OFF in 9-bit data and wake-up mode). The parity error flag CON_PE will be set
along with the error interrupt request flag, if a wrong parity bit is received. The parity bit
itself will be stored in bit RBUF.8.

D7

Parit

D0
LSB

D1 D2 D3 D4 D5 D6

D6

Start
Bit

8 Data Bits

10-/11-Bit UART Frame

(1st)
Stop
Bit0

1 1
(2nd)
Stop
Bit

CON_M=001B

D0
LSB

D1 D2 D3 D4 D5
Start
Bit

7 Data Bits

10-/11-Bit UART Frame

(1st)
Stop
Bit0

1 1
(2nd)
Stop
Bit

CON_M=011B
Data Sheet 270 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Figure 80 Asynchronous 9-Bit Frames

In wake-up mode received frames are only transferred to the receive buffer register, if
the 9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt request will be
activated and no data will be transferred.
This feature may be used to control communication in multi-processor system:
When the master processor wants to transmit a block of data to one of several slaves, it
first sends out an address byte which identifies the target slave. An address byte differs
from a data byte in that the additional 9th bit is a '1' for an address byte and a '0' for a
data byte, so no slave will be interrupted by a data 'byte'. An address 'byte' will interrupt
all slaves (operating in 8-bit data + wake-up bit mode), so each slave can examine the 8
LSBs of the received character (the address). The addressed slave will switch to 9-bit
data mode (eg. by clearing bit CON_M.0), which enables it to also receive the data bytes
that will be coming (having the wake-up bit cleared). The slaves that were not being
addressed remain in 8-bit data + wake-up bit mode, ignoring the following data bytes

IrDA Frames
The modulation schemes of IrDA is based on standard asynchronous data transmission
frames. The asynchronous data format in IrDA mode (CON_M=010B) is defined as
follows :
1 start bit / 8 data bits / 1 stop bit

The coding/decoding of/to the asynchronous data frames is shown in Figure 81. In
general, during the IrDA transmissions UART frames are encoded into IR frames and
vice cersa. A low level on the IR frame indicates a “LED off“ state. A high level on the IR
frame indicates a “LED on“ state.
For a “0“ bit in the UART frame a high pulse is generated. For a “1“ bit in the UART frame
no pulse is generated. The high pulse starts in the middle of a bit cell and has a fixed

Bit 9D7D0
LSB

D1 D2 D3 D4 D5 D6
Start
Bit

9 Data Bits

11-/12-Bit UART Frame

(1st)
Stop
Bit0

1 1
(2nd)
Stop
Bit

CON_M=100B : Bit 9 = Data Bit D8
CON_M=101B : Bit 9 = Wake-up Bit
CON_M=111B : Bit 9 = Parity Bit
Data Sheet 271 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
width of 3/16 of the bit time. The ASC also allows to program the length of the IrDA high
pulse. Further, the polarity of the received IrDA pulse cane be inverted in IrAD mode.
Figure 81 shows the non-inverted IrDA pulse scheme.

Figure 81 IrDA Frame Encoding/Decoding

12.1.5.2 Asynchronous Transmission
Asynchronous transmission begins at the next overflow of the divide-by-16 baudrate
timer (transition of the baudrate clock fBR), if bit S0CON.R is set and data has been
loaded into S0TBUF. The transmitted data frame consists of three basic elements:
the start bit
the data field (8 or 9 bits, LSB first, including a parity bit, if selected)
the delimiter (1 or 2 stop bits)
Data transmission is double buffered. When the transmitter is idle, the transmit data
loaded into register S0TBUF is immediately moved to the transmit shift register thus
freeing S0TBUF for the next data to be sent. This is indicated by the transmit buffer
interrupt request line TBIR being activated. S0TBUF may now be loaded with the next
data, while transmission of the previous one is still going on.
The transmit interrupt request line TIR will be activated before the last bit of a frame is
transmitted, ie. before the first or the second stop bit is shifted out of the transmit shift
register.
The transmitter output pin P3.10/TXD must be configured for alternate data output’.

Start
Bit

Start
Bit 8 Data Bits

UART Frame
Stop
Bit

Bit
Time

8 Data Bits

IR Frame
Stop
Bit

0 1 0 0 0 01 1 1 1

0 1 0 0 0 01 1 1 1

Pulse Width =
3/16 Bit Time
(or variable length)

1/2 Bit Time
Data Sheet 272 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.5.3 Asynchronous Reception
Asynchronous reception is initiated by a falling edge (1-to-0 transition) on pin P3.11/
RXD, provided that bits CON_R and CON_REN are set. The receive data input pin
P3.11/RXD is sampled at 16 times the rate of the selected baudrate. A majority decision
of the 7th, 8th and 9th sample determines the effective bit value. This avoids erroneous
results that may be caused by noise.
If the detected value is not a '0' when the start bit is sampled, the receive circuit is reset
and waits for the next 1-to-0 transition at pin P3.11/RXD. If the start bit proves valid, the
receive circuit continues sampling and shifts the incoming data frame into the receive
shift register.
When the last stop bit has been received, the content of the receive shift register is
transferred to the receive data buffer register S0RBUF. Simultaneously, the receive
interrupt request line RIR is activated after the 9th sample in the last stop bit time slot (as
programmed), regardless whether valid stop bits have been received or not. The receive
circuit then waits for the next start bit (1-to-0 transition) at the receive data input pin.
The receiver input pin P3.11/RXD must be configured for input.
Asynchronous reception is stopped by clearing bit CON_REN. A currently received
frame is completed including the generation of the receive interrupt request and an error
interrupt request, if appropriate. Start bits that follow this frame will not be recognized.
Note: In wake-up mode received frames are only transferred to the receive buffer

register, if the 9th bit (the wake-up bit) is ‘1’. If this bit is ‘0’, no receive interrupt
request will be activated and no data will be transferred.

12.1.5.4 IrDA Mode
The duration of the IrDA pulse is normally 3/16 of a bit period. The IrDA standard also
allows the pulse duration being independent of the baudrate or bit period. In this case
the transmitted pulse has always the width corresponding to the 3/16 pulse width at
115.2 kBaud which is 1.627 µs. Both, bit period dependend or fixed IrDA pulse width
generation can be selected. The IrDA pulse width mode is selected by bit PMW_IRPW.
In case of fixed IrDA pulse width generation, the lower 8 bits in register PMW are used
to adapt the IrDA pulse width to a fixed value of e.g. 1.627 µs. The fixed IrDA pulse width
is generated by a programmable timer as shown in Figure 82.
Data Sheet 273 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Figure 82 Fixed IrDA Pulse Generation

The IrDA pulse width can be calculated according the formulas given in Table 56.

The name PMW in the formulas of Table 56 represents the content of the reload register
PMW (PW_VALUE), taken as unsigned 8-bit integer.
The content of PMW further defines the minimum IrDA pulse width (tIPW min) which is still
recognized during a receive operation as a valid IrDA pulse. This function is independent
of the selected IrDA pulse width mode (fixed or variable) which is defined by bit
PMW_IRPW. The minimum IrDA pulse width is calculated by a shift right operation of
PMW bit 7-0 by one bit divided by the module clock fMOD.
Note: If PMW_IRPW=0 (fixed IrDA pulse width), PW_VALUE must be a value which

assures that t IPW > t IPW min.

Table 57 gives two examples for typical frequencies of the C161U: 36 MHz and 24 MHz..

Table 56 Formulas for the IrDA Pulse Width Calculation

PMW PMW_IRPW Formulas
1 ... 255 0

1

Table 57 IrDA Pulse Width Adaption to 1.627 µs

fMOD PMW tIPW Error tIPW min

24 MHz 39 1.625 µs - 0.12 % 0.79 µs
36 MHz 59 1.639 µs + 0.74 % 0.81 µs

PMW

8-Bit Timer
fMOD

Start Timer

IrDA Pulse
tIPW

t IPW =
16 x Baudrate

3

t IPW min = fMOD

(PMW >> 1)

t IPW =
fMOD

 PMW
Data Sheet 274 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.5.5 RXD/TXD Data Path Selection in Asynchronous Modes
The data paths for the serial input and output data of the ASC in asynchronous modes
are affected by several control bits in the registers CON and ABCON as shown in
Figure 83. The synchronous mode operation is not affected by these data path selection
capabilities.
The input signal from RXD passes an inverter which is controlled by bit ABCON_RXINV.
The output signal of this inverter is used for the autobaud detection and may bypass the
ASC logic in the echo mode (controlled by bit ABCON_ABEM). Further, two multiplexers
are in the RXD input signal path for providing the loopback mode capability (controlled
by bit CON_LB) and the IrDA receive pulse inversion capability (controlled by bit
CON_RXDI).
Depending on the asynchronous operating mode (controlled by bitfield CON_M), the
ASC output signal or the RXD input signal in echo mode (controlled by bit
ABCON_ABEM) is switched to the TXD output via an inverter (controlled by bit
ABCON_TXINV).

Figure 83 RXD/TXD Data Path in Asynchronous Modes (ASC)

Note: In echo mode the transmit output signal of the ASC logic is blocked by the echo
mode output multiplexer. Figure 83 also shows that it is not possible to use an
IrDA coded receiver input signal for autobaud detection.

RXINV

Detection
Autobaud

Asynch. Mode Logic
ASC

TXD

 RXD

ABCON

CON

TXINV
ABEM

IrDA
Coding

IrDA
Decode

M
ux

M

M
ux

RXDI

M
ux

M
ux

M
ux

LB

M
ux
Data Sheet 275 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.6 Synchronous Operation
Synchronous mode supports half-duplex communication, basically for simple I/O
expansion via shift registers. Data is transmitted and received via pin RXD while pin TXD
outputs the shift clock. These signals are alternate functions of port pins P3.11 and
P3.10. Synchronous mode is selected with CON_M=’000B’.
Eight data bits are transmitted or received synchronous to a shift clock generated by the
internal baudrate generator. The shift clock is only active as long as data bits are
transmitted or received.
Note: The lines RXDI and RXDO are concatenated in the port logic to pin RXD.

Figure 84 Synchronous Mode of Serial Channel ASC_P

TXD

÷4

fMOD

R

13-Bit Reload Register

13-Bit Baudrate Timer

Serial Port Control

Shift Clock

M=000B
OE

REN
OEN
LB

 Transmit Buffer Reg.
TBUF

Transmit Shift
Register

Internal Bus

MUX
 RXDI

fDIV

fBRT

Shift Clock

fBR

0

1

÷2

÷3
Mux

BRS

Receive Buffer Reg.
RBUF

Receive Shift
Register

Receive Int.
Request
Transmit Int.
Request
Transmit Buffer
Int. Request
Error Int.
Request

RIR

TIR

TBIR

EIR

Note: RXDI and RXDO are

port logic to pin RXD.

 RXDO

concatenated in the
Data Sheet 276 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.6.1 Synchronous Transmission
Synchronous transmission begins within 4 state times after data has been loaded into
S0TBUF provided that CON_R is set and CON_REN=’0’ (half-duplex, no reception).
Exception : in loopback mode (bit CON_LB set), CON_REN must be set for reception of
the transmitted byte. Data transmission is double buffered. When the transmitter is idle,
the transmit data loaded into S0TBUF is immediately moved to the transmit shift register
thus freeing S0TBUF for the next data to be sent. This is indicated by the transmit buffer
interrupt request line TBIR being activated. S0TBUF may now be loaded with the next
data, while transmission of the previous one is still going on. The data bits are
transmitted synchronous with the shift clock. After the bit time for the 8th data bit, both
TXD and RXD will go high, the transmit interrupt request line TIR is activated, and serial
data transmission stops.
Pin P3.10/TXD must be configured for alternate data output in order to provide the shift
clock. Pin P3.11/RXD must also be configured for output during transmission.

12.1.6.2 Synchronous Reception
Synchronous reception is initiated by setting bit CON_REN=’1’. If bit CON_R=1, the data
applied at RXD is clocked into the receive shift register synchronous to the clock which
is output at pin TXD. After the 8th bit has been shifted in, the content of the receive shift
register is transferred to the receive data buffer RBUF, the receive interrupt request line
RIR is activated, the receiver enable bit CON_REN is reset, and serial data reception
stops.
Pin P3.10/TXD must be configured for alternate data output in order to provide the shift
clock. Pin P3.11/RXD must be configured as alternate data input.
Synchronous reception is stopped by clearing bit CON_REN. A currently received byte
is completed including the generation of the receive interrupt request and an error
interrupt request, if appropriate. Writing to the transmit buffer register while a reception
is in progress has no effect on reception and will not start a transmission.
If a previously received byte has not been read out of the receive buffer register at the
time the reception of the next byte is complete, both the error interrupt request line EIR
and the overrun error status flag CON_OE will be activated/set, provided the overrun
check has been enabled by bit CON_OEN.
Data Sheet 277 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.6.3 Synchronous Timing
Figure 85 shows timing diagrams of the ASC synchronous mode data reception and
data transmission. In idle state the shift clock is at high level. With the beginning of a
synchronous transmission of a data byte the data is shifted out at RXD with the falling
edge of the shift clock. If a data byte is received through RXD data is latched with the
rising edge of the shift clock.
Between two consecutive receive or transmit data bytes one shift clock cycle (fBR) delay
is inserted.

Figure 85 ASC_P3 Synchronous Mode Waveforms

12.1.7 Baudrate Generation
The serial channel ASC has its own dedicated 13-bit baudrate generator with 13-bit
reload capability, allowing baudrate generation independent of the GPT timers.

Shift
Latch

Shift
Latch

Valid

Shift

Valid
Data n+2

Shift Clock

Transmit Data

Shift Clock

Transmit Data

Receive Data Valid
Data n

Receive/Transmit Timing

Continuous Transmit Timing

Data
Bit n

Data
Bit n+1

Data
Bit n+2

D0 D1 D2 D3 D4 D5 D6 D7 D0 D1 D2 D3

1. Byte 2. Byte

Receive Data

D0 D0 D1 D2 D3D6 D7D1 D2 D3 D4 D5

Data n+1

1. Byte 2. Byte
Data Sheet 278 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
The baudrate generator is clocked with a clock (fDIV) which is derived via a prescaler from
the ASC input clock fMOD, e.g. 36 MHz. The baudrate timer is counting downwards and
can be started or stopped through the baudrate generator run bit CON_R. Each
underflow of the timer provides one clock pulse to the serial channel. The timer is
reloaded with the value stored in its 13-bit reload register each time it underflows. The
resulting clock fBRT is again divided by a factor for the baudrate clock (± 16 in
asynchronous modes and ± 4 in synchronous mode). The prescaler is selected by the
bits CON_BRS and CON_FDE. In the asynchronous operating modes, additionally to
the two fixed dividers a fractional divider prescaler unit is available which allows to select
prescaler divider ratios of n/512 with n=0-511. Therefore, the baudrate of ASC is
determined by the module clock, the content of S0FDV, the reload value of S0BG and
the operating mode (asynchronous or synchronous).
Register S0BG is the dual-function Baudrate Generator/Reload register. Reading BG
returns the content of the timer BR_VALUE (bits 15...13 return zero), while writing to
S0BG always updates the reload register (bits 15...13 are insiginificant).
An auto-reload of the timer with the content of the reload register is performed each time
CON_BG is written to. However, if CON_R=’0’ at the time the write operation to BG is
performed, the timer will not be reloaded until the first instruction cycle after CON_R=’1’.
For a clean baudrate initialization S0BG should only be written if CON_R=’0’. If S0BG is
written with CON_R=’1’, an unpredicted behaviour of the ASC may occur during running
transmit or receive operations.

12.1.7.1 Baudrates in Asynchronous Mode
For asynchronous operation, the baudrate generator provides a clock fBRT with 16 times
the rate of the established baudrate. Every received bit is sampled at the 7th, 8th and 9th
cycle of this clock. The clock divider circuitry, which generates the input clock for the 13-
bit baudrate timer, is extended by a fracxtional divider circuitry, which allows the
adjustment of more accurate baudrates and the extension of the baudrate range.
The baudrate of the baudrate generator depends on the following input clock, bits and
register values :
Input clock fMOD

Selection of the baudrate timer input clock fDIV by bits CON_FDE and CON_BRS
If bit CON_FDE=1 (fractional divider) : value of register CON_FDV
value of the 13-bit reload register S0BG
The output clock of the baudrate timer with the reload register is the sample clock in the
asynchronous modes of the ASC. For baudrate calculations, this baudrate clock fBR is
derived from the sample clock fDIV by a division by 16.
Data Sheet 279 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Figure 86 ASC Baudrate Generator Circuitry in Asynchronous Modes

Using the fixed Input Clock Divider
The baudrate for asynchronous operation of serial channel ASC when using the fixed
input clock divider ratios (CON_FDE=0) and the required reload value for a given
baudrate can be determined by the following formulas :
Table 58 Asynchronous Baudrate Formulas using the Fixed Input Clock

Dividers

FDE BRS BG Formula
0 0 0 ... 8191

1

÷16

÷2
fMOD

Baud
Rate
Clock

Sample
Clock

R

13-Bit Reload Register

13-Bit Baudrate Timer

÷3

Fractional
Divider

Mux

FDE

BRS

FDE BRS Selected Divider
0 0 ÷ 2
0 1 ÷ 3
1 X Fractional Divider

fDIV

fBRT

fBR

32 x (BG+1)Baudrate =
fMOD

32 x Baudrate
fMODBG = - 1

48 x (BG+1)Baudrate =
fMOD

48 x Baudrate
fMODBG = - 1
Data Sheet 280 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
BG represents the contents of the reload register S0BG (BR_VALUE), taken as
unsigned 13-bit integer.
The maximum baudrate that can be achieved for the asynchronous modes when using
the two fixed clock dividers and a module clock of 36 MHz is 1.125 MBaud. Table 59
below lists various commonly used baudrates together with the required reload values
and the deviation errors compared to the intended baudrate.

Note: CON_FDE must be 0 to achieve the baudrates in the table above. The deviation
errors given in the table above are rounded. Using a baudrate crystal will provide
correct baudrates without deviation errors.

Using the Fractional Divider
When the fractional divider is selected, the input clock fDIV for the baudrate timer is
derived from the module clock fMOD by a programmable divider. If CON_FDE=1, the
fractional divider is activated, It divides fMOD by a fraction of n/512 for any value of n from
0 to 511. If n=0, the divider ratio is 1 which means that fDIV=fMOD. In general, the fractional
divider allows to program the baudrrate with a much better accuracy than with the two
fixed prescaler divider stages.
BG represents the content of the reload register S0BG (BR_VALUE), taken as unsigned
13-bit integer. FDV represents the content of the fractional divider register S0FDV
(FD_VALUE) taken as unsigned 9-bit integer. For example, typical asynchronous
baudrates are shown in Table 61.
Using the fractional divider and a module clock of 36 MHz (equal to the C161U CPU
clock) the available baudrate range is 2.25 MBaud down to 0.5364 Baud.
.

Table 59 Typical Asynchronous Baudrates using the Fixed Input Clock
Dividers

Baudrate BRS = ‘0’, fMOD = 36 MHz BRS = ‘1’, fMOD = 36 MHz
Deviation
Error

Reload Value Deviation Error Reload
Value

1.125 MBaud --- 0000H --- ---
750.0 kBaud --- --- --- 0000H

19.2 kBaud - 0.69 % 003AH + 0.16 % 0026H

9600 Baud + 0.16 % 0074H + 0.16 % 004DH

4800 Baud + 0.16 % 00E9H + 0.16 % 009BH

2400 Baud + 0.16 % 01D3H + 0.16 % 0137H

1200 Baud + 0.05 % 03A8H +/- 0.0 % 0270H
Data Sheet 281 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Note: ApNote AP2423 provides a program ’ASC.EXE’ which allows to calculate values
for the S0FDV and S0BG registers depending on fMOD, the requested baudrate,
and the maximum deviation. Please contact your Infineon Technologies
representative.

Table 60 Asynchronous Baudrate Formulas using the Fractional Input Clock
Divider

FDE BRS BG FDV Formula
1 X 1 ... 8191 1 ... 511

0

Table 61 Typical Asynchronous Baudrates using the Fractional Input Clock
Divider

fMOD Desired
Baudrate

BG FDV Resulting
Baudrate

Deviation

36 MHz max. Baudrate 0 0 2.25 MBaud 0 %
230.4 kBaud 6 367 230.399 kBaud < 0.01 %
115.2 kBaud 13 367 115.199 kBaud < 0.01 %
57.6 kBaud 27 367 57.5997 kBaud < 0.01 %
38.4 kBaud 41 367 38.3998 kBaud < 0.01 %
19.2 kBaud 83 367 19.1999 kBaud < 0.01 %
min. Baudrate 8191 1 0.53644 Baud 0 %

FDV
16 x (BG+1)

Baudrate =
fMOD

512
x

16 x (BG+1)
Baudrate =

fMOD
Data Sheet 282 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.7.2 Baudrates in Synchronous Mode
For synchronous operation, the baudrate generator provides a clock with 4 times the rate
of the established baudrate.(see Figure 87).

Figure 87 ASC Baudrate Generator Circuitry in Synchronous Mode

The baudrate for synchronous operation of serial channel ASC can be determined by the
formulas as shown in Table 62.

BG represents the content of the reload register S0BR (BR_VALUE), taken as unsigned
13-bit integers.
The maximum baudrate that can be achieved in synchronous mode when using a
module clock of 36 MHz is 4.5 MBaud.

Table 62 Synchronous Baudrate Formulas

BRS BG Formula
0 0 ... 8191

1

÷4
÷2

fMOD
Shift /
Sample
Clock

R

13-Bit Reload Register

13-Bit Baudrate TimerMux

BRS

fDIV

fBRT

BRS Selected Divider
0 ÷ 2
1 ÷ 3

÷3

8 x (BG+1)
Baudrate =

fMOD

8 x Baudrate
fMOD

BG = - 1

12 x (BG+1)Baudrate =
fMOD

12 x Baudrate
fMODBG = - 1
Data Sheet 283 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.8 Autobaud Detection

12.1.8.1 General Operation
The autobaud detection unit in the ASC provides a capability to recognize the mode and
the baudrate of an asynchronous input signal at RXD. Generally, the baudrates to be
recognized must be known by the application. With this knowledge always a set of nine
baudrates can be detected. The autobaud detection unit is not designed to calculate a
baudrate of an unknown asynchronous frame.
Figure 88 shows how the autobaud detection unit of the ASC is integrated into its
asynchronous mode configuration. The RXD data line is an input to the autobaud
detection unit. The clock fDIV which is generated by the fractional divider is used by the
autobaud detection unit as time base. After successful recognition of baudrate and
asynchronous operating mode of the RXD data input signal, bits in the S0CON register
and the value of the S0BG register in the baudrate timer are set to the appropriate
values, and the ASC can start immediately with the reception of serial input data.

Figure 88 ASC Asynchronous Mode Block Diagram

The following sequence must be generally executed to start the autobaud detection unit
for operation :
Definition of the baudrates to be detected : standard or non-standard baudrates
Programming of the Prescaler/Fractional Divider to select a specific value of fDIV
Starting the Prescaler/Fractional Divider (setting CON_R)
Preparing the interrupt system of the CPU

fMOD Baudrate
Timer

Serial Port
Control

Receive / Transmit
Buffers and

Shift Registers
IrDA

Coding
Mux

IrDA
Decoding

MuxRXD
TXD

Prescaler /
Fractional

Divider

Asynchronous
Mode

fDIV

Autobaud
Detection
Data Sheet 284 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Enabling the autobaud detection (setting ABCON_ EN and the interrupt enable bits in
ABCON for interrupt generation, if required)
Polling interrupt request flag or waiting for the autobaud detection interrupt

12.1.8.2 Serial Frames for Autobaud Detection
The autobaud detection of the ASC is based on the serial reception of a specific two-byte
serial frame. This serial frame is build up by the two ASCII bytes "at" or "AT" ("aT" or "At"
are not allowed). Both byte combinations can be detected in five types of asynchronous
frames. Figure 89 and Figure 90 show the serial frames which are detected at least.

Figure 89 Two-Byte Serial Frames with ASCII ’at’

1 0 0 0 0 1 1 0 0 1 0 0 1 0 1 1 1 0 1 1
stopparitystartstopparitystart

’a’ = 61H ’t’ = 74H

1 0 0 0 0 1 1 0 1 1
stopparitystart

’a’ = 61H

0 0 1 0 1 1 1 0 0 1
stopparitystart

’t’ = 74H

8 bit, even parity

8 bit, odd parity

1 0 0 0 0 1 1 0 1
stopstart

’a’ = 61H

0 0 1 0 1 1 1 1 1
start

’t’ = 74H

1 0 0 0 0 1 1 0 1
stopstart

’a’ = 61H

0 0 1 0 1 1 1 0 1
stopstart

’t’ = 74H

8 bit, no parity

parity stopparity

7 bit, odd parity

1 0 0 0 0 1 1 1 1
stopstart

’a’ = 61H

0 0 1 0 1 1 1 0 1
start

’t’ = 74H

parity stopparity

7 bit, even parity
Data Sheet 285 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Figure 90 Two-Byte Serial Frames with ASCII ’AT’

12.1.8.3 Baudrate Selection and Calculation
The autobaud detection requires some calculations concerning the programming of the
baudrate generator and the baudrates to be detected. Two steps must be considered :
Defining the baudrate(s) to be detected
Programming of the baudrate timer prescaler - setup of the clock rate of fDIV
In general, the baudrate generator of the ASC in asynchronous mode is build up by two
parts (see also Figure 86) :
the clock prescaler part which derives fDIV from fMOD
the baudrate timer part which generates the sample clock fBRT and the baudrate clock fBR

1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1
stopparitystartstopparitystart

’A’ = 41H ’T’ = 54H

1 0 0 0 0 0 1 0 0 1
stopparitystart

’A’ = 41H

0 0 1 0 1 0 1 0 1 1
stopparitystart

’T’ = 54H

8 bit, even parity

8 bit, odd parity

1 0 0 0 0 0 1 1 1
stopstart

’A’ = 41H

0 0 1 0 1 0 1 0 1
start

’T’ = 54H

1 0 0 0 0 0 1 0 1
stopstart

’A’ = 41H

0 0 1 0 1 0 1 0 1
stopstart

’T’ = 54H

8 bit, no parity

parity stopparity

7 bit, odd parity

1 0 0 0 0 0 1 0 1
stopstart

’A’ = 41H

0 0 1 0 1 0 1 1 1
start

’T’ = 54H

parity stopparity

7 bit, even parity
Data Sheet 286 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Prior to an autobaud detection the prescaler part has to be setup by the CPU while the
baudrate timer (register BG) is initialized with a 13-bit value (BR_VALUE) automatically
after a successfull autobaud detection. For the following calculations, the fractional
divider is used (CON_FDE = 1).
Note: It is also possible to use the fixed divide-by-2 or divide-by-3 prescaler. But the

fractional divider allows to adapt fDIV much more precise to the required value.

Standard Baudrates
For standard baudrate detection the baudrates as shown in Table 63 can be e.g.
detected. Therefore, the output frequency fDIV of the ASC baudrate generator must be
set to a frequency derived from the module clock fMOD in a way that it is equal to 11.0592
MHz. The value to be written into register FDV is the nearest integer value which is
calculated according the following formula :

Table 63 defines the nine standard baudrates (Br0 - Br8) which can be detected for
fDIV=11.0592 MHz.

According Table 63 a baudrate of 9600 Baud is achieved when register BG is loaded
with a value of 047H, assuming that fDIV has been set to 11.0592 MHz.
Table 63 also lists a divide factor d f which is defined with the following formula :

Table 63 Autobaud Detection using Standard Baudrates (fDIV = 11.0592 MHz)

Baudrate
Numbering

Detectable Standard
Baudrate

Divide Factor d f BG is loaded after
detection with value

Br0 230.400 kBaud 48 2 = 002H

Br1 115.200 kBaud 96 5 = 005H

Br2 57.600 kBaud 192 11 = 00BH

Br3 38.400 kBaud 288 17 = 011H

Br4 19.200 kBaud 576 35 = 023H

Br5 9600 Baud 1152 71 = 047H

Br6 4800 Baud 2304 143 = 08FH

Br7 2400 Baud 4608 287 = 11FH

Br8 1200 Baud 9216 575= 23FH

FDV = 512 x 11.0592 MHz
fMOD

Baudrate =
f DIV

d f
Data Sheet 287 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
This divide factor df defines a fixed relationship between the prescaler output frequency
fDIV and the baudrate to be detected during the autobaud detection operation. This
means, changing fDIV results in a totally different baudrate table in means of baudrate
values. For the baudrates to be detected, the following relations are always valid :

– Br0 = fDIV / 48D, Br1 = fDIV / 96D, up to Br8 = fDIV / 9216D,

A requirement for detecting standard baudrates up to 230.400 kBaud is the fDIV minimum
value of 11.0592 MHz. With the value FD_VALUE in register FDV the fractional divider
fDIV is adapted to the module clock frequency fMOD. Table 64 defines the deviation of the
standard baudrates when using autobaud detection depending on the module clock
fMOD.

Note: If the deviation of the baudrate after autobaud detection is to high, the baudrate
generator (fractional divider FDV and reload register BG) can be reprogrammed if
required to get a more precise baudrate with less error.

Non-Standard Baudrates
Due to the relationship between Br0 to Br8 in Table 63 concerning the divide factor df
other baudrates than the standard baudrates can be also selected. E.g. if a baudrate of
50 kBaud has to be detected, Br2 is e.g. defined as baudrate for the 50 kBaud setection.
This further results in :

– fDIV = 50 kBaud x df@Br2 = 50 kBaud x 192 = 9.6 MHz

Table 64 Standard Baudrates - Deviations and Errors for Autobaud Detection

fMOD FDV Error in fDIV

10 MHz not possible
12 MHz 472 + 0.03 %
13 MHz 436 + 0.1 %
16 MHz 354 + 0.03 %
18 MHz 315 + 0.14 %
18.432 MHz 307 - 0.07 %
20 MHz 283 - 0.04 %
24 MHz 236 + 0.03 %
25 MHz 226 - 0.22 %
30 MHz 189 + 0.14 %
33 MHz 172 + 0.24 %
36 MHz 157 + 0.18 %
Data Sheet 288 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
Therefore, depending on the module clock frequency fMOD, the value of the fractional
divider (register S0FDV must be set in this example according the formula :

Using this selection (fDIV = 9.6 MHz), the detectable baudrates start at 200 kBaud (Br0)
down to 1042 Baud (Br8). Table 65 shows the baudrate table for this example.

12.1.8.4 Overwriting Registers on Successful Autobaud Detection
With a successfull autobaud detection some bits in register S0CON and S0BG are
automatically set to a value which corresponds to the mode and baudrate of the detected
serial frame conditions (see Table 66). In control register S0CON the mode control bits

Table 65 Autobaud Detection using Non-Standard Baudrates (fDIV = 9.6 MHz)

Baudrate
Numbering

Detectable Non-Standard
Baudrates

Divide Factor d f BG is loaded after
detection with value

Br0 200.000 kBaud 48 2 = 002H

Br1 100.000 kBaud 96 5 = 005H

Br2 50 kBaud 192 11 = 00BH

Br3 33.333 kBaud 288 17 = 011H

Br4 16.667 kBaud 576 35 = 023H

Br5 8333 Baud 1152 71 = 047H

Br6 4167 Baud 2304 143 = 08FH

Br7 2083 Baud 4608 287 = 11FH

Br8 1047 Baud 9216 575 = 23FH

FDV = 512 x fDIV
fMOD with fDIV = 9.6 MHz
Data Sheet 289 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
CON_M and the parity select bit CON_ODD are overwritten. Register S0BG is loaded
with the 13-bit reload value for the baudrate timer.

Note: The autobaud detection interrupts are described in Chapter 12.1.10.

12.1.9 Hardware Error Detection Capabilities
To improve the safety of serial data exchange, the serial channel ASC provides an error
interrupt request flag, which indicates the presence of an error, and three (selectable)
error status flags in register S0CON, which indicate which error has been detected
during reception. Upon completion of a reception, the error interrupt request line EIR will
be activated simultaneously with the receive interrupt request line RIR, if one or more of
the following conditions are met :
the framing error detection enable bit CON_FEN is set and any of the expected stop bits
is not high, the framing error flag CON_FE is set, indicating that the error interrupt
request is due to a framing error (Asynchronous mode only).
If the parity error detection enable bit CON_PEN is set in the modes where a parity bit is
received, and the parity check on the received data bits proves false, the parity error flag
CON_PE is set, indicating that the error interrupt request is due to a parity error
(Asynchronous mode only).
If the overrun error detection enable bit CON_OEN is set and the last character received
was not read out of the receive buffer by software or DMA transfer at the time the
reception of a new frame is complete, the overrun error flag CON_OE is set indicating
that the error interrupt request is due to an overrun error (Asynchronous and
synchronous mode).

Table 66 Autobaud Detection Overwrite Values for the S0CON Register

Detected Parameters CON_M CON_ODD BG_BR_VALUE
Operating Mode 7 bit, even parity

7 bit, odd parity
8 bit, even parity
8 bit, odd parity
8 bit, no parity

0 1 1
0 1 1
1 1 1
1 1 1
0 0 1

0
1
0
1
0

-

Baudrate Br0
Br1
Br2
Br3
Br4
Br5
Br6
Br7
Br8

- - 2 = 002H
5 = 005H
11 = 00BH
17 = 011H
35 = 023H
71 = 047H
143 = 08FH
287 = 11FH
575 = 23FH
Data Sheet 290 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface
12.1.10 Interrupts
Six interrupt sources are provided for serial channel ASC. Line TIR indicates a transmit
interrupt, TBIR indicates a transmit buffer interrupt, RIR indicates a receive interrupt and
EIR indicates an error interrupt of the serial channel. The autobaud detection unit
provides two additional interrupts, the ABSTIR start of autobaud operation interrupt and
the ABDETIR autobaud detected interrupt. The interrupt output lines TBIR, TIR, RIR,
EIR, ABSTIR, and ABDETIR are activated (active state) for two periods of the module
clock fMODfour.
The cause of an error interrupt request (framing, parity, overrun error) can be identified
by the error status flags FE, PE, and OE which are located in control register CON. For
the two autobaud detection interrupts register ABSTAT provides status information.
Note: In contrary to the error interrupt request line EIR, the error status flags FE/PE/OE

are not reset automatically but must be cleared by software.

For normal operation (ie. besides the error interrupt) the ASC provides three interrupt
requests to control data exchange via this serial channel:
• TBIR is activated when data is moved from TBUF to the transmit shift register.
• TIR is activated before the last bit of an asynchronous frame is transmitted, or after

the last bit of a synchronous frame has been transmitted.
• RIR is activated when the received frame is moved to RBUF.
The transmitter is serviced by two interrupt handlers. This provides advantages for the
servicing software.
For single transfers, it is sufficient to use the transmitter interrupt (TIR), which indicates
that the previously loaded data has been transmitted, except for the last bit of an
asynchronous frame.
For multiple back-to-back transfers it is necessary to load the following piece of data at
last until the time the last bit of the previous frame has been transmitted. In asynchronous
mode this leaves just one bit-time for the handler to respond to the transmitter interrupt
request, in synchronous mode it is impossible at all.
Using the transmit buffer interrupt (TBIR) to reload transmit data gives the time to
transmit a complete frame for the service routine, as TBUF may be reloaded while the
previous data is still being transmitted.
The ABSTIR start of autobaud operation interrupt is generated whenever the autobaud
detection unit is enabled (ABEN and ABDETEN and ABSTEN set), and a start bit has
been detected at RXD. In this case ABSTIR is generated during autobaud detection
whenever a start bit is detected.
The ABDETIR autobaud detected interrupt is always generated after recognition of the
second character of the two-byte frame, this means after a successful autobaud
detection. If ABCON_FCDETEN is set the ABDETIR autobaud detected interrupt is also
generated after the recognition of the first character of the two-byte frame.
Data Sheet 291 2001-04-19

C161U

Asynchronous/Synchr. Serial Interface

Figure 91 ASC Interrupt Generation

As shown in Figure 91, TBIR is an early trigger for the reload routine, while TIR indicates
the completed transmission. Software using handshake therefore should rely on TIR at
the end of a data block to make sure that all data has really been transmitted.

Idle IdleSt
ar

t

St
ar

t

St
ar

t

St
op

St
op

St
op

Idle Idle

Asynchronous Mode

TBIR TBIR

TIR

TBIR

TIR

RIR RIR

Synchronous Mode

TBIR

RIR

TBIR

TIR

RIR

TBIR

TIR

RIR

TIR

RIR

TIR

Idle St
ar

t

St
op

Asynchronous Modes

ABDETIR 1)

Autobaud Detection

ABSTIR

1) only if FCDETEN=1

1. character St
ar

t

St
op2. character

ABDETIR
Data Sheet 292 2001-04-19

C161U

Real Time Clock (RTC)
13 Real Time Clock (RTC)

13.1 Introduction
Real Time Clock (RTC) module of the C161U basically is an independent timer chain
and counts time ticks. The base frequency of the RTC can be programmed via a reload
counter. The RTC can work fully asynchronous to the system frequency and is optimized
on low power consumption.

13.1.1 Features
The RTC serves for different purposes:
– System clock to determine the current time and date
– Cyclic time based interrupt
– Alarm interrupt for wake up on a defined time
– 48-bit timer for long term measurements

13.1.2 Overview
The real time clock module provides three different types of registers: two control
registers for controlling the RTC´s functionality, three data registers for setting the clock
divider for RTC base frequency programming and for flexible interrupt generation, and
three counter registers they contain the actual time and date. The interrupts are
programmed via one interrupt sub node register.

13.2 Function Description
RTC module consists of a chain of 2 divider blocks, the reloadable 16-bit timer T14 and
the 32-bit RTC timer (accessible via registers RTCH and RTCL). Both timers count up.
Timer T14 is reloaded with the value of register T14REL on every timer T14 overflow.
The count input of the RTC module (RTC_REF_CLK) can be optional divided by a
prescaler with factor 8, see Figure 93.
The RTC module operates in two different modes, an asynchronous and a synchronous
mode. In synchronous mode the RTC module is clocked with a synchronous clock
referring to the CPU clock (RTC clock). In asynchronous mode the RTC module is
clocked with the asynchronous counting input clock (RTC_REF_CLK). The
asynchronous mode is necessary in case of a very low or disabled CPU clock (eg. sleep
mode).
The mode control (asynchronous / synchronous) of the RTC is described as follows:
• The RTC is switched to asynchronous mode if SYSCON2.RCS = '1'
• The RTC is switched to asynchronous mode if device is in sleep mode.
Data Sheet 293 2001-04-19

C161U

Real Time Clock (RTC)
• RTC is switched to asynchronous mode if the system is not in slowdown mode and
the system clock is not locked (observe selected CLK_CFG as set during Reset).

This means that the mode is controlled by bit RCS of register SYSCON2 (see page 390)
unless the system's clock setting indicates that no or an unreliable CPU clock is
available. In the latter case, synchronous mode is not working and thus the RTC is forced
into asynchronous mode.
As long as the CPU clock is four times faster than the RTC_REF_CLK, the RTC module
can be operated in synchronous mode. Otherwise the asynchronous mode has to be
selected by software.
In asynchronous mode no writing but only asynchronous reading to the registers via the
internal bus is possible.

13.2.1 RTC Block Diagram
Figure 92 shows the RTC block diagram:

Figure 92 RTC Block Diagram

13.2.2 RTC Control
The operating behaviour of the RTC module is controlled by the RTCCON register. The
RTC starts counting by setting the run bit RTCR. After reset the run bit is set and the RTC
automatically starts operation. The bit RTCPRE selects a prescaler which divides the

T14REL (16 bit)

T14 (16 bit)

RTC_REF_CLK

6 bit

RTCL

RTCRELL

10 bit

10 bit 6 bit

10 bit

RTCH

RTCRELH

6 bit

6 bit 10 bit

RTC_T14INT xb(3)

Interrupt Sub Node RTCISNC

RTC_INT irq(15) and

RTC3INTRTC2INTRTC1INTRTC0INT

MUX

8:1

RTCPRE

RTCR

T14_IN

altern. source fast ext. interrupt 7
Data Sheet 294 2001-04-19

C161U

Real Time Clock (RTC)
counting clock by factor 8. Activating the prescaler reduces the resolution of the reload
counter T14. If the prescaler is not activated, the RTC may be lose counting clocks on
switching from asynchronous to synchronous mode and back. This effect can be avoided
by activating the prescaler.
Setting the bits T14DEC or T14INC decrements or increments the T14 timer with the
next count event. If at the next count event a reload has to be executed, then an
increment operation is delayed until the next count event occurs. The in/decrement
function can only be used if register T14REL is not equal to FFFFH. These bits are
cleared by hardware after the decrement/increment operation.

13.2.3 System Clock Operation
A real time system clock can be maintained that represents the current time and date. If
the RTC module is not effected by a system reset, it keeps running also during idle mode
and power down mode.
The maximum resolution (minimum stepwidth) for this clock information is determined by
timer T14’s input clock. The maximum usable timespan is achieved when T14REL is
loaded with 0000H and so T14 divides by 216.

13.2.4 Cyclic Interrupt Generation
RTC module can generate an interrupt request RTC_T14INT whenever timer T14
overflows and is reloaded. This interrupt request may eg. be used to provide a system
time tick independent of the CPU clock frequency without loading the general purpose
timers, or to wake up regularly from idle mode. The T14 overflow interrupt
(RTC_T14INT) cycle time can be adjusted via the timer T14 reload register T14REL.
This interrupt request is also ored with all other interrupts of the RTC via the RTC
interrupt sub node RTCISN.

