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Introduction
The SPC560D30/40 is a Power Architecture® based microcontroller that target automotive 
vehicle body applications such as:

■ Central body electronics

■ Vehicle body controllers

■ Smart junction boxes

■ Front modules

■ Body peripherals

■ Door control

■ Seat control

The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It 
provides the scalability needed to implement platform approaches and delivers the 
performance required through the use of increasingly sophisticated software architectures. 
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive 
controller complies with the Power Architecture specification, and only implements the VLE 
(variable-length encoding) APU, providing improved code density. It operates at speeds of 
up to 48 MHz and offers high performance processing optimized for low power consumption. 
It also capitalizes on the available development infrastructure of current Power Architecture® 
devices and is supported with software drivers, operating systems and configuration code to 
assist with users implementations.

This document describes the features of the SPC560D30/40 and options available within 
the family members, and highlights important electrical and physical characteristics of the 
device.
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1 Preface

1.1 Overview
The primary objective of this document is to define the functionality of the SPC560D30/40 
microcontroller for use by software and hardware developers. The SPC560D30/40 is built on 
Power Architecture® technology and integrates technologies that are important for today’s 
automotive vehicle body applications.

The information in this book is subject to change without notice, as described in the 
disclaimers on the title page. As with any technical documentation, it is the reader’s 
responsibility to be sure he or she is using the most recent version of the documentation.

To locate any published errata or updates for this document, visit the ST Web site at 
www.st.com.

1.2 Audience
This manual is intended for system software and hardware developers and applications 
programmers who want to develop products with the SPC560D30/40 device. It is assumed 
that the reader understands operating systems, microprocessor system design, basic 
principles of software and hardware, and basic details of the Power Architecture.

1.3 Guide to this reference manual
         

Table 1. Guide to this reference manual

Chapter
Description Functional group

# Title

2 Introduction
General overview, family description, feature list and 
information on how to use the reference manual in 
conjunction with other available documents.

Introductory 
material

3 Memory Map Memory map of all peripherals and memory. Memory map

4 Signal Description Pinout diagrams and descriptions of all pads. Signals

5

Microcontroller Boot

Boot

– Boot mechanism

– Describes what configuration is required by the user 
and what processes are involved when the 
microcontroller boots from flash memory or serial 
boot modes.

– Describes censorship.

– Boot Assist Module (BAM) Features of BAM code and when it's used.

– System Status and 
Configuration Module 
(SSCM)

Reports information about current state and 
configuration of the microcontroller.
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6 Clock Description
– Covers configuration of all of the clock sources in 

the system.

– Describes the Clock Monitor Unit (CMU). 

Clocks and power

(includes operating 
mode configuration 
and how to wake up 

from low power 
mode)

7
Clock Generation Module 
(MC_CGM)

Determines how the clock sources are used (including 
clock dividers) to generate the reference clocks for all 
of the modules and peripherals.

8 Mode Entry Module (MC_ME)
Determines the clock source, memory, power and 
peripherals that are available in each operating mode.

9
Reset Generation Module 
(MC_RGM)

Manages the process of entering and exiting reset, 
allows reset sources to be configured (including 
LVD's) and provides status reporting.

10 Power Control Unit (MC_PCU)
Controls the power to different power domains within 
the microcontroller (allowing SRAM to be selectively 
powered in STANDBY mode).

11
Voltage Regulators and Power 
Supplies

Information on voltage regulator implementation. 
Includes enable bit for 5 V LVD (see also MC_RGM).

12 Wakeup Unit (WKPU)
Always-active analog block. Details configuration of 2 
internal (API/RTC) and 30 external (pin) low power 
mode wakeup sources. 

13
Real Time Clock / Autonomous 
Periodic Interrupt (RTC/API)

Details configuration and operation of timers that are 
predominately used for system wakeup. 

14 e200z0h Core
Overview on cores. For more details consult the core 
reference manuals available on www.st.com.

Core platform 
modules

15
Enhanced Direct Memory 
Access (eDMA)

Operation and configuration information on the 32-
channel direct memory access that can be used to 
transfer data between any memory mapped locations. 
Certain peripherals have eDMA triggers that can be 
used to feed configuration data to, or read results from 
the peripherals.

16
eDMA Channel Multiplexer 
(DMA_MUX)

Operation and configuration information for the eDMA 
multiplexer, which takes the 56 possible eDMA 
sources (triggers from the DSPI, eMIOS, I2C, ADC 
and LINFlexD)  and multiplexes them onto the 32 
eDMA channels.

17 Interrupt Controller (INTC)
Provides the configuration and control of all of the 
external interrupts (non-core) that are then routed to 
the IVOR4 core interrupt vector.

18 Crossbar Switch (XBAR)
Describes the connections of the XBAR masters and 
slaves on this microcontroller.

19
System Integration Unit Lite 
(SIUL)

How to configure the pins or ports for input or output 
functions including external interrupts and DSI 
serialization.

Ports

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

# Title
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20 LIN Controller (LINFlex)

These chapters describe the configuration and 
operation of the various communication modules. 
Some of these modules support eDMA requests to fill 
/ empty buffer queues to minimize CPU overhead.

Communication 
modules

21 LIN Controller (LINFlexD)

22 FlexCAN

23
Deserial Serial Peripheral 
Interface (DSPI)

24

Timers

Timer modules

– Technical overview

Gives an overview of the available system timer 
modules showing links to other modules as well as 
tables detailing the external pins associated with 
eMIOS timer channels.

– System Timer Module (STM)
A simple 32-bit free running counter with 4 compare 
channels with interrupt on match. It can be read at any 
time; this is very useful for measuring execution times.

– Enhanced Modular IO 
Subsystem (eMIOS)

Highly configurable timer module(s) supporting PWM, 
output compare and input capture features. Includes 
interrupt and eDMA support. 

– Periodic Interrupt Timer (PIT)
Set of 32-bit countdown timers that provide periodic 
events (which can trigger an interrupt) with automatic 
re-load. 

25
Analog-to-Digital Converter 
(ADC)

Details the configuration and operation of the ADC 
modules as well as detailing the channels that are 
shared between the 10-bit and 12-bit ADC. The ADC 
is tightly linked to the INTC, eDMA, PIT_RTI and CTU. 
When used in conjunction with these other modules, 
the CPU overhead for an ADC conversion is 
significantly reduced. 

ADC system

26 Cross Triggering Unit (CTU)

The CTU allows an ADC conversion to be 
automatically triggered based on an eMIOS event 
(like a PWM output going high) or a PIT_RTI event 
with no CPU intervention.

27 Flash Memory

Details the code and data flash memory structure 
(with ECC), block sizes and the flash memory port 
configuration, including wait states, line buffer 
configuration and pre-fetch control. Memory

28 Static RAM (SRAM)
Details the structure of the SRAM (with ECC). There 
are no user configurable registers associated with the 
SRAM.

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

# Title
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1.4 Register description conventions
The register information for SPC560D30/40 is presented in:

● Memory maps containing:

– An offset from the module’s base address

– The name and acronym/abbreviation of each register

– The page number on which each register is described

● Register figures

● Field-description tables

● Associated text

The register figures show the field structure using the conventions in Figure 1.

         

Figure 1. Register figure conventions

29 Register Protection

Certain registers in each peripheral can be protected 
from further writes using the register protection 
mechanism detailed in this section. Registers can 
either be configured to be unlocked via a soft lock bit 
or locked unit the next reset.

Integrity
30

Software Watchdog Timer 
(SWT)

The SWT offers a selection of configurable modes 
that can be used to monitor the operation of the 
microcontroller and /or reset the device or trigger an 
interrupt if the SWT is not correctly serviced. The 
SWT is enabled out of reset.

31
Error Correction Status Module 
(ECSM)

Provides information about the last reset, general 
device information,  system fault information and 
detailed ECC error information.

32
IEEE 1149.1 Test Access Port 
Controller (JTAGC)

Used for boundary scan as well as device debug. Debug

A Revision History
Summarizes the changes between each successive 
revision of this reference manual

Revision history 
information

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

# Title

R 0 1

W

R FIELD1 FIELD2

W

R
FIELD

W

Reserved bits Read-only fields Read/write fields

R FIELD

W w1c

Write 1 to clear field
(field will always read 0)

R 0 0 0

W FIELD1 FIELD2

Write-only fields
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The numbering of register bits and fields on SPC560D30/40 is as follows:

● Register bit numbers, shown at the top of each figure, use the standard 
Power Architecture bit ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).

● Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is 
the least significant bit (LSB).

1.5 References
In addition to this reference manual, the following documents provide additional information 
on the operation of the SPC560D30/40:

● IEEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)

● IEEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan 
Architecture

1.6 Developer support
The SPC560D30/40 MCU family uses tools and third-party developers which offer a 
widespread, established network of tool and software vendors. It also features a high-
performance Nexus debug interface.

The following development support is available:

● Automotive evaluation boards (EVB) featuring CAN, LIN interfaces, and more

● Compilers

● Debuggers

● JTAG and Nexus interfaces

The following software support is available:

● OSEK solutions will be available from multiple third parties

● CAN and LIN drivers

● AUTOSAR package

1.7 How to use the SPC560D30/40 documents
This section:

● Describes how the SPC560D30/40 documents provide information on the 
microcontroller

● Makes recommendations on how to use the documents in a system design

1.7.1 The SPC560D30/40 document set

The SPC560D30/40 document set comprises:

● This reference manual (provides information on the features of the logical blocks on the 
device and how they are integrated with each other)

● The device data sheet (specifies the electrical characteristics of the device)

● The device product brief
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The following reference documents (available online at www.st.com) are also available to 
support the CPU on this device:

● Programmer’s Reference Manual for Book E Processors

● Variable-Length Encoding (VLE) Extension - Programming Interface Manual

The aforementioned documents describe all of the functional and electrical characteristics 
of the SPC560D30/40 microcontroller.