13.2.5 Alarm Interrupt Generation
RTC module can also provide an alarm interrupt. For an easier programming of this
interrupt, the RTCL and RTCH timer can be divided into smaller reloadable timers. Each
sub-timer can be programmed for an overflow on different time bases (e.g. second, hour,
minute, day). With each timer overflow a RTC interrupt is generated. All these RTC
interrupts are ored via the interrupt sub node RTCISNC to one interrupt request
RTC_INT. Additionally the RTC_T14INT is connected to this interrupt sub node.

13.2.6 48-bit Timer Operation
The concatenation of the 16-bit reload timer T14 and the 32-bit RTC timer can be
regarded as a 48-bit timer which counts with the RTC count input frequency
(RTC_REF_CLK) divided by the fixed prescaler, if the prescaler is selected. The reload
registers T14REL, RTCRELL and RTCRELH should be cleared to get a 48-bit binary
Data Sheet 295 2001-04-19

C161U

Real Time Clock (RTC)
timer. However, any other reload values may be used.
The maximum usable timespan is 248 (≈1014) T14 input clocks, which equals more than
100 years (referring to a RTC count input frequency RTC_REF_CLK of 625 KHz, which
is equal to a 20 MHz Oscillator divided by 32, and an activated prescaler).

13.2.7 Defining the RTC Time Base
The count input of the RTC module (RTC_REF_CLK) is connected as shown in
Figure 93. The RTC timer base is equal to timer T14 overflow and depends on the
selectable prescaler and on the reload counter T14.

Figure 93 RTC module clocking scheme

The table below lists the RTC_T14INT interrupt period range for several RTC count input
frequencies:
Table 67 RTC Interrupt Periods

Oscillator
Frequency

Divider
Factor

RTC Input
Frequency

Prescaler
Factor

RTC_T14INT Period
Minimum Maximum

32 KHz 1 32 KHz 31.25 µs 2.048 s
1 MHz 32 312.5 KHz 8 256.0 µs 16.77 s
4 MHz 32 125 KHz 8 64.0 µs 4.194 s
5 MHz 32 19.531 KHz 8 51.2 µs 3.355 s
8 MHz 32 156.25 KHz 8 32.0 µs 2.097 s
10 MHz 32 312.5 KHz 8 25.6 µs 1.678 s
12 MHz 32 375 KHz 8 21.3 µs 1.398 s

RTCmoduleclk001

RTC Timer
32 bit

T14
16 bit

M
U
X

8:1

M
U
X

32:1

OSC

RTC_CLK_SEL

XTAL2

CPU_CLOCK

RTC_REF_CLK

XTAL1 RTC_T14INT

RTC_INT

RTC module (simple drawing)
Data Sheet 296 2001-04-19

C161U

Real Time Clock (RTC)
Table 68 lists the T14 reload values for a time base of 1 s (A), 100 ms (B) and 1 ms (C)
and several RTC input frequencies:

16 MHz 32 500 KHz 8 16.0 µs 1.049 s
20 MHz 32 625 KHz 8 12.8 µs 0.839 s
24 MHz 32 750 KHz 8 10.67 µs 0.699 s
25 MHz 32 781.25 KHz 8 10.24 µs 0.671 s
32 MHz 32 1 MHz 8 8.0 µs 0.524 s
50 MHz 32 1.56 MHz 8 5.12 µs 0.336 s

Table 68 RTC Reload Values

RTC Input
Frequency

Reload Value A Reload Value B Reload Value C
T14REL Base T14REL Base T14REL Base

32 KHz 8300H 1.000 s F380H 100.0 ms FFE0H 1.000 ms
312.5 KHz F0BEH 0.999 s FE79H 100.1 ms FFFCH 1.024 ms
125 KHz C2F7H 1.000 s F9E5H 100.0 ms FFF0H 1.024 ms
19.531 KHz B3B5H 0.999 s F85FH 99.9 ms FFECH 1.024 ms
156.25 KHz 85EEH 1.000 s F3CBH 100.0 ms FFE1H 0.992 ms
312.5 KHz 6769H 1.000 s F0BEH 99.9 ms FFD9H 0.998 ms
375 KHz 48E5H 1.000 s EDB0H 100.0 ms FFD1H 1.003 ms
500 KHz 0BDCH 1.000 s E796H 100.0 ms FFC1H 1.008 ms
625 KHz E17BH 100.0 ms FFB2H 0.998 ms
750 KHz DB61H 100.0 ms FFA2H 1.003 ms
781.25 KHz D9DAH 100.0 ms FF9EH 1.004 ms
1 MHz CF2CH 100.0 ms FF83H 1.000 ms
1.56 MHz B3B5H 99.9 ms FF3DH 0.998 ms

Table 67 RTC Interrupt Periods (cont’d)

Oscillator
Frequency

Divider
Factor

RTC Input
Frequency

Prescaler
Factor

RTC_T14INT Period
Minimum Maximum
Data Sheet 297 2001-04-19

C161U

Real Time Clock (RTC)
13.2.8 Increased RTC Accuracy through Software Correction
The accuracy of the C161U’s RTC is determined by the oscillator frequency and by the
respective prescaling factor (excluding or including T14 and the selectable Prescaler).
The accuracy limit generated by the prescaler is due to the quantization of a binary
counter (where the average is zero), while the accuracy limit generated by the oscillator
frequency is due to the difference between ideal and real frequency (and therefore
accumulates over time). The total accuracy of the RTC can be further increased via
software for specific applications that demand a high time accuracy.
The key to the improved accuracy is the knowledge of the exact oscillator frequency. The
relation of this frequency to the expected ideal frequency is a measure for the RTC’s
deviation. The number N of cycles after which this deviation causes an error of ±1 cycle
can be easily computed. So the only action is to correct the count by ±1 after each series
of N cycles.
This correction may be applied to the RTC register as well as to T14. Also the correction
may be done cyclic, eg. within T14’s interrupt service routine, or by evaluating a formula
when the RTC registers are read (for this the respective „last“ RTC value must be
available somewhere). T14 can be adjusted by a write access or better by using the in/
decrement function provided by the RTCCON register.
Note: For the majority of applications, however, the standard accuracy provided by the

RTC’s structure will be more than sufficient.

13.2.9 Hardware dependend RTC Accuracy
The RTC has different counting accuracies, depending on the operating mode (with or
without prescaler). There is only an impact on the counting accuracy when switching the
RTC from synchronous mode to asynchronous mode and back.
.

13.2.10 Interrupt Sub Node RTCISNC
All RTC interrupts are connected to one interrupt node via an interrupt sub node. For this
interrupt sharing each interrupt source has additionally to the node enable and request
flag its own enable and request flag located in register RTCISNC. After a RTC interrupt
(RTC_INT) is arbitrated, the interrupt service routine has to check the request flags of all
enabled sources and run the respective software routine. The request flags have to be
deleted by software before leaving the interrupt service routine.

Table 69 Impact on counting accuracy

Operating mode Inaccuracy in T14 counting ticks
without prescaler +0 / -0.5
with prescaler +0 / -0
Data Sheet 298 2001-04-19

C161U

Real Time Clock (RTC)
The following figure shows the additional necessary differentiating circuits for the
interrupt logic:

Figure 94 Differentiating Circuits for RTC interrupt

13.2.11 RTC Disable Functionality
The Peripheral Kernel of the RTC can be disabled, if the RTC functionality is not used.
In this case only the bus interface is enabled. Disabling the RTC module reduces the
power consumption and the generated noise of the complete system. The disable
request can be set in two different ways. The bit RTCDIS (if implemented in C161U) of
the central peripheral control register SYSCON3 controls the disable request of the RTC
module. Additional the request can be set with bit RTCDISR inside the RTC Clock
Control register (RTCCLC). The central and the local disable requests are ored. Clearing
the respective disable request flag enables the RTC module again. Note that both
request flags have to be cleared for enabling the RTC module. An activated request flag
sets directly the disabling status flag RTCDISS inside the RTCCLC register and disables
the clock within the Clock Gating Module. Since the RTCCLC register is clocked with the

Diff.
Circuit

RTCISNC

&

Pulse
Generation

&

1

Note: 1)The ISR (Interrupt Service Routine) must delete the IR flag in register
RTCISNC manually. Otherwise no further interrupts can be detected.

T14

RTC0INT

Diff.
Circuit

RTC_T14INT &

Diff.
Circuit

RTC3INT

Diff.
Circuit

&
RTC1INT

Diff.
Circuit

&
RTC2INT

IE

T14
IR1)

RTC0
IE

RTC0
IR1)

RTC1
IE

RTC1
IR1)

RTC2
IE

RTC2
IR1)

RTC3
IE

RTC3
IR1)
Data Sheet 299 2001-04-19

C161U

Real Time Clock (RTC)
bus clock, the disabling status of the RTC can be read and the RTC can be enabled
again.
The following figure shows the disabling mechanism of the RTC module:

Figure 95 Disabling Mechanism of the RTC

In disable state no write access to RTC registers is possible. The only exeption is the
RTCCLC register.

13.2.12 Register Definition of RTC module
The following table shows the register addresses map:

Table 70 Address Map Overview

SFR Address b/p Register Name
F0C8H RTCCLC
F1CCH b RTCCON
F0D0H T14REL
F0D2H T14
F0D4H RTCL
F0D6H RTCH
F0CCH RTCRELL

RTC
DISR

RTC
DISS

01315

RTCCLC

RTC module

RTC_EX_DISR

OCDS_P_SUSPEND

SUSP
EN

2
EXR
DIS

Clock
Gating

RTC_DIS_N
Data Sheet 300 2001-04-19

C161U

Real Time Clock (RTC)
b: bitaddressable p: bit protected

RTC Clock Control Register

RTCCLC (F0C8H) Reset Value: 0000H

F0CEH RTCRELH
F1C8H b/p RTCISNC

Bit Function
RTCDISR RTC Disable Request Bit

RTCDISR = ‘0’: RTC clock disable not requested
RTCDISR = ‘1’: RTC clock disable requested

RTCDISS RTC Disable Status Bit
RTCDISS = ‘0’: RTC clock enabled
RTCDISS = ‘1’: RTC clock disabled

SUSPEN Peripheral Suspend Enable Bit for OCDS
SUSPEN = ‘0’: Peripheral suspend disabled
SUSPEN = ‘1’: Peripheral suspend enabled

EXDISR External Disable Request
EXRDIS = ‘0’: External clock disable Request is enabled
EXRDIS = ‘1’: External clock disable Request is disabled

SFR Address b/p Register Name

5 4 3 2 1 011 10 9 8 7 615 14 13 12

RTC
DISR

RTC
DISS000000

rw rrw rw

0000 00 SUS
PEN

EX
DISR
Data Sheet 301 2001-04-19

C161U

Real Time Clock (RTC)
RTC Control Register

RTCCON (F1CCH) bitaddressableReset Value:0003H

Note: For compatibility reasons the bits RTCR and RTCPRE are set on asynchronous
HW reset (power on reset).

Note: Prescaler Timer T14. Timer T14 generates the input clock for the RTC register and
the periodic interrupt

T14 (F0D2H) Reset Value:0000H

Bit Function
RTCR RTC Run Bit

RTCR = ‘0’: RTC stops
RTCR = ‘1’: RTC runs

RTCPRE RTC Input Source Prescaler enable
RTCPRE = ‘0’: Input Prescaler disabled
RTCPRE = ‘1’: Input Prescaler enabled

T14DEC Decrement T14 Timer Value
Setting this bit to 1 effects a decrement of the T14 timer value. The bit is
cleared by hardware after decrementation.

T14INC Increment T14 Timer Value
Setting this bit to 1 effects an increment of the T14 timer value. The bit is
cleared by hardware after incrementation.

ACCPOS RTC register access possible
This bit indicates that a synchronous read / write access to RTC registers
is possible. The Clock Control register RTCCLC can allways be
accessed.
ACCPOS = ‘0’:No write access is possible, only asynchronous reads.
ACCPOS = ‘1’:Read / Write access is possible

5 4 3 2 1 011 10 9 8 7 615 14 13 12

RTC
R

RTC
PRE00000

rw rwrw rwr

0000 0 T14
DEC

T14
INC

ACC
POS 0

5 4 3 2 1 011 10 9 8 7 615 14 13 12
Data Sheet 302 2001-04-19

C161U

Real Time Clock (RTC)
Timer T14 Reload Register

T14REL (F0D0H) Reset Value:0000H

RTC Count Register Low Word

RTCL (F0D4H) Reset Value:0000H

RTC Count Register High Word

RTCH (F0D6H) Reset Value:0000H

RTC Reload Register Low Word

RTCRELL (F0CCH) Reset Value:0000H

RTC Reload Register High Word

RTCRELH (F0CEH) Reset Value:0000H

5 4 3 2 1 011 10 9 8 7 615 14 13 12

5 4 3 2 1 011 10 9 8 7 615 14 13 12

5 4 3 2 1 011 10 9 8 7 615 14 13 12

5 4 3 2 1 011 10 9 8 7 615 14 13 12

5 4 3 2 1 011 10 9 8 7 615 14 13 12
Data Sheet 303 2001-04-19

C161U

Real Time Clock (RTC)
RTC Interrupt Sub Node Control

RTCISNC (F1C8H) bitaddressableReset Value:UUUUH

Note: The interrupt request flags of the RTC interrupt sub node have to be cleared by
software inside the interrupt service routine.

Bit Function
T14IE T14 Overflow Interrupt Enable Control Bit

‘0’: Interrupt request is disabled
‘1’: Interrupt request is enabled

T14IR T14 Overflow Interrupt Request Flag (bit protected)
‘0’: No request pending
‘1’: This source has raised an interrupt request

RTCxIE RTCx Interrupt Enable Control Bit
‘0’: Interrupt request is disabled
‘1’: Interrupt request is enabled

RTCxIR RTCx Interrupt Request Flag (bit protected)
‘0’: No request pending
‘1’: This source has raised an interrupt request

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw

T14
IE

T14
IR

RTC
0IE

RTC
0 IR

RTC
1IE

RTC
1 IR

RTC
2IE

RTC
2 IR000000

rw rw rwrw rw rw rw

RTC
3IE

RTC
3 IR
Data Sheet 304 2001-04-19

C161U

High-Speed Synchronous Serial Interface
14 High-Speed Synchronous Serial Interface
The High-Speed Synchronous Serial Interface SSC provides flexible high-speed serial
communication between the C161U and other microcontrollers, microprocessors or
external peripherals.
SSC supports full-duplex and half-duplex synchronous communication up to 18 MBaud
in SSC Master Mode and 9 MBaud in SSC Slave Mode (@ 36 MHz CPU clock). The
serial clock signal can be generated by the SSC itself (master mode) or be received from
an external master (slave mode). Data width, shift direction, clock polarity and phase are
programmable. This allows communication with SPI-compatible devices. Transmission
and reception of data is double-buffered. A 16-bit baud rate generator provides the SSC
with a separate serial clock signal.
The high-speed synchronous serial interface can be configured in a very flexible way, so
it can be used with other synchronous serial interfaces (eg. the ASC in synchronous
mode), serve for master/slave or multimaster interconnections or operate compatible
with the popular SPI interface. So it can be used to communicate with shift registers (IO
expansion), peripherals (eg. EEPROMs etc.) or other controllers (networking). The SSC
supports half-duplex and full-duplex communication. Data is transmitted or received on
pins MTSR/P3.9 (Master Transmit / Slave Receive) and MRST/P3.8 (Master Receive /
Slave Transmit). The clock signal is output or input on pin SCLK/P3.13. These pins are
alternate functions of Port 3 pins.

Figure 96 SFRs and Port Pins associated with the SSC

SCLK / P3.13
MTSR / P3.9
MRST / P3.8

SSCCLC SSC Clock Control Register
ODP3 Port 3 Open Drain Control Register
DP3 Port 3 Direction Control Register
SSCBR SSC Baud Rate Generator/Reload Register
SSCTB SSC Transmit Buffer Register
SSCTIC SSC Transmit Interrupt Control Register

P3 Port 3 Data Register
SSCCON SSC Control Register
SSCRB SSC Receive Buffer Register
SSCRIC SSC Receive Interrupt Control Register
SSCEIC SSC Error Interrupt Control Register

ODP3

Ports & Direction Control
Alternate Functions

System

Data Registers Control Registers Interrupt Control

SSCBR SSCCON SSCTIC
DP3
P3

SSCTB
SSCRB

SSCRIC
SSCEIC

SSCCLC
Data Sheet 305 2001-04-19

C161U

High-Speed Synchronous Serial Interface

Figure 97 Synchronous Serial Channel SSC Block Diagram

The operating mode of the serial channel SSC is controlled by its bit-addressable control
register SSCCON. This register serves for two purposes:
• during programming (SSC disabled by SSCEN=’0’) it provides access to a set of

control bits,
• during operation (SSC enabled by SSCEN=’1’) it provides access to a set of status

flags.
Register SSCCON is shown below in each of the two modes.

MCB01957

Receive Int. Request
Transmit Int. Request

Error Int.Request
SSC Control Block

16-Bit Shift Register

Transmit Buffer
Register SSCTB Register SSCRB

Receive Buffer

Pin
Control

Status Control

Shift
Clock

Generator
Baud Rate Clock

Control

Slave Clock
Master Clock

CPU
Clock

I n t e r n a l B u s

MTSR

MRST

SCLK
Data Sheet 306 2001-04-19

C161U

High-Speed Synchronous Serial Interface
SSCCON (FFB2H / D9H) SFR Reset Value: 0000H

Bit Function (Programming Mode, SSCEN = ‘0’)
SSCBM SSC Data Width Selection

0 : Reserved. Do not use this combination.
1...15 : Transfer Data Width is 2...16 bit (<SSCBM>+1)

SSCHB SSC Heading Control Bit
0 : Transmit/Receive LSB First
1 : Transmit/Receive MSB First

SSCPH SSC Clock Phase Control Bit
0 : Shift transmit data on the leading clock edge, latch on trailing edge
1 : Latch receive data on leading clock edge, shift on trailing edge

SSCPO SSC Clock Polarity Control Bit
0 : Idle clock line is low, leading clock edge is low-to-high transition
1 : Idle clock line is high, leading clock edge is high-to-low transition

SSCTEN SSC Transmit Error Enable Bit
0 : Ignore transmit errors
1 : Check transmit errors

SSCREN SSC Receive Error Enable Bit
0 : Ignore receive errors
1 : Check receive errors

SSCPEN SSC Phase Error Enable Bit
0 : Ignore phase errors
1 : Check phase errors

SSCBEN SSC Baudrate Error Enable Bit
0 : Ignore baudrate errors
1 : Check baudrate errors

SSCAREN SSC Automatic Reset Enable Bit
0 : No additional action upon a baudrate error
1 : The SSC is automatically reset upon a baudrate error

SSCMS SSC Master Select Bit
0 : Slave Mode. Operate on shift clock received via SCLK.
1 : Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘0’
Transmission and reception disabled. Access to control bits.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw rwrw rw - rwrw rw - rw

-
SSC
HB

SSC
PH

SSC
PO

rw rw

SSC
BEN

SSC
EN=0

SSC
MS

SSC
PEN

SSC
REN

SSC
TEN - SSCBM

SSC
AREN
Data Sheet 307 2001-04-19

C161U

High-Speed Synchronous Serial Interface
SSCCON (FFB2H / D9H) SFR Reset Value: 0000H

Note: • The target of an access to SSCCON (control bits or flags) is determined by the
state of SSCEN prior to the access, ie. writing C057H to SSCCON in programming
mode (SSCEN=’0’) will initialize the SSC (SSCEN was ‘0’) and then turn it on
(SSCEN=’1’).
• When writing to SSCCON, make sure that reserved locations receive zeros.

The shift register of the SSC is connected to both the transmit pin and the receive pin via
the pin control logic (see block diagram). Transmission and reception of serial data is
synchronized and takes place at the same time, ie. the same number of transmitted bits
is also received. Transmit data is written into the Transmit Buffer SSCTB. It is moved to
the shift register as soon as this is empty. An SSC-master (SSCMS=’1’) immediately
begins transmitting, while an SSC-slave (SSCMS=’0’) will wait for an active shift clock.
When the transfer starts, the busy flag SSCBSY is set and a transmit interrupt request

Bit Function (Operating Mode, SSCEN = ‘1’)
SSCBC SSC Bit Count Field

Shift counter is updated with every shifted bit. Do not write to!!!
SSCTE SSC Transmit Error Flag

1 : Transfer starts with the slave’s transmit buffer not being updated
SSCRE SSC Receive Error Flag

1 : Reception completed before the receive buffer was read
SSCPE SSC Phase Error Flag

1 : Received data changes around sampling clock edge
SSCBE SSC Baudrate Error Flag

1 : More than factor 2 or 0.5 between Slave’s actual and expected
baudrate

SSCBSY SSC Busy Flag
Set while a transfer is in progress. Do not write to!!!

SSCMS SSC Master Select Bit
0 : Slave Mode. Operate on shift clock received via SCLK.
1 : Master Mode. Generate shift clock and output it via SCLK.

SSCEN SSC Enable Bit = ‘1’
Transmission and reception enabled. Access to status flags and M/S
control.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rrw rw - -rw rw - rw

-

rw rw

SSC
BE

SSC
EN=1

SSC
MS

SSC
PE

SSC
RE

SSC
TE -

SSC
BSY - - - SSCBC
Data Sheet 308 2001-04-19

C161U

High-Speed Synchronous Serial Interface
(SSCTIR) will be generated to indicate that SSCTB may be reloaded again. When the
programmed number of bits (2...16) has been transferred, the contents of the shift
register are moved to the Receive Buffer SSCRB and a receive interrupt request
(SSCRIR) will be generated. If no further transfer is to take place (SSCTB is empty),
SSCBSY will be cleared at the same time. Software should not modify SSCBSY, as this
flag is hardware controlled.
Note: Only one SSC (etc.) can be master at a given time.

The transfer of serial data bits can be programmed in many respects:
• the data width can be chosen from 2 bits to 16 bits
• transfer may start with the LSB or the MSB
• the shift clock may be idle low or idle high
• data bits may be shifted with the leading or trailing edge of the clock signa
• the baudrate may be set from 274.7 Baud up to 18 MBaud (@ 36 MHz CPU clock)
• the shift clock can be generated (master) or received (slave)
This allows the adaptation of the SSC to a wide range of applications, where serial data
transfer is required.
Data Width Selection supports the transfer of frames of any length, from 2-bit
“characters” up to 16-bit “characters”. Starting with the LSB (SSCHB=’0’) allows
communication eg. with ASC devices in synchronous mode (C166 family) or 8051 like
serial interfaces. Starting with the MSB (SSCHB=’1’) allows operation compatible with
the SPI interface.
Regardless which data width is selected and whether the MSB or the LSB is transmitted
first, the transfer data is always right aligned in registers SSCTB and SSCRB, with the
LSB of the transfer data in bit 0 of these registers. The data bits are rearranged for
transfer by the internal shift register logic. The unselected bits of SSCTB are ignored, the
unselected bits of SSCRB will be not valid and should be ignored by the receiver service
routine.
Clock Control allows the adaptation of transmit and receive behaviour of the SSC to a
variety of serial interfaces. A specific clock edge (rising or falling) is used to shift out
transmit data, while the other clock edge is used to latch in receive data. Bit SSCPH
selects the leading edge or the trailing edge for each function. Bit SSCPO selects the
level of the clock line in the idle state. So for an idle-high clock the leading edge is a
falling one, a 1-to-0 transition. The figure below is a summary.
Data Sheet 309 2001-04-19

C161U

High-Speed Synchronous Serial Interface

Figure 98 Serial Clock Phase and Polarity Options

14.1 Full-Duplex Operation
The different devices are connected through three lines. The definition of these lines is
always determined by the master: The line connected to the master's data output pin
MTSR is the transmit line, the receive line is connected to its data input line MRST, and
the clock line is connected to pin SCLK. Only the device selected for master operation
generates and outputs the serial clock on pin SCLK. All slaves receive this clock, so their
pin SCLK must be switched to input mode (DP3.13=’0’). The output of the master’s shift
register is connected to the external transmit line, which in turn is connected to the
slaves’ shift register input. The output of the slaves’ shift register is connected to the
external receive line in order to enable the master to receive the data shifted out of the
slave. The external connections are hard-wired, the function and direction of these pins
is determined by the master or slave operation of the individual device.
Note: The shift direction shown in the figure applies for MSB-first operation as well as for

LSB-first operation.

When initializing the devices in this configuration, select one device for master operation
(SSCMS=’1’), all others must be programmed for slave operation (SSCMS=’0’).
Initialization includes the operating mode of the device's SSC and also the function of
the respective port lines (see “Port Control”).

MCD01960

Last
BitTransmit Data

First
Bit

Latch Data

Shift Data

Pins
MTSR/MRST

Serial Clock
SCLK

SSCPO SSCPH

0 0

0 1

1 0

1 1
Data Sheet 310 2001-04-19

C161U

High-Speed Synchronous Serial Interface

Figure 99 SSC Full Duplex Configuration

The data output pins MRST of all slave devices are connected together onto the one
receive line in this configuration. During a transfer each slave shifts out data from its shift
register. There are two ways to avoid collisions on the receive line due to different slave
data:
Only one slave drives the line, ie. enables the driver of its MRST pin. All the other
slaves have to program there MRST pins to input. So only one slave can put its data onto
the master's receive line. Only receiving of data from the master is possible. The master
selects the slave device from which it expects data either by separate select lines, or by
sending a special command to this slave. The selected slave then switches its MRST line
to output, until it gets a deselection signal or command.
Slaves use open drain output on MRST. This forms a Wired-AND connection. The
receive line needs an external pullup in this case. Corruption of the data on the receive
line sent by the selected slave is avoided, when all slaves which are not selected for
transmission to the master only send ones (‘1’). Since this high level is not actively driven
onto the line, but only held through the pullup device, the selected slave can pull this line
actively to a low level when transmitting a zero bit. The master selects the slave device

MCS01963

MRST

SCLK

Device #2 Slave

Clock

Shift Register

MTSR

Clock

Master

Receive

Transmit

Device #1

Clock

MTSR

MRST

SCLK

Shift Register

MTSR

Shift Register

Clock

Slave

SCLK

MRST

Device #3
Data Sheet 311 2001-04-19

C161U

High-Speed Synchronous Serial Interface
from which it expects data either by separate select lines, or by sending a special
command to this slave.
After performing all necessary initializations of the SSC, the serial interfaces can be
enabled. For a master device, the alternate clock line will now go to its programmed
polarity. The alternate data line will go to either '0' or '1', until the first transfer will start.
After a transfer the alternate data line will always remain at the logic level of the last
transmitted data bit.
When the serial interfaces are enabled, the master device can initiate the first data
transfer by writing the transmit data into register SSCTB. This value is copied into the
shift register (which is assumed to be empty at this time), and the selected first bit of the
transmit data will be placed onto the MTSR line on the next clock from the baudrate
generator (transmission only starts, if SSCEN=’1’). Depending on the selected clock
phase, also a clock pulse will be generated on the SCLK line. With the opposite clock
edge the master at the same time latches and shifts in the data detected at its input line
MRST. This “exchanges” the transmit data with the receive data. Since the clock line is
connected to all slaves, their shift registers will be shifted synchronously with the
master's shift register, shifting out the data contained in the registers, and shifting in the
data detected at the input line. After the preprogrammed number of clock pulses (via the
data width selection) the data transmitted by the master is contained in all slaves’ shift
registers, while the master's shift register holds the data of the selected slave. In the
master and all slaves the content of the shift register is copied into the receive buffer
SSCRB and the receive interrupt flag SSCRIR is set.
A slave device will immediately output the selected first bit (MSB or LSB of the transfer
data) at pin MRST, when the content of the transmit buffer is copied into the slave's shift
register. It will not wait for the next clock from the baudrate generator, as the master
does. The reason for this is that, depending on the selected clock phase, the first clock
edge generated by the master may be already used to clock in the first data bit. So the
slave's first data bit must already be valid at this time.
Note: On the SSC always a transmission and a reception takes place at the same time,

regardless whether valid data has been transmitted or received. This is different
eg. from asynchronous reception on ASC.

Initialization of the SCLK pin on the master requires some attention in order to avoid
undesired clock transitions, which may disturb the other receivers. The state of the
internal alternate output lines is '1' as long as the SSC is disabled. This alternate output
signal is ANDed with the respective port line output latch. Enabling the SSC with an idle-
low clock (SSCPO=’0’) will drive the alternate data output and (via the AND) the port pin
SCLK immediately low. To avoid this, use the following sequence:
• select the clock idle level (SSCPO=’x’)
• load the port output latch with the desired clock idle level (P3.13=’x’)
• switch the pin to output (DP3.13=’1’)
• enable the SSC (SSCEN=’1’)
Data Sheet 312 2001-04-19

C161U

High-Speed Synchronous Serial Interface
• if SSCPO=’0’: enable alternate data output (P3.13=’1’)
The same mechanism as for selecting a slave for transmission (separate select lines or
special commands) may also be used to move the role of the master to another device
in the network. In this case the previous master and the future master (previous slave)
will have to toggle their operating mode (SSCMS) and the direction of their port pins (see
description above).

14.2 Half Duplex Operation
In a half duplex configuration only one data line is necessary for both receiving and
transmitting of data. The data exchange line is connected to both pins MTSR and MRST
of each device, the clock line is connected to the SCLK pin.
The master device controls the data transfer by generating the shift clock, while the slave
devices receive it. Due to the fact that all transmit and receive pins are connected to the
one data exchange line, serial data may be moved between arbitrary stations.
Similar to full duplex mode there are two ways to avoid collisions on the data
exchange line:
• only the transmitting device may enable its transmit pin driver
• the non-transmitting devices use open drain output and only send ones.
Since the data inputs and outputs are connected together, a transmitting device will clock
in its own data at the input pin (MRST for a master device, MTSR for a slave). By these
means any corruptions on the common data exchange line are detected, where the
received data is not equal to the transmitted data.
Data Sheet 313 2001-04-19

C161U

High-Speed Synchronous Serial Interface

Figure 100 SSC Half Duplex Configuration

Continuous Transfers
When the transmit interrupt request flag is set, it indicates that the transmit buffer SSCTB
is empty and ready to be loaded with the next transmit data. If SSCTB has been reloaded
by the time the current transmission is finished, the data is immediately transferred to the
shift register and the next transmission will start without any additional delay. On the data
line there is no gap between the two successive frames. Eg. two byte transfers would
look the same as one word transfer. This feature can be used to interface with devices
which can operate with or require more than 16 data bits per transfer. It is just a matter
of software, how long a total data frame length can be. This option can also be used eg.
to interface to byte-wide and word-wide devices on the same serial bus.
Note: Of course, this can only happen in multiples of the selected basic data width, since

it would require disabling/enabling of the SSC to reprogram the basic data width
on-the-fly.

MCS01965

Common
Transmit/
Receive
Line

MRST

SCLK

Device #2 Slave

Clock

Shift Register

MTSR

Clock

Master Device #1

Clock

MTSR

MRST

SCLK

Shift Register

Shift Register

Clock

SlaveDevice #3

SCLK

MTSR

MRST
Data Sheet 314 2001-04-19

C161U

High-Speed Synchronous Serial Interface
Port Control
SSC uses three pins of Port 3 to communicate with the external world. Pin P3.13/SCLK
serves as the clock line, while pins P3.8/MRST (Master Receive / Slave Transmit) and
P3.9/MTSR (Master Transmit / Slave Receive) serve as the serial data input/output lines.
The operation of these pins depends on the selected operating mode (master or slave).
In order to enable the alternate output functions of these pins instead of the general
purpose I/O operation, the respective port latches have to be set to '1', since the port
latch outputs and the alternate output lines are ANDed. When an alternate data output
line is not used (function disabled), it is held at a high level, allowing I/O operations via
the port latch. The direction of the port lines depends on the operating mode. The SSC
will automatically use the correct alternate input or output line of the ports when switching
modes. The direction of the pins, however, must be programmed by the user, as shown
in the tables. Using the open drain output feature helps to avoid bus contention problems
and reduces the need for hardwired hand-shaking or slave select lines. In this case it is
not always necessary to switch the direction of a port pin. The table below summarizes
the required values for the different modes and pins.

Note: In the table above, an 'x' means that the actual value is irrelevant in the respective
mode, however, it is recommended to set these bits to '1', so they are already in
the correct state when switching between master and slave mode.

14.3 Baud Rate Generation
The serial channel SSC has its own dedicated 16-bit baud rate generator with 16-bit
reload capability, allowing baud rate generation independent from the timers.
The baud rate generator is clocked with the CPU clock divided by 2 (fCPU/2). The timer
is counting downwards and can be started or stopped through the global enable bit
SSCEN in register SSCCON. Register SSCBR is the dual-function Baud Rate
Generator/Reload register. Reading SSCBR, while the SSC is enabled, returns the

SSC Port Control

Pin Master Mode Slave Mode
Function Port

Latch
Direction Function Port

Latch
Direction

SCLK Serial Clock
Output

P3.13 = ’1’ DP3.13=’1’ Serial Clock
Input

P3.13 = ’x’ DP3.13=’0
’

MTSR Serial Data
Output

P3.9 = ’1’ DP3.9 = ’1’ Serial Data
Input

P3.9 = ’x’ DP3.9 = ’0’

MRST Serial Data
Input

P3.8 = ’x’ DP3.8 = ’0’ Serial Data
Output

P3.8 = ’1’ DP3.8 = ’1’
Data Sheet 315 2001-04-19

C161U

High-Speed Synchronous Serial Interface
content of the timer. Reading SSCBR, while the SSC is disabled, returns the
programmed reload value. In this mode the desired reload value can be written to
SSCBR.
Note: Never write to SSCBR, while the SSC is enabled.

The formulas below calculate either the resulting baud rate for a given reload value, or
the required reload value for a given baudrate:

<SSCBR> represents the content of the reload register, taken as unsigned 16-bit
integer.
The maximum baud rate that can be achieved when using a CPU clock of 36 MHz is 18
MBaud in SSC Master Mode (<SSCBR>= ’0d’), while in SSC Slave Mode the maximum
baud rate is 9 MBaud (<SSCBR>= ’1d’ since <SSCBR>=’0d’ is not allowed in Slave
Mode). The minimum baud rate is 274.66 Baud (<SSCBR> = ’FFFFH’ = ’65535D’).

14.4 Error Detection Mechanisms
SSC is able to detect four different error conditions. Receive Error and Phase Error are
detected in all modes, while Transmit Error and Baudrate Error only apply to slave mode.
When an error is detected, the respective error flag is set. When the corresponding Error
Enable Bit is set, also an error interrupt request will be generated by setting SSCEIR (see
figure below). The error interrupt handler may then check the error flags to determine the
cause of the error interrupt. The error flags are not reset automatically (like SSCEIR), but
rather must be cleared by software after servicing. This allows servicing of some error
conditions via interrupt, while the others may be polled by software.
Note: The error interrupt handler must clear the associated (enabled) errorflag(s) to

prevent repeated interrupt requests.

A Receive Error (Master or Slave mode) is detected, when a new data frame is
completely received, but the previous data was not read out of the receive buffer register
SSCRB. This condition sets the error flag SSCRE and, when enabled via SSCREN, the
error interrupt request flag SSCEIR. The old data in the receive buffer SSCRB will be
overwritten with the new value and is unretrievably lost.
A Phase Error (Master or Slave mode) is detected, when the incoming data at pin MRST
(master mode) or MTSR (slave mode), sampled with the same frequency as the CPU
clock, changes between one sample before and two samples after the latching edge of
the clock signal (see “Clock Control”). This condition sets the error flag SSCPE and,
when enabled via SSCPEN, the error interrupt request flag SSCEIR.

BSSC =
fCPU

2 * (<SSCBR> + 1)
SSCBR = (

fCPU

2 * BaudrateSSC
) - 1
Data Sheet 316 2001-04-19

C161U

High-Speed Synchronous Serial Interface
A Baud Rate Error (Slave mode) is detected, when the incoming clock signal deviates
from the programmed baud rate by more than 100%, ie. it either is more than double or
less than half the expected baud rate. This condition sets the error flag SSCBE and,
when enabled via SSCBEN, the error interrupt request flag SSCEIR. Using this error
detection capability requires that the slave's baud rate generator is programmed to the
same baud rate as the master device. This feature detects false additional, or missing
pulses on the clock line (within a certain frame).
Note: If this error condition occurs and bit SSCAREN=’1’, an automatic reset of the SSC

will be performed in case of this error. This is done to reinitialize the SSC, if too
few or too many clock pulses have been detected.

A Transmit Error (Slave mode) is detected, when a transfer was initiated by the master
(shift clock gets active), but the transmit buffer SSCTB of the slave was not updated
since the last transfer. This condition sets the error flag SSCTE and, when enabled via
SSCTEN, the error interrupt request flag SSCEIR. If a transfer starts while the transmit
buffer is not updated, the slave will shift out the 'old' contents of the shift register, which
normally is the data received during the last transfer.
This may lead to the corruption of the data on the transmit/receive line in half-duplex
mode (open drain configuration), if this slave is not selected for transmission. This mode
requires that slaves not selected for transmission only shift out ones, ie. their transmit
buffers must be loaded with 'FFFFH' prior to any transfer.
Note: A slave with push/pull output drivers, which is not selected for transmission, will

normally have its output drivers switched. However, in order to avoid possible
conflicts or misinterpretations, it is recommended to always load the slave's
transmit buffer prior to any transfer.
Data Sheet 317 2001-04-19

C161U

High-Speed Synchronous Serial Interface

Figure 101 SSC Error Interrupt Control

14.5 SSC Interrupt Control
Three bit addressable interrupt control registers are provided for serial channel SSC.
Register SSCTIC controls the transmit interrupt, SSCRIC controls the receive interrupt
and SSCEIC controls the error interrupt of serial channel SSC. Each interrupt source
also has its own dedicated interrupt vector. SCTINT is the transmit interrupt vector,
SCRINT is the receive interrupt vector, and SCEINT is the error interrupt vector.
The cause of an error interrupt request (receive, phase, baudrate,transmit error) can be
identified by the error status flags in control register SSCCON.
Note: In contrary to the error interrupt request flag SSCEIR, the error status flags SSCxE

are not reset automatically upon entry into the error interrupt service routine, but
must be cleared by software.

&
SSCTEN

SSCTETransmit
Error

Register SSCCON

&
SSCREN

SSCREReceive
Error

&
SSCPEN

SSCPEPhase
Error

&
SSCBEN

SSCBEBaudrate
Error

 1

&
SSCEIE

SSCEIR

Error
Interrupt
SSCEINT

Register SSCEIC

MCA01968
Data Sheet 318 2001-04-19

C161U

High-Speed Synchronous Serial Interface
SSCTIC (FF72H / B9H) SFR Reset Value: - - 00H

SSCRIC (FF74H / BAH) SFR Reset Value: - - 00H

SSCEIC (FF76H / BBH) SFR Reset Value: - - 00H

Note: Please refer to the general Interrupt Control Register description on page 111 for
an explanation of the control fields.

SSC Clock Control Register

SSCCLC (F0B6H) Reset Value: 0000H

Bit Function
SSCDISR SSC Disable Request Bit

SSCDISR = ‘0’:SSC clock disable not requested
SSCDISR = ‘1’:SSC clock disable requested

SSCDISS SSC Disable Status Bit
SSCDISS = ‘0’:SSC clock enabled
SSCDISS = ‘1’:SSC clock disabled

SSC
TIE

SSC
TIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

SSC
RIE

SSC
RIR

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

SSC
EIR

SSC
EIE

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

GLVLILVL

5 4 3 2 1 011 10 9 8 7 615 14 13 12

SSC
DISR

SSC
DISS000000

rw rrw rw

0000 00 SUS
PEN

EX
DISR
Data Sheet 319 2001-04-19

C161U

High-Speed Synchronous Serial Interface
SUSPEN Peripheral Suspend Enable Bit for OCDS
SUSPEN = ‘0’: Peripheral suspend disabled
SUSPEN = ‘1’: Peripheral suspend enabled

EXDISR External Disable Request
EXRDIS = ‘0’: External clock disable Request is enabled
EXRDIS = ‘1’: External clock disable Request is disabled

Bit Function
Data Sheet 320 2001-04-19

C161U

USB Interface Controller
15 USB Interface Controller

15.1 USB Features
All USB data transfers will be initiated by the USB host. The host is also suspending the
device in order to save power and controls the remote wakeup. The device itself may
resume from suspend mode. The electrical interface and the protocol is compliant with
USB specification 1.1.
C161U provides eight endpoints: in addition to Endpoint Zero as the Default Control
Pipe, seven Endpoints can be configured. Each of these endpoints can be of type
isochronous, bulk or interrupt. Two configurations with alternate settings for multiple
modes of device operation will be supported.
C161U is designed to provide support for all USB device classes, including
Communication Device, Audio and HID Class.
The maximum packet length supported will be 1023 bytes.
Acknowledged (ACK) and Not Acknowledged (NACK) handshake will be generated by
Hardware (HW) within the UDC, whereas each individual endpoint can be STALLED by
Software (SW).

15.2 USB Protocol
USB protocol is packet based and consists of the following key elements: tokens,
packets, transactions and transfers.

Tokens
Tokens will identify the type of packet in the Packet Identifier field (PID) of the token
packet. Four PIDs are defined: SOF (start of frame), SETUP (for device control), IN and
OUT (for control and other data).

Packets
Four types of packets are defined: SOF, token, data and handshake. Each packet begins
with a SYNC byte followed by the Packet Identifier (PID).
A SOF packet consists of the following fields:

– SYNC byte (8 bits)
– Packet Identifier (8 bits)
– Frame Number (11 bits)
– CRC-5 (5 bits)

A token packet consists of the following fields:
– SYNC byte (8 bits)
– Packet Identifier (8 bits)
Data Sheet 321 2001-04-19

C161U

USB Interface Controller
– Address (7 bits)
– Endpoint (4 bits)
– CRC-5 (5 bits)

A data packet consists of the following fields:
– SYNC byte (8 bits)
– Packet Identifier (8 bits)
– Data (n bytes)
– CRC-5 (5 bits)

A handshake packet consists of the following fields:
– SYNC byte (8 bits)
– Packet Identifier (8 bits)

Transaction

A transaction consists of a token packet, optional data packets and a handshake packet.

Transfer

A transfer consists of one or more transactions. Control transfers consists of a setup
transaction, optional data transactions and a handshake/status transaction.

15.3 USB Endpoints
Data transactions will be handled by the UDC core as a bus master via the application
bus interface. The 8-byte SETUP control data will be written into the USBD_SETUP
registers only, whereas subsequent data transactions will use endpoint 0 or another
endpoint specified by the SETUP packet.
In addition, the USBD FIFO/Control block provides eight (i.e. per endpoint) 8-byte
Transmit FIFOs for IN transfers and eight 8-byte Receive FIFOs for OUT transfers. The
Transmit FIFO is accessed by the USBD_TXWRn register and the Receive FIFO by the
USBD_RXRDn register from the CPU via XBUS. Each Receive and Transmit FIFO
provides a Packet-Complete indication register and interrupt USBD_TXDONEn/
USBD_RXDONEn, indicating a complete packet transfer from/to the CPU.
The basic FIFO structure is shown in Figure 102 below. Each endpoint FIFO pair
generates two transfer request interrupt to the EPEC. The USBD_TXREQn interrupt
indicates that the Transmit FIFO is able to accept words from the XBUS. The
USBD_RXREQn interrupt indicates an valid word in the Receive FIFO which can be
read.
The USBD control logic multiplexes the active FIFO input/output on the unidirectional
DEV_DATA or UDC_DATA bus.
Data Sheet 322 2001-04-19

C161U

USB Interface Controller
A 10-bit receive byte counter counts the length of the currently receiving packet. This
length information together with an endpoint/packet status will be provided in the length
register after the packet is received completely.
For SW syncronization purposes, an 1 ms Start-of-Frame (SOF) interrupt will be
generated periodically by the USB host. The frame number will be captured for each
received frame.
No data available for an Interrupt, Bulk or Control endpoint for the dedicated Transmit
FIFO will result in a NACK, generated by the UDC. No Receive FIFO space available will
result also in a NACK. Additionally, for receive function the RX byte count register has to
be read. Otherwise the next packet will be NACKed.
In transmit direction, the software has to read the STATUS bit from the
USBD_STATUS_REG1 register after transferring the packet in order to determine
whether the transfer was ACKed or NACKed by the host.
The SW can STALL or resume the device from suspend mode by using the command
register USBD_CMD_REG.
Data Sheet 323 2001-04-19

C161U

USB Interface Controller

Figure 102 USBD basic FIFO/Control structure

Data requested by Transmit FIFOs (including control IN packets following SETUP
packets) will be transferred from an internal/external memory location to the endpoint
FIFO by the EPEC injecting MOV-instructions into the decode stage of the instruction
pipeline.
Data available by Receive FIFOs (including control OUT packets following SETUP
packets) will be transferred from the endpoint FIFO to an internal/external memory

8-byte Transmit FIFO (IN)

high
byte

low
byte

8-byte Receive FIFO (OUT)

high
byte

low
byte

3

3

TX_DIR_CTRL

RX_DIR_CTRL

XBUS

0

7

0

7

DEV_DATA

UDC_DATA

Endpoint#0
Endpoint#1..6

Application Bus

USBD_TXWRn

USBD_RXRDn

SFR

SFR

16

16

8

8

USBD
Control

USBD_INT_RXREQn (to EPEC)
8

USBD_INT_TXREQn (to EPEC)
8

10-bit packet byte counter

EPEC_DONEn (from EPEC)
8

USBD_INT_RXDONEn (to CPU)

USBD_INT_TXDONEn (to CPU)
8

Setup Register #0

Setup Register #1

Setup Register #2

Setup Register #3

8

Endpoint#7
Data Sheet 324 2001-04-19

C161U

USB Interface Controller
location by the EPEC injecting MOV-instructions into the decode stage of the instruction
pipeline.
In both directions the SW will control the EPEC providing DMA-like source and
destination pointers on a per-packet basis. This provides a maximum degee of flexibility
for the application SW, e.g. a linked list structure or circular FIFOs implementation with
buffer pool elements can be used.

IN-Transactions (Device to Host: TX)

The host requests device data by using the IN transaction. The IN transaction
mechanism handled by the device HW/SW is shown in Figure 103 below.

Figure 103 USB IN-Transfer controlled by SW

Since the UDC requests data handshake from the application within 1UDC clock cycle
(@12MHz) the SW has to provide the next data packet to the Transmit FIFO in time, i.e.
before the host is requesting data, in order to prevent the FIFO from starvation resulting
in a NACK to the host. This can be achieved by either polling for the USBD_TXDONEn
for bit being asserted, indicating a free FIFO or by providing the next packet as soon as
the previous packet has been transmitted completely using the interrupt
USBD_INT_TXDONE directly.
Zero-data-length packets can be sent from SW to the host by writing into the TxEOD
register.

Poll
USBD_INT_TX_DONE

USBD_INT_TX_DONE
= ’0’

program EPEC:
ByteCount, SrcPtr,

DestPtr

USBD_INT_TX_DONE
= ’1’

Enable EPEC
Set EPEC_START

= ’1’

Transmit FIFO
Ready

Transmission
Timeout Error

Timer expiredIDLE

EPEC or FIFO
busy with

USBD_INT_TX_DONE
from USBD

previous packet

Polling active

ISR active

Reset
Data Sheet 325 2001-04-19

C161U

USB Interface Controller
The device SW provides a new packet by setting up the new source and destination
pointer within the EPEC. Since the packet length of the last packet is either 0 or less than
the maximum defined packet length, the EPEC provides a 10-bit byte counter. After
reaching its terminal count value, the EPEC stops transferring data, sets the
EPEC_DONEn pulse signalizing to the USB core the end of packet and sets the EPEC
interrupt. The counter will be loaded by SW for each packet to be transmitted.
The new packet transfer is started by setting the EPEC_STARTn bit in the EPEC register
EPEC_CMD. This bit will enable the word transfer request USBD_INT_TXREQ
generated by the Transmit FIFO.
Whether the last EPEC transfer was a word or byte transfer will be handled by the EPEC
for transmit data.
By this mechanism only a minimum of SW transaction will be required which guarantees
minimum latency times for the UDC handshake procedure.

OUT Transactions (Host to Device: RX)

The host transmits device data by using the OUT transaction. The OUT transaction
mechanism handled by the device HW/SW is shown in Figure 104.
Since the UDC requests data handshake from the application within 4 UDC clock cycles
(@12MHz) the SW has to provide the next empty receive buffer to the Receive FIFO in
time, in order to prevent the FIFO from overflow resulting in a NACK to the host. This can
be achieved by either polling for the USBD_RXDONEn bit for being asserted, indicating
an empty Receive FIFO or by providing the next receive buffer as soon as the previous
packet has been received completely using the interrupt USBD_INT_RXDONE directly.
The USBD provides a 10-bit byte counter USBD_RXBYTECNTn for each endpoint
Receive FIFO counting the data strobe pulses asserted by the UDC. A completed packet
transfer over the application bus (either XferAck or XferNack) will stop the byte counter
and the counter value will be copied into the USBD_RXBYTECNTn register along with
a packet status information (e.g. packet valid). As soon as the complete packet has been
transferred by the EPEC, an endpoint receive interrupt USBD_INT_RXDONE will be
generated.
A new packet can only be received if the RX FIFO is empty, i.e. the EPEC has transfered
the last byte/word. The next packet cannot be accepted by the very same Receive FIFO
until the counter value has been cleared by a CPU read access. Therefore, once the
counter is read and cleared the EPEC is enabled again, the SW has to load the EPEC
with a new source and destination pointers before reading the counter register. This will
enable the word transfer request USBD_INT_RXREQ generated by the Receive FIFO
and EPEC starts transferring words.
Data Sheet 326 2001-04-19

C161U

USB Interface Controller

Figure 104 USB OUT-Transfer controlled by SW

Whether the last EPEC transfer was a word or byte transfer will be indicated by a
USBD_RXBYTECNT value, which will be read by SW.
By this mechanism only a minimum of SW transaction will be required which guarantees
minimum latency times for the UDC handshake procedure.

Control Endpoint 0

The default control pipe is reserved to Endpoint 0. The host communicates over the
control endpoint in order to retrieve device information, device configurations, interfaces,
alternate settings and other device endpoint characteristics. Control endpoints are
bidirectional and the data delivery will be guaranteed.
The hosts starts with an 8-bytes SETUP packet, which will be written to the SETUP
register bank USBD_Setup(3:0). A SETUP interrupt request will inform the CPU in order
to process the SETUP packet if the packet was received without any errors. A pending/
processing SETUP request, which will be overwritten by the host, has to be retired by
the device SW.
In the bidirectional data stage, optional data packets can be read/written by the host
through the 8-bytes bidirectional Endpoint 0 FIFO.

Poll
USBD_INT_RX_DONE

USBD_INT_RX_DONE
= ’0’

program EPEC:
ByteCount, SrcPtr,

DestPtr

USBD_INT_RX_DONE
= ’1’

Read RXBYTECNT

Packet transfer
to buffer complete

Receive
Timeout Error

Timer expiredIDLE

EPEC or FIFO
busy with

USBD_INT_RX_DONE
from USBD

previous packet

Polling active

ISR active
Write to head of

packet

Reset
Data Sheet 327 2001-04-19

C161U

USB Interface Controller
The following handshake/status stage will be generated by the UDC core itself. The
application interface has to check for the zero length data IN/OUT token in reverse
direction of the actual transfer sent by the host at the end of the data stage. I.e. the
control read (IN token) will be terminated by an OUT token with zero length data transfer
and the control write by an IN token.
The status stage will be NACK’d by the device until the SW has processed the request.
A STALL will indicate to the host that the request cannot be completed successfully by
the device.

Isochronous, Bulk and Interrupt Endpoints

All these types of transfers are handled by the FIFO/EPEC mechanism described for IN
and OUT transactions above.

Standard Device Requests

Most of the standard device requests will be handled by the UDC internally, including
SETUP stage, optional DATA stage and STATUS stage. Only GET_DESCRIPTOR,
SET_DESCRIPTOR, SYNC_FRAME will be forwarded to the application bus and
handled by SW.
The 8-byte SETUP request will be captured in the SETUP registers. IN/OUT transactions
from the host will be NACK’d until the SW is ready. The SETUP registers cannot be
overwritten by the host until all 4 registers have been read.
The USB specification allows an early termination of control transfers. For control
requests with data transmission from device to host, this means that host can send a
status out packet even thought it had requested more bytes than actually were sent
during this transfer. If Software has already set up the next packet in the FIFO’s, this data
must not be transfered with the next control in request. The data can be flushed by
Software after receiving the empty status out packet or automatically this can be done
by setting the Auto Flash Enable of the CMD register.
Requests to device, interface or endpoints with no DATA stage have to be successfully
completed (incl. STATUS stage) within 2 ms. Requests with DATA stage require the first
data packet within 10 ms and all subsequent packets within 5 ms. The STATUS stage
must then be completed within 2 ms.
The UDC performs a zero data transfer write/read transaction on the application bus.
The application itself, i.e. USBD control has to identify this STATUS stage of the Control
Read/Write by a change of read/write direction and has to respond to this transaction by
proper handshake.
Data Sheet 328 2001-04-19

C161U

USB Interface Controller
Vendor/Class Requests

All Vendor/Class requests will be forwarded to the application bus and handled by SW.
The 8-byte SETUP request will be captured in the SETUP registers. IN/OUT transactions
from the host will be NACK’d until the SW is ready. The SETUP registers cannot be
overwritten by the host until all 4 registers have been read.
Requests to device, interface or endpoints with no DATA stage have to be successfully
completed (incl. STATUS stage) within 2 ms. Requests with DATA stage require the first
data packet within 10 ms and all subsequent packets within 5 ms. The STATUS stage
must then be completed within 2 ms.
The UDC performs a zero data transfer write/read transaction on the application bus.
The application itself, i.e. USBD control has to identify this STATUS stage of the Control
Read/Write by a change of read/write direction and has to respond to this transaction by
proper handshake.

Load Configuration Data

After power-up the UDC has to be loaded by the SW via control endpoint#0 Transmit
FIFO. The only buffers the UDC maintains will be the 17 EndPtBufs one for each physical
endpoint. The number of bytes written by the SW then equals 5x17, i.e. 85 bytes.
The first strobe will load the first byte into the MSB byte of EndPtBuf0(39:32) of
endpoint#0 and so on.

Latency Considerations

The latency time is considered to be the minimum/maximum accumulated time between
two EPEC transfers. Since the EPEC transfer is injected into the decode pipeline, the
latency time is determined by the previous commands which have already entered the
FETCH and DECODE stage of the pipeline.
USB data rate for a packet to be processed by the application is 12 Mbit/s. Since the
UDC samples 8 bits before the byte is transferred over the application bus, the FIFOs
are either read or written every 1.333 µs to provide a full word access to/from the XBUS
interface. The first EPEC transfer at the start of a packet transfer over the XBUS, i.e. its
initial latency time, may be delayed by up to 4 * 1.333 µs (i.e. 5.33 µs) since each FIFO
is 8-byte deep.
Worst case: The worst case EPEC interrupt response time including external accesses
will occur, when instructions N and N+1 are executed out of external memory,
instructions N-1 and N require external operand read accesses and instructions N-3, N-
2 and N-1 write back external operands. In this case the EPEC response time is the time
to perform 7 word bus accesses.
with fCPU @24 MHz (TCL=21 ns) and 1 external waitstate:
= 7 * ext. bus accesses with 1 waitstate + 2 * states + 1 * ext. access for src/dest. pointer
Data Sheet 329 2001-04-19

C161U

USB Interface Controller
= 7 * (4 * TCL + 2 * TCL) + 2 * (2* TCL) + (4 * TCL + 2 * TCL)
= 52 * TCL = 1.092 µs
with fCPU @36 MHz (TCL=13.89 ns) and 1 external waitstate:
= 7 * ext. bus accesses with 1 waitstate + 2 * states + 1 * ext. access for src/dest. pointer
= 7 * (4 * TCL + 2 * TCL) + 2 * (2 * TCL) + (4 * TCL + 2 * TCL)
= 52 * TCL = 722.3 ns
Best case: When instructions N and N-1 are executed out of external memory, but all
operands for instructions N-3 through N-1 are in internal memory, then the EPEC
response time is the time to execute 1 word bus access plus 2 state times (2*TCL).
with fCPU @24 MHz (TCL=21ns) and 1 external waitstate:
= 1* ext. bus accesses with 1 waitstate + 2 * states
= 1* (4 * TCL + 2 * TCL) + 2 * (2* TCL)
= 10 * TCL = 210 ns
with fCPU @36 MHz (TCL=13.89 ns) and 1 external waitstate:
= 1* ext. bus accesses with 1 waitstate + 2 * states
= 1* (4 * TCL + 2 * TCL) + 2 * (2 * TCL)
= 10* TCL = 138.9 ns
Once a request for EPEC has been acknowledged by the CPU, the execution of the next
instruction is delayed by 2 state times plus the additional time it might take to fetch the
source operand from internal RAM or external memory and to write the destination over
the external bus in an external program environment.
A bus access in this context also includes delays by an external READY signal or by bus
arbitration (HOLD mode).

Suspend and Host Resume Support

UDC has built in counters, to count 6 ms idle time on the USB, which detects a Suspend
and 3 ms counter to send the RemoteWakeup sequence to the host. The
UDC_Suspend_Set interrupt will gate the indicate the Suspend mode to the application.
In response to this signal Software is supposed to turn off the clock of all the modules
which are not used at that moment in order to support a low power consumption. The
USB interface module clock can be switched off by SW using the USBCLC register.
The RemoteWakeup detection will deassert the UDC_Suspend for at least 20 ms, which
will generate a second interrupt UDC_Suspend_Off. The application will restart the UDC
and XBus clock supply as soon as possible.
Note: The normal suspend_off interrupt can not be generated if the USB clock is

switched off. In this case, the fast external interrupt EX5INT (firq(5)) must be used
instead.
Data Sheet 330 2001-04-19

C161U

USB Interface Controller
Suspend and Remote Resume Support

After entering the Suspend state, the UDC may start a RemoteWakeup sequence on the
USB, after the device has enabled the UDC clock supply. After the PLL VCO frequency
has been stabilized the DEV_Resume signal can be asserted which causes the UDC to
drive a resume (K-state) to the USB for 3 ms.
UDC provides a DEVICE_REMOTE_WAKEUP feature bit in the EndpointInfo block of
the UDC core. At power-on reset this bit is disabled and on a SetFeature command to
the device, this bit can be set by the host. The state of this bit is reflected on the
STATUS2 register.

15.4 USB Interface Controller (USBD) Architecture
USB Interface Controller architecture is shown in Figure 105 below. UDC provides the
48 MHz PLL for full-speed clock & data recovery, Serial Interface Engine (SIE) and the
USB Bridge Layer Block. The UDC is connected with its Application Bus Interface to the
Standard Module Interface (SMIF), which itself is hooked onto the BUS Peripheral
interface (BPI).

Figure 105 USB Interface Controller Architecture

15.5 Endpoint Info Block
EPINFO Block is a configurable block which will be programmed at compile time . Since
the GetDescriptor command is forwarded to the Application, the EPINFO provides only
the registers used by the Application to download application specific configuration data.
The EPINFO block features in summary are:

– DATA0/DATA1 Synchronization
– EndPtStalled Bit support

SM
IF

Fu
ll-

Sp
ee

d
U

SB
 I/

O
s

PLL

Protocol
Layer

End
Point 0

UBL

SIE

EndPoint InfoUDC

BP
I

Control,
Arbiter &
MUX

D+

D-

XBUSApplication
Bus Interface
Data Sheet 331 2001-04-19

C161U

USB Interface Controller
– Two different Configurations, with
- Configuration #1 with 4 Interfaces (three interfaces with 3 alternate settings, one
interface with 2 alternate settings) and each interface with maximal seven unique
endpoints where each endpoint can be assigned to one interface only.
- Configuration #2 with 2 Interfaces, each Interface with 2 alternate settings and 2
Endpoints for each setting

– Address pointer and length support for 2 strings
– EndPtBuf information for each of the 6 currently active non-Control Endpoints

All these registers are loaded under SW control as part of the Configuration Process at
Power-On time.
Examples for Configurations, Alternate Settings and Endpoints supported are shown
below.

Figure 106 USB Configuration0 with Control Endpoint 0 supported.

Config 0

EP 0
Data Sheet 332 2001-04-19

C161U

USB Interface Controller

Figure 107 Example for USB Configuration1 with Alternate Settings and
Endpoints

Figure 108 Example for USB Configuration2 with Alternate Settings and
Endpoints

Config 1

IF 0

AS 0 AS 1 AS 2

EP 1 EP 2 EP 1

IF 1

AS 0 AS 1 AS 2

EP 3 EP 4 EP 3

IF 2

AS 0 AS 1 AS 2

EP 5 EP 6 EP 5

IF 3

AS 0 AS 1

EP 7

EP 0

Config 2

IF 0

AS 0 AS 1

EP 1 EP 2

IF 1

AS 0 AS 1

EP 3 EP 4EP 0
Data Sheet 333 2001-04-19

C161U

USB Interface Controller
EndPtBuf’s

The endpoint configuration data file structure shown in the figures above, which will be
downloaded into the USB endpoint info block is summarized in Table 71.

The EndPtBuf’s format is shown in Table 72..

Table 71 Endpoint, Configuration and Interface Structure
PhyEP EpNum Ep_Config Ep_Interface Ep_AltSetting Ep_Type Ep_Dir MaxPktSize

1 0 0 0 0 Control I/O 64 bytes
2 1 1 0 1 ** I/O 1023 bytes
3 2 1 0 1 ** I/O 1023 bytes
4 1 1 0 2 ** I/O 1023 bytes
5 3 1 1 1 ** I/O 1023 bytes
6 4 1 1 1 ** I/O 1023 bytes
7 3 1 1 2 ** I/O 1023 bytes
8 5 1 2 1 ** I/O 1023 bytes
9 6 1 2 1 ** I/O 1023 bytes

10 5 1 2 2 ** I/O 1023 bytes
11 7 1 3 1 ** I/O 1023 bytes
12 0 2 0 1 ** I/O 1023 bytes
13 1 2 0 1 ** I/O 1023 bytes
14 2 2 0 2 ** I/O 1023 bytes
15 1 2 1 1 ** I/O 1023 bytes
16 3 2 1 1 ** I/O 1023 bytes
17 4 2 1 2 ** I/O 1023 bytes
18 3 2 1 2 ** I/O 1023 bytes

Table 72 EndPtBuf Format
Bit Field Type Description
(39:36) EpNum Logical Endpoint number (Endpoint number on host

side)
(35:34) Ep_Config Configuration number related to this Endpoint
(33:32) Ep_Interface Interface number related to this Endpoint
(31:30) Ep_AltSetting Alternate Setting related to this Endpoint
Data Sheet 334 2001-04-19

C161U

USB Interface Controller
ConfigBuf’s

Since the UDC is forwarding the GetDescriptor Command to the Application, the UDC
does not maintain Configuration Buffer space within the UDC core.

StringBuf’s

Since the UDC is forwarding the GetDescriptor Command to the Application, the UDC
does not maintain String Buffer space within the UDC core.

15.6 USB Microprocessor Registers
USB register set provides Special Function Registers (SFR’s) for eight receiving
Endpoints and eight transmitting Endpoints. In addition, Interrupt and Status SFRs will
be provided for fast data processing. Each individual endpoint’s Transmit and Receive
FIFO can be accessed via XBUS. Transmit and Receive FIFO interrupts will be
generated for each endpoint.
Note: Please note, that the SETUPxx and RXRR registers are one time read-only

registers. Multiple read operations without the approriate handshake request will
provide unconsistent data.

(29:28) Ep_Type Type of EndPoint
’00’ - Control
’01’ - Isochronous
’10’ - Bulk
’11’ - Interrupt

(27) Ep_Dir Direction of Endpoint (O: out, I: in)
(26:17) Ep_MaxPktSize Maximum packet size for this endpoint in bytes
(16) reserved Reserved.
(15:13) Ep_BufAdrPtr Reflects as UDC_BufAdrPtr to the Application Bus

and indicates the endpoint number.
(12:0) reserved Reserved. Must be set to ’0’.

Table 72 EndPtBuf Format (cont’d)
Bit Field Type Description
Data Sheet 335 2001-04-19

C161U

USB Interface Controller
The USBD register set is shown in Table 73. The Base Address is 00EE00H.
Table 73 USBD Register Set
00EE00H + ... Register Function
00H USBCLC USB clock control register.
08H USBD_ID USB peripheral identification register, set

to ZERO in the current version.
10H USBD_CMD_REG Command register
12H USBD_STATUS_REG0 USB endpoint FIFO status
14H USBD_STATUS_REG1 USB endpoint FIFO handshake control
16H USBD_STATUS_REG2 USB Device Remote Wake-Up Feature

Status
18H reserved
1AH reserved
1CH reserved
1EH reserved
20H reserved
22H reserved
24H USBD_TIME_REG USB timestamp info: Frame number of

the transmitted frame
26H USBD_SETUP_REG01 USB setup bytes (1:0)
28H USBD_SETUP_REG23 USB setup bytes (3:2)
2AH USBD_SETUP_REG45 USB setup bytes (5:4)
2CH USBD_SETUP_REG67 USB setup bytes (7:6)
2EH USBD_TXWR0 USB Transmit FIFO data register
30H USBD_TXEOD0 EPEC/SW End-of-packet indication for

USBD.
32H USBD_RXRR0 USB Receive FIFO data register
34H USBD_RX_BYTECNT0 USB receive packet length in bytes
36H USBD_TXWR1 USB Transmit FIFO data register
38H USBD_TXEOD1 EPEC/SW End-of-packet indication for

USBD.
3AH USBD_RXRR1 USB Receive FIFO data register
3CH USBD_RX_BYTECNT1 USB receive packet length in bytes
3EH USBD_TXWR2 USB Transmit FIFO data register
Data Sheet 336 2001-04-19

C161U

USB Interface Controller
40H USBD_TXEOD2 EPEC/SW End-of-packet indication for
USBD.

42H USBD_RXRR2 USB Receive FIFO data register
44H USBD_RX_BYTECNT2 USB receive packet length in bytes
46H USBD_TXWR3 USB Transmit FIFO data register
48H USBD_TXEOD3 EPEC/SW End-of-packet indication for

USBD.
4AH USBD_RXRR3 USB Receive FIFO data register
4CH USBD_RX_BYTECNT3 USB receive packet length in bytes
4EH USBD_TXWR4 USB Transmit FIFO data register
50H USBD_TXEOD4 EPEC/SW End-of-packet indication for

USBD.
52H USBD_RXRR4 USB Receive FIFO data register
54H USBD_RX_BYTECNT4 USB receive packet length in bytes
56H USBD_TXWR5 USB Transmit FIFO data register
58H USBD_TXEOD5 EPEC/SW End-of-packet indication for

USBD.
5AH USBD_RXRR5 USB Receive FIFO data register
5CH USBD_RX_BYTECNT5 USB receive packet length in bytes
5EH USBD_TXWR6 USB Transmit FIFO data register
60H USBD_TXEOD6 EPEC/SW End-of-packet indication for

USBD.
62H USBD_RXRR6 USB Receive FIFO data register
64H USBD_RX_BYTECNT6 USB receive packet length in bytes
66H USBD_TXWR7 USB Transmit FIFO data register
68H USBD_TXEOD7 EPEC/SW End-of-packet indication for

USBD.
6AH USBD_RXRR7 USB Receive FIFO data register
6CH USBD_RX_BYTECNT7 USB receive packet length in bytes
6EH USBD_CFGVAL Current Configuration & Alternate Setting

selected by Host
70H USBC_CMD_RESET USB Block Reset

Table 73 USBD Register Set (cont’d)
00EE00H + ... Register Function
Data Sheet 337 2001-04-19

C161U

USB Interface Controller
The detailed register description is shown below.

USBCLC Reset Value: 0000H

The state of the USB interface kernel clock is controlled by the register bit USBDISR.
The actual USB kernel clock state will be shown by the state bit USBDIS.
The register USBCLC is clocked with the bus clock to be able to switch the USB interface
controller clock on again, if it was off. If required, switching off the clock can be prevented
by the USB controller.
For on chip debugging support (OCDS) an additional bit USBGPSEN is introduced to
stop the peripheral clock for arbitrary lengths of time during debugging if this function is
enabled. If debugging mode is active, the peripheral core rejects write access to
registers connected to the peripheral clock.
To be compatible with previous C16x products an USBEX_DISR signal is provided to
disable the peripheral clock.

Table 74 USBCLC Register
Bit No. Bit Function
(15:4) reserved. Always ’0’
3 USBEX_DIS USB Controller Clock Disable

0: The kernel clock of the USB interface
controller is enabled, normal operation.

1: The kernel clock of the USB interface controller is
disabled.

2 USBGPSEN USB Controller Clock OCDS Disable
0: The kernel clock of the USB interface

controller is enabled, normal operation.
1: The kernel clock of the USB interface controller is

disabled during debugging mode (OCDS)
1 USBDIS USB Controller Clock Status

0: The status of the USB interface
controller kernel clock is ’enabled’.

1: The status of the USB interface controller clock
is ’disabled’.

0 USBDISR USB Controller Clock Disable
0: The kernel clock of the USB interface

controller is enabled, normal operation.
1: The kernel clock of the USB interface controller is

disabled.
Data Sheet 338 2001-04-19

C161U

USB Interface Controller
USBD_CMD_REG Reset Value: 0000H

The USBD command register provides set STALL capability per Endpoint,
RemoteWakeup, Resume and Suspend control for the device.

Table 75 USBD_CMD_REG Command Register
Bit No. Bit Function
15 Autoflush_Enable Enable HW controlled flushing of TX channel, if

IN transfer is not completed by host, i.e. if a
SETUP transfer is immediately followed by a
Status-OUT transfer. This also clears EPEC
channel 0. (For Control endpoint 0 only. Will not
be reset by HW).
The Autoflush_Enable feature can be used
@ 36 MHz CPU clock only and is NOT
supported @ 24 MHz CPU clock.

14:12 Flush_TX_Channel_Select Select the channel to be flushed
’xxx’: binary coded 7 downto 0

11 Flush_TX _Channel Flush the TX channel, i.e. clear FIFO and
control state machine
1: Flush Command active, will be reset by HW
0: no action

10 UDC_Suspend 1: Device is in Suspend Mode
0: Normal Mode: device has initiated Device
Resume proc.
(read-only)

9 DEV_Resume 1: Start RemoteWakeup procedure
0: normal operation

8 USB_TXProtect 1: Enables protection feature of the USB
transceiver in case of short circuit between
DPLS/DMNS and VDDU/VSSU
0: short circuit protection disabled

(7:0) STALL_EP(7:0) 1: Set Endpoint N (N=7..0) to STALLED
0: normal operation
Data Sheet 339 2001-04-19

C161U

USB Interface Controller
USBD_STATUS_REG0 Reset Value: 0000H

The USBD status register 0 provides the SW with status indication for RX and TX FIFOs
and provides handshake control for both FIFOs. This register is read-only.

USBD_STATUS_REG1 Reset Value: 0000H

The USBD status register 1 provides the SW with internal handshake indication for RX
and TX FIFOs. This register is read/write (writing ’1’ resets the bit).
Note: RX_XFR_ACK are reflected in the corresponding RX_BYTECNT registers.

Table 76 USBD_STATUS_REG0 Status Register
Bit No. Bit Function
15:8 RX_EMPTY(7:0) 1: Indicates RX Fifo Endpoint N (N=7..0) is empty

0: not empty
The reset value is ’0’, but after reset the value changes
immediately.

7:0 TX_FULL(7:0) 1: Indicates TX Fifo Endpoint N (N=7..0) is full
0: normal operation

Table 77 USBD_STATUS_REG1 Status Register
Bit No. Bit Function
15:8 RX_XFR_ACK(7:0) 1: Indicates RX Transfer Acknowledge for USBD

FIFO Endpoint N (N=7..0)
0: idle/busy

7:0 TX_XFR_ACK(7:0) 1: Indicates TX Transfer Acknowledge for USBD FIFO
Endpoint N (N=7..0)

0: idle/busy
Data Sheet 340 2001-04-19

C161U

USB Interface Controller
USBD_STATUS_REG2 Reset Value: 0000H

This register is read-only.

USBD_TIME_REG Reset Value: 0000H

The USB Time register provides the actual 11-bit frame number information of the actual
received start of frame packet.

USBD_Setup_REG01 Reset Value: 0000H

The USB Setup_REG01 register provides setup byte(1:0) of the SETUP command from
the host. The register can not be overwritten by the host until the last setup register (67)
is read by the device.

Table 78 USBD_STATUS_REG2 Status Register
Bit No. Bit Function
0 DEV_REM_WAKEUP_FEAT 1: Indicates that the DeviceRemoteWakeup

Feature has been set by the host
0: DeviceRemoteWakeup Feature not allowed

15:1 Reserved reserved

Table 79 USBD_TIME_REG Register
Bit No. Bit Function
(15:11) reserved. Always ’0’
(10:0) FRAME_NUMBER Actual frame number

Table 80 USBD_Setup_REG01 Register
Bit No. Bit Function
(15:8) Setup_Byte1 Byte 1 of SETUP command
(7:0) Setup_Byte0 Byte 0 of SETUP command
Data Sheet 341 2001-04-19

C161U

USB Interface Controller
USBD_Setup_REG23 Reset Value: 0000H

The USB Setup_REG23 register provides setup byte(3:2) of the SETUP command from
the host. The register can not be overwritten by the host until the last setup register (67)
is read by the device.

USBD_Setup_REG45 Reset Value: 0000H

The USB Setup_REG45 register provides setup byte(5:4) of the SETUP command from
the host. The register can not be overwritten by the host until the last setup register (67)
is read by the device.

USBD_Setup_REG67 Reset Value: 0000H

The USB Setup_REG67 register provides setup byte(7:6) of the SETUP command from
the host. The register can not be overwritten by the host until the last setup register (67)
is read by the device.
Note: The Transmit/Receive handling by SW and EPEC is controlled by register groups

per endpoint in address range 24H to 6EH. The register group description is shown
in detail for one endpoint and will be repetitive for the others.

Table 81 USBD_Setup_REG23 Register
Bit No. Bit Function
(15:8) Setup_Byte3 Byte 3 of SETUP command
(7:0) Setup_Byte2 Byte 2 of SETUP command

Table 82 USBD_Setup_REG45 Register
Bit No. Bit Function
(15:8) Setup_Byte5 Byte 5 of SETUP command
(7:0) Setup_Byte4 Byte 4 of SETUP command

Table 83 USBD_Setup_REG67 Register
Bit No. Bit Function
(15:8) Setup_Byte7 Byte 7 of SETUP command
(7:0) Setup_Byte6 Byte 6 of SETUP command
Data Sheet 342 2001-04-19

C161U

USB Interface Controller
USBD_TXWRn (n=7..0) Reset Value: 0000H

The USB TXWR0 register provides 16-bit write access to the Endpoint#n Transmit FIFO.

USBD_TXEODn (n=7..0) Reset Value: 0000H

The USB TXEODn register provides 16-bit read/write access. Indicates that the EPEC/
SW has sent the last valid data byte to the Endpoint’s#n Transmit FIFO. Writing ’1’ to the
register makes the next request for a data packet from Host answered by C161U with an
empty data packet.
As long as a ’1’ is stored in the register, the packet has not been transfered to the host.
If transferred, the bit is cleared.
Note: If bit TXEOD is written at the time an IN request from the host - due to missing

transmit data - is answered by a NACK packet, bit TXEOD is cleared and the
tx_done interrupt is asserted although the NACK packet has been sent instead of
the empty packet.
Therefore, prior to setting the TXEOD bit, Software must reset the endpoint’s
acknowledge-bit TX_XFR_ACKn in register USBD_STATUS_REG1. In reaction
to endpoint’s tx_done interrupt, Software always should check the value of
TX_XFR_ACKn to verify that the previous data transfer succeeded. If
TX_XFR_ACKn indicates an unsuccessful data transmission, Software must
repeat the transfer.

Table 84 USBD_TXWRn Transmit Data FIFO EP#n Register
Bit No. Bit Function
(15:0) TXWRn 16-bit word for Transmit FIFO endpoint#n (n=7..0)

Table 85 USBD_TXEODn Transmit End-of-packet Register
Bit No. Bit Function
(15:1) reserved
0 TXEOD ’1’: Indicates last byte of packet transferred to

Transmit FIFO endpoint#n (n=7..0)
’0’: EPEC/SW is idle/busy
Data Sheet 343 2001-04-19

C161U

USB Interface Controller
USBD_RXRRn (n=7..0) Reset Value: 0000H

The USB RXRR0 register provides 16-bit read access to the Endpoint#n Receive FIFO.

USBD_RX_BYTECNTn (n=7..0) Reset Value: 0000H

The USB BYTE_CNTn register provides 16-bit read access to the Endpoint#n Receive
FIFO’s 10-bit byte counter after a complete package is available. The status of the
packet is indicated by bit 10 (see USB_STATUS_REG1).

USBD_CFGVAL_REG Reset Value: 0000H

Table 86 USBD_RXRRn Receive Data FIFO EP#n Register
Bit No. Bit Function
(15:0) RXRRn 16-bit word for Receive FIFO endpoint#n (n=7..0)

Table 87 USBD_RX_BYTECNTn Byte Counter Receive FIFO EP#n Register
Bit No. Bit Function
15 RX_STATUS packet status indication

’1’: status ok
’0’: packet error

(14:10) reserved always ’0’
(9:0) RX_BYTECNT 10-bit byte counter for received packet in

endpoint#n (n=7..0)

Table 88 USBD_CFGVAL_REG Command Register
Bit No. Bit Function
15:10 Reserved (always ’0’)
9:8 AS_IF3 Alternate Setting selected for Interface 3:

’xx’: Alternate Setting 3-0 binary coded.
(read-only)

7:6 AS_IF2 Alternate Setting selected for Interface 2:
’xx’: Alternate Setting 3-0 binary coded.
(read-only)
Data Sheet 344 2001-04-19

C161U

USB Interface Controller
The USBD CFGVAL register provides the current selection of the configuration and
alternate setting done by the host. The SET_CONFIGURATION resets all settings to
Alternate Setting 0, i.e. the Control Endpoint 0.

USBC_CMD_RESET Reset Value: 0000H

15.7 Programmers Guidlines: Using USB and EPEC
For normal functionality, the following interrupts must be enabled:
all udc_tx_done- and udc_rx_done-interrupts of those endpoints and in the direction in
which they are used
udc_setup, udc_suspend, udc_suspendoff, udc_start of frame, udc_configval
optional interrupts are the EPEC-interrupt (this interrupt might only be used if SW needs
to have complete control over the contents of the fifos and always wants to keep track of
the status of the transmission) and the UDC_txwr- and UDC_rxrr-interrupts (which are
generated every time, a fifo in the USB-block is ready to accept data or receive-data

5:4 AS_IF1 Alternate Setting selected for Interface 1:
’xx’: Alternate Setting 3-0 binary coded.
(read-only)

3:2 AS_IF0 Alternate Setting selected for Interface 0:
’xx’: Alternate Setting 3-0 binary coded.
(read-only)

1:0 CFG Configuration selected by host
’xx’:Configuration 2-0 binary coded.
(read-only)

Table 89 USBC_CMD_RESET USB RESET REGISTER
Bit No. Bit Function
(15:1) Reserved reserved
(0) USBC_RST Resets the USB block including the transmit and

receive logic. The USB RESET does not reset the
USBCLC register. The USB reset must be active for
at least 10 clock cycles. The USB reset must always
be activated after the USB device is connected to
the USB

Table 88 USBD_CFGVAL_REG Command Register
Bit No. Bit Function
Data Sheet 345 2001-04-19

C161U

USB Interface Controller
might be read from the fifo; this interrupt is connected to the EPEC which in nomal
functionality does this transfer).
By default, the bits 8 and 15 of the CMD register (auto flush enable and tx_protect)
should be set.

15.7.1 Writing the configuration-value
After a system-reset, the USB-block expects the configurator of the UDC to be
transferred via the tx-fifo(0) like a normal in-transfer. Best is using the EPEC for this
endpoint. The source-pointer must be programmed to a memory-block containing the 85
bytes of the configurator, destination to usbd_txwr-register(0) and the length-register to
85 bytes. After starting the EPEC, it will transfer the configurator to the USB-block and
after having transferred all the data, the EPEC-interrupt is generated and if the
configurator went through the fifo, the udc_tx_done-interrupt(0) is also generated.
In order to allow generation of a next interrupt-pulse of the EPEC, SW must read the
EPEC-interrupt-register and clear the interrupt-bit of endpoint 0 by writing a ‘1’ to it.

15.7.2 In-Transfer (Transmit)
An In-transfer means that the device will send data to the host by using endpointX. This
transfer is started by a bulk_in, interrupt, control_in or iso_in request from the host.
• SW sets up source-pointer (to a memory-block containing the data to be sent), a

destination-pointer (usbd_txwr-registerX) and the packetlenght (usually
maxpacketlength) of the EPEC for the endpoint on which the transfer is to be done;
the packetlength must always be the maxpacketlength for this endpoint for interrupt-,
bulk_in or control_in-transfers except for the last packet to be transferred, for
isochronous_in-endpoints this endpoint must be according to the sequence of
packetlengths and the data which is available to be sent.
If SW wants to send a packet of zero bytes, it must not use the EPEC, but must write
‘1’ to the corresponding usbd_tx_eod-register of the USB

• SW writes EPEC-start, EPEC transferres the data from the memory to the USB-fifoX;
when host requests for the data, it is transferred through the fifo to the host; each time,
the USB-block has space in the fifo and may accept a write into the usbd_txwr-
register, the udc_txwr-interrupt is generated (for normal functionality this can be
ignored as the EPEC uses this as a handshake for the next transfer)

• when EPEC has transferred all the data, it generates the EPEC-interrupt; SW must
read the EPEC-interrupt-register and clear the (to the endpoint) corresponding bit by
writing a ‘1’ to it

• when the transfer over the USB is finished, the udc_tx_done-interruptX is generated
and SW can check the corresponding bit in the Status-Register, wheather the transfer
was successful or not; this is for bulk, interrupt and control-Endpoints only, not for
Isochonous Endpoints (where no ACK will be sent as Handshake)
Data Sheet 346 2001-04-19

C161U

USB Interface Controller
• for non-Iso-transfers: if fhe transfer was ACK’d, the next packet can be set up for
transmission, otherwise, host expects the same data to be resent

• SW must set up again the EPEC source-, destination-pointer and packetlength and
start the transfer

If SW has already set up data in a tx-fifo and now, e.g. host changes the configuration
or interfaces, SW can use a write into the command-register to flush the fifo of the
corresponding endpoint. Before doing this, the EPEC-channel must be disabled or
reprorgammed, otherwise the next pending bytes will be transferred into the tx-fifo.