Depending on your task, you may need to refer to multiple documents to make design 
decisions. However, in general the use of the documents can be divided up as follows:

● Use the reference manual (this document) during software development and when 
allocating functions during system design.

● Use the data sheet when designing hardware and optimizing power consumption.

● Use the CPU reference documents when doing detailed software development in 
assembly language or debugging complex software interactions.

1.7.2 Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than 
its performance. Most chapters describe the functionality of a particular on-chip module, 
such as a CAN controller or timer. The remaining chapters describe how these modules are 
integrated into the memory map, how they are powered and clocked, and the pinout of the 
device.

In general, when an individual module is enabled for use all of the detail required to 
configure and operate it is contained in the dedicated chapter. In some cases there are 
multiple implementations of this module, however, there is only one chapter for each type of 
module in use. For this reason, the address of registers in each module is normally provided 
as an offset from a base address which can be found in Chapter 3: Memory Map. The 
benefit of this approach is that software developed for a particular module can be easily 
reused on this device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the 
integration features of the microcontroller. The module will normally have to be powered and 
enabled at system level, then a clock may have to be explicitly chosen and finally if required 
the input and output connections to the external system must be configured.

The primary integration chapters of the reference manual contain most of the information 
required to enable the modules. There are special cases where a chapter may describe 
module functionality and some integration features for convenience — for example, the 
microcontroller input/output (SIUL) module. Integration and functional content is provided in 
the manual as shown in Table 2.
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1.8 Using the SPC560D30/40
There are many different approaches to designing a system using the SPC560D30/40 so 
the guidance in this section is provided as an example of how the documents can be applied 
in this task.

Familiarity with the SPC560D30/40 modules can help ensure that its features are being 
optimally used in a system design. Therefore, the current chapter is a good starting point. 
Further information on the detailed features of a module are provided within the module 
chapters. These, combined with the current chapter, should provide a good introduction to 
the functions available on the MCU.

1.8.1 Hardware design

The SPC560D30/40 requires that certain pins are connected to particular power supplies, 
system functions and other voltage levels for operation.

Table 2. Reference manual integration and functional content

Chapter Integration content Functional content

Introduction
– The main features on chip

– A summary of the functions provided by 
each module

—

Memory Map

How the memory map is allocated, 
including:

– Internal RAM
– Flash memory

– External memory-mapped resources 
and the location of the registers used by 
the peripherals(1)

1. To find the address of a register in a particular module take the start address of the module given in the memory map and 
add the offset for the register given in the module chapter.

—

Signal Description
How the signals from each of the modules 
are combined and brought to a particular 
pin on a package

—

Boot Assist Module CPU boot sequence from reset
Implementation of the boot options if 
internal flash memory is not used

Clock Description
Clocking architecture of the device (which 
clock is available for the system and each 
peripheral)

Description of operation of different clock 
sources

Interrupt Controller Interrupt vector table Operation of the module

Mode Entry Module Module numbering for control and status Operation of operating modes

System Integration Unit Lite
How input signals are mapped to 
individual modules including external 
interrupt pins

Operation of GPIO

Voltage regulators and 
power supplies

Power distribution to the MCU —

Wakeup Unit Allocation of inputs to the Wakeup Unit Operation of the wakeup feature
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The SPC560D30/40 internal logic operates from 1.2 V (nominal) supplies that are normally 
supplied by the on-chip voltage regulator from a 5 V or 3.3 V supply. The 3.3–5 V (±10%) 
supply is also used to supply the input/output pins on the MCU. Chapter 4: Signal 
Description, describes the power supply pin names, numbers and their purpose. For more 
detail on the voltage supply of each pin, see Chapter 11: Voltage Regulators and Power 
Supplies. For specifications of the voltage ranges and limits and decoupling of the power 
supplies see the SPC560D30/40 data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These 
include pins to force test or alternate boot conditions and debug features. These are 
described in Chapter 4: Signal Description, and a hardware designer should take care that 
these pins are connected to allow correct operation.

Beyond power supply and pins that have special functions there are also pins that have 
special system purposes such as oscillator and reset pins. These are also described in 
Chapter 4: Signal Description. The reset pin is bidirectional and its function is closely tied to 
the reset generation module [Chapter 9: Reset Generation Module (MC_RGM)]. The crystal 
oscillator pins are dedicated to this function but the oscillator is not started automatically 
after reset. The oscillator module is described in Chapter 6: Clock Description, along with 
the internal clock architecture and the other oscillator sources on chip.

1.8.2 Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as 
general purpose pins or be connected to a particular on-chip module. The arrangement 
allows a function to be available on several pins. The system designer should allocate the 
function for the pin before connecting to external hardware. The software should then 
choose the correct function to match the hardware. The pad characteristics can vary 
depending on the functions on the pad. Chapter 4: Signal Description, describes each pad 
type (for example, S, M, or J). Two pads may be able to carry the same function but have 
different pad types. The electrical specification of the pads is described in the data sheet 
dependent on the function enabled and the pad type.

There are two modules that configure the various functions available:

● System Integration Unit Lite (SIUL)

● Wakeup Unit (WKPU)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module 
that allows selection of the output functions that is connected to the pin. The available 
settings for the PCR are described in Section 4.6: Functional ports. Inputs are selected 
using the PSMI registers; these are described in Chapter 19: System Integration Unit Lite 
(SIUL). (PSMI registers connect a module to one of several pins, whereas the PCR registers 
connect a pin to one of several modules).

The WKPU provides the ability to cause interrupts and wake the MCU from low power 
modes and operates independently from the SIUL.

The ADC functions are enabled using the PCRs.

1.8.3 Software design

Certain modules provide system integration functions, and other modules (such as timers) 
provide specific functions.
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From reset, the modules involved in configuring the system for application software are:

● Boot Assist Module (BAM) — determines the selected boot source

● Reset Generation Module (MC_RGM) — determines the behavior of the MCU when 
various reset sources are triggered and reports the source of the reset

● Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and 
configures the peripherals and clocks and power supplies for each of the modes

● Power Control Unit (MC_PCU) — determines which power domains are active

● Clock Generation Module (MC_CGM) — chooses the clock source for the system and 
many peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to 
execute code. At this point the system clock is the 16 MHz FIRC oscillator, the CPU is in 
supervisor mode and all the memory is available. Initialization is required before most 
peripherals may be used and before the SRAM can be read (since the SRAM is protected 
by ECC, the syndrome will generally be uninitialized after reset and reads would fail the 
check). Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks, 
heaps, variable initialization and so on and configuring the MCU for the application.

The MC_ME module enables the modules and other features like clocks. It is therefore an 
essential part of the initialization and operation software. In general, the software will 
configure an MC_ME mode to make certain peripherals, clocks, and memory active and 
then switch to that mode.

Chapter 6: Clock Description, includes a graphic of the clock architecture of the MCU. This 
can be used to determine how to configure the MC_CGM module. In general software will 
configure the module to enable the required clocks and PLLs and route these to the active 
modules.

After these steps are complete it is possible to configure the input/output pins and the 
modules for the application.

1.8.4 Other features

The MC_ME module manages low power modes and so it is likely that it will be used to 
switch into different configurations (module sets, clocks) depending on the application 
requirements.

The MCU includes two other features to improve the integrity of the application:

● It is possible to enable a software watchdog (SWT) immediately at reset or afterwards 
to help detect code runaway.

● Individual register settings can be protected from unintended writes using the features 
of the Register Protection module. The protected registers are shown in Chapter 29: 
Register Protection. 

Other integration functionality is provided by the System Status and Configuration Module 
(SSCM).
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2 Introduction

2.1 The SPC560D30/40 microcontroller family
The SPC560D30/40 is a Power Architecture® based microcontroller that targets automotive 
vehicle body applications such as:

● Central body electronics

● Vehicle body controllers

● Smart junction boxes

● Front modules

● Body peripherals

● Door control

● Seat control

The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It 
provides the scalability needed to implement platform approaches and delivers the 
performance required through the use of increasingly sophisticated software architectures. 
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive 
controller complies with the Power Architecture specification, and only implements the VLE 
(variable-length encoding) APU, providing improved code density. It operates at speeds of 
up to 48 MHz and offers high performance processing optimized for low power consumption. 
It also capitalizes on the available development infrastructure of current Power Architecture 
devices and is supported with software drivers, operating systems and configuration code to 
assist with users implementations.

This document describes the features of the SPC560D30/40 and options available within 
the family members, and highlights important electrical and physical characteristics of the 
device.