15.7.3 Out-Transfer (Receive)
During an Out-transfer, host is transferring data to the device. SW must provide an free
memory-block for each endpoint and set up the EPEC for moving arriving data from the
USB-block to a free memory-location.
• SW provides an free memory-block and sets up source- (usbd_rxrr-registerX),

destination-pointer (free memory-block) and packet lenght of the EPEC and sets the
TXR_ENAx bit (refer to Table 18, “EPEC_CTRL_REGx Source Pointer Register,” on
page 101); the packetlength supported by the EPEC must always be an even number
of bytes (in receive-direction the EPEC only does word-transfers) and have at least
space for the maxpacketlength of the endpoint.

• when host sends data, it is forwarded through the fifo’s and with every transferred
word that can be read from usbd_rxrr-registerX the usbd_rxrr-interruptX is set (for
normal functionality this can be ignored); EPEC transferes this data into the memory

• EPEC generates an EPEC-interrupt when it has transferred all the data into the
memory (this interrupt is generated shortly after the USB-block has generated the
udc_rx_done-interrupt); SW must read the EPEC-interrupt-register and clear the (to
the endpoint) corresponding bit in this register by writing a ‘1’ into it

• when USB-block has finished the whole transfer, it generates the udc_rx_done-
interrupt; SW must then read the usbd_rx_bytecnt-register, in order to determine the
number of bytes of the received packet and to release the interlocking of the fifo for
the next transfer; the most significant bit in this register contains also the status-bit of
the status-register and shows whether this packet had transmission-errors or not
if host has sent a packet of zero lenght, no rxrr-interrupt is generated but only a
rx_done-interrupt; here also SW must read the rxbytecountX-register

• in order to prepare a receive on this endpoint again SW must provide a new free
memory-block, set up the source-, destination-pointer and packetlength of the EPEC
and write the start-bit

15.7.4 Reading out Setup-Packets
Setup-packets are treated without the EPEC. If host sends a setup-packet which is
forwarded to the CPU (there are only three commands: get_descriptor, set_descriptor
and synch_frame all the other ones are treated internally), and the packet is valid, the
Data Sheet 347 2001-04-19

C161U

USB Interface Controller
udc_setup-interrupt is generated and SW must read all four setup-registers. By reading
the last one (setup 61, an overwrite-protection for those registers will be released and
the device will accept the next setup-packet. As long as this register is not read, each
setup-packet on the USB will be NAK’d.

15.7.5 Special case: Setup-Transfer
The endpoint zero has an additional feature in transmit-direction in order to handle an
early end of a setup-transaction. If, as an example, host requests for a device-desciptor
(by sending a get_descriptor(device_descriptor)) with a length of 12 bytes and the
maxpacketlength of endpoint zeo is eight, host must request for two control_in-packets
and then accnwowledge them with an status_out-packet. According to the USB-spec,
host can also request only one packet or even none before it sends out the status-
packet. This is called an early end of the setup-transaction.
If SW has already set up the data in the tx-fifo after the get_descriptor-command and
host will immediately after this request for different data with another setup-packet, the
old data, already in the fifo would be sent. By enabling the AutoFlushEnable-feature, with
every setup-packet which is visible for the CPU will flush the tx-fifo for endpoint zero. This
will avoid wrong, old data to be sent over control-enpoint zero.
This flush-mechanism could also be done by flushing the usb with a write into the
command-register of the USB-block but the flush initiated by SW might happen too late.
Note: The AutoFlushEnable-feature described above is only available if the C161U CPU

is running with 36 MHz. This feature can not be used if the device is running with
24 MHz. In this case, pending data has to be flushed explicitly by Software via
register USBD_CMD_REG on reception of the OUT packet that ends setup
transfer, indicated by the rx_done interrupt of endpoint 0.

15.7.6 Setting of configuration and alternate settings of interfaces
Each time the host send a valid set_configuration- or set_interface-command, this will
show up for the CPU as a configval-interrupt. In order to determine the actual
confitguration and the alternate setting of an interface, SW must read the configval-
register and set up the endpoints which are actually enabled.
There is no overwirte-protection on this register, the value is always updated if a valid
set_configuration or set_interface-packet is received.

15.7.7 Stalling Endpoints
All transmit-endpoints can be stalled by writing into the command-register, where it
makes no sense to stall an isochronous endpoint (for a isochronous packet there is no
stall-handshake, so the host will never notice that the endpoint is stalled and thus will
never try to abolish the stall-condition). The stall will be kept as long the bit in the
command-register is set and the host did not send a clear_feature-command.
Data Sheet 348 2001-04-19

C161U

USB Interface Controller
If an endpoint was stalled during a in-transfer, this transfer will be finished and the next
request by the host will return a stall-handshake. If there is data in the fifo for transission,
the data will be kept and sent, if the stall-condition is abolished and host requests for this
data.
A stall-condition during an out-transfer will finish first and the next request will return a
stall-handshake.
Endpoint zero has only one stall-bit for both directions, for in and out. A stall on one
direction will also lead to a stall in the other transfer-direction.

15.7.8 Start of Frame
Host sends a Start of Frame-(SOF)-signal every ms. A SOF-interrupt is generated and
the value of the actual frame-number is stored in the SOF-register. There is no overwirte-
protection on this register, the value is always updated if a valid SOF-packid is received.

15.7.9 Suspend and Suspendoff
In normal operation, there is the UDC-clock of 48 MHz enabled and the normal CPU-
clock which may vary according to the divider in the clock-generation-unit.
If the host is sending a suspend-request (by driving an idle-state for more than 6 ms),
after 6 ms the suspend-interrupt will be generated. This must cause SW to go in low-
power mode. There are different modes in which the chip can be set. According to the
mode the wakeup initiated by the host, must be detected differently:
• Using the bit 0 in clc register of every peripheral to turn off the clock. The suspendoff

interrupt is generated even though the rest of the usbblk is turned off.
• Using the SYSCON3 register to turn off the clock of xbus and pdbus peripherals

(peripheral disable only). The SYSCON3 register is a write protected register and SW
first must go into low protected mode to be able to do this (see page 393 for
SYSCON3 register description). In this mode also, the suspendoff interrupt is
generated.

• Using the SYSCON3 register group disable (msb of the register) to turn off all the xbus
and pdbus peripherals. In this mode, the normal suspendoff interrupt is not generated,
wakeup must be done with the falling edge of the fast external interrupt alternate
function firq_alt(5).

• Going into sleep mode which stops program execution and turns off the clock for most
of the entire chip. In this mode the fast external interrupt alternate function firq_alt(5)
is also generated and will wakeup the cpu. Program execution will start with the
interrupt procedure of the interrupt, or, if SW was in an interrupt routine with a higher
priority before, program execution will continue at the point, it was stopped.

If SW wants to send a device-wakeup this feature must have been enabled by the host.
Whether this feature was enabled or not, is reflected in the STATUS3 register. If this
feature is enabled, and SW wants to wake up the USB, it must turn on the clocks and
Data Sheet 349 2001-04-19

C161U

USB Interface Controller
write the resume-bit of the command-register. This will drive the non-idle-state on the
USB for 3 ms, host will start a wakeup-procedure.

15.7.10 Device disconnecting
Either our device is bus- or self-powered. In the case of being bus-powered, every time
the device is disconnected from the bus, the power supply will break down and a re-
plugging will restart with a reset of the entire chip.
In case of a self-powered device, if there is a disconnection from the USB, the logic of
the usbblk must be reset. There must be external logic added to provide the detection of
a disconnection. If SW detects a dis- and reconnection, it must disable all the epec
channels and reset the whole usbblk by writing into the usbd_cmd_reset register. After
de-asserting the reset, the whole configuration process (with writing of the configurator)
must be redone.
Data Sheet 350 2001-04-19

C161U

Watchdog Timer (WDT)
16 Watchdog Timer (WDT)
To allow recovery from software or hardware failure, the C161U provides a Watchdog
Timer. If the software fails to service this timer before an overflow occurs, an internal
reset sequence will be initiated. This internal reset will also pull the RSTOUT pin low,
which also resets the peripheral hardware, which might be the cause for the malfunction.
When the watchdog timer is enabled and the software has been designed to service it
regularly before it overflows, the watchdog timer will supervise the program execution,
as it only will overflow if the program does not progress properly. The watchdog timer will
also time out, if a software error was due to hardware related failures. This prevents the
controller from malfunctioning for longer than a user-specified time.
The watchdog timer provides two registers: a read-only timer register that contains the
current count, and a control register for initialization.

Figure 109 SFRs and Port Pins associated with the Watchdog Timer

The watchdog timer is a 16-bit up counter which can be clocked with the CPU clock (fCPU)
either divided by 2 or divided by 128. This 16-bit timer is realized as two concatenated
8-bit timers (see figure below). The upper 8 bits of the watchdog timer can be preset to
a user-programmable value via a watchdog service access in order to vary the watchdog
expire time. The lower 8 bits are reset on each service access.

Figure 110 Watchdog Timer Block Diagram

WDT WDTCONRSTOUT

Reset Indication Pin Data Registers Control Registers

MCB02052

WDT High Byte WDTRMUX

÷ 2

RSTOUT

WDTIN

WDT Low Byte

WDTRELControl
WDT

÷ 128

f CPU

Reset

Clear
Data Sheet 351 2001-04-19

C161U

Watchdog Timer (WDT)
16.1 Operation of the Watchdog Timer
The current count value of the Watchdog Timer is contained in the Watchdog Timer
Register WDT, which is a non-bitaddressable read-only register. The operation of the
Watchdog Timer is controlled by its bitaddressable Watchdog Timer Control Register
WDTCON. This register specifies the reload value for the high byte of the timer, selects
the input clock prescaling factor and provides a flag that indicates a watchdog timer
overflow.

WDTCON (FFAEH / D7H) SFR Reset Value: 00XXH

The reset sources supported by the C161U are summarized in Table 90.
Note: Differentiation between long and short hardware reset, known from other Infineon

C16x devices, is not supported.

Bit Function
WDTIN Watchdog Timer Input Frequency

Selection
‘0’: Input frequency is fCPU / 2
‘1’: Input frequency is fCPU / 128

WDTR Watchdog Timer Reset Indication Flag
Set by the watchdog timer on an
overflow.
Cleared by the SRVWDT instruction.

SWR Software Reset
Set by the command SRST

SHWR Short Hardware Reset
Set by the input RSTIN

Note: C161U does not
distinguish between short
and long hardware reset.LHWR Long Hardware Reset

Set by the input RSTIN
reserved Reserved

These bits are reserved
WDTREL Watchdog Timer Reload Value (for the

high byte)

SHW
R

WDT
RSWR

WDT
IN

LHW
R

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rrw - -

WDTREL

rwr r r-

RESERVED
Data Sheet 352 2001-04-19

C161U

Watchdog Timer (WDT)
Note: An internal power-on detection circuitry, also known from other C16x devices, is
not implemented. Therefore, bit WDTCON.5 (in other devices called PONR -
power-on reset) is reserved.

Note: The WDTCON register bits [7, 6, 5] 4, 3, 2 and 1 are cleared by the EINIT
command.

After any software reset, external hardware reset, or watchdog timer reset, the watchdog
timer is enabled and starts counting up from 0000H with the frequency fCPU/2. The input
frequency may be switched to fCPU/128 by setting bit WDTIN. The watchdog timer can
be disabled via the instruction DISWDT (Disable Watchdog Timer). Instruction DISWDT
is a protected 32-bit instruction which will ONLY be executed during the time between a
reset and execution of either the EINIT (End of Initialization) or the SRVWDT (Service
Watchdog Timer) instruction. Either one of these instructions disables the execution of
DISWDT.
When the watchdog timer is not disabled via instruction DISWDT, it will continue
counting up, even during Idle Mode. If it is not serviced via the instruction SRVWDT by
the time the count reaches FFFFH the watchdog timer will overflow and cause an internal
reset. This reset will pull the external reset indication pin RSTOUT low. It differs from a
software or external hardware reset in that bit WDTR (Watchdog Timer Reset Indication
Flag) of register WDTCON will be set. A hardware reset or the SRVWDT instruction will
clear this bit. Bit WDTR can be examined by software in order to determine the cause of
the reset.
A watchdog reset will also complete a running external bus cycle before starting the
internal reset sequence if this bus cycle does not use READY or samples READY active
(low) after the programmed waitstates. Otherwise the external bus cycle will be aborted.
Note: After a hardware reset that activates the Bootstrap Loader the watchdog timer will

be disabled.

To prevent the watchdog timer from overflowing, it must be serviced periodically by the
user software. The watchdog timer is serviced with the instruction SRVWDT, which is a
protected 32-bit instruction. Servicing the watchdog timer clears the low byte and reloads
the high byte of the watchdog timer register WDT with the preset value from bitfield
WDTREL which is the high byte of register WDTCON. Servicing the watchdog timer will

Table 90 WDTCON Register: Reset Source Identification
Type of Reset WDTCON

Reset Value
WDTCON Flags being set

Hardware reset via pin RSTIN 001CH LHWR, SHWR, SWR
Software reset via command SRST 0004H SWR
Watchdog Timer reset 0006H SWR, WDTR
Data Sheet 353 2001-04-19

C161U

Watchdog Timer (WDT)
also reset bit WDTR. After being serviced the watchdog timer continues counting up from
the value (<WDTREL> * 28). Instruction SRVWDT has been encoded in such a way that
the chance of unintentionally servicing the watchdog timer (eg. by fetching and executing
a bit pattern from a wrong location) is minimized. When instruction SRVWDT does not
match the format for protected instructions the Protection Fault Trap will be entered,
rather than the instruction be executed.
The time period for an overflow of the watchdog timer is programmable in two ways:
• the input frequency to the watchdog timer can be selected via bit WDTIN in register

WDTCON to be either fCPU/2 or fCPU/128.
• the reload value WDTREL for the high byte of WDT can be programmed in register

WDTCON.
The period PWDT between servicing the watchdog timer and the next overflow can
therefore be determined by the following formula:

Note: For safety reasons, the user is advised to rewrite WDTCON each time before the
watchdog timer is serviced.

PWDT =
fCPU

2(1 + <WDTIN>*6) * (216 - <WDTREL> * 28)
Data Sheet 354 2001-04-19

C161U

Bootstrap Loader
17 Bootstrap Loader
The built-in bootstrap loader of the C161U provides a mechanism to load the startup
program, which is executed after reset, via the serial interface.
The bootstrap loader moves code/data into the internal RAM, but it is also possible to
transfer data via the serial interface into an external RAM using a second level loader
routine. It may be used to provide lookup tables or may provide “core-code”, ie. a set of
general purpose subroutines, eg. for I/O operations, number crunching, system
initialization, etc.

Figure 111 Bootstrap Loader Sequence

The Bootstrap Loader may be used to load the complete application software into
ROMless systems, it may load temporary software into complete systems for testing or
calibration.

RSTIN

TxD0

Int. Boot ROM BSL-routine
 32 bytes

2)

3)

RxD0

CSP:IP

 user software

4)

6)

P0L.4

1) BSL initialization time, > 2µs @ fCPU = 20 MHz.
2) Zero byte (1 start bit, eight ‘0’ data bits, 1 stop bit), sent by host.
3) Identification byte, sent by C161U.
4) 32 bytes of code / data, sent by host.
5) Caution: TxD0 is only driven a certain time after reception of the zero byte (2.5µs
@ fCPU = 20 MHz).
6) Internal Boot ROM.

1)

5)
Data Sheet 355 2001-04-19

C161U

Bootstrap Loader
The BSL mechanism may be used for standard system startup as well as only for special
occasions like system maintenance (firmware update) or end-of-line programming or
testing.

Entering the Bootstrap Loader
C161U enters BSL mode if pin P0L.4 is sampled low at the end of a hardware reset. In
this case the built-in bootstrap loader is activated independent of the selected bus mode.
After entering BSL mode and the respective initialization the C161U scans the RXD0 line
to receive a zero byte, ie. one start bit, eight ‘0’ data bits and one stop bit. From the
duration of this zero byte it calculates the corresponding baudrate factor with respect to
the current CPU clock, initializes the serial interface ASC accordingly and switches pin
TxD0 to output. Using this baudrate, an identification byte is returned to the host that
provides the loaded data.
This identification byte identifies the device to be booted. The following codes are
defined for Infineon Technologies microcontrollers:
55H: 8xC166.
A5H: Previous versions of the C167 (obsolete).
B5H: C165.
C5H: C167 derivatives.
D5H: C161U (and all other devices equipped with identification registers).
Note: The identification byte D5H does not directly identify a specific derivative. This

information can in this case be obtained from the identification registers.

When the C161U has entered BSL mode, the following configuration is automatically set
(values that deviate from the normal reset values, are marked):
Watchdog Timer: Disabled Register SYSCON: 0E00H
Context Pointer CP: FA00H Register STKUN: FA40H
Stack Pointer SP: FA40H Register STKOV: FA0CH 0<->C
Register S0CON: 8011H Register BUSCON0: acc. to startup config.
Register S0BG: acc. to ‘00’ byte P3.10 / TXD0: ‘1’

DP3.10: ‘1’
Other than after a normal reset the watchdog timer is disabled, so the bootstrap loading
sequence is not time limited. Pin TXD0 is configured as output, so the C161U can return
the identification byte.
The hardware that activates the BSL during reset may be a simple pull-down resistor on
P0L.4 for systems that use this feature upon every hardware reset. You may want to use
a switchable solution (via jumper or an external signal) for systems that only temporarily
use the bootstrap loader.
Data Sheet 356 2001-04-19

C161U

Bootstrap Loader

Figure 112 Hardware Provisions to Activate the BSL

After sending the identification byte the ASC receiver is enabled and is ready to receive
the initial 32 bytes from the host. A half duplex connection is therefore sufficient to feed
the BSL.
Note: In order to properly enter BSL mode it is not only required to pull P0L.4 low,

but also pins P0L.2, P0L.3, P0L.5 must receive defined levels.
This is described in chapter "System Reset“.

Loading the Startup Code
After sending the identification byte the BSL enters a loop to receive 32 bytes via ASC.
These bytes are stored sequentially into locations 00’FA40H through 00’FA5FH of the
internal RAM. So up to 16 instructions may be placed into the RAM area. To execute the
loaded code the BSL then jumps to location 00’FA40H, ie. the first loaded instruction. The
bootstrap loading sequence is now terminated, the C161U remains in BSL mode,
however. Most probably the initially loaded routine will load additional code or data, as
an average application is likely to require substantially more than 16 instructions. This
second receive loop may directly use the pre-initialized interface ASC to receive data
and store it to arbitrary user-defined locations.
This second level of loaded code may be the final application code. It may also be
another, more sophisticated, loader routine that adds a transmission protocol to enhance
the integrity of the loaded code or data. It may also contain a code sequence to change
the system configuration and enable the bus interface to store the received data into
external memory.

MCA02261

P0L.4
Ω

Circuit_1

P0L.4

R
8 k

P0L.4

External Signal

R

BSL

8 k
P0L.4
Ω

Normal Boot

Circuit_2
Data Sheet 357 2001-04-19

C161U

Bootstrap Loader
This process may go through several iterations or may directly execute the final
application. In all cases the C161U will still run in BSL mode, ie. with the watchdog timer
disabled and limited access to the internal code memory.

Exiting Bootstrap Loader Mode
In order to execute a program in normal mode, the BSL mode must be terminated first.
C161U exits BSL mode upon a software reset (ignores the level on P0L.4) or a hardware
reset (P0L.4 must be high then!). After a reset the C161U will start executing from
location 00’0000H of the external memory (make sure, pin EA is tied to ’0’ signal).

Choosing the Baudrate for the BSL
The calculation of the serial baudrate for ASC from the length of the first zero byte that
is received, allows the operation of the bootstrap loader of the C161U with a wide range
of baudrates. However, the upper and lower limits have to be kept, in order to insure
proper data transfer.

C161U uses timer T6 to measure the length of the initial zero byte. The quantization
uncertainty of this measurement implies the first deviation from the real baudrate, the
next deviation is implied by the computation of the S0BRL reload value from the timer
contents. The formula below shows the association:

For a correct data transfer from the host to the C161U the maximum deviation between
the internal initialized baudrate for ASC and the real baudrate of the host should be
below 2.5%. The deviation (FB, in percent) between host baudrate and C161U baudrate
can be calculated via the formula below:

fCPU
32 S0BRL 1+()⋅
---BC161U

S0BRL T6 36–
72

-------------------= T6 9
4
--

fCPU
BHost
---------------⋅=,

FB
BContr BHost–

BContr
-- 100⋅= % FB 2,5≤ %,
Data Sheet 358 2001-04-19

C161U

Bootstrap Loader
Note: Function (FB) does not consider the tolerances of oscillators and other devices
supporting the serial communication.

This baudrate deviation is a nonlinear function depending on the CPU clock and the
baudrate of the host. The maxima of the function (FB) increase with the host baudrate
due to the smaller baudrate prescaler factors and the implied higher quantization error
(see figure below).

Figure 113 Baudrate deviation between host and C161U

Minimum baudrate (BLow in the figure above) is determined by the maximum count
capacity of timer T6, when measuring the zero byte, ie. it depends on the CPU clock.
Using the maximum T6 count 216 in the formula the minimum baudrate for fCPU=20 MHz
is 687 Baud. The lowest standard baudrate in this case would be 1200 Baud. Baudrates
below BLow would cause T6 to overflow. In this case ASC cannot be initialized properly.
Maximum baudrate (BHigh in the figure above) is the highest baudrate where the
deviation still does not exceed the limit, ie. all baudrates between BLow and BHigh are
below the deviation limit. The maximum standard baudrate that fulfills this requirement
is 19200 Baud.
Higher baudrates, however, may be used as long as the actual deviation does not
exceed the limit. A certain baudrate (marked I) in the figure) may eg. violate the deviation
limit, while an even higher baudrate (marked II) in the figure) stays very well below it. This
depends on the host interface.

MCA02260

BF

2.5%

LowB BHigh

Ι

ΙΙ

BHost
Data Sheet 359 2001-04-19

C161U

System Reset
18 System Reset
The internal system reset function provides initialization of the C161U into a defined
default state and is invoked either by asserting a hardware reset signal on pin RSTIN
(Hardware Reset Input), upon the execution of the SRST instruction (Software Reset) or
by an overflow of the watchdog timer (WDT).
Whenever one of these conditions occurs, the microcontroller is reset into its predefined
default state through an internal reset procedure. When a reset is initiated, pending
internal hold states are cancelled and the current internal access cycle (if any) is
completed. An external bus cycle is aborted, except for a watchdog reset (see
description). After that the bus pin drivers and the I/O pin drivers are switched off
(tristate). RSTOUT is activated depending on the reset source.
The internal reset procedure requires 516 CPU clock cycles in order to perform a
complete reset sequence. This 516 cycle reset sequence is started upon a watchdog
timer overflow, a SRST instruction or when the reset input signal RSTIN is latched low
(hardware reset). The internal reset condition is active at least for the duration of the
reset sequence and then until the RSTIN input is inactive. When this internal reset
condition is removed (reset sequence complete and RSTIN inactive), the reset
configuration is latched from PORT0, and pins ALE, RD and WR are driven to their
inactive levels.
Note: Bit ADP, which selects the Adapt mode during low RSTIN signal, is latched with

the rising edge of RSTIN.

After the internal reset condition is removed, the microcontroller will start program
execution from memory location 00’0000H in code segment zero. This start location will
typically hold a branch instruction to the start of a software initialization routine for the
application specific configuration of peripherals and CPU Special Function Registers.
Data Sheet 360 2001-04-19

C161U

System Reset

Figure 114 External Reset Circuitry

Hardware Reset
A hardware reset is triggered when the reset input signal RSTIN is latched low. To
ensure the recognition of the RSTIN signal (latching), it must be held low for at least
8 CPU clock cycles.
Note: During reset, the CPU is clocked with the free-running PLL clock which may run

as slow as < 1 MHz.

Also shorter RSTIN pulses may trigger a hardware reset, if they coincide with the latch’s
sample point. However, it is recommended to keep RSTIN low for ca. 1 ms. After the
reset sequence has been completed, the RSTIN input is sampled. When the reset input
signal is active at that time the internal reset condition is prolonged until RSTIN gets
inactive.
During a hardware reset the PORT0 inputs for the reset configuration need some time
to settle on the required levels, especially if the hardware reset aborts a read operation
form an external peripheral. During this settling time the configuration may intermittently
be wrong. In such a case also the PLL clock selection may be wrong.
Note: To ensure a glitch free start-up of the C161U, it is strongly recommended to

provide an external reset pulse of ca. 1 ms in order to allow the PLL to settle on
the desired CPU clock frequency.

Reset

+

a) Generated Warm Reset
b) Automatic Power-ON Reset

&

MCA02259

RSTOUT

C161U

External
Hardware

a)

b)

External
Reset
Sources

CCV

RSTIN
Data Sheet 361 2001-04-19

C161U

System Reset
The input RSTIN provides an internal pullup device equalling a resistor of 100 KΩ to
660 KΩ (the minimum reset time must be determined by the lowest value). Simply
connecting an external capacitor is sufficient for an automatic power-on reset, see b) in
Figure 114. RSTIN may also be connected to the output of other logic gates, see a)
same figure.
Note: A power-on reset requires an active time of two reset sequences (1036 CPU clock

cycles) after a stable clock signal is available (about 10...50 ms to allow the on-
chip oscillator to stabilize).

Software Reset
The reset sequence can be triggered at any time via the protected instruction SRST
(Software Reset). This instruction can be executed deliberately within a program, eg. to
leave bootstrap loader mode, or upon a hardware trap that reveals a system failure.
C161U’s latched in reset configuration on software reset is shown in Figure 116,
page 368.

Watchdog Timer Reset
When the watchdog timer is not disabled during the initialization or serviced regularly
during program execution it will overflow and trigger the reset sequence. Other than
hardware and software reset the watchdog reset completes a running external bus cycle
if this bus cycle either does not use READY at all, or if READY is sampled active (low)
after the programmed waitstates. When READY is sampled inactive (high) after the
programmed waitstates the running external bus cycle is aborted. Then the internal reset
sequence is started.
Note: For latched in watchdog reset configuration, refer to Figure 116, page 368.

The watchdog reset cannot occur while the C161U is in bootstrap loader mode!

C161U’s Pins after Reset
After the reset sequence the different groups of pins of the C161U are activated in
different ways depending on their function. Bus and control signals are activated
immediately after the reset sequence according to the configuration latched from
PORT0, so either external accesses can take place or the external control signals are
inactive. The general purpose I/O pins remain in input mode (high impedance) until
reprogrammed via software (see figure below). The RSTOUT pin remains active (low)
until the end of the initialization routine (see description).
Data Sheet 362 2001-04-19

C161U

System Reset

Figure 115 Reset Input and Output Signals

Reset Output Pin
The RSTOUT pin is dedicated to generate a reset signal for the system components
besides the controller itself. RSTOUT will be driven active (low) at the begin of any reset
sequence (triggered by hardware, the SRST instruction or a watchdog timer overflow).
RSTOUT stays active (low) beyond the end of the internal reset sequence until the
protected EINIT (End of Initialization) instruction is executed (see figure above). This

delayed until the end of the internal reset condition.

Current bus cycle is completed or aborted.

Activation of the IO pins is controlled by software.
Execution of the EINIT instruction.

When the internal reset condition is extended by RSTIN, the activation of the output signals is

Switches asinchronously with RSTIN, sinchronously upon software or watchdog reset.
The reset condition ends here. The C 167CR starts program execution.

The shaded area designates the internal reset sequence, which starts after synchronization of RSTIN.

RSTIN

Internal Reset Condition

6)

Initialization

3)

MCS02258

RD, WR

RSTOUT

IO

ALE

Bus

RSTIN

Internal Reset Condition

6)

1)

2)

2)

Initialization

3) 5)

4)

8)

7)

A short hardware reset is extended until the end of the reset sequence in Bidirectional reset mode.
A software or WDT reset activates the RSTIN line in Bidirectional reset mode.8)

7)

6)

3)

2)

5)

4)

1)
Data Sheet 363 2001-04-19

C161U

System Reset
allows the complete configuration of the controller including its on-chip peripheral units
before releasing the reset signal for the external peripherals of the system.

Watchdog Timer Operation after Reset
The watchdog timer starts running after the internal reset has completed. It will be
clocked with the internal system clock divided by 2 (18 MHz @ fCPU=36 MHz), and its
default reload value is 00H, so a watchdog timer overflow will occur 131072 CPU clock
cycles (3.64 ms @ fCPU=36 MHz) after completion of the internal reset, unless it is
disabled, serviced or reprogrammed meanwhile. When the system reset was caused by
a watchdog timer overflow, the WDTR (Watchdog Timer Reset Indication) flag in register
WDTCON will be set to '1'. This indicates the cause of the internal reset to the software
initialization routine. WDTR is reset to '0' by an external hardware reset or by servicing
the watchdog timer. After the internal reset has completed, the operation of the watchdog
timer can be disabled by the DISWDT (Disable Watchdog Timer) instruction. This
instruction has been implemented as a protected instruction. For further security, its
execution is only enabled in the time period after a reset until either the SRVWDT
(Service Watchdog Timer) or the EINIT instruction has been executed. Thereafter the
DISWDT instruction will have no effect.
Note: For a complete description of register WDTCON, refer to Chapter 16.1, page 352.

Reset Values for the C161U Registers
During the reset sequence the registers of the C161U are preset with a default value.
Most SFRs, including system registers and peripheral control and data registers, are
cleared to zero, so all peripherals and the interrupt system are off or idle after reset. A
few exceptions to this rule provide a first pre-initialization, which is either fixed or
controlled by input pins.
DPP1: 0001H (points to data page 1)
DPP2: 0002H (points to data page 2)
DPP3: 0003H (points to data page 3)
CP: FC00H
STKUN: FC00H
STKOV: FA00H
SP: FC00H
WDTCON: 00XXH, (value depends on the reset configuration)
S0RBUF: XXH (undefined)
SSCRB: XXXXH (undefined)
SYSCON: 0XX0H (set according to reset configuration)
BUSCON0: 0XX0H (set according to reset configuration)
RP0H: XXH (reset levels of P0H)
ONES: FFFFH (fixed value)
Data Sheet 364 2001-04-19

C161U

System Reset
Internal RAM after Reset
The contents of the internal RAM are not affected by a system reset. However, after
power-on the contents of the internal RAM are undefined. This implies that the GPRs
(R15...R0) and the PEC source and destination pointers (SRCP7...SRCP0,
DSTP7...DSTP0) which are mapped into the internal RAM are also unchanged after a
hardware reset, software reset or watchdog reset, but are undefined after power-on.

Ports and External Bus Configuration during Reset
During the internal reset sequence all of the C161U's port pins are configured as inputs
by clearing the associated direction registers, and their pin drivers are switched to the
high impedance state. This ensures that the C161U and external devices will not try to
drive the same pin to different levels. Pin ALE is held low through an internal pulldown,
and pins RD and WR are held high through internal pullups. Also the pins selected for
CS output will be pulled high.
The registers SYSCON and BUSCON0 are initialized according to the configuration
selected via PORT0:
• the Bus Type field (BTYP) in register BUSCON0 is initialized according to P0L.7 and

P0L.6
• bit BUSACT0 in register BUSCON0 is set to ‘1’
• bit ALECTL0 in register BUSCON0 is set to ‘1’
• bit ROMEN in register SYSCON will be cleared to ‘0’
• bit BYTDIS in register SYSCON is set according to the data bus width
Note: In the C161U, pin EA must always be set to ’0’. The "internal start" (EA=’1’), known

from other Infineon C16x devices is not supported.

The other bits of register BUSCON0, and the other BUSCON registers are cleared. This
default initialization selects the slowest possible external accesses using the configured
bus type. The Ready function is disabled at the end of the internal system reset.
When the internal reset has completed, the configuration of PORT0, PORT1, Port 4,
Port 6 and of the BHE signal (High Byte Enable, alternate function of P3.12) depends on
the bus type which was selected during reset. When any of the external bus modes was
selected during reset, PORT0 (and PORT1) will operate in the selected bus mode. Port 4
will output the selected number of segment address lines (all zero after reset) and Port 6
will drive the selected number of CS lines (CS0 will be ‘0’, while the other active CS lines
will be ‘1’). When no memory accesses above 64 K are to be performed, segmentation
may be disabled.
When the on-chip bootstrap loader was activated during reset, pin TxD0 (alternate
function of P3.10) will be switched to output mode after the reception of the zero byte.
All other pins remain in the high-impedance state until they are changed by software or
peripheral operation.
Data Sheet 365 2001-04-19

C161U

System Reset
Application-Specific Initialization Routine
After the internal reset condition is removed the C161U fetches the first instruction from
location 00’0000H, which is the first vector in the trap/interrupt vector table, the reset
vector. 4 words (locations 00’0000H through 00’0007H) are provided in this table to start
the initialization after reset. As a rule, this location holds a branch instruction to the actual
initialization routine that may be located anywhere in the address space.
Note: When the Bootstrap Loader Mode was activated during a hardware reset the

C161U does not fetch instructions from location 00’0000H but rather expects data
via serial interface ASC.

The first instruction is fetched from external memory. To decrease the number of
instructions required to initialize the C161U, each peripheral is programmed to a default
configuration upon reset, but is disabled from operation. These default configurations
can be found in the descriptions of the individual peripherals.
During the software design phase, portions of the internal memory space must be
assigned to register banks and system stack. When initializating the stack pointer (SP)
and the context pointer (CP), it must be ensured that these registers are initialized before
any GPR or stack operation is performed. This includes interrupt processing, which is
disabled upon completion of the internal reset, and should remain disabled until the SP
is initialized.
Note: Traps (incl. NMI) may occur, even though the interrupt system is still disabled.

In addition, the stack overflow (STKOV) and the stack underflow (STKUN) registers
should be initialized. After reset, the CP, SP, and STKUN registers all contain the same
reset value 00’FC00H, while the STKOV register contains 00’FA00H. With the default
reset initialization, 256 words of system stack are available, where the system stack
selected by the SP grows downwards from 00’FBFEH, while the register bank selected
by the CP grows upwards from 00’FC00H.
Based on the application, the user may wish to initialize portions of the internal memory
before normal program operation. Once the register bank has been selected by
programming the CP register, the desired portions of the internal memory can easily be
initialized via indirect addressing.
At the end of the initialization, the interrupt system may be globally enabled by setting bit
IEN in register PSW. Care must be taken not to enable the interrupt system before the
initialization is complete.
The software initialization routine should be terminated with the EINIT instruction. This
instruction has been implemented as a protected instruction. Execution of the EINIT
instruction...
• disables the action of the DISWDT instruction,
• disables write accesses to register SYSCON,
Data Sheet 366 2001-04-19

C161U

System Reset
Note:All configurations regarding register SYSCON (enable CLKOUT, stacksize, etc.)
must be selected before the execution of EINIT.

• disables write access to registers SYSCON2 and SYSCON3 (further write accesses
to SYSCON2 and SYSCON3 can be executed only using a special unlock
mechanism),

• clears the reset source detection bits in register WDTCON,
• causes the RSTOUT pin to go HIGH. This signal can be used to indicate the end of

the initialization routine and the proper operation of the microcontroller to external
hardware.

18.1 System Startup Configuration
Although most of the programmable features of the C161U are either selected during the
initialization phase or repeatedly during program execution, there are some features that
must be selected earlier, because they are used for the first access of the program
execution.
These selections are made during reset via the pins of PORT0, which are read at the
end of the internal reset sequence. During reset internal pullup devices are active on the
PORT0 lines, so their input level is high, if the respective pin is left open, or is low, if the
respective pin is connected to an external pulldown device. With the coding of the
selections, as shown below, in many cases the default option, ie. high level, can be used.
The value on the upper byte of PORT0 (P0H) is latched into register RP0H upon reset,
the value on the lower byte (P0L) directly influences the BUSCON0 register (bus mode)
or the internal control logic of the C161U.
Data Sheet 367 2001-04-19

C161U

System Reset

Figure 116 PORT0 Configuration during Reset

Note: The configuration on pins P0H.7:P0H.5 (CLKCFG) and P0L5:P0L.2 (SMOD) is
latched in on a hardware triggered reset only and will not be evaluated by the
C161U on a software and/or WDT reset.

The configuration via P0H is latched in register RP0H for subsequent evaluation by
software. Register RP0H is described in chapter “The External Bus Interface”.
Note: The reset configuration needs to be held on port P0 throughout the start-up phase

until the C161U takes over control of the external XBUS. This is first indicated by
driving the XBUS output lines ALE, RD, WR/WRL, CS, P4, P1H and P1L. Since it
might prove infeasible to detect the change from tristate to a strongly driven value,
the first rising edge of ALE can be used for indication of the end of the reset
configuration hold time. The first rising edge of ALE occurs 4 CPU cycles after
taking control of the external bus.

The following describes the different selections that are offered for reset configuration.
The default modes refer to pins at high level, ie. without external pulldown devices
connected. Table 91 shows a summary of all modes, supported by the C161U.

’1’ADPWRC

L.5 L.4 L.3 L.2 L.1 L.0H.3 H.2 H.1 H.0 L.7 L.6H.7 H.6 H.5 H.4

CSSELSALSEL BUSTYP

R
P

0H

Port 4
Logic

Port 6
Logic

SYSCON BUSCON0

Internal Control Logic

CLKCFG

Clock
Generator

SMOD

P0L.0
must

be ’1’
always

L.5 L.4 L.3 L.2 L.1 L.0H.3 H.2 H.1 H.0 L.7 L.6H.7 H.6 H.5 H.4

L.1 L.0H.3 H.2 H.1 H.0 L.7 L.6H.4

Configuration latched in on hardware reset

Configuration latched in on software and/or WDT reset
Data Sheet 368 2001-04-19

C161U

System Reset
Note: The Emulation Mode, known from other C16x Infineon devices, is not supported
by the C161U. Make sure, on pin P0L.0 a HIGH signal is always latched in. HIGH
on P0L.0 is the default configuration and is supported by the internal pull-up
device.

Adapt Mode

Pin P0L.1 (ADP) selects the Adapt Mode when low during reset. It is latched with the
rising edge of RSTIN. In this mode the C161U goes into a passive state, which is similar
to its state during reset. The pins of the C161U float to tristate or are deactivated via
internal pullup/pulldown devices, as described for the reset state. In addition also the
RSTOUT pin floats to tristate rather than be driven low, and the on-chip oscillator is
switched off.
This mode allows switching a C161U that is mounted to a board virtually off, so an
emulator may control the board’s circuitry, even though the original C161U remains in its
place. The original C161U also may resume to control the board after a reset sequence
with P0L.1 high.
Default: Adapt Mode is off.

Bootstrap Loader Mode
Pin P0L.4 (BSL) activates the on-chip bootstrap loader, when low during reset. The
bootstrap loader allows moving the start code into the internal RAM of the C161U via the
serial interface ASC. The C161U will remain in bootstrap loader mode until a hardware
reset with P0L.4 high or a software reset.
Default: The C161U starts fetching code from location 00’0000H, the bootstrap loader is
off.

External Bus Type
Pins P0L.7 and P0L.6 (BUSTYP) select the external bus type during reset, if an external
start is selected via pin EA. This allows the configuration of the external bus interface of

Table 91 C161U’s Supported Modes and Related Reset Configurations
P0L.5 : P0L.2
(SMOD)

P0L.1 (ADP) Selected Mode

x x x x 0 Adapt Mode
1 1 1 1 1 Normal Mode
0 0 0 1 1 Internal Boot-ROM Read-Out
1 0 1 1 1 Bootstrap-Loader Mode
1 1 0 1 1 Selftest
Data Sheet 369 2001-04-19

C161U

System Reset
the C161U even for the first code fetch after reset. The two bits are copied into bit field
BTYP of register BUSCON0. P0L.7 controls the data bus width, while P0L.6 controls the
address output (multiplexed or demultiplexed). This bit field may be changed via
software after reset, if required.

PORT0 and PORT1 are automatically switched to the selected bus mode. In multiplexed
bus modes PORT0 drives both the 16-bit intra-segment address and the output data,
while PORT1 remains in high impedance state as long as no demultiplexed bus is
selected via one of the BUSCON registers. In demultiplexed bus modes PORT1 drives
the 16-bit intra-segment address, while PORT0 or P0L (according to the selected data
bus width) drives the output data.
For a 16-bit data bus BHE is automatically enabled, for an 8-bit data bus BHE is disabled
via bit BYTDIS in register SYSCON.
Default: 16-bit data bus with multiplexed addresses.
Note: If an internal start is selected via pin EA, these two pins are disregarded and bit

field BTYP of register BUSCON0 is cleared.

Write Configuration
Pin P0H.0 (WRC) selects the initial operation of the control pins WR and BHE during
reset. When high, this pin selects the standard function, ie. WR control and BHE. When
low, it selects the alternate configuration, ie. WRH and WRL. Thus even the first access
after a reset can go to a memory controlled via WRH and WRL. This bit is latched in
register RP0H and its inverted value is copied into bit WRCFG in register SYSCON.
Default: Standard function (WR control and BHE).

Chip Select Lines
Pins P0H.2 and P0H.1 (CSSEL) define the number of active chip select signals during
reset. This allows the selection which pins of Port 6 drive external CS signals and which
are used for general purpose IO. The two bits are latched in register RP0H.
Default: All 4 chip select lines active (CS3...CS0).
Note: The selected number of CS signals cannot be changed via software after reset.

BTYP
Encoding

External Data Bus Width External Address Bus Mode

0 0 8-bit Data Demultiplexed Addresses
0 1 8-bit Data Multiplexed Addresses
1 0 16-bit Data Demultiplexed Addresses
1 1 16-bit Data Multiplexed Addresses
Data Sheet 370 2001-04-19

C161U

System Reset
Segment Address Lines
Pins P0H.4 and P0H.3 (SALSEL) define the number of active segment address lines
during reset. This allows the selection which pins of Port 4 drive address lines and which
are used for general purpose IO. The two bits are latched in register RP0H. Depending
on the system architecture the required address space is chosen and accessible right
from the start, so the initialization routine can directly access all locations without prior
programming. The required pins of Port 4 are automatically switched to address output
mode.

Even if not all segment address lines are enabled on Port 4, the C161U internally uses
its complete 24-bit addressing mechanism. This allows the restriction of the width of the
effective address bus, while still deriving CS signals from the complete addresses.
Default: 2-bit segment address (A17...A16) allowing access to 256 KByte.
Note: The selected number of segment address lines cannot be changed via software

after reset.

Clock Generation Control
Pins P0H.7, P0H.6 and P0H.5 (CLKCFG) select the clock generation mode (on-chip
PLL) during reset. Please refer to Chapter 3.3, "Clock Generation Concept".

CSSEL Chip Select Lines Note
1 1 Four: CS3...CS0 Default without pull-downs
1 0 None Port 6 pins free for I/O
0 1 Two: CS1...CS0 P6.4..P6.2 free for GPI/O
0 0 Three: CS2...CS0 P6.4..P6.3 free for GPI/O

SALSEL Segment Address Lines Directly accessible Address Space
1 1 Two: A17...A16 256 KByte (Default without pull-downs)
1 0 Eight: A20...A16 2 MByte (Maximum)
0 1 None 64 KByte (Minimum)
0 0 Four: A19...A16 1 MByte
Data Sheet 371 2001-04-19

C161U

Power Reduction Modes
19 Power Reduction Modes
Two different power reduction modes with different levels of power reduction have been
implemented in the C161U, which may be entered under software control.
In Idle mode the CPU is stopped, while the peripherals continue their operation. Idle
mode can be terminated by any reset or interrupt request.
In Power Down mode both the CPU and the peripherals are stopped. Power Down
mode can only be terminated by a hardware reset.
Note: All external bus actions are completed before Idle or Power Down mode is

entered. However, Idle or Power Down mode is not entered if READY is enabled,
but has not been activated (driven low) during the last bus access.

19.1 Idle Mode
The power consumption of the C161U microcontroller can be decreased by entering Idle
mode. In this mode all peripherals, including the watchdog timer, continue to operate
normally, only the CPU operation is halted.
Idle mode is entered after the IDLE instruction has been executed and the instruction
before the IDLE instruction has been completed. To prevent unintentional entry into Idle
mode, the IDLE instruction has been implemented as a protected 32-bit instruction.
Idle mode is terminated by interrupt requests from any enabled interrupt source whose
individual Interrupt Enable flag was set before the Idle mode was entered, regardless of
bit IEN.
For a request selected for CPU interrupt service the associated interrupt service routine
is entered if the priority level of the requesting source is higher than the current CPU
priority and the interrupt system is globally enabled. After the RETI (Return from
Interrupt) instruction of the interrupt service routine is executed the CPU continues
executing the program with the instruction following the IDLE instruction. Otherwise, if
the interrupt request cannot be serviced because of a too low priority or a globally
disabled interrupt system the CPU immediately resumes normal program execution with
the instruction following the IDLE instruction.
For a request which was programmed for PEC service a PEC data transfer is performed
if the priority level of this request is higher than the current CPU priority and the interrupt
system is globally enabled. After the PEC data transfer has been completed the CPU
remains in Idle mode. Otherwise, if the PEC request cannot be serviced because of a
too low priority or a globally disabled interrupt system the CPU does not remain in Idle
mode but continues program execution with the instruction following the IDLE
instruction.
Data Sheet 372 2001-04-19

C161U

Power Reduction Modes

Figure 117 Transitions between Idle mode and active mode

Idle mode can also be terminated by a Non-Maskable Interrupt, ie. a high to low transition
on the NMI pin. After Idle mode has been terminated by an interrupt or NMI request, the
interrupt system performs a round of prioritization to determine the highest priority
request. In the case of an NMI request, the NMI trap will always be entered.
Any interrupt request whose individual Interrupt Enable flag was set before Idle mode
was entered will terminate Idle mode regardless of the current CPU priority. The CPU
will not go back into Idle mode when a CPU interrupt request is detected, even when the
interrupt was not serviced because of a higher CPU priority or a globally disabled
interrupt system (IEN=’0’). The CPU will only go back into Idle mode when the interrupt
system is globally enabled (IEN=’1’) and a PEC service on a priority level higher than
the current CPU level is requested and executed.
Note: An interrupt request which is individually enabled and assigned to priority level 0

will terminate Idle mode. The associated interrupt vector will not be accessed,
however.

The watchdog timer may be used to monitor the Idle mode: an internal reset will be
generated if no interrupt or NMI request occurs before the watchdog timer overflows. To
prevent the watchdog timer from overflowing during Idle mode it must be programmed
to a reasonable time interval before Idle mode is entered.,
The standard Idle mode can be additionally configured by programming the SYSCON3
register, using the flexible peripheral management functions. This is especially
advantages, because it is thus possible to activate only these peripherals also in Idle
mode which are really required for standby operation or for wakeup, reducing power
consumption to the absolute minimum for a specific peripheral operation during Idle
mode.

Active
Mode

Idle
ModeIDLE instruction

CPU Interrupt Request

Denied PEC Request Executed
PEC Request

denied

accepted
Data Sheet 373 2001-04-19

C161U

Power Reduction Modes
19.2 Power Down Mode
To further reduce the power consumption the microcontroller can be switched to Power
Down mode. Clocking of all internal blocks is stopped, the contents of the internal RAM,
however, are preserved through the voltage supplied via the VCC pins. The watchdog
timer is stopped in Power Down mode. This mode can only be terminated by an external
hardware reset, ie. by asserting a low level on the RSTIN pin. This reset will initialize all
SFRs and ports to their default state, but will not change the contents of the internal
RAM.
There are two levels of protection against unintentionally entering Power Down mode.
First, the PWRDN (Power Down) instruction which is used to enter this mode has been
implemented as a protected 32-bit instruction. Second, this instruction is effective only
if the NMI (Non Maskable Interrupt) pin is externally pulled low while the PWRDN
instruction is executed. The microcontroller will enter Power Down mode after the
PWRDN instruction has completed.
This feature can be used in conjunction with an external power failure signal which pulls
the NMI pin low when a power failure is imminent. The microcontroller will enter the NMI
trap routine which can save the internal state into RAM. After the internal state has been
saved, the trap routine may set a flag or write a certain bit pattern into specific RAM
locations, and then execute the PWRDN instruction. If the NMI pin is still low at this time,
Power Down mode will be entered, otherwise program execution continues. During
power down the voltage at the VCC pins can be lowered to 2.5 V while the contents of the
internal RAM will still be preserved.
The initialization routine (executed upon reset) can check the identification flag or bit
pattern within RAM to determine whether the controller was initially switched on, or
whether it was properly restarted from Power Down mode.

19.3 Status of Output Pins during Idle and Power Down Mode
During Idle mode the CPU clocks are turned off, while all peripherals continue their
operation in the normal way. Therefore all ports pins, which are configured as general
purpose output pins, output the last data value which was written to their port output
latches. If the alternate output function of a port pin is used by a peripheral, the state of
the pin is determined by the operation of the peripheral.
Port pins which are used for bus control functions go into that state which represents the
inactive state of the respective function (eg. WR), or to a defined state which is based on
the last bus access (eg. BHE). Port pins which are used as external address/data bus
hold the address/data which was output during the last external memory access before
entry into Idle mode under the following conditions:
P0H outputs the high byte of the last address if a multiplexed bus mode with 8-bit data
bus is used, otherwise P0H is floating. P0L is always floating in Idle mode.
Data Sheet 374 2001-04-19

C161U

Power Reduction Modes
PORT1 outputs the lower 16 bits of the last address if a demultiplexed bus mode is used,
otherwise the output pins of PORT1 represent the port latch data.
Port 4 outputs the segment address for the last access on those pins that were selected
during reset, otherwise the output pins of Port 4 represent the port latch data.
During Power Down mode the oscillator and the clocks to the CPU and to the
peripherals are turned off. Like in Idle mode, all port pins which are configured as general
purpose output pins output the last data value which was written to their port output
latches.
When the alternate output function of a port pin is used by a peripheral the state of this
pin is determined by the last action of the peripheral before the clocks were switched off.
The table below summarizes the state of all C161U output pins during Idle and Power
Down mode.

C161U
Output
Pin(s)

Idle Mode Power Down Mode
No
external bus

External bus
enabled

No
external bus

External bus
enabled

ALE Low Low Low Low
RD, WR High High High High
CLKOUT Active Active High High
RSTOUT 1) 1) 1) 1)
P0L Port Latch Data Floating Port Latch Data Floating
P0H Port Latch Data A15...A8 2) /

Float
Port Latch Data A15...A8 2) /

Float
PORT1 Port Latch Data Last Address 3) /

Port Latch Data
Port Latch Data Last Address 3) /

Port Latch Data
Port 4 Port Latch Data Port Latch Data/

Last segment
Port Latch Data Port Latch Data/

Last segment
BHE Port Latch Data Last value Port Latch Data Last value
HLDA Port Latch Data Last value Port Latch Data Last value
BREQ Port Latch Data High Port Latch Data High
CSx Port Latch Data Last value 4) Port Latch Data Last value 4)

Other Port
Output Pins

Port Latch Data /
Alternate
Function

Port Latch Data /
Alternate
Function

Port Latch Data /
Alternate
Function

Port Latch Data /
Alternate
Function
Data Sheet 375 2001-04-19

C161U

Power Reduction Modes
Note:
1): High if EINIT was executed before entering Idle or Power Down mode, Low otherwise.
2): For multiplexed buses with 8-bit data bus.
3): For demultiplexed buses.
4): The CS signal that corresponds to the last address remains active (low), all other
enabled CS signals remain inactive (high). By accessing an on-chip X-Periperal prior to
entering a power save mode all external CS signals can be deactivated.

19.4 Extended Power Management
Infineon Technologies C16x’s well known basic power reduction modes (Idle and Power
Down) are enhanced by a number of additional power management features. These
features can be combined or selectively used to reduce the controller’s power
consumption to the respective application’s possible minimum. According to the sense
of platform modularity, the extended power management functions are controlled by
different submodules and registers, as follows::

C161U’s power management functions can be supplemented by the Real Time Clock
(RTC) timer with optional periodic wakeup from Sleep or Idle mode. The periodic wakeup
combines the drastically reduced power consumption in power reduction modes (in
conjunction with the additional power management features) with a high level of system
availability. External signals and events can be scanned (at a lower rate) by periodically
activating the CPU and selected peripherals which then return to powersave mode after
a short time. This greatly reduces the system’s average power consumption. The RTC
is fully controlled by the C161U’s power reduction submodules.
The Extended Power Management Module controls the Sleep mode. The Sleep mode is
a new power management function which represents and is equal to a Power Down
mode but with exit/wakeup handling as in Idle mode. Wakeup out of Sleep state is
possible with all external interrupts (including alternate sources e.g. from ASC interface),
with NMI and with RTC interrupts. As in Idle mode also PEC requests are executed in
Sleep mode, resulting in an interruption and resumption of Sleep mode. The watchdog
timer is stopped in Sleep mode. The contents of internal RAM and of CBC’s registers are
preserved through the voltage supplied via the VDD pins.
As in Power Down mode, the Sleep mode may also be combined with a running real time
clock RTC. In Sleep mode the oscillators (RTC and selected oscillator optionally), the

Sub Module Control Register
Extended Power Management /Sleep Mode Control SYSCON1
Flexible Clock Generation Management SYSCON2
Flexible Peripheral Management SYSCON3
Data Sheet 376 2001-04-19

C161U

Power Reduction Modes
PLL as well as the whole clock system is stopped as in power down state. This implies
- contrary to Idle mode - , that after wakeup the exit of Sleep mode and thus the start of
any CPU operation is normally delayed by the ramp-up time of the clock system
(oscillator, PLL). Only when the PLL clock is locked on configured frequency, the system
clock is started and the following processing is identical to wakeup from Idle mode.
For description of Idle mode and its possibilities of configuration see Chapter 19.1, "Idle
Mode".
Register in Extended Power Management Module :

Note: SYSCON1 is a protected register; its security level is automatically set to full write
protection after execution of EINIT instruction.

The power reduction modes Idle and power down are extended by the Infineons C16x
devices newly introduced sleep mode.

19.4.1 Sleep Mode
The Sleep mode is a new power management function which represents and is equal to
a Power Down mode but with exit/wakeup handling as in Idle mode. Wakeup from Sleep
state is possible with all external interrupts (including alternate sources e.g. from SSC
interface), with NMI and with RTC interrupts. As in Idle mode also PEC requests are
executed in Sleep mode, resulting in an interruption and resumption of Sleep mode. The
watchdog timer is stopped in Sleep mode. The contents of internal RAM and registers
are preserved through the voltage supplied via the VDD pins.
Generally, the external bus and the XBUS are released during Sleep mode if enabled by
the Hold Enable bit HLDEN in the last Program Status Word PSW. If enabled, the signal
HLDA is active as long as the Sleep mode (as well as the Idle or Power Down mode) is
active. Only when the clock is available again after wakeup, the HOLD request signal is
sampled and the HLDA state continued until HOLD is deactivated.
As in Power Down mode, the Sleep mode may also be combined with a running real time
clock RTC. In Sleep mode the oscillators (RTC and selected oscillator optionally), the
PLL as well as the whole clock system is stopped as in Power Down state. This implies,
that after wakeup the exit of Sleep mode normally is delayed by the ramp-up time of the
clock system (oscillator, PLL).
Sleep mode is entered after the standard IDLE instruction (protected 32 bit instruction)
has been executed and the instruction before the IDLE instruction has been completed.
The selection between standard Idle mode and Sleep mode is controlled with the new
register SYSCON1 (see below).

Register Description
SYSCON1 System configuration control register for sleep management
Data Sheet 377 2001-04-19

C161U

Power Reduction Modes
Note: Sleep mode cannot be entered in Slow Down mode - the start of sleep mode and
wakeup is only possible in the normal clocking mode (PLL or direct drive) as
defined with the startup configuration on port P0. If Sleep mode shall be entered
during Slow Down mode, automatically the standard Idle mode is selected as
configured with SYSCON3 register.

The Sleep mode is controlled by bitfield SLEEPCON within register SYSCON1.

SYSCON1 (F1DCH / EEH) ESFR-b Reset Value: 0000H

Note: SYSCON1 is write protected after the execution of EINIT unless it is released via
the unlock sequence.

General description of SYSCON1 bits:

Before entering Sleep mode with the IDLE instruction, the continuation of instruction
processing after termination of Sleep mode must be prepared as known from standard
Idle mode. For wakeup with interrupt, four general possibilities of continuation can be
selected, which are controlled (prepared) as follows:
• Continuation with first instruction after the IDLE instruction will be enabled if

– interrupts are globally disabled with the Interrupt Enable bit in PSW, or
– the interrupt is enabled by global (PSW) and by individual (interrupt control register)

enable bit, but the current CPU priority level (in PSW) of IDLE instruction is higher
than the interrupt level.

• Continuation with first instruction of dedicated interrupt service routine will be
selected if
the interrupt is enabled by global (in PSW) and by individual (interrupt control register)
enable bit, and the CPU priority level of IDLE instruction is lower than the interrupt
level, thus the enabled interrupt has highest priority. Additionally, PEC Transfer for this
interrupt is not enabled. The continuation with the dedicated service routine is always
performed in case of NMI hardware traps, independently of any enable bit or CPU
priority level.

Bit Function
SLEEPCON SLEEP Mode Configuration

‘0 0’: normal IDLE mode
‘0 1’: SLEEP mode with running RTC
‘1 0’: reserved
‘1 1’: SLEEP mode with stopped RTC and stopped OSC

- ------ - --

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - - rw- - - -- - -

- SLEEPCON

- - - rw

-

Data Sheet 378 2001-04-19

C161U

Power Reduction Modes
• Execution of one PEC Transfer and resumption of Sleep mode will be selected if
the interrupt is enabled by global (in PSW) and by individual (interrupt control register)
enable bit, and the CPU priority level of IDLE instruction is lower than the interrupt
level, thus the enabled interrupt has highest priority. Additionally, PEC Transfer for this
interrupt is enabled.

• Continuation with standard Idle mode as configured with register SYSCON3 if
the interrupt is not enabled with the individual Interrupt Enable flag in its interrupt
control register. Note: In standard Idle mode the watchdog timer has to be serviced.
For description of SYSCON3 see ´description of Peripheral Management Module.

As wakeup from Idle mode, wakeup from Sleep mode is performed with any enabled
interrupt request. Sleep mode is terminated and the before selected (and above
described) continuation of processing is executed, if one of the following interrupts occur:
• Fast External Interrupts (EXxINT). All fast external interrupts can be selected for

wakeup from Sleep mode by defining the related trigger transitions (edges) in the
EXICON register. All transition types are allowed also in Sleep mode.

• Alternate sources for Fast External Interrupts (EXxINT) as defined by the EXISEL
register. If selected, transitions on receive lines of serial interface controllers (ASC,
SSC, USB) can be used for wakeup from Sleep mode.

• RTC Timer T14 cyclic interrupt. For waking up from Sleep mode via RTC T14
interrupt, the RTC operation during Sleep mode must be selected in bitfield
SLEEPCON within register SYSCON1. Additionally, the RTC interrupt must be
enabled in the Interrupt Subnode Control register ISNC.

• RTC interrupt(s). With new real time clock, additional RTC interrupts can be enabled
via the Interrupt Subnode Control register RTCISNC. For wakeup, RTC operation
during Sleep mode must be selected in SYSCON1. This function is not supported in
C167CS.

• Non-Maskable Interrupt NMI. A high-to-low transition on NMI pin always terminates
the Sleep mode. The NMI input is filtered for spike suppression. (Planned: Input
signals shorter than 10ns are suppressed, detection is guaranteed for minimum 150ns
NMI signal).

Setup Lengthening Control (Start Delay)
Contrary to Idle mode, after wakup from Sleep mode at first the ramp-up of clock system
(oscillator and PLL) has to be controlled before any CPU operation can be started. Only
when the clock system is locked on configured frequency, the following processing is
identical to wakeup from Idle mode.
Data Sheet 379 2001-04-19

C161U

Power Reduction Modes
Note: This setup lengthening function is very similar to the start delay after HW-reset
because of reset lengthening conditions (see reset section). Setup lengthening
uses the same lengthening control signals as reset lengthening, but after setup the
program start is controlled with the trailing edge of a setup-active signal (contrary
to the RST signal in case of reset lengthening) which is provided to the core to
delay the execution of first instruction. The system hold state during setup is
controlled by start delay of clock distribution.
Data Sheet 380 2001-04-19

C161U

System Control Unit (CSCU)
20 System Control Unit (CSCU)

20.1 Introduction
System Control Unit CSCU is used to control system specific tasks such as reset control
or power management (see previous Chapter "Power Reduction Modes") within an on-
chip system build around the Infineons Cell-Based Core C166. The power management
features of the CSCU provide effective means to realize standby conditions for the
system with an optimum balance between power reduction, peripheral operation and
system functionality. Additionally, the CSCU controls the modes and operation of Real
Time Clock RTC.

Summary of Features and Functions
CSCU is characterized by the following functions:

– Central Control of system operation
– External interrupt and frequency output control
– Protection management for system control registers
– General XBUS peripherals control
– Control of visibility of XPERs
– Power management additional to the standard Idle and Power Down modes
– Sleep mode with wakeup from Power Down state by external interrupts
– Peripheral Management with individual clock and power control of peripherals
– Control of power down state of Flash modules during Idle
– Flexible clock generation management
– Programmable system Slow Down control with or without PLL
– Control interface for Clock Generation Unit
– Identification register block for chip and CSCU identification
– Device, revision, manufacturer
– CSCU identification register

20.2 Operational Overview

20.2.1 Overview of CSCU submodules
In the following paragraphs a functional overview of the different blocks and submodules
of the System Control Unit is presented.

XBUS Peripheral Configuration Block
In the C161U, XBUS peripherals can be separately switched on or off by programming
the XPERCON register. If switched off, the respective peripheral is not visible, meaning,
that its address space and its functional pins are not occupied.
Data Sheet 381 2001-04-19

C161U

System Control Unit (CSCU)
Note:
1. In parallel to the XPER control with XPERCON register, the visibility of XPER address

spaces also is controlled with the BUSACT bits in respective XBCON registers (in the
C166 core)

2. The XPER configuration is additionally controlled by means of flexible peripheral
management control (see Peripheral Management Module below) for power
reduction.

Register in XPER Configuration Block:

System Control Block
This block has several system management functions.
System Control Block controls the system register write protection, introduced for the
system control registers SYSCON1-3.
Note: The new register write protection especially supports modularity of design, and is

therefore not compatible with the previously known C16x release function, using
the release bitfield in SYSCON2 for write protection.

Additional control functions of the System Control Block:
– Control of fast external interrupt inputs
– Control of external interrupt source selection
– Control of interrupt subnode for PLL and realtime clock interrupts
– Control of spike suppression for fast external interrupts and NMI in Sleep mode
– Clock output frequency control

The System Control Block provides the following registers: :

Register Description
XPERCON XBUS peripheral control of XPER visibility

Register Description
SCUSLC SCU security level command register
SCUSLS SCU security level status and password register
EXICON External interrupt control register (see Chapter 7.8.1, page 127)
EXISEL External interrupt source selection control register (see Chapter 7.8.2,

page 128)
ISNC Interrupt subnode control register (see Chapter 7.8.3, page 129)
FOCON Frequency output control register
Data Sheet 382 2001-04-19

C161U

System Control Unit (CSCU)
Identification Register Block
All new derivatives of Infineons C16x microcontroller family provide a set of min. four
identification registers (expandable to eight). These registers offer information on the
chip manufacturer, the chip type and its memory properties.
Identification registers in the ID Block: :

20.3 XBUS Peripheral Configuration Block
The XBUS peripherals can be separately selected for being visible to the user by means
of corresponding selection bits in the XPERCON register. If not selected and therefore
not enabled (not activated with XPERCON bit), the peripheral’s address space including
SFR addresses and port pins are not occupied by the peripheral, thus the peripheral is
not visible and not available. To make an XBUS peripheral visible, its related bit in
XPERCON register must be set before the XPERs are globally enabled with XPEN-bit
in SYSCON register (during system initialization before EINIT instruction).
Note: After reset, no XBUS peripheral is selected in XPERCON register.

XPERCON register is defined as follows:

Register Description
IDMANUF Manufacturer and department
IDCHIP Identification of device and revision code
IDMEM Identification of on-chip program memory (type, size)
IDPROG Identification of programming/erasing voltage of on-chip program memory
IDMEM2 Identification of additional EEPROM, OTP, DRAM or Flash memory

XPERCON (F024H / 12H) ESFRReset Value : 0000H

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved XPER
7

XPER
6

XPER
5 reserved

Bit Field Bits Type Value Description
reserved 15..8 rw 0 These bits are reserved and must be set to ’0’.
XPER7 7 rw 0

1
EPEC module is not visible
EPEC is selected and visible

XPER6 6 rw 0
1

USB module is not visible
USB is selected and visible

XPER5 5 rw 0 This bit is reserved and should be set to ’0’.
Data Sheet 383 2001-04-19

C161U

System Control Unit (CSCU)
Note: CSCU provides per XPERCON bit one enable signal for XPER visibility control.
These enable signals are routed to the core to be combined with selectable (per
module pins) BUSACT functions of XBCON registers.

20.4 System Control Block

20.4.1 Register Write Protection
System Control Unit CSCU provides two different protection types of registers:
• Unprotected Registers
• Protectable Registers
The unprotected registers allow reading and writing (if not read-only) of register values
without any restrictions. However, the write access of the protectable registers (security
registers) can be programmed for three different modes of security level, whereas the
read access is always unprotected:
• Write Protected Mode
• Low Protected Mode
• Unprotected Mode
In write protected mode the registers can not be accessed by a write command. However
in low protected mode the registers can be written with a special command sequence
(see desription below). If the registers are set to unprotected mode, all write accesses
are possible.
Some register controlled functions and modes which are critical for the C161U’s
operation are locked after the execution of EINIT, so these vital system functions cannot
be changed inadvertently eg. by software errors. However, as these security registers
control also the power management they need to be accessed during operation to select
the appropriate mode.
The switching between the different security levels is controlled by a state machine. Via
a password and a command sequence the security levels can be changed. After reset
always the unprotected mode is automatically selected. The EINIT command switches
the security level automatically to protected mode.
The low protected mode is especially important for a standby state of the application.
This mode allows fast accesses within two commands to the protected registers without
removing the protection completely.

reserved 4..0 rw 0 These bits are reserved and must be set to
Zero

Bit Field Bits Type Value Description
Data Sheet 384 2001-04-19

C161U

System Control Unit (CSCU)
Security Level Switching
Two registers are provided for switching the security level, the security level command
register SCUSLC and the security level status register SCUSLS . The security level
command register SCUSLC is used to control the state machine for switching the
security level. SCUSLC register is loaded with the different commands of the command
sequence necessary to control a change of the security level. It is also used for the one
unlock command, which is necessary in the low protected mode to access one protected
register. The commands of the (unlock) command sequence are characterized by
certain pattern words (as AAAAH) or by patterns combined with an 8-bit password. For
command definition see the following state diagram (figure below). The new password
is defined with command 3 and stored in the according 8-bit field in the SCUSLS register.
SCUSLC register is defined as follow

SCUSLC (F0C0H / 60H) ESFRReset Value: 0000H

The command definition is described in Figure 118.
The security level status register SCUSLS is a read only register which shows the
current password, the actual security level and the state of the switching statemachine.
The SCUSLS is defined as followes:

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw

COMMAND
Data Sheet 385 2001-04-19

C161U

System Control Unit (CSCU)
SCUSLS (F0C2H / 61H) ESFRReset Value: 0000H

The following registers are defined as protected (security) registers:
• SYSCON1
• SYSCON2
• SYSCON3
The following state diagram, Figure 118, shows the state machine for security level
switching and for unlock command execution in low protected mode:

Bit Function
PASSWORD Current Password
SL Security Level

0 0: Unprotected write mode
0 1: Low protected mode
1 0: Reserved
1 1: Write protected mode

STATE Actual State
0 0 0: Wait for first command (command 0)
0 0 1: Wait for command 1
0 1 0: Wait for command 2
0 1 1: Wait for new security level and for new password (command 3)
1 0 0: Security registers are unlocked; access to one register is

possible (only in low protected mode)
1 0 1: Reserved
1 1 0: Reserved
1 1 1: Reserved

5 4 3 2 1 011 10 9 8 7 615 14 13 12

r

PASSWORD

rr

STATE SL reserved
Data Sheet 386 2001-04-19

C161U

System Control Unit (CSCU)

Figure 118 Statemachine for Security Level Switching

Write Access in Low Protected Mode
The write access in low protected mode is also done via a command sequence. First the
specific command 4 (see figure above) with the current password has to be written to
register SCUSLC. After this command all security registers are unlocked until the next
write access to any CSCU register is done. Read access is always possible to all
registers of the CSCU and will not influence the command sequences. In register
SCUSCS the actual status of the command state machine can always be read.
It is recommendet to use an atomic sequence for all command sequences.

State 0

State 1 State 2

State 3Reset

C
o

m
m

an
d

0

Command1

C
o

m
m

an
d

2

Command3

Command2

Command1

or any other CSCU
register write

or any other CSCU
register write access

access

or any other CSCU
register write access

1)

Note : 1)Only if the security level command register is accessed, the new security level
and the new password is valid.

Command
Number

Command

0 AAAAh

1 5554h

2 96h + inverse (old) password
3 000b + new level + 000b + new password
4 8Eh + inverse (new) password: Unlock

security register in low protected mode

State 4

any CSCU

write access

Command4
and low
protected
mode

register
Data Sheet 387 2001-04-19

C161U

System Control Unit (CSCU)
20.4.2 Clock Output Frequency Control
A clock output signal with programmable frequency (fOUT) can be output via pin FOUT.
This clock signal is generated via a reload counter, so the output frequency can be
selected in small steps. An optional toggle latch provides a clock signal with a 50% duty
cycle.
Signal fOUT always provides complete output periods (see Signal Waveforms below):
• When fOUT is started (FOEN-->’1’) FOCNT is loaded from FORV
• When fOUT is stopped (FOEN-->’0’) FOCNT is stopped when fOUT has reached (or is)

’0’.

Figure 119 Clock Output Signal Generation

Register FOCON provides control over the output signal generation.

FOCON (FFAAH / D5H) SFR-b Reset Value: 0000H

Bit Function
FOCNT Frequency Output Counter
FOTL Frequency Output Toggle Latch

Is toggled upon each underflow of FOCNT.
FORV Frequency Output Reload Value

Is copied to FOCNT upon each underflow of FOCNT.

FOSS

FOCNT

fOUT

FORV

MUX

fCPU FOTL

Ctrl.FOEN

FOTL-FOSSFOEN

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rwrw

FOCNT

rwrwrw

FORV

-

Data Sheet 388 2001-04-19

C161U

System Control Unit (CSCU)
Note: It is not recommended to write to any part of bitfield FOCNT, especially not while
the counter is running. Writing to FOCNT prior to starting the counter is obsolete
because it will immediatley be reloaded from FORV. Writing to FOCNT during
operation may produce uninteded counter values.

Output Frequency Calculation
The output frequency can be calculated as fOUT = fCPU / ((FORV+1) * 2(1-FOSS)),
so fOUTmin = fCPU / 128 (FORV = 3FH, FOSS = ’0’),
and fOUTmax = fCPU / 1 (FORV = 00H, FOSS = ’1’).

Figure 120 Signal Waveforms

Note: The output signal (for FOSS=’1’) is high for the duration of 1 fCPU cycle for all reload
values FORV > 0. For FORV = 0 the output signal corresponds to fCPU.

FOSS Frequency Output Signal Select
0: Output of the toggle latch: DC=50%.
1: Output of the reload counter: DC depends on FORV.

FOEN Frequency Output Enable
0: Frequency output generation stops when signal fOUT is/gets low.
1: FOCNT is running, fOUT is gated to pin. 1st reload after 0-1 transition.

Bit Function

fCPU

fOUT

fOUT

1)

2)

1)

2)

1) FOSS=’1’, output of counter

2) FOSS=’0’, output of toggle latch

FOEN-->’1’ FOEN-->’0’

(FORV=0)

(FORV=5)

fOUT

1)

2)

(FORV=2)

The counter stops hereThe counter starts here
Data Sheet 389 2001-04-19

C161U

System Control Unit (CSCU)
Connection to Output
Signal fOUT in the C161U is an alternate function of pin P3.15/CLKOUT/FOUT.
The priority ranking is: P3.15 < FOUT < CLKOUT.

Figure 121 Connection to Port Logic (Functional Approach)

Note: For the generation of fOUT pin FOUT must be switched to output, ie. DP3.15=’1’.
While fOUT is disabled the pin is controlled by the port latch (see figure above). The
port latch P3.15 must be ’0’ in order to maintain the fOUT inactive level on the pin.
Clock Management Module

Flexible Clock Management
This module especially serves for power management support. Flexible clock
management includes programmable system slow down with additional control of power
down and optional real time clock. The slowdown operation is achieved by dividing the
oscillator clock by a programmable factor (1...32) resulting in a low frequency device
operation which significantly reduces the overall power consumption. The PLL may be
completely switched off in this mode.
This module also controls the oscillator selection (main or auxiliary) for Real Time Clock
and for Slow Down Divider. During Power Down mode, this block controls the operation
of RTC and ports.
The clock generation is controlled via register SYSCON2.
SYSCON2 (F1D0H / E8H) ESFR-b Reset Value: 0000.0000.UU00.0000B

fOUT MUX

fCPU

"1"

Direction

PortLatch

0

1

MUX

0

1

FOUT_active

CLKEN

MUX

0

1

RCSSCS
CLK

LOCK

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rwrw rw rw r rw

CLKREL CLKCON reservedPDCON
Data Sheet 390 2001-04-19

C161U

System Control Unit (CSCU)
Note: SYSCON2 is a security register. The security level is automatically set to write
protectection after execution of EINIT.

Note: To be compatibile to Infineon’s C167CR / 167CS, the Power Down Control
PDCON must be programmed to ’10’ (RTC = Off, Ports = On) during the
initialisation phase before the execution of EINIT instruction. The initial state after
reset is so defined that a reset does not interrupt the real time clock.

Bit Function
PDCON Power Down Control (during power down mode)

x0: RTC = Off, Ports = On (default after reset).
x1: RTC = Off, Ports = Off.
In power down mode, the RTC of the C161U is always off. Bit 5 of
SYSCON2 is don’t care.

RCS RTC Clock Source (not affected by a reset)
0: RTC is switched to synchronous mode. The input is derived from

the CPU clock.
1: RTC is switched to asynchronous mode. The input is derived

from the RTC_REF_CLK (oscillator clock).
SCS SDD Clock Source (not affected by a reset)

Has to be set to ’0’.
CLKCON Clock State Control

00: Running on configured basic frequency.
01: Running on slow down frequency, PLL ON.
10: Running on slow down frequency, PLL OFF.
11: Reserved. Do not use this combination.

CLKREL Reload Counter Value for Slowdown Divider
CLKLOCK Clock Signal Status Bit

0: Main oscillator is unstable or PLL is unlocked.
1: Main oscillator is stable and PLL is locked.
Data Sheet 391 2001-04-19

C161U

System Control Unit (CSCU)
20.5 Peripheral Management Module
This module especially serves for power management support, controlling dynamically
the operation and thus the power consumption of the different peripherals on PD Bus
and XBUS. In each situation (eg. several system operating modes, standby, etc.) only
those peripherals may be kept running which are required for the respective functionality.
All others can be switched off. It also allows the operation control of whole groups of
peripherals.
Peripheral’s operation is disabled or enabled by controlling the specific clock input. This
function also is supported in idle and/or slow down mode.
The Real Time Clock (RTC) may be fed by a separate clock driver, so it can be kept
running even in power down mode.
While a peripheral is disabled its output pins remain in the state they had at the time of
disabling.
Note: In contrast to the peripheral management of Infineon’s 16x family the registers of

a disabled module are not accessable. Only the clock control register of the
platform peripheral is accessable. Note, the register access is not compatible to
the C167CS.
Data Sheet 392 2001-04-19

C161U

System Control Unit (CSCU)
The user gets access to the flexible operation control of peripherals via the SYSCON3
register. This register is defined as follows:
 SYSCON3 (F1D4H / EAH) ESFR-b Reset Value:0000H

.

Note: Please refer to Chapter 10.8, "Initialization of the C161U’s X-peripherals", for
complete register initialization.

Note: SYSCON3 is an security register. The security level is automatically set to write
protection after execution of EINIT

Bit Function
PERDISx Peripheral Disable Flag 0 - 14

‘0’: Module is enabled; the peripheral is supplied with the clock signal
‘1’: Module is disabled; the clock input of peripheral is disabled

GRPDIS Peripheral Group Disable Flag (PD-Bus and X-Bus Peripherals)
‘0’: Peripheral clock driver for peripheral group is enabled
‘1’: Peripheral clock driver for peripheral group is disabled

USBTDIS USB Transceiver Disable Flag ONLY IF BIT XPERCON.6 = ’1’
‘00’: Normal operation, USB transceiver enabled
‘01’: Suspend mode, differencial transceiver switched off
‘10’: Reserved, do not use this combination.
‘11’: Full power down.
If bit 6 of register XPERCON set to ’0’, the USB transceiver is always
switched off (power down mode), independently of bit USBTDIS.

PLLDIS PLL Disable Flag (additional power savings / noise reduction feature)
‘0’: The PLL of the C161U is switched on. This is the default configuration.
‘1’: The PLL is completely switched off. The free running feature and the

oscillator watchdog will not work, since there is no PLL clock at all.
It makes sense to switch off the PLL in direct drive clock mode only.

PERDISx Module Type Module Function (examples for associated
peripheral modules)

0 PD-Bus Unit RTC Real Time Clock
1 PD-Bus Unit ASC USART

5 4 3 2 1 011 10 9 8 7 615 14 13 12

- - rw rw- rw rwrw rw rw

PER
DIS0

- rw rw rw

PER
DIS1

PER
DIS2

PER
DIS3reserved

PER
DIS6

PER
DIS7

PER
DIS8reserved

-

GRP
DIS

re-
serv
ed

USBTDIS
PLL
DIS
Data Sheet 393 2001-04-19

C161U

System Control Unit (CSCU)
20.6 Identification Registers

20.6.1 Introduction
The C161U provides a set of 5 identification registers that offer information on the chip,
as manufacturer, chip type and its memory properties.
The ID registers are read only registers. A device that incorporates ID registers shall
return D5H as its Bootstrap Loader identification byte. A standardized routine may then
be downloaded which sends the ID registers to the serial interface, so the host gets exact
information about its partner.

20.6.2 ID Register Description
The ID registers are placed in the extended SFR area.

IDMANUF (F07EH / 3FH) ESFR

2 PD-Bus Unit SSC Synchronous Serial Channel
3 PD-Bus Unit GPT12 General Purpose Timer Block
4..5 reserved - Reserved, has to be set to ’0’.
6 reserved - Reserved, has to be set to ’0’.
7 X-Bus Unit USB Universal Serial Bus Interface
8 X-Bus Unit EPEC Extended PEC
9..14 reserved - Reserved, has to be set to ’0’.

Bit Function
MANUF Manufacturer

0C1H: Infineon Technologies JEDEC normalized manufacturer code
DEPT Department

04H: Infineon’s Datacom Department

PERDISx Module Type Module Function (examples for associated
peripheral modules)

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rr

MANUF DEPT
Data Sheet 394 2001-04-19

C161U

System Control Unit (CSCU)
IDCHIP (F07CH / 3EH) ESFR

IDMEM (F07AH / 3DH) ESFR

IDPROG (F078H / 3CH) ESFR

Bit Function
Revision Device Revision Code

03H: actual device revision code
CHIPID Device Identification

06H: Infineons C16x device identification

Bit Function
Size Size of on-chip Program Memory

The size of the implemented program memory in terms of 4 K blocks, i.e.
Memory-size = <Size>*4 KByte.
000H: No program memory on the C161U.

Type Type of on-chip Program Memory
Identifies the memory type on this silicon.
0H: ROMless 1H: Mask ROM
2H: EPROM 3H: Flash
4H: OTP 5H: EEPROM
6H: DRAM/SRAM

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rr

CHIPID Chip Revision Number

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rr

Type (’0H’) Size (’000H’)

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rr

PROGVPP (’00H’) PROGVDD (’00H’)
Data Sheet 395 2001-04-19

C161U

System Control Unit (CSCU)
IDMEM2 (F076H / 3BH) ESFR

Note: IDMEM2 describes the second block of (program) memory. This register is
dedicated to other Infineon devices containing Flash, EEPROM or DRAM
sections. Static RAM modules are not described with ID registers. Since there is
no program memory on the C161U, IDMEM2 is set to ’0000H’.

Bit Function
PROGVDD Programming VDD Voltage

The voltage of the standard power supply pins required when
programming or erasing (if applicable) the on-chip program memory.
Formula: VDD = 20*<PROGVDD> / 256 [V]
00H: No program memory on the C161U.

PROGVPP Programming VPP Voltage
The voltage of the special programming power supply (if existent)
required to program or erase (if applicable) the on-chip program
memory.
Formula: VPP = 20*<PROGVPP> / 256 [V]
00H: No program memory on the C161U.

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rr

Type (’0H’) Size (’000H’)
Data Sheet 396 2001-04-19

C161U

System Programming
21 System Programming
To aid in software development, a number of features has been incorporated into the
instruction set of the C161U, including constructs for modularity, loops, and context
switching. In many cases commonly used instruction sequences have been simplified
while providing greater flexibility. The following programming features help to fully utilize
this instruction set.

Instructions Provided as Subsets of Instructions
In many cases, instructions found in other microcontrollers are provided as subsets of
more powerful instructions in the C161U. This allows the same functionality to be
provided while decreasing the hardware required and decreasing decode complexity. In
order to aid assembly programming, these instructions, familiar from other
microcontrollers, can be built in macros, thus providing the same names.
Directly Substitutable Instructions are instructions known from other microcontrollers
that can be replaced by the following instructions of the C161U:

Modification of System Flags is performed using bit set or bit clear instructions (BSET,
BCLR). All bit and word instructions can access the PSW register, so no instructions like
CLEAR CARRY or ENABLE INTERRUPTS are required.
External Memory Data Access does not require special instructions to load data
pointers or explicitly load and store external data. C161U provides a Von-Neumann
memory architecture and its on-chip hardware automatically detects accesses to internal
RAM, GPRs, and SFRs.