2.2 SPC560D30/40 device comparison
Table 3 summarizes the SPC560D30/40 family of microcontrollers.

         

         

Table 3. SPC560D30/40 device comparison

Feature
Device 

SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3

CPU e200z0

Execution speed Static – up to 48 MHz

Code Flash 128 KB 256 KB

Data Flash 64 KB (4 × 16 KB)

SRAM 12 KB 16 KB

eDMA 16 ch

ADC 16 ch, 12-bit 33 ch, 12-bit 16 ch, 12-bit 33 ch, 12-bit
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CTU 16 ch 

Total timer I/O(1)

eMIOS
14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit

– Type X(2) 2 ch 5 ch 2 ch 5 ch

– Type Y(3) — 9 ch — 9 ch

– Type G(4) 7 ch 7 ch 7 ch 7 ch

– Type H(5) 4 ch 7 ch 4 ch 7 ch

SCI (LINFlex) 3

SPI (DSPI) 2

CAN (FlexCAN) 1

GPIO(6) 45 79 45 79

Debug JTAG

Package LQFP64 LQFP100 LQFP64 LQFP100

1. Refer to eMIOS section of device reference manual for information on the channel configuration and functions.

2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC

3. Type Y = OPWMT + OPWMB + SAIC + SAOC

4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC 

5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC

6. I/O count based on multiplexing with peripherals

Table 3. SPC560D30/40 device comparison (continued)

Feature
Device 

SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
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2.3 Block diagram
Figure 2 shows a top-level block diagram of the SPC560D30/40.

Figure 2. SPC560D30/40 series block diagram
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2.4 Feature summary
● Single issue, 32-bit CPU core complex (e200z0h)

– Compliant with the Power Architecture® embedded category

– Includes an instruction set enhancement allowing variable length encoding (VLE) 
for code size footprint reduction. With the optional encoding of mixed 16-bit and 
32-bit instructions, it is possible to achieve significant code size footprint reduction.

● Up to 256 KB on-chip Code Flash supported with Flash controller and ECC

● 64 KB on-chip Data Flash with ECC

● Up to 16 KB on-chip SRAM with ECC

● Interrupt controller (INTC) with multiple interrupt vectors, including 20 external interrupt 
sources and 18 external interrupt/wakeup sources

● Frequency modulated phase-locked loop (FMPLL)

● Crossbar switch architecture for concurrent access to peripherals, Flash, or SRAM 
from multiple bus masters

● Boot assist module (BAM) supports internal Flash programming via a serial link (CAN 
or SCI)

● Timer supports input/output channels providing a range of 16-bit input capture, output 
compare, and pulse width modulation functions (eMIOS-lite)

● Up to 33 channel 12-bit analog-to-digital converter (ADC)

● 2 serial peripheral interface (DSPI) modules

● 3 serial communication interface (LINFlex) modules

– LINFlex 1 and 2: Master capable

– LINFlex 0: Master capable and slave capable; connected to eDMA

● 1 enhanced full CAN (FlexCAN) module with configurable buffers

● Up to 79 configurable general purpose pins supporting input and output operations 
(package dependent)

● Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC 
oscillator supporting autonomous wakeup with 1 ms resolution with max timeout of 2 
seconds

● Up to 4 periodic interrupt timers (PIT) with 32-bit counter resolution

● 1 System Timer Module (STM)

● Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class 1 standard

● Device/board boundary Scan testing supported with per Joint Test Action Group 
(JTAG) of IEEE (IEEE 1149.1)

● On-chip voltage regulator (VREG) for regulation of input supply for all internal levels
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3 Memory Map

Table 4 shows the memory map for the SPC560D30/40. All addresses on the device, 
including those that are reserved, are identified in the table. The addresses represent the 
physical addresses assigned to each IP block.

         

Table 4. SPC560D30/40 memory map

Start address End address Size (KB) Region name

0x0000_0000 0x0000_7FFF 32 Code Flash Array 0

0x0000_8000 0x0000_BFFF 16 Code Flash Array 0

0x0000_C000 0x0000_FFFF 16 Code Flash Array 0

0x0001_0000 0x0001_7FFF 32 Code Flash Array 0

0x0001_8000 0x0001_FFFF 32 Code Flash Array 0

0x0002_0000 0x0003_FFFF 128 Code Flash Array 0

0x0004_0000 0x001F_FFFF 512 Reserved

0x0020_0000 0x0020_3FFF 16 Flash Shadow Array

0x0020_4000 0x003F_FFFF 2032 Reserved

0x0040_0000 0x0040_3FFF 16 Code Flash Array 0 Test Sector

0x0040_4000 0x007F_FFFF 4080 Reserved

0x0080_0000 0x0080_3FFF 16 Data Flash Array 0

0x0080_4000 0x0080_7FFF 16 Data Flash Array 0

0x0080_8000 0x0080_BFFF 16 Data Flash Array 0

0x0080_C000 0x0080_FFFF 16 Data Flash Array 0

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_2000 0x00C0_3FFF 8 Test Sector Data Flash Array 0

0x00C0_4000 0x00FF_FFFF 4080 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Flash Emulation Mapping

0x2000_0000 0x3FFF_FFFF 524288 Reserved for External Bus Interface

0x4000_0000 0x4000_3FFF 16 SRAM

0x4000_4000 0xBFFF_FFFF 2097136 Reserved

Off-platform peripherals PBRIDGE_1

0xC000_0000 0xC3F8_7FFF 65056 Reserved

0xC3F8_8000 0xC3F8_BFFF 16 Code Flash 0 Configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data Flash 0 Configuration

0xC3F9_0000 0xC3F9_3FFF 16 SIUL

0xC3F9_4000 0xC3F9_7FFF 16 WKPU

0xC3F9_8000 0xC3F9_FFFF 32 Reserved
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0xC3FA_0000 0xC3FA_3FFF 16 eMIOS_0

0xC3FA_4000 0xC3FD_7FFF 208 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 SSCM

0xC3FD_C000 0xC3FD_FFFF 16 MC_ME

0xC3FE_0000 0xC3FE_3FFF 16 MC_CGM

0xC3FE_4000 0xC3FE_7FFF 16 MC_RGM

0xC3FE_8000 0xC3FE_BFFF 16 MC_PCU

0xC3FE_C000 0xC3FE_FFFF 16 RTC/API

0xC3FF_0000 0xC3FF_3FFF 16 PIT

0xC3FF_4000 0xDFFF_FFFF 458800 Reserved

Off-platform peripherals PBRIDGE_0

0xE000_0000 0xFFE0_3FFF 522256 Reserved

0xFFE0_4000 0xFFE0_7FFF 16 ADC_1

0xFFE0_8000 0xFFE3_FFFF 224 Reserved

0xFFE4_0000 0xFFE4_3FFF 16 LINFlex_0

0xFFE4_4000 0xFFE4_7FFF 16 LINFlex_1

0xFFE4_8000 0xFFE4_BFFF 16 LINFlex_2

0xFFE4_C000 0xFFE6_3FFF 96 Reserved

0xFFE6_4000 0xFFE6_7FFF 16 CTU

0xFFE6_8000 0xFFE7_FFFF 96 Reserved

0xFFE8_0000 0xFFEF_FFFF 512
Mirrored range 0x3F80000–
0xC3FFFFFF

0xFFF0_0000 0xFFF3_7FFF 224 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

0xFFF4_4000 0xFFF4_7FFF 16 eDMA

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF8_FFFF 272 Reserved

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_0

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_1

0xFFF9_8000 0xFFFB_FFFF 160 Reserved

0xFFFC_0000 0xFFFC_3FFF 16 FlexCAN_0

Table 4. SPC560D30/40 memory map (continued)

Start address End address Size (KB) Region name
Doc ID 16886 Rev 6 54/868



Memory Map RM0045
         

0xFFFC_4000 0xFFFD_BFFF 96 Reserved

0xFFFD_C000 0xFFFD_FFFF 16 DMA_MUX

0xFFFE_0000 0xFFFF_BFFF 144 Reserved

0xFFFF_C000 0xFFFF_FFFF 16 BAM

Table 4. SPC560D30/40 memory map (continued)

Start address End address Size (KB) Region name
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4 Signal Description

4.1 Package pinouts
Figure 3 and Figure 4 show the location of the signals on the packages that this device is 
available in.

For more information on pin multiplexing on this device, see Table 5 through Table 7.

         

         

Figure 3. LQFP64  pin configuration (top view)
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Figure 4. LQFP100  pin configuration (top view)
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4.3 Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used 
for 1.2 V regulator stabilization.

         

4.4 Pad types
In the device the following types of pads are available for system pins and functional port 
pins:

S = Slow(a)

M = Medium(a) (b)

F = Fast(a) (b)

I = Input only with analog feature(a)

J = Input/Output with analog feature

X = Oscillator

4.5 System pins
The system pins are listed in Table 6.

Table 5. Voltage supply pin descriptions

Port pin Function
Pin number

LQFP64 LQFP100

VDD_HV Digital supply voltage 7, 28, 34, 56 15, 37, 52, 70, 84

VSS_HV Digital ground 6, 8, 26, 33, 55
14, 16, 35, 51, 69, 

83

VDD_LV
1.2V decoupling pins. Decoupling 
capacitor must be connected between 
these pins and the nearest VSS_LV pin.(1)

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to 
ensure stable voltage (see the recommended operating conditions in the device datasheet for 
details).

11, 23, 57 19, 32, 85

VSS_LV
1.2V decoupling pins. Decoupling 
capacitor must be connected between 
these pins and the nearest VDD_LV pin.1

10, 24, 58 18, 33, 86

VDD_BV Internal regulator supply voltage 12 20

a. See the I/O pad electrical characteristics in the device datasheet for details.

b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium 
(see the PCR[SRC] description in the device reference manual).
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4.6 Functional ports
The functional port pins are listed in Table 7.

         

Table 6. System pin descriptions

Port pin Function
I/O

direction
Pad 
type

RESET 
config.

Pin number

LQFP
64

LQFP
100

RESET
Bidirectional reset with Schmitt-Trigger 
characteristics and noise filter.

I/O M

Input, weak 
pull-up only 

after 
PHASE2

9 17

EXTAL

Analog output of the oscillator amplifier circuit, 
when the oscillator is not in bypass mode. 
Analog input for the clock generator when the 
oscillator is in bypass mode. (1)

1. Refer to the relevant section of the device datasheet.

I/O X Tristate 27 36

XTAL
Analog input of the oscillator amplifier circuit. 
Needs to be grounded if oscillator is used in 
bypass mode. 1

I X Tristate 25 34

Table 7. Functional port pin descriptions

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100

Port A

PA[0] PCR[0]

AF0

AF1
AF2

AF3

—

GPIO[0]

E0UC[0]
CLKOUT

E0UC[13]

WKUP[19](3)

SIUL

eMIOS_0
CGL

eMIOS_0

WKPU

I/O

I/O
O

I/O

I

M Tristate 5 12

PA[1] PCR[1]

AF0

AF1
AF2

AF3

—
—

GPIO[1]

E0UC[1]
—

—

NMI(4)

WKUP[2](3)

SIUL

eMIOS_0
—

—

WKPU
WKPU

I/O

I/O
—

—

I
I

S Tristate 4 7

PA[2] PCR[2]

AF0
AF1

AF2

AF3
—

GPIO[2]
E0UC[2]

—

MA[2]
WKUP[3](3)

SIUL
eMIOS_0

—

ADC
WKPU

I/O
I/O

—

O
I

S Tristate 3 5
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PA[3] PCR[3]

AF0

AF1

AF2
AF3

—

—

GPIO[3]

E0UC[3]

—
CS4_0

EIRQ[0]

ADC1_S[0]

SIUL

eMIOS_0

—
DSPI_0

SIUL

ADC

I/O

I/O

—
I/O

I

I

S Tristate 43 68

PA[4] PCR[4]

AF0

AF1
AF2

AF3

—

GPIO[4]

E0UC[4]
—

CS0_1

WKUP[9](3)

SIUL

eMIOS_0
—

DSPI_1

WKPU

I/O

I/O
—

I/O

I

S Tristate 20 29

PA[5] PCR[5]

AF0

AF1
AF2

AF3

GPIO[5]

E0UC[5]
—

—

SIUL

eMIOS_0
—

—

I/O

I/O
—

—

M Tristate 51 79

PA[6] PCR[6]

AF0

AF1

AF2
AF3

—

GPIO[6]

E0UC[6]

—
CS1_1

EIRQ[1]

SIUL

eMIOS_0

—
DSPI_1

SIUL

I/O

I/O

—
I/O

I

S Tristate 52 80

PA[7] PCR[7]

AF0

AF1

AF2
AF3

—

—

GPIO[7]

E0UC[7]

—
—

EIRQ[2]

ADC1_S[1]

SIUL

eMIOS_0

—
—

SIUL

ADC

I/O

I/O

—
—

I

I

S Tristate 44 71

PA[8] PCR[8]

AF0

AF1
AF2

AF3

—

N/A(5)

GPIO[8]

E0UC[8]
E0UC[14]

—

EIRQ[3]

ABS[0]

SIUL

eMIOS_0
eMIOS_0

—

SIUL

BAM

I/O

I/O
—

—

I

I

S
Input, 
weak 

pull-up
45 72

PA[9] PCR[9]

AF0

AF1
AF2

AF3

N/A(5)

GPIO[9]

E0UC[9]
—

CS2_1

FAB

SIUL

eMIOS_0
—

DSPI_1

BAM

I/O

I/O
—

I/O

I

S
Pull-
down

46 73

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
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PA[10] PCR[10]

AF0

AF1

AF2
AF3

—

GPIO[10]

E0UC[10]

—
LIN2TX

ADC1_S[2]

SIUL

eMIOS_0

—
LINFlex_2

ADC

I/O

I/O

—
O

I

S Tristate 47 74

PA[11] PCR[11]

AF0

AF1

AF2
AF3

—

—
—

GPIO[11]

E0UC[11]

—
—

EIRQ[16]

ADC1_S[3]
LIN2RX

SIUL

eMIOS_0

—
—

SIUL

ADC
LINFlex_2

I/O

I/O

—
—

I

I
I

S Tristate 48 75

PA[12] PCR[12]

AF0
AF1

AF2

AF3
—

—

GPIO[12]
—

—

—
EIRQ[17]

SIN_0

SIUL
—

—

—
SIUL

DSPI_0

I/O
—

—

—
I

I

S Tristate 22 31

PA[13] PCR[13]

AF0

AF1

AF2
AF3

GPIO[13]

SOUT_0

—
CS3_1

SIUL

DSPI_0

—
DSPI_1

I/O

O

—
I/O

M Tristate 21 30

PA[14] PCR[14]

AF0
AF1

AF2

AF3
—

GPIO[14]
SCK_0

CS0_0

E0UC[0]
EIRQ[4]

SIUL
DSPI_0

DSPI_0

eMIOS_0
SIUL

I/O
I/O

I/O

I/O
I

M Tristate 19 28

PA[15] PCR[15]

AF0
AF1

AF2

AF3

—

GPIO[15]
CS0_0

SCK_0

E0UC[1]

WKUP[10](3)

SIUL
DSPI_0

DSPI_0

eMIOS_0

WKPU

I/O
I/O

I/O

I/O

I

M Tristate 18 27

Port B

PB[0] PCR[16]

AF0

AF1
AF2

AF3

GPIO[16]

CAN0TX
—

LIN2TX

SIUL

FlexCAN_0
—

LINFlex_2

I/O

O
—

O

M Tristate 14 23

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
61/868 Doc ID 16886 Rev 6



RM0045 Signal Description
PB[1] PCR[17]

AF0

AF1

AF2
AF3

—

—

GPIO[17]

—

—
LIN0RX

WKUP[4](3)

CAN0RX

SIUL

—

—
LINFlex_0

WKPU

FlexCAN_0

I/O

—

—
I

I

I

S Tristate 15 24

PB[2] PCR[18]

AF0

AF1
AF2

AF3

GPIO[18]

LIN0TX
—

—

SIUL

LINFlex_0
—

—

I/O

O
—

—

M Tristate 64 100

PB[3] PCR[19]

AF0

AF1

AF2
AF3

—

—

GPIO[19]

—

—
—

WKUP[11](3)

LIN0RX

SIUL

—

—
—

WKPU

LINFlex_0

I/O

—

—
—

I

I

S Tristate 1 1

PB[4] PCR[20]

AF0

AF1
AF2

AF3

—

GPIO[20]

—
—

—

ADC1_P[0]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 32 50

PB[5] PCR[21]

AF0

AF1
AF2

AF3

—

GPIO[21]

—
—

—

ADC1_P[1]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 35 53

PB[6] PCR[22]

AF0

AF1
AF2

AF3

—

GPIO[22]

—
—

—

ADC1_P[2]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 36 54

PB[7] PCR[23]

AF0

AF1

AF2
AF3

—

GPIO[23]

—

—
—

ADC1_P[3]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate 37 55

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 62/868



Signal Description RM0045
PB[8] PCR[24]

AF0

AF1

AF2
AF3

—

—

GPIO[24]

—

—
—

ADC1_S[4]

WKUP[25](3)

SIUL

—

—
—

ADC

WKPU

I

—

—
—

I

I

I Tristate 30 39

PB[9] PCR[25]

AF0

AF1
AF2

AF3

—
—

GPIO[25]

—
—

—

ADC1_S[5]
WKUP[26](3)

SIUL

—
—

—

ADC
WKPU

I

—
—

—

I
I

I Tristate 29 38

PB[10] PCR[26]

AF0
AF1

AF2

AF3
—

—

GPIO[26]
—

—

—
ADC1_S[6]

WKUP[8](3)

SIUL
—

—

—
ADC

WKPU

I/O
—

—

—
I

I

J Tristate 31 40

PB[11] PCR[27]

AF0

AF1

AF2
AF3

—

GPIO[27]

E0UC[3]

—
CS0_0

ADC1_S[12]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
I/O

I

J Tristate 38 59

PB[12] PCR[28]

AF0

AF1

AF2
AF3

—

GPIO[28]

E0UC[4]

—
CS1_0

ADC1_X[0]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
O

I

J Tristate 39 61

PB[13] PCR[29]

AF0

AF1

AF2

AF3
—

GPIO[29]

E0UC[5]

—

CS2_0
ADC1_X[1]

SIUL

eMIOS_0

—

DSPI_0
ADC

I/O

I/O

—

O
I

J Tristate 40 63

PB[14] PCR[30]

AF0
AF1

AF2

AF3
—

GPIO[30]
E0UC[6]

—

CS3_0
ADC1_X[2]

SIUL
eMIOS_0

—

DSPI_0
ADC

I/O
I/O

—

O
I

J Tristate 41 65

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
63/868 Doc ID 16886 Rev 6



RM0045 Signal Description
PB[15] PCR[31]

AF0

AF1

AF2
AF3

—

GPIO[31]

E0UC[7]

—
CS4_0

ADC1_X[3]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
O

I

J Tristate 42 67

Port C

PC[0](6) PCR[32]

AF0

AF1

AF2
AF3

GPIO[32]

—

TDI
—

SIUL

—

JTAGC
—

I/O

—

I
—

M
Input, 
weak 

pull-up
59 87

PC[1]6 PCR[33]

AF0
AF1

AF2

AF3

GPIO[33]
—

TDO

—

SIUL
—

JTAGC

—

I/O
—

O

—

F Tristate 54 82

PC[2] PCR[34]

AF0

AF1
AF2

AF3

—

GPIO[34]