Multiplication and Division
Multiplication and division of words and double words is provided through multiple cycle
instructions implementing a Booth algorithm. Each instruction implicitly uses the 32-bit
register MD (MDL = lower 16 bits, MDH = upper 16 bits). The MDRIU flag (Multiply or
Divide Register In Use) in register MDC is set whenever either half of this register is
written to or when a multiply/divide instruction is started. It is cleared whenever the MDL
register is read. Because an interrupt can be acknowledged before the contents of
register MD are saved, this flag is required to alert interrupt routines, which require the

Substituted Instruction C161U Instruction Function
CLR Rn AND Rn, #0H Clear register
CPLB Bit BMOVN Bit, Bit Complement bit
DEC Rn SUB Rn, #1H Decrement register
INC Rn ADD Rn, #1H Increment register
SWAPB Rn ROR Rn, #8H Swap bytes within word
Data Sheet 397 2001-04-19

C161U

System Programming
use of the multiply/divide hardware, so they can preserve register MD. This register,
however, only needs to be saved when an interrupt routine requires use of the MD
register and a previous task has not saved the current result. This flag is easily tested by
the Jump-on-Bit instructions.
Multiplication or division is simply performed by specifying the correct (signed or
unsigned) version of the multiply or divide instruction. The result is then stored in register
MD. The overflow flag (V) is set if the result from a multiply or divide instruction is greater
than 16 bits. This flag can be used to determine whether both word halfs must be
transferred from register MD. The high portion of register MD (MDH) must be moved into
the register file or memory first, in order to ensure that the MDRIU flag reflects the correct
state.
The following instruction sequence performs an unsigned 16 by 16-bit multiplication:
SAVE:
JNB MDRIU, START ;Test if MD was in use.
SCXT MDC, #0010H ;Save and clear control register,

;leaving MDRIU set
;(only required for interrupted
;multiply/divide instructions)

BSET SAVED ;Indicate the save operation
PUSH MDH ;Save previous MD contents...
PUSH MDL ;...on system stack
START:
MULU R1, R2 ;Multiply 16·16 unsigned, Sets MDRIU
JMPR cc_NV, COPYL ;Test for only 16-bit result
MOV R3, MDH ;Move high portion of MD
COPYL:
MOV R4, MDL ;Move low portion of MD, Clears MDRIU
RESTORE:
JNB SAVED, DONE ;Test if MD registers were saved
POP MDL ;Restore registers
POP MDH
POP MDC
BCLR SAVED ;Multiplication is completed,

;program continues
DONE: ...
Data Sheet 398 2001-04-19

C161U

System Programming
The above save sequence and the restore sequence after COPYL are only required if
the current routine could have interrupted a previous routine which contained a MUL or
DIV instruction. Register MDC is also saved because it is possible that a previous
routine's Multiply or Divide instruction was interrupted while in progress. In this case the
information about how to restart the instruction is contained in this register. Register
MDC must be cleared to be correctly initialized for a subsequent multiplication or
division. The old MDC contents must be popped from the stack before the RETI
instruction is executed.
For a division the user must first move the dividend into the MD register. If a 16/16-bit
division is specified, only the low portion of register MD must be loaded. The result is also
stored into register MD. The low portion (MDL) contains the integer result of the division,
while the high portion (MDH) contains the remainder.
The following instruction sequence performs a 32 by 16-bit division:
MOV MDH, R1 ;Move dividend to MD register. Sets MDRIU
MOV MDL, R2 ;Move low portion to MD
DIV R3 ;Divide 32/16 signed, R3 holds divisor
JMPR cc_V, ERROR ;Test for divide overflow
MOV R3, MDH ;Move remainder to R3
MOV R4, MDL ;Move integer result to R4. Clears MDRIU
Whenever a multiply or divide instruction is interrupted while in progress, the address of
the interrupted instruction is pushed onto the stack and the MULIP flag in the PSW of the
interrupting routine is set. When the interrupt routine is exited with the RETI instruction,
this bit is implicitly tested before the old PSW is popped from the stack. If MULIP=’1’ the
multiply/divide instruction is re-read from the location popped from the stack (return
address) and will be completed after the RETI instruction has been executed.
Note: The MULIP flag is part of the context of the interrupted task. When the

interrupting routine does not return to the interrupted task (eg. scheduler switches
to another task) the MULIP flag must be set or cleared according to the context of
the task that is switched to.

BCD Calculations
No direct support for BCD calculations is provided in the C161U. BCD calculations are
performed by converting BCD data to binary data, performing the desired calculations
using standard data types, and converting the result back to BCD data. Due to the
enhanced performance of division instructions binary data is quickly converted to BCD
data through division by 10D. Conversion from BCD data to binary data is enhanced by
multiple bit shift instructions. This provides similar performance compared to instructions
directly supporting BCD data types, while no additional hardware is required.
Data Sheet 399 2001-04-19

C161U

System Programming
21.1 Stack Operations
C161U supports two types of stacks. The system stack is used implicitly by the controller
and is located in the internal RAM. The user stack provides stack access to the user in
either the internal or external memory. Both stack types grow from high memory
addresses to low memory addresses.

Internal System Stack
A system stack is provided to store return vectors, segment pointers, and processor
status for procedures and interrupt routines. A system register, SP, points to the top of
the stack. This pointer is decremented when data is pushed onto the stack, and
incremented when data is popped.
The internal system stack can also be used to temporarily store data or pass it between
subroutines or tasks. Instructions are provided to push or pop registers on/from the
system stack. However, in most cases the register banking scheme provides the best
performance for passing data between multiple tasks.
Note: The system stack allows the storage of words only. Bytes must either be

converted to words or the respective other byte must be disregarded.
Register SP can only be loaded with even byte addresses (The LSB of SP is
always '0').

Detection of stack overflow/underflow is supported by two registers, STKOV (Stack
Overflow Pointer) and STKUN (Stack Underflow Pointer). Specific system traps (Stack
Overflow trap, Stack Underflow trap) will be entered whenever the SP reaches either
boundary specified in these registers.
The contents of the stack pointer are compared to the contents of the overflow register,
whenever the SP is DECREMENTED either by a CALL, PUSH or SUB instruction. An
overflow trap will be entered, when the SP value is less than the value in the stack
overflow register.
The contents of the stack pointer are compared to the contents of the underflow register,
whenever the SP is INCREMENTED either by a RET, POP or ADD instruction. An
underflow trap will be entered, when the SP value is greater than the value in the stack
underflow register.
Note: When a value is MOVED into the stack pointer, NO check against the overflow/

underflow registers is performed.

In many cases the user will place a software reset instruction (SRST) into the stack
underflow and overflow trap service routines. This is an easy approach, which does not
require special programming. However, this approach assumes that the defined internal
stack is sufficient for the current software and that exceeding its upper or lower boundary
represents a fatal error.
Data Sheet 400 2001-04-19

C161U

System Programming
It is also possible to use the stack underflow and stack overflow traps to cache portions
of a larger external stack. Only the portion of the system stack currently being used is
placed into the internal memory, thus allowing a greater portion of the internal RAM to
be used for program, data or register banking. This approach assumes no error but
requires a set of control routines (see below).

Circular (virtual) Stack
This basic technique allows pushing until the overflow boundary of the internal stack is
reached. At this point a portion of the stacked data must be saved into external memory
to create space for further stack pushes. This is called “stack flushing”. When executing
a number of return or pop instructions, the upper boundary (since the stack empties
upward to higher memory locations) is reached. The entries that have been previously
saved in external memory must now be restored. This is called “stack filling”. Because
procedure call instructions do not continue to nest infinitely and call and return
instructions alternate, flushing and filling normally occurs very infrequently. If this is not
true for a given program environment, this technique should not be used because of the
overhead of flushing and filling.
The basic mechanism is the transformation of the addresses of a virtual stack area,
controlled via registers SP, STKOV and STKUN, to a defined physical stack area within
the internal RAM via hardware. This virtual stack area covers all possible locations that
SP can point to, ie. 00’F000H through 00’FFFEH. STKOV and STKUN accept the same
4 KByte address range.
The size of the physical stack area within the internal RAM that effectively is used for
standard stack operations is defined via bitfield STKSZ in register SYSCON (see below).

<STKSZ> Stack
Size
(Words)

Internal RAM Addresses (Words)
of Physical Stack

Significant Bits
of Stack
Pointer SP

0 0 0 B 256 00’FBFEH...00’FA00H (Default after Reset) SP.8...SP.0
0 0 1 B 128 00’FBFEH...00’FB00H SP.7...SP.0
0 1 0 B 64 00’FBFEH...00’FB80H SP.6...SP.0
0 1 1 B 32 00’FBFEH...00’FBC0H SP.5...SP.0
1 0 0 B 512 00’FBFEH...00’F800H (not for 1KByte IRAM) SP.9...SP.0
1 0 1 B --- Reserved. Do not use this combination. ---
1 1 0 B --- Reserved. Do not use this combination. ---
1 1 1 B 1024 00’FDFEH...00’FX00H (Note: No circular

stack)
00’FX00H represents the lower IRAM limit, ie.
1 KB: 00’FA00H, 2 KB: 00’F600H, 3 KB:
00’F200H

SP.11...SP.0
Data Sheet 401 2001-04-19

C161U

System Programming
The virtual stack addresses are transformed to physical stack addresses by
concatenating the significant bits of the stack pointer register SP (see table) with the
complementary most significant bits of the upper limit of the physical stack area
(00’FBFEH). This transformation is done via hardware (see figure below).
The reset values (STKOV=FA00H, STKUN=FC00H, SP=FC00H, STKSZ=000B) map the
virtual stack area directly to the physical stack area and allow using the internal system
stack without any changes, provided that the 256 word area is not exceeded.

Figure 122 Physical Stack Address Generation

The following example demonstrates the circular stack mechanism which is also an
effect of this virtual stack mapping: First, register R1 is pushed onto the lowest physical
stack location according to the selected maximum stack size. With the following
instruction, register R2 will be pushed onto the highest physical stack location although
the SP is decremented by 2 as for the previous push operation.
MOV SP, #0F802H ;Set SP before last entry...

;...of physical stack of 256 words
... ;(SP)=F802H: Physical stack addr.=FA02H
PUSH R1 ;(SP)=F800H: Physical stack addr.=FA00H
PUSH R2 ;(SP)=F7FEH: Physical stack addr.=FBFEH
The effect of the address transformation is that the physical stack addresses wrap
around from the end of the defined area to its beginning. When flushing and filling the

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEH

FB80H

FB80H

FBFEH

FB7EH

FBFEH

FBFEH

64 words 256 words

F800H
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

FA00H

1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

FBFEH

F7FEH

FBFEH

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0

<SP>

<SP>

Phys.A.

Phys.A.

Stack Size

After PUSH After PUSH
Data Sheet 402 2001-04-19

C161U

System Programming
internal stack, this circular stack mechanism only requires to move that portion of stack
data which is really to be re-used (ie. the upper part of the defined stack area) instead of
the whole stack area. Stack data that remain in the lower part of the internal stack need
not be moved by the distance of the space being flushed or filled, as the stack pointer
automatically wraps around to the beginning of the freed part of the stack area.
Note: This circular stack technique is applicable for stack sizes of 32 to 512 words

(STKSZ = ‘000B’ to ‘100B’), it does not work with option STKSZ = ‘111B’, which
uses the complete internal RAM for system stack. In the latter case the address
transformation mechanism is deactivated.

When a boundary is reached, the stack underflow or overflow trap is entered, where the
user moves a predetermined portion of the internal stack to or from the external stack.
The amount of data transferred is determined by the average stack space required by
routines and the frequency of calls, traps, interrupts and returns. In most cases this will
be approximately one quarter to one tenth the size of the internal stack. Once the transfer
is complete, the boundary pointers are updated to reflect the newly allocated space on
the internal stack. Thus, the user is free to write code without concern for the internal
stack limits. Only the execution time required by the trap routines affects user programs.
The following procedure initializes the controller for usage of the circular stack
mechanism:
• Specify the size of the physical system stack area within the internal RAM (bitfield

STKSZ in register SYSCON).
• Define two pointers, which specify the upper and lower boundary of the external stack.

These values are then tested in the stack underflow and overflow trap routines when
moving data.

• Set the stack overflow pointer (STKOV) to the limit of the defined internal stack area
plus six words (for the reserved space to store two interrupt entries).

The internal stack will now fill until the overflow pointer is reached. After entry into the
overflow trap procedure, the top of the stack will be copied to the external memory. The
internal pointers will then be modified to reflect the newly allocated space. After exiting
from the trap procedure, the internal stack will wrap around to the top of the internal
stack, and continue to grow until the new value of the stack overflow pointer is reached.
When the underflow pointer is reached while the stack is meptied the bottom of stack is
reloaded from the external memory and the internal pointers are adjusted accordingly.

Linear Stack
C161U also offers a linear stack option (STKSZ = ‘111B’), where the system stack may
use the complete internal RAM area. This provides a large system stack without
requiring procedures to handle data transfers for a circular stack. However, this method
also leaves less RAM space for variables or code. The RAM area that may effectively be
Data Sheet 403 2001-04-19

C161U

System Programming
consumed by the system stack is defined via the STKUN and STKOV pointers. The
underflow and overflow traps in this case serve for fatal error detection only.
For the linear stack option all modifiable bits of register SP are used to access the
physical stack. Although the stack pointer may cover addresses from 00’F000H up to
00’FFFEH the (physical) system stack must be located within the internal RAM and
therefore may only use the address range 00’F600H to 00’FDFEH. It is the user’s
responsibility to restrict the system stack to the internal RAM range.
Note: Avoid stack accesses below the IRAM area (ESFR space and reserved area) and

within address range 00’FE00H and 00’FFFEH (SFR space).
Otherwise unpredictable results will occur.

User Stacks
User stacks provide the ability to create task specific data stacks and to off-load data
from the system stack. The user may push both bytes and words onto a user stack, but
is responsible for using the appropriate instructions when popping data from the specific
user stack. No hardware detection of overflow or underflow of a user stack is provided.
The following addressing modes allow implementation of user stacks:
[– Rw], Rb or [– Rw], Rw: Pre-decrement Indirect Addressing.
Used to push one byte or word onto a user stack. This mode is only available for MOV
instructions and can specify any GPR as the user stack pointer.
Rb, [Rw+] or Rw, [Rw+]: Post-increment Index Register Indirect Addressing.
Used to pop one byte or word from a user stack. This mode is available to most
instructions, but only GPRs R0-R3 can be specified as the user stack pointer.
Rb, [Rw+] or Rw, [Rw+]: Post-increment Indirect Addressing.
Used to pop one byte or word from a user stack. This mode is only available for MOV
instructions and can specify any GPR as the user stack pointer.

21.2 Register Banking
Register banking provides the user with an extremely fast method to switch user context.
A single machine cycle instruction saves the old bank and enters a new register bank.
Each register bank may assign up to 16 registers. Each register bank should be
allocated during coding based on the needs of each task. Once the internal memory has
been partitioned into a register bank space, internal stack space and a global internal
memory area, each bank pointer is then assigned. Thus, upon entry into a new task, the
appropriate bank pointer is used as the operand for the SCXT (switch context)
instruction. Upon exit from a task a simple POP instruction to the context pointer (CP)
restores the previous task's register bank.
Data Sheet 404 2001-04-19

C161U

System Programming
21.3 Procedure Call Entry and Exit
To support modular programming a procedure mechanism is provided to allow coding of
frequently used portions of code into subroutines. The CALL and RET instructions store
and restore the value of the instruction pointer (IP) on the system stack before and after
a subroutine is executed.
Procedures may be called conditionally with instructions CALLA or CALLI, or be called
unconditionally using instructions CALLR or CALLS.
Note: Any data pushed onto the system stack during execution of the subroutine must

be popped before the RET instruction is executed.

Passing Parameters on the System Stack
Parameters may be passed via the system stack through PUSH instructions before the
subroutine is called, and POP instructions during execution of the subroutine. Base plus
offset indirect addressing also permits access to parameters without popping these
parameters from the stack during execution of the subroutine. Indirect addressing
provides a mechanism of accessing data referenced by data pointers, which are passed
to the subroutine.
In addition, two instructions have been implemented to allow one parameter to be
passed on the system stack without additional software overhead.
The PCALL (push and call) instruction first pushes the 'reg' operand and the IP contents
onto the system stack and then passes control to the subroutine specified by the 'caddr'
operand.
When exiting from the subroutine, the RETP (return and pop) instruction first pops the IP
and then the 'reg' operand from the system stack and returns to the calling program.

Cross Segment Subroutine Calls
Calls to subroutines in different segments require the use of the CALLS (call inter-
segment subroutine) instruction. This instruction preserves both the CSP (code segment
pointer) and IP on the system stack.
Upon return from the subroutine, a RETS (return from inter-segment subroutine)
instruction must be used to restore both the CSP and IP. This ensures that the next
instruction after the CALLS instruction is fetched from the correct segment.
Note: It is possible to use CALLS within the same segment, but still two words of the

stack are used to store both the IP and CSP.

Providing Local Registers for Subroutines
For subroutines which require local storage, the following methods are provided:
Data Sheet 405 2001-04-19

C161U

System Programming
Alternate Bank of Registers: Upon entry into a subroutine, it is possible to specify a
new set of local registers by executing the SCXT (switch context) instruction. This
mechanism does not provide a method to recursively call a subroutine.
Saving and Restoring of Registers: To provide local registers, the contents of the
registers which are required for use by the subroutine can be pushed onto the stack and
the previous values be popped before returning to the calling routine. This is the most
common technique used today and it does provide a mechanism to support recursive
procedures. This method, however, requires two machine cycles per register stored on
the system stack (one cycle to PUSH the register, and one to POP the register).
Use of the System Stack for Local Registers: It is possible to use the SP and CP to
set up local subroutine register frames. This enables subroutines to dynamically allocate
local variables as needed within two machine cycles. A local frame is allocated by simply
subtracting the number of required local registers from the SP, and then moving the
value of the new SP to the CP.
This operation is supported through the SCXT (switch context) instruction with the
addressing mode 'reg, mem'. Using this instruction saves the old contents of the CP on
the system stack and moves the value of the SP into CP (see example below). Each local
register is then accessed as if it was a normal register. Upon exit from the subroutine,
first the old CP must be restored by popping it from the stack and then the number of
used local registers must be added to the SP to restore the allocated local space back
to the system stack.
Note: The system stack is growing downwards, while the register bank is growing

upwards.

Figure 123 Local Registers

Old Stack
Area

Newly
Allocated
Register

Bank

R4
R3
R2
R1
R0

Old CP Contents

Old SP

New SP
New CP

New
Stack
Area
Data Sheet 406 2001-04-19

C161U

System Programming
The software to provide the local register bank for the example above is very compact:
After entering the subroutine:
SUB SP, #10D ;Free 5 words in the current system stack
SCXT CP, SP ;Set the new register bank pointer
Before exiting the subroutine:
POP CP ;Restore the old register bank
ADD SP, #10D ;Release the 5 words...

;...of the current system stack

21.4 Table Searching
A number of features have been included to decrease the execution time required to
search tables. First, branch delays are eliminated by the branch target cache after the
first iteration of the loop. Second, in non-sequentially searched tables, the enhanced
performance of the ALU allows more complicated hash algorithms to be processed to
obtain better table distribution. For sequentially searched tables, the auto-increment
indirect addressing mode and the E (end of table) flag stored in the PSW decrease the
number of overhead instructions executed in the loop.
The two examples below illustrate searching ordered tables and non-ordered tables,
respectively:
MOV R0, #BASE ;Move table base into R0
LOOP:
CMP R1, [R0+] ;Compare target to table entry
JMPR cc_SGT, LOOP ;Test whether target has not been found
The last entry in the table must be greater than the largest possible target.
MOV R0, #BASE ;Move table base into R0
LOOP:
CMP R1, [R0+] ;Compare target to table entry
JMPR cc_NET, LOOP ;Test whether target is not found AND..

;..the end of table has not been reached.
Note: The last entry in the table must be equal to the lowest signed integer (8000H).

21.5 Peripheral Control and Interface
All communication between peripherals and the CPU is performed either by PEC
transfers to and from internal memory, or by explicitly addressing the SFRs associated
with the specific peripherals. After resetting the C161U all peripherals (except the
watchdog timer) are disabled and initialized to default values. A desired configuration of
Data Sheet 407 2001-04-19

C161U

System Programming
a specific peripheral is programmed using MOV instructions of either constants or
memory values to specific SFRs. Specific control flags may also be altered via bit
instructions.
Once in operation, the peripheral operates autonomously until an end condition is
reached at which time it requests a PEC transfer or requests CPU servicing through an
interrupt routine. Information may also be polled from peripherals through read accesses
to SFRs or bit operations including branch tests on specific control bits in SFRs. To
ensure proper allocation of peripherals among multiple tasks, a portion of the internal
memory has been made bit addressable to allow user semaphores. Instructions have
also been provided to lock out tasks via software by setting or clearing user specific bits
and conditionally branching based on these specific bits.
It is recommended that bit fields in control SFRs are updated using the BFLDH and
BFLDL instructions or a MOV instruction to avoid undesired intermediate modes of
operation which can occur, when BCLR/BSET or AND/OR instruction sequences are
used.

21.6 Floating Point Support
All floating point operations are performed using software. Standard multiple precision
instructions are used to perform calculations on data types that exceed the size of the
ALU. Multiple bit rotate and logic instructions allow easy masking and extracting of
portions of floating point numbers.
To decrease the time required to perform floating point operations, two hardware
features have been implemented in the CPU core. First, the PRIOR instruction aids in
normalizing floating point numbers by indicating the position of the first set bit in a GPR.
This result can the be used to rotate the floating point result accordingly. The second
feature aids in properly rounding the result of normalized floating point numbers through
the overflow (V) flag in the PSW. This flag is set when a one is shifted out of the carry bit
during shift right operations. The overflow flag and the carry flag are then used to round
the floating point result based on the desired rounding algorithm.

21.7 Trap/Interrupt Entry and Exit
Interrupt routines are entered when a requesting interrupt has a priority higher than the
current CPU priority level. Traps are entered regardless of the current CPU priority.
When either a trap or interrupt routine is entered, the state of the machine is preserved
on the system stack and a branch to the appropriate trap/interrupt vector is made.
All trap and interrupt routines require the use of the RETI (return from interrupt)
instruction to exit from the called routine. This instruction restores the system state from
the system stack and then branches back to the location where the trap or interrupt
occurred.
Data Sheet 408 2001-04-19

C161U

System Programming
21.8 Unseparable Instruction Sequences
The instructions of the C161U are very efficient (most instructions execute in one
machine cycle) and even the multiplication and division are interruptable in order to
minimize the response latency to interrupt requests (internal and external). In many
microcontroller applications this is vital.
Some special occasions, however, require certain code sequences (eg. semaphore
handling) to be uninterruptable to function properly. This can be provided by inhibiting
interrupts during the respective code sequence by disabling and enabling them before
and after the sequence. The necessary overhead may be reduced by means of the
ATOMIC instruction which allows locking 1...4 instructions to an unseparable code
sequence, during which the interrupt system (standard interrupts and PEC requests)
and Class A Traps (NMI, stack overflow/underflow) are disabled. A Class B Trap
(illegal opcode, illegal bus access, etc.), however, will interrupt the atomic sequence,
since it indicates a severe hardware problem. The interrupt inhibit caused by an ATOMIC
instruction gets active immediately, ie. no other instruction will enter the pipeline except
the one that follows the ATOMIC instruction, and no interrupt request will be serviced in
between. All instructions requiring multiple cycles or hold states are regarded as one
instruction in this sense (eg. MUL is one instruction). Any instruction type can be used
within an unseparable code sequence.
ATOMIC #3 ;The next 3 instr. are locked (No NOP requ.)
MOV R0, #1234H ;Instr. 1 (no other instr. enters pipeline!)
MOV R1, #5678H ;Instr. 2
MUL R0, R1 ;Instr. 3: MUL regarded as one instruction
MOV R2, MDL ;This instruction is out of the scope...

;...of the ATOMIC instruction sequence

21.9 Overriding the DPP Addressing Mechanism
The standard mechanism to access data locations uses one of the four data page
pointers (DPPx), which selects a 16 KByte data page, and a 14-bit offset within this data
page. The four DPPs allow immediate access to up to 64 KByte of data. In applications
with big data arrays, especially in HLL applications using large memory models, this may
require frequent reloading of the DPPs, even for single accesses.
EXTP (extend page) instruction allows switching to an arbitrary data page for 1...4
instructions without having to change the current DPPs.
EXTP R15, #1 ;The override page number is stored in R15
MOV R0, [R14] ;The (14-bit) page offset is stored in R14
MOV R1, [R13] ;This instruction uses the std. DPP scheme!
Data Sheet 409 2001-04-19

C161U

System Programming
EXTS (extend segment) instruction allows switching to a 64 KByte segment oriented
data access scheme for 1...4 instructions without having to change the current DPPs. In
this case all 16 bits of the operand address are used as segment offset, with the segment
taken from the EXTS instruction. This greatly simplifies address calculation with
continuous data like huge arrays in “C”.
EXTS #15, #1 ;The override seg. is 15 (0F’0000H..0F’FFFFH)
MOV R0, [R14] ;The (16-bit) segment offset is stored in R14
MOV R1, [R13] ;This instruction uses the std. DPP scheme!
Note: Instructions EXTP and EXTS inhibit interrupts the same way as ATOMIC.

Short Addressing in the Extended SFR (ESFR) Space
The short addressing modes of the C161U (REG or BITOFF) implicitly access the SFR
space. The additional ESFR space would have to be accessed via long addressing
modes (MEM or [Rw]). The EXTR (extend register) instruction redirects accesses in
short addressing modes to the ESFR space for 1...4 instructions, so the additional
registers can be accessed this way, too.
EXTPR and EXTSR instructions combine the DPP override mechanism with the
redirection to the ESFR space using a single instruction.
Note: Instructions EXTR, EXTPR and EXTSR inhibit interrupts the same way as

ATOMIC.
The switching to the ESFR area and data page overriding is checked by the
development tools or handled automatically.

Nested Locked Sequences
Each of the described extension instruction and the ATOMIC instruction starts an
internal “extension counter” counting the effected instructions. When another extension
or ATOMIC instruction is contained in the current locked sequence this counter is
restarted with the value of the new instruction. This allows the construction of locked
sequences longer than 4 instructions.
Note: • Interrupt latencies may be increased when using locked code sequences.

• PEC requests are not serviced during idle mode, if the IDLE instruction is part of
a locked sequence.

Code Memory Configuration during Reset
The control input pin EA (External Access) enables the user to define the address area
from which the first instructions after reset are fetched. When EA is low (‘0’) during reset,
the internal code memory is disabled and the first instructions are fetched from external
memory. When EA is high (‘1’) during reset, the internal code memory is globally enabled
and the first instructions are fetched from the internal memory.
Data Sheet 410 2001-04-19

C161U

System Programming
Enabling and Disabling the Internal Code Memory After Reset
If the internal code memory does not contain an appropriate startup code, the system
may be booted from external memory, while the internal memory is enabled afterwards
to provide access to library routines, tables, etc.
If the internal code memory only contains the startup code and/or test software, the
system may be booted from internal memory, which may then be disabled, after the
software has switched to executing from (eg.) external memory, in order to free the
address space occupied by the internal code memory, which is now unnecessary.

21.10 Pits, Traps and Mines
Although handling the internal code memory provides powerful means to enhance the
overall performance and flexibility of a system, extreme care must be taken in order to
avoid a system crash. Instruction memory is the most crucial resource for the C161U and
it must be made sure that it never runs out of it. The following precautions help to take
advantage of the methods mentioned above without jeopardizing system security.

General Rules
When mapping the code memory no instruction or data accesses should be made to the
internal memory, otherwise unpredictable results may occur.
To avoid these problems, the instructions that configure the internal code memory
should be executed from external memory or from the on-chip RAM.
Whenever the internal code memory is disabled, enabled or remapped the DPPs must
be explicitly (re)loaded to enable correct data accesses to the internal and/or external
memory.
Data Sheet 411 2001-04-19

C161U

Register Set
22 Register Set
This section summarizes all registers, which are implemented in the C161U and explains
the description format which is used in the chapters describing the function and layout of
the SFRs.
For easy reference the registers are ordered according to two different keys (except for
GPRs):
• Ordered by address, to check which register a given address references,
• Ordered by register name, to find the location of a specific register.

22.1 Register Description Format
In the respective chapters the function and the layout of the SFRs is described in a
specific format which provides a number of details about the described special function
register. The example below shows how to interpret these details.
A word register looks like this:

REG_NAME (A16H / A8H) E/SFR Reset Value: * * * *H

A byte register looks like this:

REG_NAME (A16H / A8H) E/SFR Reset Value: - - * *H

Elements:
REG_NAME Name of this register
A16 / A8 Long 16-bit address / Short 8-bit address
SFR/ESFR/XReg Register space (SFR, ESFR or External/XBUS Register)
(* *) * * Register contents after reset

0/1: defined value, ’X’: undefined, ’U’: unchanged (undefined (’X’)
after power up)

Bit Function
bit(field)name Explanation of bit(field)name

Description of the functions controlled by this bit(field).

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- w rw r rw rw- - - -

res.res.res.res.res.
write
only

read
only bitfield bitfield

hw
bit

std
bit

hw
bit

5 4 3 2 1 011 10 9 8 7 615 14 13 12

rw rw- - - - rw rw- - - -

bitfieldbitfield
std
bit

hw
bit
Data Sheet 412 2001-04-19

C161U

Register Set
Bits that are set/cleared by hardware are marked with a shaded
access box

22.2 CPU General Purpose Registers (GPRs)
The GPRs form the register bank that the CPU works with. This register bank may be
located anywhere within the internal RAM via the Context Pointer (CP). Due to the
addressing mechanism, GPR banks can only reside within the internal RAM. All GPRs
are bit-addressable.

The first 8 GPRs (R7...R0) may also be accessed bytewise. Other than with SFRs,
writing to a GPR byte does not affect the other byte of the respective GPR.
The respective halves of the byte-accessible registers receive special names:

Name Physic.
Addr.

8-Bit
Addr.

Description Reset
Value

R0 (CP) + 0 F0H CPU General Purpose (Word) Register R0 UUUUH

R1 (CP) + 2 F1H CPU General Purpose (Word) Register R1 UUUUH

R2 (CP) + 4 F2H CPU General Purpose (Word) Register R2 UUUUH

R3 (CP) + 6 F3H CPU General Purpose (Word) Register R3 UUUUH

R4 (CP) + 8 F4H CPU General Purpose (Word) Register R4 UUUUH

R5 (CP) + 10 F5H CPU General Purpose (Word) Register R5 UUUUH

R6 (CP) + 12 F6H CPU General Purpose (Word) Register R6 UUUUH

R7 (CP) + 14 F7H CPU General Purpose (Word) Register R7 UUUUH

R8 (CP) + 16 F8H CPU General Purpose (Word) Register R8 UUUUH

R9 (CP) + 18 F9H CPU General Purpose (Word) Register R9 UUUUH

R10 (CP) + 20 FAH CPU General Purpose (Word) Register R10 UUUUH

R11 (CP) + 22 FBH CPU General Purpose (Word) Register R11 UUUUH

R12 (CP) + 24 FCH CPU General Purpose (Word) Register R12 UUUUH

R13 (CP) + 26 FDH CPU General Purpose (Word) Register R13 UUUUH

R14 (CP) + 28 FEH CPU General Purpose (Word) Register R14 UUUUH

R15 (CP) + 30 FFH CPU General Purpose (Word) Register R15 UUUUH

hwbit
Data Sheet 413 2001-04-19

C161U

Register Set
Name Physic.
Addr.

8-Bit
Addr.

Description Reset
Value

RL0 (CP) + 0 F0H CPU General Purpose (Byte) Register RL0 UUH

RH0 (CP) + 1 F1H CPU General Purpose (Byte) Register RH0 UUH

RL1 (CP) + 2 F2H CPU General Purpose (Byte) Register RL1 UUH

RH1 (CP) + 3 F3H CPU General Purpose (Byte) Register RH1 UUH

RL2 (CP) + 4 F4H CPU General Purpose (Byte) Register RL2 UUH

RH2 (CP) + 5 F5H CPU General Purpose (Byte) Register RH2 UUH

RL3 (CP) + 6 F6H CPU General Purpose (Byte) Register RL3 UUH

RH3 (CP) + 7 F7H CPU General Purpose (Byte) Register RH3 UUH

RL4 (CP) + 8 F8H CPU General Purpose (Byte) Register RL4 UUH

RH4 (CP) + 9 F9H CPU General Purpose (Byte) Register RH4 UUH

RL5 (CP) + 10 FAH CPU General Purpose (Byte) Register RL5 UUH

RH5 (CP) + 11 FBH CPU General Purpose (Byte) Register RH5 UUH

RL6 (CP) + 12 FCH CPU General Purpose (Byte) Register RL6 UUH

RH6 (CP) + 13 FDH CPU General Purpose (Byte) Register RH6 UUH

RL7 (CP) + 14 FEH CPU General Purpose (Byte) Register RL7 UUH

RH7 (CP) + 14 FFH CPU General Purpose (Byte) Register RH7 UUH
Data Sheet 414 2001-04-19

C161U

Register Set
22.3 Special Function Registers ordered by Address
The following table lists all SFRs which are implemented in the C161U ordered by
physical address. Bit-addressable SFRs are marked with the letter “b” in column “Type”.
SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in column
“Type”.

Table 92 Registers ordered by Address

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value

R0 SFR-b F0H General Purpose Register 0 UUUUH

R0 ESFR-b F0H General Purpose Register 0 UUUUH

R1 SFR-b F1H General Purpose Register 1 UUUUH

R1 ESFR-b F1H General Purpose Register 1 UUUUH

R10 ESFR-b FAH General Purpose Register 10 UUUUH

R10 SFR-b FAH General Purpose Register 10 UUUUH

R11 SFR-b FBH General Purpose Register 11 UUUUH

R11 ESFR-b FBH General Purpose Register 11 UUUUH

R12 SFR-b FCH General Purpose Register 12 UUUUH

R12 ESFR-b FCH General Purpose Register 12 UUUUH

R13 SFR-b FDH General Purpose Register 13 UUUUH

R13 ESFR-b FDH General Purpose Register 13 UUUUH

R14 SFR-b FEH General Purpose Register 14 UUUUH

R14 ESFR-b FEH General Purpose Register 14 UUUUH

R15 ESFR-b FFH General Purpose Register 15 UUUUH

R15 SFR-b FFH General Purpose Register 15 UUUUH

R2 SFR-b F2H General Purpose Register 2 UUUUH

R2 ESFR-b F2H General Purpose Register 2 UUUUH

R3 SFR-b F3H General Purpose Register 3 UUUUH

R3 ESFR-b F3H General Purpose Register 3 UUUUH

R4 ESFR-b F4H General Purpose Register 4 UUUUH

R4 SFR-b F4H General Purpose Register 4 UUUUH

R5 ESFR-b F5H General Purpose Register 5 UUUUH

R5 SFR-b F5H General Purpose Register 5 UUUUH
Data Sheet 415 2001-04-19

C161U

Register Set
R6 ESFR-b F6H General Purpose Register 6 UUUUH

R6 SFR-b F6H General Purpose Register 6 UUUUH

R7 ESFR-b F7H General Purpose Register 7 UUUUH

R7 SFR-b F7H General Purpose Register 7 UUUUH

R8 SFR-b F8H General Purpose Register 8 UUUUH

R8 ESFR-b F8H General Purpose Register 8 UUUUH

R9 SFR-b F9H General Purpose Register 9 UUUUH

R9 ESFR-b F9H General Purpose Register 9 UUUUH

F014H XADRS1 ESFR 0AH XBUS Address Select Register 1
F016H XADRS2 ESFR 0BH XBUS Address Select Register 2
F018H XADRS3 ESFR 0CH XBUS Address Select Register 3
F01AH XADRS4 ESFR 0DH XBUS Address Select Register 4
F01CH XADRS5 ESFR 0EH XBUS Address Select Register 5
F01EH XADRS6 ESFR 0FH XBUS Address Select Register 6
F024H XPERCON ESFR 12H XBUS Peripheral Control Register 0401H

F076H IDMEM2 ESFR 3BH Identifier 0000H

F078H IDPROG ESFR 3CH Identifier 0000H

F07AH IDMEM ESFR 3DH Identifier 0000H

F07CH IDCHIP ESFR 3EH Identifier 0603H

F07EH IDMANUF ESFR 3FH Identifier 1824H

F0B0H SSCTB ESFR 58H SSC Transmit Buffer (WO) 0000H

F0B2H SSCRB ESFR 59H SSC Receive Buffer (RO) xxxxH

F0B4H SSCBR ESFR 5AH SSC Baudrate Register 0000H

F0B6H SSCCLC ESFR 5BH SSC Clock Control Register 0000H

F0C0H SCUSLC ESFR 60H Security Level Control Register 0000H

F0C2H SCUSLS ESFR 61H Security Level Status Register 0000H

F0C8H RTCCLC ESFR 64H RTC Clock Control Register 0000H

F0CCH RTCRELL ESFR 66H RTC Timer Reload Register Low 0000H

F0CEH RTCRELH ESFR 67H RTC Timer Reload Register High 0000H

F0D0H T14REL ESFR 68H Timer 14 Reload Register nH

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 416 2001-04-19

C161U

Register Set
F0D2H T14 ESFR 69H Timer 14 Register nH

F0D4H RTCL ESFR 6AH RTC Timer Register Low nH

F0D6H RTCH ESFR 6BH RTC Timer Register High nH

F0D8H DTIDR ESFR 6CH Task ID register1) 0000H

F100H DP0L ESFR-b 80H P0L Direction Control Register 00H

F102H DP0H ESFR-b 81H P0H Direction Control Register 00H

F104H DP1L ESFR-b 82H P1L Direction Control Register 00H

F106H DP1H ESFR-b 83H P1H Direction Control Register 00H

F108H RP0H ESFR-b 84H System Startup Configuration
Register (RO)

xxH

F114H XBCON1 ESFR-b 8AH XBUS Control register 1: reserved 0000H

F116H XBCON2 ESFR-b 8BH XBUS Control register 2: USB
module

0000H

F118H XBCON3 ESFR-b 8CH XBUS Control register 3: EPEC
module

0000H

F11AH XBCON4 ESFR-b 8DH XBUS Control register 4: reserved 0000H

F11CH XBCON5 ESFR-b 8EH XBUS Control register 5: reserved 0000H

F11EH XBCON6 ESFR-b 8FH XBUS Control register 6: reserved 0000H

F160H UTD3IC ESFR-b B0H UDC TX Done3 Interrupt Control
Register

0000H

F162H UTD4IC ESFR-b B1H UDC TX Done4 Interrupt Control
Register

0000H

F164H UTD5IC ESFR-b B2H UDC TX Done5 Interrupt Control
Register

0000H

F166H UTD6IC ESFR-b B3H UDC TX Done6 Interrupt Control
Register

0000H

F168H UTD7IC ESFR-b B4H UDC TX Done7 Interrupt Control
Register

0000H

F16AH URXRIC ESFR-b B5H UDC RXRR Interrupt Control
Register

0000H

F16CH UTXRIC ESFR-b B6H UDC TXWR Interrupt Control
Register

0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 417 2001-04-19

C161U

Register Set
F16EH UCFGVIC ESFR-b B7H UDC Config Val Interrupt Control
Register

0000H

F170H USOFIC ESFR-b B8H UDC Start of Frame Interrupt
Control Register

0000H

F172H USSOIC ESFR-b B9H UDC Suspend off Interrupt Control
Register

0000H

F174H USSIC ESFR-b BAH UDC Suspend Interrupt Control
Register

0000H

F176H ULCDIC ESFR-b BBH UDC Load Config Done Interrupt
Control Register

0000H

F178H USETIC ESFR-b BCH UDC SETUP Interrupt Control
Register

0000H

F17AH URD0IC ESFR-b BDH UDC RX Done0 Interrupt Control
Register

0000H

F17CH EPECIC ESFR-b BEH EPEC Interrupt 0000H

F180H PECCLIC ESFR-b C0H PEC Channel Link Interrupt
Control Register

0000H

F184H RTC_INTIC ESFR-b C2H RTC_INT Sub Node Interrupt
Register

0000H

F186H XP0IC ESFR-b C3H X-Bus Peripheral 0 UDC TXWR
Interrupt Control Register

0000H

F18CH ABENDIC ESFR-b C6H ASC Autobaud End Interrupt
Control Register

0000H

F18EH XP1IC ESFR-b C7H X-Bus Peripheral 1 EPEC Interrupt
Control Register

0000H

F194H ABSTIC ESFR-b CAH ASC Autobaud Start Interrupt
Control Register

0000H

F19AH RES6IC ESFR-b CDH reserved 0000H

F19CH S0TBIC ESFR-b CEH Serial Channel 0 Transmit Buffer
IC Register

0000H

F19EH XP3IC ESFR-b CFH X-Bus Peripheral 3 PLL/RTC
Interrupt Control Register

0000H

F1C0H EXICON ESFR-b E0H External Interrupt Control Register 0000H

F1C2H ODP2 ESFR-b E1H Port 2 Open Drain Control Register 0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 418 2001-04-19

C161U

Register Set
F1C6H ODP3 ESFR-b E3H Port 3 Open Drain Control Register 0000H

F1C8H RTCISNC ESFR-b E4H RTC Interrupt Sub Node Control
Register

0000H

F1CAH ODP4 ESFR-b E5H Port 4 Open Drain Control Register 00H

F1CCH RTCCON ESFR-b E6H RTC Control Register 00H

F1CEH ODP6 ESFR-b E7H Port 6 Open Drain Control Register 00H

F1D0H SYSCON2 ESFR-b E8H System Configuration Register 2/
Clock Control

0000H

F1D4H SYSCON3 ESFR-b EAH System Configuration Register 3/
Periph. Managem.