SCK_1
—

—

EIRQ[5]

SIUL

DSPI_1
—

—

SIUL

I/O

I/O
—

—

I

M Tristate 50 78

PC[3] PCR[35]

AF0

AF1
AF2

AF3

—

GPIO[35]

CS0_1
MA[0]

—

EIRQ[6]

SIUL

DSPI_1
ADC

—

SIUL

I/O

I/O
O

—

I

S Tristate 49 77

PC[4] PCR[36]

AF0

AF1
AF2

AF3

—

—

GPIO[36]

—
—

—

SIN_1

EIRQ[18]

SIUL

—
—

—

DSPI_1

SIUL

I/O

—
—

—

I

I

M Tristate 62 92

PC[5] PCR[37]

AF0

AF1
AF2

AF3

—

GPIO[37]

SOUT_1
—

—

EIRQ[7]

SIUL

DSPI_1
—

—

SIUL

I/O

O
—

—

I

M Tristate 61 91

PC[6] PCR[38]

AF0

AF1
AF2

AF3

GPIO[38]

LIN1TX
—

—

SIUL

LINFlex_1
—

—

I/O

O
—

—

S Tristate 16 25

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 64/868



Signal Description RM0045
PC[7] PCR[39]

AF0

AF1

AF2
AF3

—

—

GPIO[39]

—

—
—

LIN1RX

WKUP[12](3)

SIUL

—

—
—

LINFlex_1

WKPU

I/O

—

—
—

I

I

S Tristate 17 26

PC[8] PCR[40]

AF0

AF1
AF2

AF3

GPIO[40]

LIN2TX
E0UC[3]

—

SIUL

LINFlex_2
eMIOS_0

—

I/O

O
I/O

—

S Tristate 63 99

PC[9] PCR[41]

AF0

AF1

AF2
AF3

—

—

GPIO[41]

—

E0UC[7]
—

LIN2RX

WKUP[13](3)

SIUL

—

eMIOS_0
—

LINFlex_2

WKPU

I/O

—

I/O
—

I

I

S Tristate 2 2

PC[10] PCR[42]

AF0

AF1
AF2

AF3

GPIO[42]

—
—

MA[1]

SIUL

—
—

ADC

I/O

—
—

O

M Tristate 13 22

PC[11] PCR[43]

AF0

AF1

AF2
AF3

—

GPIO[43]

—

—
MA[2]

WKUP[5](3)

SIUL

—

—
ADC

WKPU

I/O

—

—
O

I

S Tristate — 21

PC[12] PCR[44]

AF0

AF1

AF2
AF3

—

GPIO[44]

E0UC[12]

—
—

EIRQ[19]

SIUL

eMIOS_0

—
—

SIUL

I/O

I/O

—
—

I

M Tristate — 97

PC[13] PCR[45]

AF0
AF1

AF2

AF3

GPIO[45]
E0UC[13]

—

—

SIUL
eMIOS_0

—

—

I/O
I/O

—

—

S Tristate — 98

PC[14] PCR[46]

AF0

AF1
AF2

AF3

—

GPIO[46]

E0UC[14]
—

—

EIRQ[8]

SIUL

eMIOS_0
—

—

SIUL

I/O

I/O
—

—

I

S Tristate — 3

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
65/868 Doc ID 16886 Rev 6



RM0045 Signal Description
PC[15] PCR[47]

AF0

AF1

AF2
AF3

—

GPIO[47]

E0UC[15]

—
—

EIRQ[20]

SIUL

eMIOS_0

—
—

SIUL

I/O

I/O

—
—

I

M Tristate — 4

Port D

PD[0] PCR[48]

AF0

AF1

AF2
AF3

—

—

GPIO[48]

—

—
—

WKUP[27](3)

ADC1_P[4]

SIUL

—

—
—

WKPU

ADC

I

—

—
—

I

I

I Tristate — 41

PD[1] PCR[49]

AF0

AF1
AF2

AF3

—
—

GPIO[49]

—
—

—

WKUP[28](3)

ADC1_P[5]

SIUL

—
—

—

WKPU
ADC

I

—
—

—

I
I

I Tristate — 42

PD[2] PCR[50]

AF0
AF1

AF2

AF3
—

GPIO[50]
—

—

—
ADC1_P[6]

SIUL
—

—

—
ADC

I
—

—

—
I

I Tristate — 43

PD[3] PCR[51]

AF0
AF1

AF2

AF3
—

GPIO[51]
—

—

—
ADC1_P[7]

SIUL
—

—

—
ADC

I
—

—

—
I

I Tristate — 44

PD[4] PCR[52]

AF0

AF1
AF2

AF3

—

GPIO[52]

—
—

—

ADC1_P[8]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate — 45

PD[5] PCR[53]

AF0

AF1
AF2

AF3

—

GPIO[53]

—
—

—

ADC1_P[9]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate — 46

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 66/868



Signal Description RM0045
PD[6] PCR[54]

AF0

AF1

AF2
AF3

—

GPIO[54]

—

—
—

ADC1_P[10]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 47

PD[7] PCR[55]

AF0

AF1

AF2
AF3

—

GPIO[55]

—

—
—

ADC1_P[11]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 48

PD[8] PCR[56]

AF0

AF1

AF2
AF3

—

GPIO[56]

—

—
—

ADC1_P[12]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 49

PD[9] PCR[57]

AF0

AF1

AF2
AF3

—

GPIO[57]

—

—
—

ADC1_P[13]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 56

PD[10] PCR[58]

AF0

AF1

AF2
AF3

—

GPIO[58]

—

—
—

ADC1_P[14]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 57

PD[11] PCR[59]

AF0

AF1

AF2
AF3

—

GPIO[59]

—

—
—

ADC1_P[15]

SIUL

—
—
—

ADC

I

—

—
—

I

I Tristate — 58

PD[12] PCR[60]

AF0
AF1

AF2

AF3
—

GPIO[60]
CS5_0

E0UC[24]

—
ADC1_S[8]

SIUL
DSPI_0

eMIOS_0

—
ADC

I/O
O

I/O

—
I

J Tristate — 60

PD[13] PCR[61]

AF0
AF1

AF2

AF3
—

GPIO[61]
CS0_1

E0UC[25]

—
ADC1_S[9]

SIUL
DSPI_1

eMIOS_0

—
ADC

I/O
I/O

I/O

—
I

J Tristate — 62

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
67/868 Doc ID 16886 Rev 6



RM0045 Signal Description
PD[14] PCR[62]

AF0

AF1

AF2
AF3

—

GPIO[62]

CS1_1

E0UC[26]
—

ADC1_S[10]

SIUL

DSPI_1

eMIOS_0
—

ADC

I/O

O

I/O
—

I

J Tristate — 64

PD[15] PCR[63]

AF0

AF1

AF2
AF3

—

GPIO[63]

CS2_1

E0UC[27]
—

ADC1_S[11]

SIUL

DSPI_1

eMIOS_0
—

ADC

I/O

O

I/O
—

I

J Tristate — 66

Port E

PE[0] PCR[64]

AF0

AF1

AF2
AF3

—

GPIO[64]

E0UC[16]

—
—

WKUP[6](3)

SIUL

eMIOS_0

—
—

WKPU

I/O

I/O

—
—

I

S Tristate — 6

PE[1] PCR[65]

AF0

AF1

AF2
AF3

GPIO[65]

E0UC[17]

—
—

SIUL

eMIOS_0

—
—

I/O

I/O

—
—

M Tristate — 8

PE[2] PCR[66]

AF0
AF1

AF2

AF3
—

—

GPIO[66]
E0UC[18]

—

—
EIRQ[21]

SIN_1

SIUL
eMIOS_0

—

—
SIUL

DSPI_1

I/O
I/O

—

—
I

I

M Tristate — 89

PE[3] PCR[67]

AF0

AF1

AF2

AF3

GPIO[67]

E0UC[19]

SOUT_1

—

SIUL

eMIOS_0

DSPI_1

—

I/O

I/O

O

—

M Tristate — 90

PE[4] PCR[68]

AF0

AF1
AF2

AF3

—

GPIO[68]

E0UC[20]
SCK_1

—

EIRQ[9]

SIUL

eMIOS_0
DSPI_1

—

SIUL

I/O

I/O
I/O

—

I

M Tristate — 93

PE[5] PCR[69]

AF0

AF1
AF2

AF3

GPIO[69]

E0UC[21]
CS0_1

MA[2]

SIUL

eMIOS_0
DSPI_1

ADC

I/O

I/O
I/O

O

M Tristate — 94

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
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Signal Description RM0045
PE[6] PCR[70]

AF0

AF1

AF2
AF3

—

GPIO[70]

E0UC[22]

CS3_0
MA[1]

EIRQ[22]

SIUL

eMIOS_0

DSPI_0
ADC

SIUL

I/O

I/O

O
O

I

M Tristate — 95

PE[7] PCR[71]

AF0

AF1

AF2
AF3

—

GPIO[71]

E0UC[23]

CS2_0
MA[0]

EIRQ[23]

SIUL

eMIOS_0

DSPI_0
ADC

SIUL

I/O

I/O

O
O

I

M Tristate — 96

PE[8] PCR[72]

AF0

AF1

AF2
AF3

GPIO[72]

—

E0UC[22]
—

SIUL

—

eMIOS_0
—

I/O

—

I/O
—

M Tristate — 9

PE[9] PCR[73]

AF0
AF1

AF2

AF3
—

GPIO[73]
—

E0UC[23]

—
WKUP[7](3)