0000H

F1D6H reserved ESFR-b EBH reserved - do not use 0000H

F1D8H reserved ESFR-b ECH reserved - do not use 0000H

F1DAH EXISEL ESFR-b EDH External Interrupt Select Register 0000H

F1DCH SYSCON1 ESFR-b EEH System Configuration Register 1/
Sleep Mode

0000H

F1DEH ISNC ESFR-b EFH Interrupt Sub Node Control
Register

0000H

FE00H DPP0 SFR 00H CPU Data Page Pointer 0 Register
(10 bits)

0000H

FE02H DPP1 SFR 01H CPU Data Page Pointer 1 Register
(10 bits)

0001H

FE04H DPP2 SFR 02H CPU Data Page Pointer 2 Register
(10 bits)

0002H

FE06H DPP3 SFR 03H CPU Data Page Pointer 3 Register
(10 bits)

0003H

FE08H CSP SFR 04H CPU Code Segment Pointer
Register (8 bits)

0000H

FE0AH EMUCON SFR 05H Emulation Control Register2) xxxxH

FE0CH MDH SFR 06H CPU Multiply Divide Register -
High Word

0000H

FE0EH MDL SFR 07H CPU Multiply Divide Register - Low
Word

0000H

FE10H CP SFR 08H CPU Context Pointer Register FC00H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 419 2001-04-19

C161U

Register Set
FE12H SP SFR 09H CPU System Stack Pointer
Register

FC00H

FE14H STKOV SFR 0AH CPU Stack Overflow Pointer
Register

FA00H

FE16H STKUN SFR 0BH CPU Stack Underflow Pointer
Register

FC00H

FE18H ADDRSEL1 SFR 0CH Address Select Register 1 0000H

FE1AH ADDRSEL2 SFR 0DH Address Select Register 2 0000H

FE1CH ADDRSEL3 SFR 0EH Address Select Register 3 0000H

FE1EH ADDRSEL4 SFR 0FH Address Select Register 4 0000H

FE22H ODP0H SFR 11H Port 0 Open Drain Control Register
High

0000H

FE24H ODP1L SFR 12H Port 1 Open Drain Control Register
Low

0000H

FE26H ODP1H SFR 13H Port 1 Open Drain Control Register
High

0000H

FE40H T2 SFR 20H GPT1 Timer 2 Register 0000H

FE42H T3 SFR 21H GPT1 Timer 3 Register 0000H

FE44H T4 SFR 22H GPT1 Timer 4 Register 0000H

FE46H T5 SFR 23H GPT2 Timer 5 Register 0000H

FE48H T6 SFR 24H GPT2 Timer 6 Register 0000H

FE4AH CAPREL SFR 25H GPT1/2 Capture / Reload Register 0000H

FE4CH GPTCLC SFR 26H GPT1/2 Clock Control Register 0000H

FE60H P0LPUDSEL SFR 30H Port 0 Low Pull-Up/Down Select
Register

xxFFH

FE62H P0HPUDSE
L

SFR 31H Port 0 High Pull-Up/Down Select
Register

xxFFH

FE64H P0LPUDEN SFR 32H Port 0 Low Pull Switch On/Off
Register

xxFF

FE66H P0HPUDEN SFR 33H Port 0 High Pull Switch On/Off
Register

xxFFH

FE68H P0LPHEN SFR 34H Port 0 Low Pin Hold Enable
Register

0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 420 2001-04-19

C161U

Register Set
FE6AH P0HPHEN SFR 35H Port 0 High Pin Hold Enable
Register

0000H

FE6CH P1LPUDSEL SFR 36H Port 1 Low Pull-Up/Down Select
Register

0000H

FE6EH P1HPUDSE
L

SFR 37H Port 1 High Pull-Up/Down Select
Register

0000H

FE70H P1LPUDEN SFR 38H Port 1 Low Pull Switch On/Off
Register

0000H

FE72H P1HPUDEN SFR 39H Port 1 High Pull Switch On/Off
Register

0000H

FE74H P1LPHEN SFR 3AH Port 1 Low Pin Hold Enable
Register

0000H

FE76H P1HPHEN SFR 3BH Port 1 High Pin Hold Enable
Register

0000H

FE78H P2PUDSEL SFR 3CH Port 2 Pull-Up/Down Select
Register

0000H

FE7AH P2PUDEN SFR 3DH Port 2 Pull Switch On/Off Register 0000H

FE7CH P2PHEN SFR 3EH Port 2 Pin Hold Enable Register 0000H

FE7EH P3PUDSEL SFR 3FH Port 3 Pull-Up/Down Select
Register

0000H

FE80H P3PUDEN SFR 40H Port 3 Pull Switch On/Off Register 0000H

FE82H P3PHEN SFR 41H Port 3 Pin Hold Enable Register 0000H

FE84H P4PUDSEL SFR 42H Port 4 Pull-Up/Down Select
Register

0000H

FE86H P4PUDEN SFR 43H Port 4 Pull Switch On/Off Register 0000H

FE88H P4PHEN SFR 44H Port 4 Pin Hold Enable Register 0000H

FE90H P6PUDSEL SFR 48H Port 6 Pull-Up/Down Select
Register

0000H

FE92H P6PUDEN SFR 49H Port 6 Pull Switch On/Off Register 0000H

FE94H P6PHEN SFR 4AH Port 6 Pin Hold Enable Register 0000H

FEAAH S0PMW SFR 55H ASC IrDA PMW Control Register 0000H

FEAEH WDT SFR 57H Watchdog Timer Register (RO) 0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 421 2001-04-19

C161U

Register Set
FEB0H S0TBUF SFR 58H Serial Channel 0 Transmit Buffer
Register (WO)

0000H

FEB2H S0RBUF SFR 59H Serial Channel 0 Receive Buffer
Register (RO)

xxxxH

FEB4H S0BG SFR 5AH Serial Channel 0 Baud Rate
Generator Reload Register

0000H

FEB6H S0FDV SFR 5BH ASC Fractional Divide Register 0000H

FEC0H PECC0 SFR 60H PEC Channel 0 Control Register 0000H

FEC2H PECC1 SFR 61H PEC Channel 1 Control Register 0000H

FEC4H PECC2 SFR 62H PEC Channel 2 Control Register 0000H

FEC6H PECC3 SFR 63H PEC Channel 3 Control Register 0000H

FEC8H PECC4 SFR 64H PEC Channel 4 Control Register 0000H

FECAH PECC5 SFR 65H PEC Channel 5 Control Register 0000H

FECCH PECC6 SFR 66H PEC Channel 6 Control Register 0000H

FECEH PECC7 SFR 67H PEC Channel 7 Control Register 0000H

FED0H PECSN0 SFR 68H PEC Segment No Register
FED2H PECSN1 SFR 69H PEC Segment No Register
FED4H PECSN2 SFR 6AH PEC Segment No Register
FED6H PECSN3 SFR 6BH PEC Segment No Register
FED8H PECSN4 SFR 6CH PEC Segment No Register
FEDAH PECSN5 SFR 6DH PEC Segment No Register
FEDCH PECSN6 SFR 6EH PEC Segment No Register
FEDEH PECSN7 SFR 6FH PEC Segment No Register
FEF0H PECXC0 SFR 78H PEC Channel 0 Extended Control

Register
FEF2H PECXC2 SFR 79H PEC Channel 2 Extended Control

Register
FEF8H ABS0CON SFR 7CH ASC Autobaud Control Register 0000H

FEFEH ABSTAT SFR 7FH ASC Autobaud Status Register 0000H

FF00H P0L SFR-b 80H Port 0 Low Register (Lower half) 00H

FF02H P0H SFR-b 81H Port 0 High Register (Upper half) 00H

FF04H P1L SFR-b 82H Port 1 Low Register (Lower half) 00H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 422 2001-04-19

C161U

Register Set
FF06H P1H SFR-b 83H Port 1 High Register (Upper half) 00H

FF0CH BUSCON0 SFR-b 86H Bus Configuration Register 0 0000H

FF0EH MDC SFR-b 87H CPU Multiply Divide Control
Register

0000H

FF10H PSW SFR-b 88H CPU Program Status Word 0000H

FF12H SYSCON SFR-b 89H CPU System Configuration
Register

0xx0H

FF14H BUSCON1 SFR-b 8AH Bus Configuration Register 1 0000H

FF16H BUSCON2 SFR-b 8BH Bus Configuration Register 2 0000H

FF18H BUSCON3 SFR-b 8CH Bus Configuration Register 3 0000H

FF1AH BUSCON4 SFR-b 8DH Bus Configuration Register 4 0000H

FF1CH ZEROS SFR-b 8EH Constant Value 0sRegister' 0000H

FF1EH ONES SFR-b 8FH Constant Value 1sRegister' FFFFH

FF40H T2CON SFR-b A0H GPT1 Timer 2 Control Register 0000H

FF42H T3CON SFR-b A1H GPT1 Timer 3 Control Register 0000H

FF44H T4CON SFR-b A2H GPT1 Timer 4 Control Register 0000H

FF46H T5CON SFR-b A3H GPT2 Timer 5 Control Register 0000H

FF48H T6CON SFR-b A4H GPT2 Timer 6 Control Register 0000H

FF60H T2IC SFR-b B0H GPT1 Timer 2 Interrupt Control
Register

0000H

FF62H T3IC SFR-b B1H GPT1 Timer 3 Interrupt Control
Register

0000H

FF64H T4IC SFR-b B2H GPT1 Timer 4 Interrupt Control
Register

0000H

FF66H T5IC SFR-b B3H GPT2 Timer 5 Interrupt Control
Register

0000H

FF68H T6IC SFR-b B4H GPT2 Timer 6 Interrupt Control
Register

0000H

FF6AH CRIC SFR-b B5H GPT2 CAPREL Interrupt Control
Register

0000H

FF6CH S0TIC SFR-b B6H Serial Channel 0 Transmit
Interrupt Control Register

0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 423 2001-04-19

C161U

Register Set
FF6EH S0RIC SFR-b B7H Serial Channel 0 Receive Interrupt
Control Register

0000H

FF70H S0EIC SFR-b B8H Serial Channel 0 Error Interrupt
Control Register

0000H

FF72H SSCTIC SFR-b B9H SSC Transmit Interrupt Control
Register

0000H

FF74H SSCRIC SFR-b BAH SSC Receive Interrupt Control
Register

0000H

FF76H SSCEIC SFR-b BBH SSC Error Interrupt Control
Register

0000H

FF78H URD3IC SFR-b BCH UDC RX Done3 Interrupt Control
Register

0000H

FF7AH URD4IC SFR-b BDH UDC RX Done4 Interrupt Control
Register

0000H

FF7CH URD5IC SFR-b BEH UDC RX Done5 Interrupt Control
Register

0000H

FF7EH URD6IC SFR-b BFH UDC RX Done6 Interrupt Control
Register

0000H

FF80H URD7IC SFR-b C0H UDC RX Done7 Interrupt Control
Register

0000H

FF82H UTD0IC SFR-b C1H UDC TX Done0 Interrupt Control
Register

0000H

FF84H UTD1IC SFR-b C2H UDC TX Done1 Interrupt Control
Register

0000H

FF86H UTD2IC SFR-b C3H UDC TX Done2 Interrupt Control
Register

0000H

FF88H FEI0IC SFR-b C4H Fast External Interrupt 0 Control
Register

0000H

FF8AH FEI1IC SFR-b C5H Fast External Interrupt 1 Control
Register

0000H

FF98H RES4IC SFR-b CBH reserved 0000H

FF9CH URD2IC SFR-b CEH UDC RX Done2 Interrupt Control
Register

0000H

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 424 2001-04-19

C161U

Register Set
FF9EH URD1IC SFR-b CFH UDC RX Done1 Interrupt Control
Register

0000H

FFA8H CLISNC SFR-b D4H The channel link interrupt subnode
register

0000H

FFAAH FOCON SFR-b D5H Frequency Output Control
Register

0000H

FFACH TFR SFR-b D6H Trap Flag Register 0000H

FFAEH WDTCON SFR-b D7H Watchdog Timer Control Register 000xH

FFB0H S0CON SFR-b D8H Serial Channel 0 Control Register 0000H

FFB2H SSCCON SFR-b D9H SSC Control Register 0000H

FFBAH S0CLC SFR-b DDH ASC Clock Control Register 0000H

FFC0H P2 SFR-b E0H Port 2 Register 0000H

FFC2H DP2 SFR-b E1H Port 2 Direction Control Register 0000H

FFC4H P3 SFR-b E2H Port 3 Register 0000H

FFC6H DP3 SFR-b E3H Port 3 Direction Control Register 0000H

FFC8H P4 SFR-b E4H Port 4 Register (8 bits) 00H

FFCAH DP4 SFR-b E5H Port 4 Direction Control Register 00H

FFCCH P6 SFR-b E6H Port 6 Register (8 bits) 00H

FFCEH DP6 SFR-b E7H Port 6 Direction Control Register 00H

1) The DTIDR register is a data register which is used by advanced real time operating systems to store the task
ID of the active task. It is used for hardware trigger events in the OCDS.

2) The EMUCON register is a reserved test register and is not to be used by other software.

Physi.
Addr

Register
Name

Type 8-bit
Addr

Description Reset
Value
Data Sheet 425 2001-04-19

C161U

Register Set
22.4 Special Function Registers ordered by Name
The following table lists all SFRs which are implemented in the C161U ordered by their
name. Bit-addressable SFRs are marked with the letter “b” in column “Type”.
SFRs within the Extended SFR-Space (ESFRs) are marked with the letter “E” in column
“Type”.

Table 93 Registers ordered by Name

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value

ABENDIC F18CH ESFR-b C6H ASC Autobaud End Interrupt Control
Register

0000H

ABS0CON FEF8H SFR 7CH ASC Autobaud Control Register 0000H

ABSTAT FEFEH SFR 7FH ASC Autobaud Status Register 0000H

ABSTIC F194H ESFR-b CAH ASC Autobaud Start Interrupt Control
Register

0000H

ADDRSEL1 FE18H SFR 0CH Address Select Register 1 0000H

ADDRSEL2 FE1AH SFR 0DH Address Select Register 2 0000H

ADDRSEL3 FE1CH SFR 0EH Address Select Register 3 0000H

ADDRSEL4 FE1EH SFR 0FH Address Select Register 4 0000H

BUSCON0 FF0CH SFR-b 86H Bus Configuration Register 0 0000H

BUSCON1 FF14H SFR-b 8AH Bus Configuration Register 1 0000H

BUSCON2 FF16H SFR-b 8BH Bus Configuration Register 2 0000H

BUSCON3 FF18H SFR-b 8CH Bus Configuration Register 3 0000H

BUSCON4 FF1AH SFR-b 8DH Bus Configuration Register 4 0000H

CAPREL FE4AH SFR 25H GPT1/2 Capture / Reload Register 0000H

CLISNC FFA8H SFR-b D4H The channel link interrupt subnode
register

0000H

CP FE10H SFR 08H CPU Context Pointer Register FC00H

CRIC FF6AH SFR-b B5H GPT2 CAPREL Interrupt Control
Register

0000H

CSP FE08H SFR 04H CPU Code Segment Pointer Register
(8 bits)

0000H

DP0H F102H ESFR-b 81H P0H Direction Control Register 00H

DP0L F100H ESFR-b 80H P0L Direction Control Register 00H

DP1H F106H ESFR-b 83H P1H Direction Control Register 00H
Data Sheet 426 2001-04-19

C161U

Register Set
DP1L F104H ESFR-b 82H P1L Direction Control Register 00H

DP2 FFC2H SFR-b E1H Port 2 Direction Control Register 0000H

DP3 FFC6H SFR-b E3H Port 3 Direction Control Register 0000H

DP4 FFCAH SFR-b E5H Port 4 Direction Control Register 00H

DP6 FFCEH SFR-b E7H Port 6 Direction Control Register 00H

DPP0 FE00H SFR 00H CPU Data Page Pointer 0 Register
(10 bits)

0000H

DPP1 FE02H SFR 01H CPU Data Page Pointer 1 Register
(10 bits)

0001H

DPP2 FE04H SFR 02H CPU Data Page Pointer 2 Register
(10 bits)

0002H

DPP3 FE06H SFR 03H CPU Data Page Pointer 3 Register
(10 bits)

0003H

DTIDR F0D8H ESFR 6CH Task ID register 0000H

EMUCON FE0AH SFR 05H Emulation Control Register xxxxH

EPECIC F17CH ESFR-b BEH EPEC Interrupt 0000H

EXICON F1C0H ESFR-b E0H External Interrupt Control Register 0000H

EXISEL F1DAH ESFR-b EDH External Interrupt Select Register 0000H

FEI0IC FF88H SFR-b C4H Fast External Interrupt 0 Control
Register

0000H

FEI1IC FF8AH SFR-b C5H Fast External Interrupt 1 Control
Register

0000H

FOCON FFAAH SFR-b D5H Frequency Output Control Register 0000H

GPTCLC FE4CH SFR 26H GPT1/2 Clock Control Register 0000H

IDCHIP F07CH ESFR 3EH Identifier 0603H

IDMANUF F07EH ESFR 3FH Identifier 1824H

IDMEM F07AH ESFR 3DH Identifier 0000H

IDMEM2 F076H ESFR 3BH Identifier 0000H

IDPROG F078H ESFR 3CH Identifier 0000H

ISNC F1DEH ESFR-b EFH Interrupt Sub Node Control Register 0000H

MDC FF0EH SFR-b 87H CPU Multiply Divide Control Register 0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 427 2001-04-19

C161U

Register Set
MDH FE0CH SFR 06H CPU Multiply Divide Register - High
Word

0000H

MDL FE0EH SFR 07H CPU Multiply Divide Register - Low
Word

0000H

ODP0H FE22H SFR 11H Port 0 Open Drain Control Register
High

0000H

ODP1H FE26H SFR 13H Port 1 Open Drain Control Register
High

0000H

ODP1L FE24H SFR 12H Port 1 Open Drain Control Register
Low

0000H

ODP2 F1C2H ESFR-b E1H Port 2 Open Drain Control Register 0000H

ODP3 F1C6H ESFR-b E3H Port 3 Open Drain Control Register 0000H

ODP4 F1CAH ESFR-b E5H Port 4 Open Drain Control Register 00H

ODP6 F1CEH ESFR-b E7H Port 6 Open Drain Control Register 00H

ONES FF1EH SFR-b 8FH Constant Value 1sRegister' FFFFH

P0H FF02H SFR-b 81H Port 0 High Register (Upper half) 00H

P0HPHEN FE6AH SFR 35H Port 0 High Pin Hold Enable Register 0000H

P0HPUDEN FE66H SFR 33H Port 0 High Pull Switch On/Off
Register

xxFFH

P0HPUDSEL FE62H SFR 31H Port 0 High Pull-Up/Down Select
Register

xxFFH

P0L FF00H SFR-b 80H Port 0 Low Register (Lower half) 00H

P0LPHEN FE68H SFR 34H Port 0 Low Pin Hold Enable Register 0000H

P0LPUDEN FE64H SFR 32H Port 0 Low Pull Switch On/Off
Register

xxFFH

P0LPUDSEL FE60H SFR 30H Port 0 Low Pull-Up/Down Select
Register

xxFFH

P1H FF06H SFR-b 83H Port 1 High Register (Upper half) 00H

P1HPHEN FE76H SFR 3BH Port 1 High Pin Hold Enable Register 0000H

P1HPUDEN FE72H SFR 39H Port 1 High Pull Switch On/Off
Register

0000H

P1HPUDSEL FE6EH SFR 37H Port 1 High Pull-Up/Down Select
Register

0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 428 2001-04-19

C161U

Register Set
P1L FF04H SFR-b 82H Port 1 Low Register (Lower half) 00H

P1LPHEN FE74H SFR 3AH Port 1 Low Pin Hold Enable Register 0000H

P1LPUDEN FE70H SFR 38H Port 1 Low Pull Switch On/Off
Register

0000H

P1LPUDSEL FE6CH SFR 36H Port 1 Low Pull-Up/Down Select
Register

0000H

P2 FFC0H SFR-b E0H Port 2 Register 0000H

P2PHEN FE7CH SFR 3EH Port 2 Pin Hold Enable Register 0000H

P2PUDEN FE7AH SFR 3DH Port 2 Pull Switch On/Off Register 0000H

P2PUDSEL FE78H SFR 3CH Port 2 Pull-Up/Down Select Register 0000H

P3 FFC4H SFR-b E2H Port 3 Register 0000H

P3PHEN FE82H SFR 41H Port 3 Pin Hold Enable Register 0000H

P3PUDEN FE80H SFR 40H Port 3 Pull Switch On/Off Register 0000H

P3PUDSEL FE7EH SFR 3FH Port 3 Pull-Up/Down Select Register 0000H

P4 FFC8H SFR-b E4H Port 4 Register (8 bits) 00H

P4PHEN FE88H SFR 44H Port 4 Pin Hold Enable Register 0000H

P4PUDEN FE86H SFR 43H Port 4 Pull Switch On/Off Register 0000H

P4PUDSEL FE84H SFR 42H Port 4 Pull-Up/Down Select Register 0000H

P6 FFCCH SFR-b E6H Port 6 Register (8 bits) 00H

P6PHEN FE94H SFR 4AH Port 6 Pin Hold Enable Register 0000H

P6PUDEN FE92H SFR 49H Port 6 Pull Switch On/Off Register 0000H

P6PUDSEL FE90H SFR 48H Port 6 Pull-Up/Down Select Register 0000H

PECC0 FEC0H SFR 60H PEC Channel 0 Control Register 0000H

PECC1 FEC2H SFR 61H PEC Channel 1 Control Register 0000H

PECC2 FEC4H SFR 62H PEC Channel 2 Control Register 0000H

PECC3 FEC6H SFR 63H PEC Channel 3 Control Register 0000H

PECC4 FEC8H SFR 64H PEC Channel 4 Control Register 0000H

PECC5 FECAH SFR 65H PEC Channel 5 Control Register 0000H

PECC6 FECCH SFR 66H PEC Channel 6 Control Register 0000H

PECC7 FECEH SFR 67H PEC Channel 7 Control Register 0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 429 2001-04-19

C161U

Register Set
PECCLIC F180H ESFR-b C0H PEC Channel Link Interrupt Control
Register

0000H

PECSN0 FED0H SFR 68H PEC Segment No Register
PECSN1 FED2H SFR 69H PEC Segment No Register
PECSN2 FED4H SFR 6AH PEC Segment No Register
PECSN3 FED6H SFR 6BH PEC Segment No Register
PECSN4 FED8H SFR 6CH PEC Segment No Register
PECSN5 FEDAH SFR 6DH PEC Segment No Register
PECSN6 FEDCH SFR 6EH PEC Segment No Register
PECSN7 FEDEH SFR 6FH PEC Segment No Register
PECXC0 FEF0H SFR 78H PEC Channel 0 Extended Control

Register
PECXC2 FEF2H SFR 79H PEC Channel 2 Extended Control

Register
PSW FF10H SFR-b 88H CPU Program Status Word 0000H

R0 SFR-b F0H General Purpose Register 0 UUUUH

R0 ESFR-b F0H General Purpose Register 0 UUUUH

R1 SFR-b F1H General Purpose Register 1 UUUUH

R1 ESFR-b F1H General Purpose Register 1 UUUUH

R10 ESFR-b FAH General Purpose Register 10 UUUUH

R10 SFR-b FAH General Purpose Register 10 UUUUH

R11 SFR-b FBH General Purpose Register 11 UUUUH

R11 ESFR-b FBH General Purpose Register 11 UUUUH

R12 SFR-b FCH General Purpose Register 12 UUUUH

R12 ESFR-b FCH General Purpose Register 12 UUUUH

R13 SFR-b FDH General Purpose Register 13 UUUUH

R13 ESFR-b FDH General Purpose Register 13 UUUUH

R14 SFR-b FEH General Purpose Register 14 UUUUH

R14 ESFR-b FEH General Purpose Register 14 UUUUH

R15 ESFR-b FFH General Purpose Register 15 UUUUH

R15 SFR-b FFH General Purpose Register 15 UUUUH

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 430 2001-04-19

C161U

Register Set
R2 SFR-b F2H General Purpose Register 2 UUUUH

R2 ESFR-b F2H General Purpose Register 2 UUUUH

R3 SFR-b F3H General Purpose Register 3 UUUUH

R3 ESFR-b F3H General Purpose Register 3 UUUUH

R4 ESFR-b F4H General Purpose Register 4 UUUUH

R4 SFR-b F4H General Purpose Register 4 UUUUH

R5 ESFR-b F5H General Purpose Register 5 UUUUH

R5 SFR-b F5H General Purpose Register 5 UUUUH

R6 ESFR-b F6H General Purpose Register 6 UUUUH

R6 SFR-b F6H General Purpose Register 6 UUUUH

R7 ESFR-b F7H General Purpose Register 7 UUUUH

R7 SFR-b F7H General Purpose Register 7 UUUUH

R8 SFR-b F8H General Purpose Register 8 UUUUH

R8 ESFR-b F8H General Purpose Register 8 UUUUH

R9 SFR-b F9H General Purpose Register 9 UUUUH

R9 ESFR-b F9H General Purpose Register 9 UUUUH

RES4IC FF98H SFR-b CBH reserved 0000H

RES6IC F19AH ESFR-b CDH reserved 0000H

reserved F1D6H ESFR-b EBH reserved - do not use 0000H

reserved F1D8H ESFR-b ECH reserved - do not use 0000H

RP0H F108H ESFR-b 84H System Startup Configuration
Register (RO)

xxH

RTC_INTIC F184H ESFR-b C2H RTC_INT Sub Node Interrupt
Register

0000H

RTCCLC F0C8H ESFR 64H RTC Clock Control Register 0000H

RTCCON F1CCH ESFR-b E6H RTC Control Register 00H

RTCH F0D6H ESFR 6BH RTC Timer Register High nH

RTCISNC F1C8H ESFR-b E4H RTC Interrupt Sub Node Control
Register

0000H

RTCL F0D4H ESFR 6AH RTC Timer Register Low nH

RTCRELH F0CEH ESFR 67H RTC Timer Reload Register High 0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 431 2001-04-19

C161U

Register Set
RTCRELL F0CCH ESFR 66H RTC Timer Reload Register Low 0000H

S0BG FEB4H SFR 5AH Serial Channel 0 Baud Rate
Generator Reload Register

0000H

S0CLC FFBAH SFR-b DDH ASC Clock Control Register 0000H

S0CON FFB0H SFR-b D8H Serial Channel 0 Control Register 0000H

S0EIC FF70H SFR-b B8H Serial Channel 0 Error Interrupt
Control Register

0000H

S0FDV FEB6H SFR 5BH ASC Fractional Divide Register 0000H

S0PMW FEAAH SFR 55H ASC IrDA PMW Control Register 0000H

S0RBUF FEB2H SFR 59H Serial Channel 0 Receive Buffer
Register (RO)

xxxxH

S0RIC FF6EH SFR-b B7H Serial Channel 0 Receive Interrupt
Control Register

0000H

S0TBIC F19CH ESFR-b CEH Serial Channel 0 Transmit Buffer IC
Register

0000H

S0TBUF FEB0H SFR 58H Serial Channel 0 Transmit Buffer
Register (WO)

0000H

S0TIC FF6CH SFR-b B6H Serial Channel 0 Transmit Interrupt
Control Register

0000H

SCUSLC F0C0H ESFR 60H Security Level Control Register
SCUSLS F0C2H ESFR 61H Security Level Status Register
SP FE12H SFR 09H CPU System Stack Pointer Register FC00H

SSCBR F0B4H ESFR 5AH SSC Baudrate Register 0000H

SSCCLC F0B6H ESFR 5BH SSC Clock Control Register 0000H

SSCCON FFB2H SFR-b D9H SSC Control Register 0000H

SSCEIC FF76H SFR-b BBH SSC Error Interrupt Control Register 0000H

SSCRB F0B2H ESFR 59H SSC Receive Buffer (RO) xxxxH

SSCRIC FF74H SFR-b BAH SSC Receive Interrupt Control
Register

0000H

SSCTB F0B0H ESFR 58H SSC Transmit Buffer (WO) 0000H

SSCTIC FF72H SFR-b B9H SSC Transmit Interrupt Control
Register

0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 432 2001-04-19

C161U

Register Set
STKOV FE14H SFR 0AH CPU Stack Overflow Pointer
Register

FA00H

STKUN FE16H SFR 0BH CPU Stack Underflow Pointer
Register

FC00H

SYSCON FF12H SFR-b 89H CPU System Configuration Register 0xx0H

SYSCON1 F1DCH ESFR-b EEH System Configuration Register 1/
Sleep Mode

0000H

SYSCON2 F1D0H ESFR-b E8H System Configuration Register 2/
Clock Control

0000H

SYSCON3 F1D4H ESFR-b EAH System Configuration Register 3/
Periph. Managem.

0000H

T14 F0D2H ESFR 69H Timer 14 Register nH

T14REL F0D0H ESFR 68H Timer 14 Reload Register nH

T2 FE40H SFR 20H GPT1 Timer 2 Register 0000H

T2CON FF40H SFR-b A0H GPT1 Timer 2 Control Register 0000H

T2IC FF60H SFR-b B0H GPT1 Timer 2 Interrupt Control
Register

0000H

T3 FE42H SFR 21H GPT1 Timer 3 Register 0000H

T3CON FF42H SFR-b A1H GPT1 Timer 3 Control Register 0000H

T3IC FF62H SFR-b B1H GPT1 Timer 3 Interrupt Control
Register

0000H

T4 FE44H SFR 22H GPT1 Timer 4 Register 0000H

T4CON FF44H SFR-b A2H GPT1 Timer 4 Control Register 0000H

T4IC FF64H SFR-b B2H GPT1 Timer 4 Interrupt Control
Register

0000H

T5 FE46H SFR 23H GPT2 Timer 5 Register 0000H

T5CON FF46H SFR-b A3H GPT2 Timer 5 Control Register 0000H

T5IC FF66H SFR-b B3H GPT2 Timer 5 Interrupt Control
Register

0000H

T6 FE48H SFR 24H GPT2 Timer 6 Register 0000H

T6CON FF48H SFR-b A4H GPT2 Timer 6 Control Register 0000H

T6IC FF68H SFR-b B4H GPT2 Timer 6 Interrupt Control
Register

0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 433 2001-04-19

C161U

Register Set
UCFGVIC F16EH ESFR-b B7H UDC Config Val Interrupt Control
Register

0000H

ULCDIC F176H ESFR-b BBH UDC Load Config Done Interrupt
Control Register

0000H

URD0IC F17AH ESFR-b BDH UDC RX Done0 Interrupt Control
Register

0000H

URD1IC FF9EH SFR-b CFH UDC RX Done1 Interrupt Control
Register

0000H

URD2IC FF9CH SFR-b CEH UDC RX Done2 Interrupt Control
Register

0000H

URD3IC FF78H SFR-b BCH UDC RX Done3 Interrupt Control
Register

0000H

URD4IC FF7AH SFR-b BDH UDC RX Done4 Interrupt Control
Register

0000H

URD5IC FF7CH SFR-b BEH UDC RX Done5 Interrupt Control
Register

0000H

URD6IC FF7EH SFR-b BFH UDC RX Done6 Interrupt Control
Register

0000H

URD7IC FF80H SFR-b C0H UDC RX Done7 Interrupt Control
Register

0000H

URXRIC F16AH ESFR-b B5H UDC RXRR Interrupt Control
Register

0000H

USETIC F178H ESFR-b BCH UDC SETUP Interrupt Control
Register

0000H

USOFIC F170H ESFR-b B8H UDC Start of Frame Interrupt Control
Register

0000H

USSIC F174H ESFR-b BAH UDC Suspend Interrupt Control
Register

0000H

USSOIC F172H ESFR-b B9H UDC Suspend off Interrupt Control
Register

0000H

UTD0IC FF82H SFR-b C1H UDC TX Done0 Interrupt Control
Register

0000H

UTD1IC FF84H SFR-b C2H UDC TX Done1 Interrupt Control
Register

0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 434 2001-04-19

C161U

Register Set
UTD2IC FF86H SFR-b C3H UDC TX Done2 Interrupt Control
Register

0000H

UTD3IC F160H ESFR-b B0H UDC TX Done3 Interrupt Control
Register

0000H

UTD4IC F162H ESFR-b B1H UDC TX Done4 Interrupt Control
Register

0000H

UTD5IC F164H ESFR-b B2H UDC TX Done5 Interrupt Control
Register

0000H

UTD6IC F166H ESFR-b B3H UDC TX Done6 Interrupt Control
Register

0000H

UTD7IC F168H ESFR-b B4H UDC TX Done7 Interrupt Control
Register

0000H

UTXRIC F16CH ESFR-b B6H UDC TXWR Interrupt Control
Register

0000H

TFR FFACH SFR-b D6H Trap Flag Register 0000H

UCFGVIC F16EH ESFR-b B7H UDC Config Val Interrupt Control
Register

0000H

ULCDIC F176H ESFR-b BBH UDC Load Config Done Interrupt
Control Register

0000H

WDT FEAEH SFR 57H Watchdog Timer Register (RO) 0000H

WDTCON FFAEH SFR-b D7H Watchdog Timer Control Register 000xH

XADRS1 F014H ESFR 0AH XBUS Address Select Register 1
XADRS2 F016H ESFR 0BH XBUS Address Select Register 2
XADRS3 F018H ESFR 0CH XBUS Address Select Register 3
XADRS4 F01AH ESFR 0DH XBUS Address Select Register 4
XADRS5 F01CH ESFR 0EH XBUS Address Select Register 5
XADRS6 F01EH ESFR 0FH XBUS Address Select Register 6
XBCON1 F114H ESFR-b 8AH XBUS Control register 1: reserved 0000H

XBCON2 F116H ESFR-b 8BH XBUS Control register 2: USB
module

0000H

XBCON3 F118H ESFR-b 8CH XBUS Control register 3: EPEC
module

0000H

XBCON4 F11AH ESFR-b 8DH XBUS Control register 4: reserved 0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 435 2001-04-19

C161U

Register Set
XBCON5 F11CH ESFR-b 8EH XBUS Control register 5: reserved 0000H

XBCON6 F11EH ESFR-b 8FH XBUS Control register 6: reserved
XP0IC F186H ESFR-b C3H X-Bus Peripheral 0 UDC TXWR

Interrupt Control Register
0000H

XP1IC F18EH ESFR-b C7H X-Bus Peripheral 1 EPEC Interrupt
Control Register

0000H

XP3IC F19EH ESFR-b CFH X-Bus Peripheral 3 PLL/RTC
Interrupt Control Register

0000H

XPERCON F024H ESFR 12H XBUS Peripheral Control Register 0401H

ZEROS FF1CH SFR-b 8EH Constant Value 0sRegister' 0000H

Register
Name

Physi.
Addr

Type 8-bit
Addr

Description Reset
Value
Data Sheet 436 2001-04-19

C161U

Register Set
22.5 Special Notes

PEC Pointer Registers
The source and destination pointers for the peripheral event controller are mapped to a
special area within the internal RAM. Pointers that are not occupied by the PEC may
therefore be used like normal RAM. During Power Down mode or any warm reset the
PEC pointers are preserved.
The PEC and its registers are described in chapter “Interrupt and Trap Functions”.

GPR Access in the ESFR Area
The locations 00’F000H...00’F01EH within the ESFR area are reserved and allow to
access the current register bank via short register addressing modes. The GPRs are
mirrored to the ESFR area which allows access to the current register bank even after
switching register spaces (see example below).
MOV R5, DP3 ;GPR access via SFR area
EXTR #1
MOV R5, ODP3 ;GPR access via ESFR area

Writing Bytes to SFRs
All special function registers may be accessed wordwise or bytewise (some of them even
bitwise). Reading bytes from word SFRs is a non-critical operation. However, when
writing bytes to word SFRs the complementary byte of the respective SFR is cleared with
the write operation.
Data Sheet 437 2001-04-19

C161U

Instruction Set Summary
23 Instruction Set Summary
This chapter briefly summarizes the C161U's instructions ordered by instruction classes.
This provides a basic understanding of the C161U’s instruction set, the power and
versatility of the instructions and their general usage.
A detailed description of each single instruction, including its operand data type,
condition flag settings, addressing modes, length (number of bytes) and object code
format is provided in the “Instruction Set Manual” for the C16x Family. This manual
also provides tables ordering the instructions according to various criteria, to allow quick
references.

Summary of Instruction Classes
Grouping the various instruction into classes aids in identifying similar instructions (eg.
SHR, ROR) and variations of certain instructions (eg. ADD, ADDB). This provides an
easy access to the possibilities and the power of the instructions of the C161U.
Note: The used mnemonics refer to the detailled description.

Arithmetic Instructions
• Addition of two words or bytes: ADD, ADDB
• Addition with Carry of two words or bytes: ADDC, ADDCB
• Subtraction of two words or bytes: SUB, SUBB
• Subtraction with Carry of two words or bytes: SUBC, SUBCB
• 16*16-bit signed or unsigned multiplication: MUL, MULU
• 16/16-bit signed or unsigned division: DIV, DIVU
• 32/16-bit signed or unsigned division: DIVL, DIVLU
• 1's complement of a word or byte: CPL, CPLB
• 2's complement (negation) of a word or byte: NEG, NEGB

Logical Instructions
• Bitwise ANDing of two words or bytes: AND, ANDB
• Bitwise ORing of two words or bytes: OR, ORB
• Bitwise XORing of two words or bytes: XOR, XORB

Compare and Loop Control Instructions
• Comparison of two words or bytes: CMP, CMPB
• Comparison of two words with post-increment

by either 1 or 2: CMPI1, CMPI2
• Comparison of two words with post-decrement

by either 1 or 2: CMPD1, CMPD2
Data Sheet 438 2001-04-19

C161U

Instruction Set Summary
Boolean Bit Manipulation Instructions
• Manipulation of a maskable bit field

in either the high or the low byte of a word: BFLDH, BFLDL
• Setting a single bit (to ‘1’): BSET
• Clearing a single bit (to ‘0’): BCLR
• Movement of a single bit: BMOV
• Movement of a negated bit: BMOVN
• ANDing of two bits: BAND
• ORing of two bits: BOR
• XORing of two bits: BXOR
• Comparison of two bits: BCMP

Shift and Rotate Instructions
• Shifting right of a word: SHR
• Shifting left of a word: SHL
• Rotating right of a word: ROR
• Rotating left of a word: ROL
• Arithmetic shifting right of a word (sign bit shifting): ASHR

Prioritize Instruction
• Determination of the number of shift cycles required to normalize a word operand

(floating point support): PRIOR

Data Movement Instructions
• Standard data movement of a word or byte: MOV, MOVB
• Data movement of a byte to a word location with either sign or zero byte extension:

MOVBS. MOVBZ
Note: The data movement instructions can be used with a big number of different

addressing modes including indirect addressing and automatic pointer in-/
decrementing.

System Stack Instructions
• Pushing of a word onto the system stack: PUSH
• Popping of a word from the system stack: POP
• Saving of a word on the system stack,and then updating the old word with a new value

(provided for register bank switching): SCXT

Jump Instructions
• Conditional jumping to an either absolutely, indirectly, or relatively addressed target

instruction within the current code segment: JMPA, JMPI, JMPR
Data Sheet 439 2001-04-19

C161U

Instruction Set Summary
• Unconditional jumping to an absolutely addressed target instruction within any code
segment: JMPS

• Conditional jumping to a relatively addressed target instruction within the current code
segment depending on the state of a selectable bit: JB, JNB

• Conditional jumping to a relatively addressed target instruction within the current code
segment depending on the state of a selectable bit with a post-inversion of the tested
bit in case of jump taken (semaphore support): JBC, JNBS

Call Instructions
• Conditional calling of an either absolutely or indirectly addressed subroutine within

the current code segment: CALLA, CALLI
• Unconditional calling of a relatively addressed subroutine within the current code

segment: CALLR
• Unconditional calling of an absolutely addressed subroutine within any code segment:

CALLS
• Unconditional calling of an absolutely addressed subroutine within the current code

segment plus an additional pushing of a selectable register ontothe system stack:
PCALL

• Unconditional branching to the interrupt or trap vector jump table in code segment 0:
TRAP

Return Instructions
• Returning from a subroutine within the current code segment: RET
• Returning from a subroutine within any code segment: ETS
• Returning from a subroutine within the current code segment plus an additional

popping of a selectable register from the system stack: RETP
• Returning from an interrupt service routine: RETI

System Control Instructions
• Resetting the C161U via software: SRST
• Entering the Idle mode: DLE
• Entering the Power-down mode: PWRDN
• Servicing the Watchdog Timer: SRVWDT
• Disabling the Watchdog Timer: DISWDT
• Signifying the end of the initialization routine (pulls pin RSTOUT high, and disables the

effect of any later execution of a DISWDT instruction): EINIT
Data Sheet 440 2001-04-19

C161U

Instruction Set Summary
Miscellaneous
• Null operation which requires 2 bytes of storage and the minimum time for execution:

NOP
• Definition of an unseparable instruction sequence: ATOMIC
• Switch ‘reg’, ‘bitoff’ and ‘bitaddr’ addressing modes to the Extended SFR space: EXTR
• Override the DPP addressing scheme using a specific data page instead of the DPPs,

and optionally switch to ESFR space: EXTP, EXTPR
• Override the DPP addressing scheme using a specific segment instead of the DPPs,

and optionally switch to ESFR space: EXTS, EXTSR
Note: The ATOMIC and EXT* instructions provide support for uninterruptable code

sequences eg. for semaphore operations. They also support data addressing
beyond the limits of the current DPPs (except ATOMIC), which is advantageous
for bigger memory models in high level languages. Refer to chapter “System
Programming” for examples.