SIUL
—

eMIOS_0

—
WKPU

I/O
—

I/O

—
I

S Tristate — 10

PE[10] PCR[74]

AF0
AF1

AF2

AF3
—

GPIO[74]
—

CS3_1

—
EIRQ[10]

SIUL
—

DSPI_1

—
SIUL

I/O
—

O

—
I

S Tristate — 11

PE[11] PCR[75]

AF0
AF1

AF2

AF3
—

GPIO[75]
E0UC[24]

CS4_1

—
WKUP[14](3)

SIUL
eMIOS_0

DSPI_1

—
WKPU

I/O
I/O

O

—
I

S Tristate — 13

PE[12] PCR[76]

AF0

AF1
AF2

AF3

—
—

GPIO[76]

—
—

—

ADC1_S[7]
EIRQ[11]

SIUL

—
—

—

ADC
SIUL

I/O

—
—

—

I
I

S Tristate — 76

Port H

PH[9](6) PCR[121]

AF0
AF1

AF2

AF3

GPIO[121]
—

TCK

—

SIUL
—

JTAGC

—

I/O
—

I

—

S
Input, 
weak 

pull-up
60 88

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
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RM0045 Signal Description
         

         

PH[10](6) PCR[122]

AF0

AF1

AF2
AF3

GPIO[122]

—

TMS
—

SIUL

—

JTAGC
—

I/O

—

I
—

S
Input, 
weak 

pull-up
53 81

1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00  AF0; 
PCR.PA = 01  AF1; PCR.PA = 10  AF2; PCR.PA = 11  AF3. This is intended to select the output functions; to use 
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields. 
For this reason, the value corresponding to an input only function is reported as “—”.

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the 
values of the PSMIO.PADSELx bitfields inside the SIUL module.

3. All WKUP pins also support external interrupt capability. See “wakeup unit” chapter for further details.

4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the 
device reference manual for details.

6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR 
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
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Microcontroller Boot RM0045
5 Microcontroller Boot

This chapter explains the process of booting the microcontroller. The following entities are 
involved in the boot process:

● Boot Assist Module (BAM) 

● System Status and Configuration Module (SSCM) 

● Flash memory boot sectors (see Chapter 27, Flash Memory)

● Memory Management Unit (MMU)

5.1 Boot mechanism
This section describes the configuration required by the user, and the steps performed by 
the microcontroller, in order to achieve a successful boot from flash memory or serial 
download modes.

There are 2 external pins on the microcontroller that are latched during reset and used to 
determine whether the microcontroller will boot from flash memory or attempt a serial 
download via FlexCAN or LINFlex (RS232): 

● FAB (Force Alternate Boot mode) on pin PA[9]

● ABS (Alternate Boot Select) on pin PA[8]

Table 8 describes the configuration options.

         

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means 
that if nothing external is connected to these pins, the microcontroller will enter flash 
memory boot mode by default. In order to change the boot behavior, you should use 
external pullup or pulldown resistors on PA[9] and PA[8]. If there is any external circuitry 
connected to either pin, you must ensure that this does not interfere with the expected value 
applied to the pin at reset. Otherwise, the microcontroller may boot into an unexpected 
mode after reset. 

The SSCM preforms a lot of the automated boot activity including reading the latched value 
of the FAB (PA[9]) pin to determine whether to boot from flash memory or serial boot mode. 
This is illustrated in Figure 5.

Table 8. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])

Flash memory boot (default mode) 0 X

Serial boot (LINFlex) 1 0

Serial boot (FlexCAN) 1 1
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Figure 5. Boot mode selection

5.1.1 Flash memory boot

In order to sucessfully boot from flash memory, you must program two 32-bit fields into one 
of 5 possible boot blocks as detailed below. The entities to program are:

● 16-bit Reset Configuration Half Word (RCHW), which contains:

– A BOOT_ID field that must be correctly set to 0x5A in order to "validate" the boot 
sector

● 32-bit reset vector (this is the start address of the user code)

The location and structure of the boot sectors in flash memory are shown in Figure 6.

FAB (PA[9]) value?
FAB = 0

Boot from
ABS (PA[8]) value?

Serial boot
(FlexCAN)

SSCM reads latched
values of PA[8] and

PA[9] pins

flash memory

Serial boot
(LINFlex)

FAB = 1

ABS = 0 ABS = 1
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Figure 6. Boot sector structure

The RCHW fields are described in Table 9.

         

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid 
BOOT_ID within the RCHW. If a valid BOOT_ID is found, the SSCM reads the boot vector 
address. If a valid BOOT_ID is not found, the SSCM starts the process of putting the 
microcontroller into static mode. 

Finally, the SSCM sets the e200z0h core instruction pointer to the reset vector address and 
starts the core running.

Static mode

If no valid BOOT_ID within the RCHW was found, the SSCM sets the CPU core instruction 
pointer to the BAM address and the core starts to execute the code to enter static mode as 
follows:

● The core executes the "wait" instruction which halts the core.

32 KB

Boot sector 0

16 KB

16 KB

32 KB

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

Code flash memory

32 KB

0x0001_8000

Boot sector 1

Boot sector 2

Boot sector 3

Boot sector 4

Boot sector structure

Bit 0 Bit 31

Reserved Reserved

7 8 15 16

BOOT_ID
(0x5A)

0x0
(RCHW)

0x4 32-bit reset vector (points to start address of application code)

0x8 Application code (from offset 0x8 and onward)

Table 9. RCHW field descriptions

Field Description

BOOT_ID
Boot identifier.

If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.
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The sequence is illustrated in Figure 7.

         

         

         

Figure 7. Flash memory boot mode sequence

Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be 
erased and reprogrammed in the field. When an alternate boot is needed, you can create 
two bootable sectors:

● The valid boot sector located at the lowest address is the main boot sector.

● The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector 
is erased.

5.1.2 Serial boot mode

Serial boot provides a mechanism to download and then execute code into the 
microcontroller SRAM. Code may be downloaded using either FlexCAN or LINFlex (RS232). 
After the SSCM has detected that serial boot mode has been requested, execution is 
transferred to the BAM which handles all of the serial boot mode tasks. See Section 5.2, 
Boot Assist Module (BAM), for more details.

SSCM searches flash
boot sectors for valid

Valid
BOOT_ID found?

SSCM reads reset
vector address

Yes No

BOOT_ID (0x5A)

SSCM transfers
execution to e200z0h core

which runs BAM code

BAM code executes
wait instruction

System in static mode

e200z0h core starts
executing code at

vector address

(requires reset to recover)
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5.1.3 Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or 
modified. In order to achieve this, the censorship mechanism controls access to the:

● JTAG / Nexus debug interface

● Serial boot mode (which could otherwise be used to download and execute code to 
query or modify the flash memory)

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be 
correctly entered.

Caution: When censorship has been enabled, the only way to regain access is with the password. If 
this is forgotten or not correctly configured, then there is no way back into the device. 

There are two 64-bit values stored in the shadow flash which control the censorship (see 
Table 373 for a full description):

● Nonvolatile Private Censorship Password registers, NVPWD0 and NVPWD1

● Nonvolatile System Censorship Control registers, NVSCC0 and NVSCC1

Censorship password registers (NVPWD0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be 
programmed to a value known only by you. After factory test these registers are 
programmed as shown below:

● NVPWD0 = 0xFEED_FACE

● NVPWD1 = 0xCAFE_BEEF

This means that even if censorship was inadvertently enabled by writing to the censorship 
control registers, there is an opportunity to get back into the microcontroller using the default 
private password of 0xFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1" 
and one "0". Some examples of legal and illegal passwords are shown in Table 10:

         

In uncensored devices it is possible to download code via LINFlex or FlexCAN (Serial Boot 
Mode) into internal SRAM even if the 64-bit private password stored in the flash and 
provided during the boot sequence is a password that does not conform to the password 
rules. 

Nonvolatile System Censorship Control registers (NVSCC0 and NVSCC1)

These registers are used together to define the censorship configuration. After factory test 
these registers are programmed as shown below which disables censorship:

● NVSCC0 = 0x55AA_55AA

● NVSCC1 = 0x55AA_55AA

Table 10. Examples of legal and illegal passwords

Legal (valid) passwords Illegal (invalid) passwords

0x0001_0001_0001_0001
0xFFFE_FFFE_FFFE_FFFE
0x1XXX_X2XX_XX4X_XXX8

0x0000_XXXX_XXXX_XXXX
0xFFFF_XXXX_XXXX_XXXX
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Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC 
field) are used to control serial boot mode censorship. The lower 16 bits (the CW field) are 
used to control flash memory boot censorship.

Caution: If the contents of the shadow flash memory are erased and the NVSCC0,1 registers are not 
re-programmed to a valid value, the microcontroller will be permanently censored with no 
way for you to regain access. A microcontroller in this state cannot be debugged or re-
flashed. 

Censorship configuration

The steps to configuring censorship are:

1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and 
configure the NVSCC0,1 values. 

3. Re-program the shadow flash memory and NVPWD0,1 and NVSCC0,1 registers with 
your new values. A POR is required before these will take effect.

Caution: If
(NVSCC0 and NVSCC1 do not match)

or
(Either NVSCC0 or NVSCC1 is not set to 0x55AA) 

then the microcontroller will be permanently censored with no way to get back in. 

Table 11 shows all the possible modes of censorship. The red shaded areas are to be 
avoided as these show the configuration for a device that is permanently locked out. If you 
wish to enable censorship with a private password there is only one valid configuration — to 
modify the CW field in both NVSCC0,1 registers so they match but do not equal 0x55AA. 
This will allow you to enter the private password in both serial and flash boot modes.