Protected Instructions
Some instructions of the C161U which are critical for the functionality of the controller
are implemented as so-called Protected Instructions. These protected instructions use
the maximum instruction format of 32 bits for decoding, while the regular instructions
only use a part of it (eg. the lower 8 bits) with the other bits providing additional
information like involved registers. Decoding all 32 bits of a protected doubleword
instruction increases the security in cases of data distortion during instruction fetching.
Critical operations like a software reset are therefore only executed if the complete
instruction is decoded without an error. This enhances the safety and reliability of a
microcontroller system.
Data Sheet 441 2001-04-19

C161U

AC/DC Characteristics
24 AC/DC Characteristics

24.1 Absolute Maximum Ratings
• Storage temperature (TST) -65 to +150 °C
• Voltage on VDD pins with respect to ground (VSS) -0.5 to + 4.0 V
• Voltage on any pin with respect to ground (VSS) (except VDD, VSS, XTAL and USB pins)

-0.5 to 5.5 V
• Absolute maximum total I/O current 250 mA
• Absolute maximum current on any pin, sink or source 10 mA
Stresses beyond those listed above may cause permanent damage to the device. This
is a stress rating only, and functional operation of the C161U is not implied at these or
any other conditions above those indicated in the operational sections of this
specification. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability.

24.2 Recommended Operating Conditions
The following conditions are to be met for correct operation of the device.
• Ambient temperature under bias (TA): -40 to +85 °C
• Load capacitance (CL): <100 pF

24.3 DC Characteristics
The parameters listed below partly represent the characteristics of the C161U and partly
its demands on the system. To aid in interpreting the table correctly when evaluating
parameters for a design, the following notation is used in the column “Symbol”:
CC (Controller Characteristics):
The logic of the C161U will provide signals with the respective timing characteristics.
SR (System Requirement):
The external system must provide signals with the respective timing characteristics to
the C161U.
Data Sheet 442 2001-04-19

C161U

AC/DC Characteristics
VDD = 3.3 V ± 10%;VSS = 0 V
TA = -40 to 85o C, nom = 25o C

Table 94 DC Characteristics

Parameter Symbol Limit Values Unit Test Condition
min. nom. max.

Power source current,
normal operation

ICC – 95 150 mA 36 MHz system
frequency 6)

Power source current,
idle mode

IID – – t.b.d. mA –

Power source current,
sleep mode

IPD – 140 – µA –

Power source current,
power-down mode

IPD – 25 – µA –

Input low voltage VILSR -0.5 – 0.8 V –
Input high voltage VIHSR 2.2 –

5.5
V VDD= 3.6 V

VIHSR 2.0 – V VDD= 3.3 V
VIHSR 1.8 – V VDD= 3.0 V

Output low voltage VOLCC – – 0.4 V IOL = 3.2 mA
Output high voltage VOHCC 2.4 – – V IOH = -3.2 mA
Input leakage current IOZ2CC – – ±1 µA 0 V < VIN < VDD

RSTIN pullup resistor RRSTCC 100 – 660 kΩ at VDD = 3.3 V
Read/Write inactive
current 4)

IRWH 2) – – -40 µA VOUT = 2.4 V

Read/Write active current 4) IRWL 3) -100 – – µA VOUT = VOLmax

ALE inactive current 4) IALEL 2) – – 40 µA VOUT = VOLmax

ALE active current 4) IALEH 3) 100 – – µA VOUT = 2.4 V
Port 6 inactive current 4) IP6H 2) – – -40 µA VOUT = 2.4 V
Port 6 active current 4) IP6L 3) -100 – – µA VOUT = VOLmax
Data Sheet 443 2001-04-19

C161U

AC/DC Characteristics
1) Not tested; guaranteed by design characterization.
2) The maximum current may be drawn while the respective signal line remains inactive.
3) The minimum current must be drawn in order to drive the respective signal line active.
4) This specification is only valid during Reset or during Adapt-mode. Port 6 pins are affected only if they are used

for CS output and the open drain function is not enabled.
5) Not 5-V tolerant.
6) At a lower system frequency, the power consumption decreases accordingly.

Note:

1. The sum of power from all port pins may not exceed 1 W; total I/O current may not
exceed 250 mA.

2. The strength of output drivers (IOL and IOH) is 7.5 mA.

24.4 USB Full-speed (12 Mbit/s) Driver Characteristics
C161U is compliant to the characterization of the USB interface according to "Universal
Serial Bus Specification, Revision 1.1, September 23, 1998". More specific, the Driver
Characteristics can be found on pp. 108 of this specification.
Note: C161U meets all values at 25 grad Celsius as specified in the USB Spec 1.1 For

higher temperature, the C161U values deviate up to 3.5 % worse than "full-speed
buffer V/I characteristics" according to USB Spec 1.1, page 109.

24.5 Failsafe operation
C161U I/O pins may be exposed up to a 5.5 V level generated by the other system
components. That may happen during operation in the normal power range as well as
during power-up/down transitions when the value of VDD may be anywhere in the range
from 0 V to 3.63 V. The following table specifies 5.5 V failsafe conditions for the different
ranges of VDD.

Port 0 configuration
current 4)

IP0H 2) – – -10 µA VIN = VIHmin

IP0L 3) -100 – – µA VIN = VILmax

XTAL1 input current IILCC – – ±20 µA 0 V < VIN < VDD

XTAL1 max input voltage5) VIH2 1 – VDD +
0.3

V –

Pin capacitance1)

(digital inputs/outputs)
CIOCC – – 9 pF f = 1 MHz;

TA = 25 °C

Table 94 DC Characteristics (cont’d)

Parameter Symbol Limit Values Unit Test Condition
min. nom. max.
Data Sheet 444 2001-04-19

C161U

AC/DC Characteristics
24.6 Testing Waveforms

Figure 124 Input Output Waveforms

Table 95 Failsafe conditions

VDD I/O Status Safe condition with
 5.5 V applied to I/O pin

Note

Power-
up

Not
connected

Undetermined Not to exceed 10 mA on
any pin, 250 mA total

_

0 V - 2.97 V Undetermined Not to exceed 10 mA on
any pin, 250 mA total

_

Normal
Power
range

2.97 V -
3.63 V

Determined Not to exceed 10 mA on
any pin, 250 mA total

_

Power-
down

2.97 V -
2.25 V

Determined Not to exceed 10 mA on
any pin, 250 mA total

At 2.5 V ± 10%
(Power down mode)
I/Os are active and
preserve the status

2.25 V - 0 Undetermined Not to exceed 10 mA on
any pin, 250 mA total

_

AC inputs during testing are driven at 2.4 V for a logic ‘1’ and 0.45 V for a logic ‘0’.
Timing measurements are made at VIH min for a logic ‘1’ and VIL max for a logic ‘0’.

0.45 V
0.8 V 0.8 V

2.0 V 2.0 V

Test Points

2.4 V
Data Sheet 445 2001-04-19

C161U

AC/DC Characteristics

Figure 125 Float Waveforms

24.7 AC Characteristics
The parameters in this chapter partly represent the characteristics of the C161U and
partly its demands on the system. To aid in interpreting the table correctly when
evaluating parameters for a design, the following notation is used in the column
“Symbol”:
CC (Controller Characteristics):
The logic of the C161U will provide signals with the respective timing characteristics.
SR (System Requirement):
The external system must provide signals with the respective timing characteristics to
the C161U.

24.7.1 Definition of Internal Timing
The internal operation of the C161U is controlled by the internal CPU clock fCPU. Both
edges of the CPU clock can trigger internal (eg. pipeline) or external (eg. bus cycles)
operations. The specification of the external timing (AC Characteristics) therefore
depends on the time between two consecutive edges of the CPU clock, called “TCL”
(see Figure 126).

For timing purposes a port pin is no longer floating when a 100 mV change from load
voltage occurs, but begins to float when a 100 mV change from the loaded VOH/VOL level occurs
(IOH/IOL = 20 mA).

Timing
Reference

Points

VOH -0.1 V

VOL +0.1 V

VLoad +0.1 V

VLoad -0.1 V
Data Sheet 446 2001-04-19

C161U

AC/DC Characteristics

Figure 126 Generation mechanisms for the CPU Clock

The CPU clock signal can be generated via different mechanisms. The mechanism used
to generate the CPU clock is selected during reset via the logic levels on pins P0.15-13
(P0H.7-5) and is described in detail in Chapter 3.3, page 35. The duration of TCLs and
their variation (and also the derived external timing) depends on the mechanism used to
generate fCPU. This influence must be regarded when calculating the timings for the
C161U.
Note: The example for PLL operation shown in Figure 126 refers to a PLL factor of 4.

The PLL multiplies the input frequency by the factor F which is selected via the
combination of pins P0.15-13 (ie. fCPU = fXTAL * F). With every F’th transition of fXTAL the
PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done
smoothly, i.e. the CPU clock frequency does not change abruptly.
Due to this adaptation to the input clock, the frequency of fCPU is constantly adjusted so
it is locked to fXTAL. The slight variation causes a jitter of fCPU which also affects the
duration of individual TCLs.
The timings listed in the AC Characteristics that refer to TCLs therefore must be
calculated using the minimum TCL that is possible under the respective circumstances.
The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is
constantly adjusting its output frequency so it corresponds to the applied input frequency
(crystal or oscillator), the relative deviation for periods of more than one TCL is lower
than for a single TCL. This is especially important for bus cycles using wait-states and
for the operation of timers, serial interfaces, etc. For all slower operations and longer
periods (eg. pulse train generation or measurement, lower baudrates, etc.), the deviation
caused by the PLL jitter is negligible.

TCL TCL

fCPU

fXTAL

Phase Locked Loop Operation

TCL TCL

fCPU

fXTAL

Prescaler Operation
Data Sheet 447 2001-04-19

C161U

AC/DC Characteristics
24.7.2 System Reset

Figure 127 Reset Input and Output Signals

Note: Minimum reset time after power on is 1 ms after voltage reaches VDD minimum.

delayed until the end of the internal reset condition.

Current bus cycle is completed or aborted.

Activation of the IO pins is controlled by software.
Execution of the EINIT instruction.

When the internal reset condition is extended by RSTIN, the activation of the output signals is

Switches asinchronously with RSTIN, sinchronously upon software or watchdog reset.
The reset condition ends here. The C 167CR starts program execution.

The shaded area designates the internal reset sequence, which starts after synchronization of RSTIN.

RSTIN

Internal Reset Condition

6)

Initialization

3)

MCS02258

RD, WR

RSTOUT

IO

ALE

Bus

RSTIN

Internal Reset Condition

6)

1)

2)

2)

Initialization

3) 5)

4)

8)

7)

A short hardware reset is extended until the end of the reset sequence in Bidirectional reset mode.
A software or WDT reset activates the RSTIN line in Bidirectional reset mode.8)

7)

6)

3)

2)

5)

4)

1)
Data Sheet 448 2001-04-19

C161U

AC/DC Characteristics
24.7.3 External Clock Drive XTAL1
VDD = 3.3 V ± 10%;VSS = 0 V
TA = -40 to +85 °C

Note: Special requirements for the external crystal must be observed: The accuracy of
the crystal must be 96ppm or better. Please note, the implemented low swing
crystal oscillator has a signal amplitude of only about 1 V peak-to-peak. More
detailed information can also be found in the appropriated application note.

Figure 128 External Clock Drive XTAL1

Table 96 External Clock Drive XTAL 1

Parameter Symbol External crystal: 4-20
MHz
(internal oscillator
"on", PLL running)

Direct drive: 4-36 MHz
(internal oscillator by-
passed,
PLL "free running" or
"off")

Unit

min max min max
Oscillator
period

tOSCSR 50 250 27.8 250 ns

Duty Cycle - - 50 %
High time t1SR - - 13.9 125 ns
Low time t2SR - - 13.9 125 ns
Rise time t3SR - - - 3 @ 36 MHz ns
Fall time t4SR - - - 3 @ 36 MHz ns

MCT02534

3t 4t

VIH2

VIL
VDD0.5

1t

2t

OSCt
Data Sheet 449 2001-04-19

C161U

AC/DC Characteristics
24.7.4 JTAG Interface Timing
•

Figure 129 JTAG Interface Timing

Table 97 JTAG Interface Timing

No. Parameter Limit Values Unit

min. max.

200 TCK period 120 ns

201 TCK high time 60 ns

202 TCK low time 60 ns

203 TMS setup time 20 ns

204 TMS hold time 20 ns

205 TDI setup time 20 ns

206 TDI hold time 20 ns

207 TDO valid time 50 ns

TRST

TCK

TMS

TDI

TDO

202201
200

203
204

205
206

207
Data Sheet 450 2001-04-19

C161U

AC/DC Characteristics
24.8 Asynchronous Bus Timing
This term means that timing is defined with respect to ALE (as opposed to CLKOUT).
The following configurations are typical :

24.8.1 Memory Cycle Variables
The timing tables below use 4 variables which are derived from the BUSCONx registers
and represent the special characteristics of the programmed memory cycle. The
following table describes, how these variables are to be computed.

24.8.1.1 AC Characteristics, Multiplexed Bus
VDD = 3.3 V ± 10 %; VSS = 0 V
TA = -40 to +85 °C
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF
CL (for Port 6, CS) = 100 pF
ALE cycle time = 6 TCL + 2tA + tC + tF (83.3 ns at 36 MHz CPU clock without wait states)

Table 98 Asynchronous Bus Timing

RDY ALE WR MTTC RD/WR MCTC cycles Application BUSCON
no normal early no normal no 2 SRAMS demuxed

bus
0A3F (8) or
0ABF(16)

no normal - no normal 1 3 fast EPROMS
demuxed bus

0A3E /
0ABE

no normal - 1 normal 2 5 slow FLASH
demuxed bus

0A1D /
0A9D

no normal normal no delayed no 2+1 SRAMS muxed bus 04EF /
046F

no normal - no delayed 1 3+1 fast EPROMS
muxed bus

04EE /
046E

no normal - no delayed 2 4+1 slow FLASH muxed
bus

04ED /
046D

Table 99 Memory Cycle Variables

Description Symbol Values

ALE extension tA TCL * <ALECTL>
memory cycle time waitstates tC 2TCL * (15 - <MCTC>)
memory tristate time tF 2TCL * (1 - <MTTC>)
early write tW TCL * <EWEN>
Data Sheet 451 2001-04-19

C161U

AC/DC Characteristics

Table 100 AC Characteristics, Multiplexed Bus

Parameter Symbol Max. CPU
Clock 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
ALE high time t5CC 4 + tA – TCL - 10 + tA – ns
Address, CSx2) setup to
ALE

t6CC -6 + tA – TCL - 20 + tA – ns

Address hold after ALE t7CC 4 + tA TCL - 10 + tA ns
ALE falling edge to RD,
WR (with RW-delay)

t8CC 4 + tA – TCL - 10 + tA – ns

ALE falling edge to RD,
WR (no RW-delay)

t9CC -10 + tA – -10 + tA – ns

Address float after RD,
WR (with RW-delay)

t10CC – 15 – 15 ns

Address float after RD,
WR (no RW-delay)

t11CC – 29 – TCL + 15 ns

 RD, WR low time (with
RW-delay) 3)

t12CC 17 + tC -
tW

– 2TCL - 11 +
tC - tW

– ns

 RD, WR low time (no RW-
delay) 3)

t13CC 31 + tC -
tW

– 3TCL - 11 +
tC - tW

– ns

RD to valid data in (with
RW-delay)

t14SR – 0 + tC – 2TCL - 28
+ tC

ns

RD to valid data in (no RW-
delay)

t15SR – 13 + tC – 3TCL - 29
+ tC

ns

ALE low to valid data in t16SR – 13 + tA
+ tC

– 3TCL - 29
+ tA + tC

ns

Address, CSx2) to valid
data in

t17SR – 18 +
2tA + tC

– 4TCL - 38
+ 2tA + tC

ns

Data hold after RD
rising edge

t18SR 0 – 0 – ns

Data float after RD t19SR – 13 + tF – 2TCL - 15
+ tF

ns

Data valid to WR t22CC 13 + tC -
tW

– 2TCL - 15 +
tC - tW

– ns
Data Sheet 452 2001-04-19

C161U

AC/DC Characteristics
Data hold after WR t23CC 13 + tF +
tW

– 2TCL - 15 +
tF + tW

– ns

ALE rising edge after RD,
WR 3)

t25CC 13 + tF +
tW

– 2TCL - 15 +
tF + tW

– ns

Address hold after RD,
WR 3)

t27CC 13 + tF +
tW

– 2TCL - 15 +
tF + tW

– ns

ALE falling edge to CSx1) t38CC -9 - tA 13 - tA -9 - tA 13 - tA ns
CSx1) low to Valid Data In t39SR – 12 + tC

+ 2tA

– 3TCL - 30
+ tC+2tA

ns

CSx1) hold after RD, WR 3) t40CC 27 + tF +
tW

– 3TCL - 15 +
tF + tW

– ns

ALE falling edge to RdCS,
WrCS (with RW delay)

t42CC 5 + tA – TCL - 9 + tA – ns

ALE falling edge to RdCS,
WrCS (no RW delay)

t43CC -9 + tA – -9 + tA – ns

Address float after RdCS,
WrCS (with RW delay)

t44CC – 13 – 13 ns

Address float after RdCS,
WrCS (no RW delay)

t45CC – 27 – TCL + 13 ns

RdCS to Valid Data In
(with RW delay)

t46SR – -4 + tC – 2TCL - 32
+ tC

ns

RdCS to Valid Data In (no
RW delay)

t47SR – 10 + tC – 3TCL - 32
+ tC

ns

 RdCS, WrCS Low Time
(with RW delay) 3)

t48CC 14 + tC -
tW

– 2TCL - 14 +
tC - tW

– ns

RdCS, WrCS Low Time
(no RW delay) 3)

t49CC 30 + tC -
tW

– 3TCL - 12 +
tC - tW

– ns

Data valid to WrCS t50CC 13 + tC -
tW

– 2TCL - 15 +
tC - tW

– ns

Table 100 AC Characteristics, Multiplexed Bus (cont’d)

Parameter Symbol Max. CPU
Clock 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
Data Sheet 453 2001-04-19

C161U

AC/DC Characteristics
1) Normal (latched) CS: bit CSCFG, register SYSCON.6, is set to ’0’, latched mode is selcted.
2) Early (unlatched) CS; (bit CSCFG = ’1’) while address bus is changing spikes may occur on CS in this mode.
3) The memory cycle variable tW applies only for write accesses; for read accesses this variable is always zero.

Data hold after RdCS t51SR 0 – 0 – ns
Data float after RdCS t52SR – 7 + tF – 2TCL - 21

+ tF

ns

Address hold after RdCS,
WrCS 3)

t54CC 8 + tF +
tW

– 2TCL - 20 +
tF + tW

– ns

Data hold after WrCS t56CC 8 + tF +
tW

– 2TCL - 20 +
tF + tW

– ns

Table 100 AC Characteristics, Multiplexed Bus (cont’d)

Parameter Symbol Max. CPU
Clock 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
Data Sheet 454 2001-04-19

C161U

AC/DC Characteristics

Figure 130 External Memory Cycle: Multiplexed Bus, With Read/Write Delay,
Normal ALE

Data In

Data OutAddress

Address

t38

t44

t10

Address

ALE

BUS

Read Cycle

RD

RdCSx

BUS

Write Cycle

WR,
WRL, WRH

WrCSx

t5 t16

t17

t6 t7

t39

t25

t18

t19

t14

t46

t12

t48

t10
t22

t23

t44

t12

t48

t8

t42

t42

t8

t50

t51

t52

t56

t27

t40

t54

CSx1)

A23-A16

(A15-A8)

CSx2), BHE
Data Sheet 455 2001-04-19

C161U

AC/DC Characteristics

Figure 131 External Memory Cycle: Multiplexed Bus, With Read/Write Delay,
Extended ALE

Data OutAddress

Data InAddress

t38

t44

t10

Address

ALE

BUS

Read Cycle

RD

RdCSx

BUS

Write Cycle

WR,
WRL, WRH

WrCSx

t5 t16

t17

t6 t7

t39

t25

t18

t19

t14

t46

t12

t10
t22

t23

t44

t12

t8

t42

t42

t8

t50

t51

t52

t56

t27

t40

t54

t48

t48

CSx1)

A23-A16

(A15-A8)

CSx2), BHE
Data Sheet 456 2001-04-19

C161U

AC/DC Characteristics

Figure 132 External Memory Cycle: Multiplexed Bus, No Read/Write Delay,
Normal ALE

Data OutAddress

Address Data In

t38

Address

ALE

CSx1)

A23-A16

(A15-A8)

CSx2),BHE

BUS

Read Cycle

RD

RdCSx

BUS

Write Cycle

WR,
WRL, WRH

WrCSx

t5 t16

t17

t6 t7

t39

t18

t19

t15

t47

t13

t49

t22

t23

t13

t49

t9

t43

t43

t9
t11

t45

t11

t45 t50

t51

t52

t56

t25

t27

t40

t54
Data Sheet 457 2001-04-19

C161U

AC/DC Characteristics

Figure 133 External Memory Cycle: Multiplexed Bus, No Read/Write Delay,
Extended ALE

Data OutAddress

Data InAddress

t38

Address

ALE

CSx1)

A23-A16

(A15-A8)

CSx2),BHE

BUS

Read Cycle

RD

RdCSx

BUS

Write Cycle

WR,
WRL, WRH

WrCSx

t5 t16

t17

t6 t7

t39

t25

t18

t19

t15

t47

t13

t49

t22

t23

t13

t49

t9

t43

t43

t9 t11

t45

t11

t45 t50

t51

t52

t56

t27

t40

t54
Data Sheet 458 2001-04-19

C161U

AC/DC Characteristics
24.8.1.2 AC Characteristics, Demultiplexed Bus
VDD = 3.3 V ± 10 %; VSS = 0 V
TA = -40 to +85 °C
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT) = 100 pF
CL (for Port 6, CS) = 100 pF
ALE cycle time = 4 TCL + 2tA + tC + tF (55.5 ns at 36 MHz CPU clock without waitstates)
Table 101 AC Characteristics, Demultiplexed Bus

Parameter Symbol Max. CPU Clock
= 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
ALE high time t5CC 4 + tA – TCL - 10 + tA – ns
Address, CSx4) setup to
ALE

t6CC -6 + tA – TCL - 20 + tA – ns

ALE falling edge to RD,
WR (with RW-delay)

t8CC 4 + tA – TCL - 10 + tA – ns

ALE falling edge to RD,
WR (no RW-delay)

t9CC -10 + tA – -10 + tA – ns

RD, WR low time (with
RW-delay) 6)

t12CC 17 + tC -
tW

– 2TCL - 11 + tC

- tW
– ns

RD, WR low time (no
RW-delay) 6)

t13CC 31 + tC -
tW

– 3TCL - 11 + tC
- tW

– ns

RD to valid data in (with
RW-delay)

t14SR – 0 + tC – 2TCL - 28
+ tC

ns

RD to valid data in (no
RW-delay)

t15SR – 13 + tC – 3TCL - 29
+ tC

ns

ALE low to valid data in t16SR – 13 + tA
+ tC

– 3TCL - 29
+ tA + tC

ns

Address, CSx4) to valid
data in

t17SR – 16 + 2tA
+ tC

– 4TCL - 40
+ 2tA + tC

ns

Data hold after RD
rising edge

t18SR 0 – 0 – ns

Data float after RD
rising edge (with RW-
delay 1))

t20SR – 14 + tF – 2TCL - 14
+ 2tA + tF 1)

ns
Data Sheet 459 2001-04-19

C161U

AC/DC Characteristics
Data float after RD
rising edge (no RW-
delay 1))

t21SR – 4 + tF – TCL - 10 +
2tA + tF 1)

ns

Data valid to WR t22CC 13 + tC -
tW

– 2TCL - 15 + tC
- tW

– ns

Data hold after WR t24CC 4 + tF + tW – TCL - 10 + tF
+ tW

– ns

ALE rising edge after
RD, WR 6)

t26CC 0 + tF + tW – 0 + tF + tW – ns

Address, CSx4) hold
after WR 2) 5)

t28CC 0 + tF + tW – 0 + tF + tW – ns

ALE falling edge to
CSx3)

t38CC -9 - tA 13 - tA -9 - tA 13 - tA ns

CSx3) low to Valid Data
In

t39SR – 12 + tC
+ 2tA

– 3TCL - 30
+ tC+2tA

ns

CSx3) hold after RD,
WR 6)

t41CC 0 + tF + tW – TCL - 14 + tF
+ tW

– ns

ALE falling edge to
RdCS, WrCS (with RW-
delay)

t42CC 5 + tA – TCL - 9 + tA – ns

ALE falling edge to
RdCS, WrCS (no RW-
delay)

t43CC -9 + tA – -9 + tA – ns

RdCS to Valid Data In
(with RW-delay)

t46SR – -4 + tC – 2TCL - 32
+ tC

ns

RdCS to Valid Data In
(no RW-delay)

t47SR – 10 + tC – 3TCL - 32
+ tC

ns

RdCS, WrCS Low Time
(with RW-delay) 6)

t48CC 14 + tC -
tW

– 2TCL - 14 + tC
- tW

– ns

RdCS, WrCS Low Time
(no RW-delay) 6)

t49CC 30 + tC -
tW

– 3TCL - 12 + tC
- tW

– ns

Table 101 AC Characteristics, Demultiplexed Bus (cont’d)

Parameter Symbol Max. CPU Clock
= 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
Data Sheet 460 2001-04-19

C161U

AC/DC Characteristics
1) RW-delay and tA refer to the next following bus cycle.
2) Read data are latched with the same clock edge that triggers the address change and the rising RD, RDCS

edge. Therefore address changes before the end of RD, RDCS have no impact on read cycles.
3) Normal (latched) CS: bit CSCFG, register SYSCON.6, is set to ’0’, latched mode is selcted.
4) Early (unlatched) CS (bit CSCFG = ’1’); while address bus is changing spikes may occur on CS in this mode.
5) Demultiplexed cycles: In case of early (unlatched) CS together with normal write (not early write) CS may go

inactive 3 ns before the rising edge of WR .
6) The memory cycle variable tW applies only for write accesses; for read accesses this variable is always zero.

Data valid to WrCS t50CC 13 + tC -
tW

– 2TCL - 15 + tC
- tW

– ns

Data hold after RdCS t51SR 0 – 0 – ns
Data float after RdCS
(with RW-delay 1))

t53SR – 7 + tF – 2TCL - 21
+ tF

ns

Data float after RdCS
(no RW-delay 1))

t68SR – 0 + tF – TCL - 14 +
tF

ns

Address hold after
WrCS2)

t55CC -14 + tF +
tW

– - 14 + tF + tW – ns

Data hold after WrCS t57CC 0 + tF + tW – TCL - 14 + tF
+ tW

– ns

Table 101 AC Characteristics, Demultiplexed Bus (cont’d)

Parameter Symbol Max. CPU Clock
= 36 MHz
(TCL=14ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
Data Sheet 461 2001-04-19

C161U

AC/DC Characteristics

Figure 134 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay,
Normal ALE

Data Out

Data In

t38

Address

ALE

CSx3)

A23-A16

A15-A0

CSx4), BHE

BUS

(D15-D8)

D7-D0

Read Cycle

RD

RdCSx

Write Cycle

WrCSx

t5 t16

t17

t6

t39

t28

t18

t20

t14

t46

t12

t48

t22

t24

t12

t48

t8

t42

t42

t8

t50

t51

t55

t53

t57

BUS

(D15-D8)

D7-D0

WR,
WRL, WRH

t26

t41
Data Sheet 462 2001-04-19

C161U

AC/DC Characteristics

Figure 135 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay,
Extended ALE

Data Out

Data In

t38

Address

ALE

CSx3)

A23-A16

A15-A0

CSx4), BHE

Read Cycle

RD

RdCSx

Write Cycle

WrCSx

t5 t16

t17

t6

t39

t28

t18

t20

t14

t46

t12

t48

t22

t24

t12

t48

t8

t42

t42

t8

t50

t51

t55

t53

t57

BUS

(D15-D8)

D7-D0

BUS

(D15-D8)

D7-D0

WR,
WRL, WRH

t26

t41
Data Sheet 463 2001-04-19

C161U

AC/DC Characteristics

Figure 136 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay,
Normal ALE

Data Out

Data In

t38

Address

ALE

CSx3)

A23-A16

A15-A0

CSx4),BHE

Read Cycle

RD

RdCSx

Write Cycle

WrCSx

t5 t16

t17

t6

t39

t28

t18

t21

t15

t47

t13

t49

t22

t24

t13

t49

t9

t43

t43

t9

t50

t51

t55

t68

t57

BUS

(D15-D8)

D7-D0

BUS

(D15-D8)

D7-D0

WR,
WRL,WRH

t26

t41
Data Sheet 464 2001-04-19

C161U

AC/DC Characteristics

Figure 137 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay,
Extended ALE

Data Out

Data In

t38

Address

ALE

CSx3)

A23-A16

A15-A0

CSx4),BHE

Read Cycle

RD

RdCSx

Write Cycle

WR,
WRL, WRH

WrCSx

t5 t16

t17

t6

t39

t28

t18

t21

t15

t47

t13

t49

t22

t24

t13

t49

t9

t43

t43

t9

t50

t51

t55

t68

t57

BUS

(D15-D8)

D7-D0

BUS

(D15-D8)

D7-D0

t26

t41
Data Sheet 465 2001-04-19

C161U

AC/DC Characteristics
24.8.1.3 AC Characteristics, CLKOUT and READY
VDD = 3.3 V ± 10 %;VSS = 0 V
TA = -40 to +85 °C
CL (for PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, READY) = 100 pF
CL (for Port 6, CS) = 100 pF
Note: Timing parameters for 36-MHz clock are based on the assumption that the

oscillator is running at 8 MHz and PLL with F = 4.5.

1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

Table 102 AC Characteristics, CLKOUT and READY

Parameter Symbol CPU Clock
36 MHz
(TCL = 14 ns)

Variable CPU Clock
5 to 36 MHz

Unit

min. max. min. max.
CLKOUT cycle time t29CC 27 29 2TCL - 1 2TCL + 1 ns
CLKOUT high time t30CC 8 – TCL – 6 – ns
CLKOUT low time t31CC 4 – TCL –

10
– ns

CLKOUT rise time t32CC – 4 – 4 ns
CLKOUT fall time t33CC – 4 – 4 ns
CLKOUT rising edge to
ALE falling edge

t34CC 0 + tA 16 + tA 0 + tA 16 + tA ns

Synchronous READY
setup time to CLKOUT

t35SR 18 – 18 – ns

Synchronous READY
hold time after
CLKOUT

t36SR 0 – 0 – ns

Asynchronous READY
low time

t37SR 45 – 2TCL +
17

– ns

Asynchronous READY
setup time 1)

t58SR 18 – 18 – ns

Asynchronous READY
hold time 1)

t59SR 0 – 0 – ns

Async. READY hold
time after RD, WR high
(Demultiplexed Bus) 2)

t60SR 0 -10 + 2tA +
tC + tF

 2)

0 TCL - 24 + 2tA
+ tC + tF

 2)

ns
Data Sheet 466 2001-04-19

C161U

AC/DC Characteristics
2) Demultiplexed bus is the worst case. For multiplexed bus, 2 TCL is to be added to the maximum values. This
adds even more time for deactivating READY.

Note: The 2tA and tC refer to the next following bus cycle, tF refers to the current bus
cycle.

Figure 138 CLKOUT and READY
1) Cycle as programmed, including MCTC wait states (Example shows 0 MCTC WS).
2) The leading edge of the respective command depends on RW-delay.
3) READY sampled HIGH at this sampling point generates a READY controlled wait state. READY sampled

LOW at this sampling point terminates the bus cycle currently running.
4) READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or

WR).
5) If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT

(eg. because CLKOUT is not enabled), it must fulfill t37 in order to be safely synchronized. This is guaranteed
if READY is removed in reponse to the command (see Note 4)).

6) Multiplexed bus modes have a MUX wait state added after a bus cycle, and an additional MTTC wait state may
be inserted here. For a multiplexed bus with MTTC wait state, this delay is 2 CLKOUT cycles, for a
demultiplexed bus without MTTC wait state this delay is zero.

7) The next external bus cycle may start here.

CLKOUT

ALE

t30

t34

Sync

READY

t35 t36 t35 t36

Async

READY

t58 t59 t58 t59

waitstate

READY

MUX/Tristate 6)

t32 t33

t29

Running cycle 1)

t31

t37

3) 3)

5)

Command RD, WR

t60 4)

see 6)

2)

7)

3) 3)
Data Sheet 467 2001-04-19

C161U

Package Outline
25 Package Outline

P-TQFP-100

(Plastic Thin Quad Flat Package)
Data Sheet 468 2001-04-19

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

Infineon goes for Business Excellence

“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”

Dr. Ulrich Schumacher

	1 Overview
	1.1 Key Features
	1.2 Logic Symbol
	1.3 Pinning Diagram
	1.4 Typical Applications
	1.4.1 Personal Computer (PC) Peripherals Applications

	2 Pin Descriptions
	2.1 C161U Pin Diagram
	2.2 C161U Pin Definitions and Functions

	3 Architectural Overview
	3.1 Basic CPU Concepts and Optimizations
	3.2 On-Chip System Resources
	3.3 Clock Generation Concept
	3.4 On-Chip Peripheral Blocks
	3.5 Protected Bits

	4 Memory Organization
	4.1 Internal RAM and SFR Area
	4.2 External Memory Space
	4.3 Crossing Memory Boundaries

	5 Central Processor Unit
	5.1 Instruction Pipelining
	5.2 Bit-Handling and Bit-Protection
	5.3 Instruction State Times
	5.4 CPU Special Function Registers
	5.5 PEC - Extension of Functionality

	6 DMA - External PEC (EPEC)
	6.1 EPEC Functionality
	6.2 EPEC Implementation
	6.3 EPEC Register Description
	6.4 EPEC Transfer Example
	6.5 Implementation of EPEC Interrupt Generation Unit

	7 Interrupt and Trap Functions
	7.1 Interrupt System Structure
	7.2 Interrupt Control Registers
	7.3 Operation of the PEC Channels
	7.4 Prioritization of Interrupt and PEC Service Requests
	7.5 Saving the Status during Interrupt Service
	7.6 Interrupt Response Times
	7.7 PEC Response Times
	7.8 External Interrupts
	7.8.1 Fast External Interrupts
	7.8.2 External Interrupt Source Control
	7.8.3 Interrupt Subnode Control
	7.8.4 Interrupt Control Register

	7.9 Trap Functions

	8 Parallel Ports
	8.1 PORT0
	8.1.1 Alternate Functions of PORT0

	8.2 PORT1
	8.2.1 Alternate Functions of PORT1

	8.3 PORT2
	8.3.1 Alternate Functions of PORT2

	8.4 PORT3
	8.4.1 Alternate Functions of PORT3

	8.5 PORT4
	8.5.1 Alternate Functions of PORT4

	8.6 PORT6
	8.6.1 Alternate Functions of PORT6

	9 Dedicated Pins
	10 External Bus Interface
	10.1 External Bus Modes
	10.2 Programmable Bus Characteristics
	10.3 READY Controlled Bus Cycles
	10.4 Controlling the External Bus Controller
	10.5 EBC Idle State
	10.6 External Bus Arbitration
	10.7 XBUS Interface
	10.8 Initialization of the C161U’s X-peripherals

	11 General Purpose Timer Unit
	11.1 Kernel Description
	11.1.1 Functional Description of Timer Block 1
	11.1.1.1 Core Timer T3
	11.1.1.2 Auxiliary Timers T2 and T4
	11.1.1.3 Timer Concatenation

	11.1.2 Functional Description of Timer Block 2
	11.1.2.1 Core Timer T6
	11.1.2.2 Auxiliary Timer T5
	11.1.2.3 Timer Concatenation

	11.1.3 GPT Register Set

	12 Asynchronous/Synchr. Serial Interface
	12.1 Functional Description
	12.1.1 Features
	12.1.2 Overview
	12.1.3 Register Description
	12.1.4 General Operation
	12.1.5 Asynchronous Operation
	12.1.5.1 Asynchronous Data Frames
	12.1.5.2 Asynchronous Transmission
	12.1.5.3 Asynchronous Reception
	12.1.5.4 IrDA Mode
	12.1.5.5 RXD/TXD Data Path Selection in Asynchronous Modes

	12.1.6 Synchronous Operation
	12.1.6.1 Synchronous Transmission
	12.1.6.2 Synchronous Reception
	12.1.6.3 Synchronous Timing

	12.1.7 Baudrate Generation
	12.1.7.1 Baudrates in Asynchronous Mode
	12.1.7.2 Baudrates in Synchronous Mode

	12.1.8 Autobaud Detection
	12.1.8.1 General Operation
	12.1.8.2 Serial Frames for Autobaud Detection
	12.1.8.3 Baudrate Selection and Calculation
	12.1.8.4 Overwriting Registers on Successful Autobaud Detection

	12.1.9 Hardware Error Detection Capabilities
	12.1.10 Interrupts

	13 Real Time Clock (RTC)
	13.1 Introduction
	13.1.1 Features
	13.1.2 Overview

	13.2 Function Description
	13.2.1 RTC Block Diagram
	13.2.2 RTC Control
	13.2.3 System Clock Operation
	13.2.4 Cyclic Interrupt Generation
	13.2.5 Alarm Interrupt Generation
	13.2.6 48-bit Timer Operation
	13.2.7 Defining the RTC Time Base
	13.2.8 Increased RTC Accuracy through Software Correction
	13.2.9 Hardware dependend RTC Accuracy
	13.2.10 Interrupt Sub Node RTCISNC
	13.2.11 RTC Disable Functionality
	13.2.12 Register Definition of RTC module

	14 High-Speed Synchronous Serial Interface
	14.1 Full-Duplex Operation
	14.2 Half Duplex Operation
	14.3 Baud Rate Generation
	14.4 Error Detection Mechanisms
	14.5 SSC Interrupt Control

	15 USB Interface Controller
	15.1 USB Features
	15.2 USB Protocol
	15.3 USB Endpoints
	15.4 USB Interface Controller (USBD) Architecture
	15.5 Endpoint Info Block
	15.6 USB Microprocessor Registers
	15.7 Programmers Guidlines: Using USB and EPEC
	15.7.1 Writing the configuration-value
	15.7.2 In-Transfer (Transmit)
	15.7.3 Out-Transfer (Receive)
	15.7.4 Reading out Setup-Packets
	15.7.5 Special case: Setup-Transfer
	15.7.6 Setting of configuration and alternate settings of interfaces
	15.7.7 Stalling Endpoints
	15.7.8 Start of Frame
	15.7.9 Suspend and Suspendoff
	15.7.10 Device disconnecting

	16 Watchdog Timer (WDT)
	16.1 Operation of the Watchdog Timer

	17 Bootstrap Loader
	18 System Reset
	18.1 System Startup Configuration

	19 Power�Reduction�Modes
	19.1 Idle Mode
	19.2 Power Down Mode
	19.3 Status of Output Pins during Idle and Power Down Mode
	19.4 Extended Power Management
	19.4.1 Sleep Mode

	20 System Control Unit (CSCU)
	20.1 Introduction
	20.2 Operational Overview
	20.2.1 Overview of CSCU submodules

	20.3 XBUS Peripheral Configuration Block
	20.4 System Control Block
	20.4.1 Register Write Protection
	20.4.2 Clock Output Frequency Control

	20.5 Peripheral Management Module
	20.6 Identification Registers
	20.6.1 Introduction
	20.6.2 ID Register Description

	21 System Programming
	21.1 Stack Operations
	21.2 Register Banking
	21.3 Procedure Call Entry and Exit
	21.4 Table Searching
	21.5 Peripheral Control and Interface
	21.6 Floating Point Support
	21.7 Trap/Interrupt Entry and Exit
	21.8 Unseparable Instruction Sequences
	21.9 Overriding the DPP Addressing Mechanism
	21.10 Pits, Traps and Mines

	22 Register Set
	22.1 Register Description Format
	22.2 CPU General Purpose Registers (GPRs)
	22.3 Special Function Registers ordered by Address
	22.4 Special Function Registers ordered by Name
	22.5 Special Notes

	23 Instruction Set Summary
	24 AC/DC Characteristics
	24.1 Absolute Maximum Ratings
	24.2 Recommended Operating Conditions
	24.3 DC Characteristics
	24.4 USB Full-speed (12 Mbit/s) Driver Characteristics
	24.5 Failsafe operation
	24.6 Testing Waveforms
	24.7 AC Characteristics
	24.7.1 Definition of Internal Timing
	24.7.2 System Reset
	24.7.3 External Clock Drive XTAL1
	24.7.4 JTAG Interface Timing

	24.8 Asynchronous Bus Timing
	24.8.1 Memory Cycle Variables
	24.8.1.1 AC Characteristics, Multiplexed Bus
	24.8.1.2 AC Characteristics, Demultiplexed Bus
	24.8.1.3 AC Characteristics, CLKOUT and READY

	25 Package Outline