         

         

Table 11. Censorship configuration and truth table

Boot configuration Serial 
censorship 

control word 
(NVSCCn[SC])

Censorship 
control word 

(NVSCCn[CW])

Internal 
flash 

memory 
state

Nexus 
state

Serial 
password

JTAG 
passwordFAB pin 

state
Control options

0 (flash 
memory 
boot)

Uncensored
0xXXXX AND 
NVSCC0 ==

NVSCC1

0x55AA AND 
NVSCC0 ==

NVSCC1
Enabled Enabled N/A

Private flash 
memory password 
and censored

0x55AA AND 
NVSCC0 ==

NVSCC1

!0x55AA AND 
NVSCC0 ==

NVSCC1
Enabled

Enabled 
with 

password

NVPWD1,0 
(SSCM reads 

flash 
memory(1))

Censored with no 
password access 
(lockout)

!0x55AA !0X55AA

Enabled Disabled N/AOR
NVSCC0 != NVSCC1
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The flow charts in Figure 8 and Figure 9 provide a way to quickly check what will happen 
with different configurations of the NVSCC0,1 registers as well as detailing the correct way 
to enter the serial password. In the password examples, assume the 64-bit password has 
been programmed into the shadow flash memory in the order {NVPWD0, NWPWD1} and 
has a value of 0x01234567_89ABCDEF.

1 (serial 
boot)

Private flash 
memory password 
and uncensored

0x55AA AND 
NVSCC0 == NVSCC1

Enabled Enabled

NVPWD0,1 
(BAM reads 

flash 
memory(1))

Private flash 
memory password 
and censored

0x55AA AND 
NVSCC0 ==

NVSCC1

!0x55AA AND 
NVSCC0 ==

NVSCC1
Enabled Disabled

NVPWD1,0 
(SSCM reads 

flash 
memory(1))

Public password 
and uncensored

!0x55AA AND 
NVSCC0 !=

NVSCC1

0X55AA AND 
NVSCC0 !=

NVSCC1
Enabled Enabled

Public 
(0xFEED_FA
CE_CAFE_B

EEF)

Public password 
and censored 
(lockout)

!0x55AA

Disabled Disabled

Public 
(0xFEED_FA
CE_CAFE_B

EEF)
OR NVSCC0 != NVSCC1

= Microcontroller permanently locked out

= Not applicable

1. When the SSCM reads the passwords from flash memory, the NVPWD0 and NVPWD1 password order is swapped, so you 
have to submit the 64-bit password as {NVPWD1, NVPWD0}.

Table 11. Censorship configuration and truth table (continued)

Boot configuration Serial 
censorship 

control word 
(NVSCCn[SC])

Censorship 
control word 

(NVSCCn[CW])

Internal 
flash 

memory 
state

Nexus 
state

Serial 
password

JTAG 
passwordFAB pin 

state
Control options
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Figure 8. Censorship control in flash memory boot mode

FAB = 0
(Flash boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

JTAG password details:

Enter password as
{NVPWD1, NVPWD0}

False

False

False

Both
SC and CW !=

0x55AA

CW != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True Censored with
private password

over JTAG

Uncensored

example – 
0x89ABCDEF_01234567

Note:
SC = 0x55AA
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Figure 9. Censorship control in serial boot mode

5.2 Boot Assist Module (BAM)
The BAM consits of a block of ROM at address 0xFFFF_C000 containing VLE firmware. 
The BAM provides 2 main functions:

● Manages the serial download (FlexCAN or LINFlex protocols supported) including 
support for a serial password if censorship is enabled

● Places the microcontroller into static mode if flash memory boot mode is selected and a 
valid BOOT_ID is not located in one of the boot sectors by the SSCM

5.2.1 BAM software flow

Figure 10 illustrates the BAM logic flow.

         

FAB = 1
(Serial boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

Serial password details:

Enter public password
0xFEEDFACE_CAFEBEEF

False

False

False

Both
SC and CW !=

0x55AA

SC != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True
Note:
CW = 0x55AA

False

CW != 0x55AA
?

True
Note:
SC = 0x55AA

Public password,
Uncensored

Flash
(private) password,

Censored

Flash
(private) password,

Uncensored

Enter password as
{NVPWD1, NVPWD0}
example –
0x89ABCDEF_01234567

Enter password as
{NVPWD0, NVPWD1}
example –
0x01234567_89ABCDEF
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Figure 10. BAM logic flow

The initial (reset) device configuration is saved including the mode and clock configuration. 
This means that the serial download software running in the BAM can make changes to the 
modes and clocking and then restore these to the default values before running the newly 
downloaded application code from the SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see 
Table 12). This field is only updated during reset.

There are 2 conditions where the boot mode is not considered valid and the BAM pushes 
the microcontroller into static mode after restoring the default configuration:

● BMODE = 011 (flash memory boot mode). This means that the SSCM has been unable 
to find a valid BOOT_ID in the boot sectors so has called the BAM

● BMODE = reserved

In static mode a wait instruction is executed to halt the core. 

For the FlexCAN and LINFlex serial boot modes, the respective area of BAM code is 
executed to download the code to SRAM.

No Restore default
configuration

configuration

Save default

BAM Entry
0xFFFF_C000

Boot mode valid?

Download new 
code and save in

SRAM

Restore default

configuration
Execute new

code

STATIC mode

Yes

Check boot
mode at

SSCM_STATUS[BMODE]
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After the code has been downloaded to SRAM, the BAM code restores the initial device 
configuration and then transfers execution to the start address of the downloaded code.

BAM resources

The BAM uses/initializes the following MCU resources:

● MC_ME and MC_CGM to initialize mode and clock sources

● FlexCAN_0, LINFlex _0 and the respective I/O pins when performing serial boot mode

● SSCM during password check

● SSCM to check the boot mode (see Table 12)

● 4–16 MHz fast external crystal oscillator

The system clock is selected directly from the 4–16 MHz fast external crystal oscillator. 
Thus, the external oscillator frequency defines the baud rates used for serial download (see 
Table 13).

         

Download and execute the new code

From a high level perspective, the download protocol follows these steps:

1. Send the 64-bit password.

2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit(c).

3. Download the code.

Each step must be completed before the next step starts. After the download is complete 
(the specified number of bytes is downloaded), the code executes from the start address.

Table 12. SSCM_STATUS[BMODE] values as used by BAM

BMODE value Corresponding boot mode

000 Reserved

001 FlexCAN_0 serial boot loader

010 LINFlex_0 (RS232 /UART) serial boot loader

011 Flash memory boot mode

100–111 Reserved

Table 13. Serial boot mode – baud rates

FXOSC frequency

(MHz)

LINFlex baud rate

(baud)

CAN bit rate

(bit/s)

fFXOSC fFXOSC/833 fFXOSC/40

8 9600 200K

12 14400 300K

16 19200 400K

c. Since the device supports only VLE code and not Book E code, this flag is used only for backward 
compatibility.
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The communication is done in half duplex manner, whereby the transmission from the host 
is followed by the microcontroller transmission mirroring the transmission back to the host:

● Host sends data to the microcontroller and waits for a response.

● MCU echoes to host the data received.

● Host verifies if echo is correct:

– If data is correct, the host can continue to send data.

– If data is not correct, the host stops transmission and the microcontroller enters 
static mode.

All multi-byte data structures are sent with MSB first.

A more detailed description of these steps follows.

Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which 
censorship mode the microcontroller is in and which password to use. It does this by reading 
the PUB and SEC fields in the SSCM Status Register (see Section , System Status Register 
(SSCM_STATUS)) as shown in Table 14.

         

When censorship is enabled, the flash memory cannot be read by application code running 
in the BAM or in the SRAM. This means that the private password in the shadow flash 
memory cannot be read by the BAM code. In this case the SSCM is used to obtain the 
private password from the flash memory of the censored device. When the SSCM reads the 
private password it inverts the order of {NVPWD0, NWPWD1} so the password entered over 
the serial download needs to be {NVPWD1, NVPWD0}.

Table 14. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison

PUB SEC

1 0 Uncensored, public password 0xFEED_FACE_CAFE_BEEF

0 0 Uncensored, private password NVPWD0,1 from flash memory via BAM

0 1 Censored, private password NVPWD1,0 from flash memory via SSCM
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Figure 11. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the 
stored password, then the BAM code pushes the microcontroller into static mode. 

The way the password is compared with either the public or private password (depending on 
mode) varies depending on whether censorship is enabled as described in the following 
subsections.

Censorship disabled (private or public passwords):

1. If the public password is used, the BAM code does a direct comparison between the 
serial password and 0xFEED_FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the 
serial password and the private password in flash memory, {NVPWD0, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download 
and pushes the microcontroller into static mode.
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(serial boot mode)

No

No

PUB = 1
?
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Start serial download
with password

SSCM_STATUS register
PUB and SEC
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SEC = 1
?

Public password,
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BAM can directly
 check password
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Private password,
Uncensored,

BAM can directly
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Public password
mode

Is censorship
enabled

BAM tasks Applicable password

?

?
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Censorship enabled (private password)

1. Since the flash is secured, the SSCM is required to read the private password.

2. The BAM code writes the serial password to the SSCM_PWCMPH and 
SSCM_PWCMPL registers.

3. The BAM code then continues with the serial download (start address, data size and 
data) until all the data has been copied to the SRAM.

4. In the meantime the SSCM has compared the private password in flash with the serial 
download password the BAM code wrote into SSCM_PWCMPH and 
SSCM_PWCMPL. 

5. If the SSCM obtains a match in the passwords, the censorship is temporarily disabled 
(until the next reset). 

6. The SSCM updates the status of the security (SEC) bit to reflect whether the 
passwords matched (SEC = 0) or not (SEC = 1)

7. Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in the 
SRAM. If SEC = 1, the BAM code forces the microcontroller into static mode. 

Figure 12 shows this in more detail.
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Figure 12. BAM serial boot mode flow for censorship enabled and private password

With LINFlex, any receive error will result in static mode. With FlexCAN, the host will re-
transmit data if there has been no acknowledgment from the microcontroller. However there 
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could be a situation where the receiver configuration has an error which would result in 
static mode entry.

Note: In a censored device booting with serial boot mode, it is possible to read the content of the 
four 32-bit flash memory locations that make up the boot sector. For example, if the RCHW 
is stored at address 0x0000_0000, the reads at address 0x0000_0000, 0x0000_0004, 
0x0000_0008 and 0x0000_000C will return a correct value. No other flash memory 
locations can be read.

Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE 
mode bit and a 31-bit code Length as shown in Figure 13.

         

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be 
downloaded is Book VLE or Book III-E.  This device family supports only VLE = 1; the bit is 
used for backward compatibility.

The Start Address defines where the received data will be stored and where the MCU will 
branch after the download is finished. The start address is 32-bit word aligned and the 2 
least significant bits are ignored by the BAM code.

Note: The start address is configurable, but most not lie within the 0x4000_0000 to 0x4000_00FF 
address range.

The Length defines how many data bytes have to be loaded.

Download data

Each byte of data received is stored in the microcontroller’s SRAM, starting from the 
address specified in the previous protocol step.

The address increments until the number of bytes of data received matches the number of 
bytes specified by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code 
always writes bytes into SRAM grouped into 32-bit words. If the last byte received does not 
fall onto a 32-bit boundary, the BAM code fills any additional bytes with 0x0.

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have 
just been downloaded), an additional dummy word of 0x0000_0000 is written at the end of 
the downloaded data block to avoid any ECC errors during core prefetch.

Figure 13. Start address, VLE bit and download size in bytes

START_ADDRESS[31:16]

START_ADDRESS[15:0]

VLE CODE_LENGTH[30:16]

CODE_LENGTH[15:0]
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Execute code

The BAM code waits for the last data byte to be received. If the operating mode is censored 
with a private password, then the BAM reads the SSCM status register to determine 
whether the serial password matched the private password. If there was a password match 
then the BAM code restores the initial configuration and transfers execution to the 
downloaded code start address in SRAM. If the passwords did not match, the BAM code 
forces a static mode entry.

Note: The watchdog is disabled at the start of BAM code execution. In the case of an unexpected 
issue during BAM code execution, the microcontroller may be stalled and an external reset 
required to recover the microcontroller.

5.2.2 LINFlex (RS232) boot

Configuration

Boot according to the LINFlex boot mode download protocol (see Section , Protocol) is 
performed by the LINFlex_0 module in UART (RS232) mode. Pins used are:

● LIN0TX mapped on PB[2]

● LIN0RX mapped on PB[3]

Boot from LINFlex uses the system clock driven by the 4–16 MHz external crystal oscillator 
(FXOSC).

The LINFlex controller is configured to operate at a baud rate = system clock frequency/833, 
using an 8-bit data frame without parity bit and 1 stop bit.

         

Figure 14. LINFlex bit timing in UART mode

Protocol

Table 15 summarizes the protocol and BAM action during this boot mode.

         

D1 D2 D3 D4 D5 D6 D7D0

Byte field

Start
bit

Stop
bit

Table 15. UART boot mode download protocol

Protocol
step

Host sent message
BAM response 

message
Action

1
64-bit password (MSB 
first)

64-bit password
Password checked for validity and compared against 
stored password.

2 32-bit store address 32-bit store address Load address is stored for future use.

3
VLE bit + 31-bit 
number of bytes (MSB 
first)

VLE bit + 31-bit 
number of bytes (MSB 
first)

Size of download are stored for future use.
Verify if VLE bit is set to 1
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5.2.3 FlexCAN boot

Configuration

Boot according to the FlexCAN boot mode download protocol (see Section , Protocol) is 
performed by the FlexCAN_0 module. Pins used are:

● CAN0TX mapped on PB[0]

● CAN0RX mapped on PB[1]

Note: When the serial download via FlexCAN is selected and the device is part of a CAN network, 
the serial download may stop unexpectedly if there is any other traffic on the network. To 
avoid this situation, ensure that no other CAN device on the network is active during the 
serial download process.

Boot from FlexCAN uses the system clock driven by the 4–16 MHz fast external crystal 
oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40 
(see Table 13 for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2 
time quanta before the end, as shown in Figure 15.

4
8 bits of raw binary 
data

8 bits of raw binary 
data

8-bit data are packed into a 32-bit word. This word is 
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data 
received and stored matches the size as specified in the 
previous step.

5 None None Branch to downloaded code

Table 15. UART boot mode download protocol

Protocol
step

Host sent message
BAM response 

message
Action
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Figure 15. FlexCAN bit timing

Protocol

Table 16 summarizes the protocol and BAM action during this boot mode. All data are 
transmitted byte wise.

         

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1 
time quantum time quanta time quanta

7 2 

1 bit time

1 time quantum = 4 system clock periods

Table 16. FlexCAN boot mode download protocol

Protocol
step

Host sent message
BAM response 

message
Action

1
CAN ID 0x011 +

64-bit password

CAN ID 0x001 +

64-bit password
Password checked for validity and compared against stored 
password

2

CAN ID 0x012 + 32-
bit store address + 
VLE bit + 31-bit 
number of bytes

CAN ID 0x002 + 32-
bit store address + 
VLE bit + 31-bit 
number of bytes

Load address is stored for future use.

Size of download are stored for future use.

Verify if VLE bit is set to 1

3
CAN ID 0x013 +

8 to 64 bits of raw 
binary data

CAN ID 0x003 +

8 to 64 bits of raw 
binary data

8-bit data are packed into 32-bit words. These words are 
saved into SRAM starting from the “Load address”.

“Load address” increments until the number of data 
received and stored matches the size as specified in the 
previous step.

5 None None Branch to downloaded code
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5.3 System Status and Configuration Module (SSCM)

5.3.1 Introduction

The primary purpose of the SSCM is to provide information about the current state and 
configuration of the system that may be useful for configuring application software and for 
debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is 
part of that domain.

         

Figure 16. SSCM block diagram

5.3.2 Features

The SSCM includes these features:

● System Configuration and Status

– Memory sizes/status

– Microcontroller Mode and Security Status (including censorship and serial boot 
information)

– Search Code Flash for bootable sector

– Determine boot vector

● Device identification information (MCU ID Registers)

● Debug Status Port enable and selection

● Bus and peripheral abort enable/disable

Bus

System Status and Configuration Module

Interface

Password
Comparator

RevID
Hardmacro

Core
Logic

System
Status

Peripheral

Interface
Bus
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5.3.3 Modes of operation

The SSCM operates identically in all system modes.

5.3.4 Memory map and register description

Table 17 shows the memory map for the SSCM. Note that all addresses are offsets; the 
absolute address may be calculated by adding the specified offset to the base address of 
the SSCM.

         

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses 
must be aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit 
boundaries. As an example, the SSCM_STATUS register is accessible by a 16-bit read/write 
to address ‘Base + 0x0002’, but performing a 16-bit access to ‘Base + 0x0003’ is illegal.

System Status Register (SSCM_STATUS)

The System Status register is a read-only register that reflects the current state of the 
system.

         

         

Table 17. SSCM memory map

Address offset Register Location

0x00 System Status Register (SSCM_STATUS) on page 5-91

0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 5-92

0x04 Reserved

0x06 Error Configuration (SSCM_ERROR) on page 5-93

0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 5-94

0x0A Reserved

0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 5-96

0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 5-96

Figure 17. System Status Register (SSCM_STATUS)

Offset:0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

N
X

E
N

PUB SEC 0 BMODE 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0/1 0/1 0/1 0 0 0 0 0

Table 18. SSCM_STATUS allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed 

Write Not allowed Not allowed Not allowed
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System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory 
configuration of the system.

         

         

Table 19. SSCM_STATUS field descriptions

Field Description

NXEN Nexus enabled

PUB

Public Serial Access Status. This bit indicates whether serial boot mode with public password is 
allowed.
1 Serial boot mode with public password is allowed
0 Serial boot mode with private flash memory password is allowed

SEC
Security Status. This bit reflects the current security state of the flash memory.
1 The flash memory is secured.
0 The flash memory is not secured.

BMODE

Device Boot Mode
000 Reserved
001 FlexCAN_0 Serial Boot Loader
010 LINFlex_0 Serial Boot Loader
011 Single Chip
100 Reserved
101 Reserved
110 Reserved
111 Reserved
This field is only updated during reset.

Figure 18. System Memory Configuration Register (SSCM_MEMCONFIG)

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 PRSZ PVLB DTSZ DVLD

W

Reset x x x x x x x x x x 1 x x x x 1

Table 20. SSCM_MEMCONFIG field descriptions

Field Description

PRSZ
Code Flash Size
10000 128 KB
10001 256 KB

PVLB

Code Flash Available
This bit identifies whether or not the on-chip code Flash is available in the system memory map. The 
Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Code Flash is available
0 Code Flash is not available
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Error Configuration (SSCM_ERROR)

The Error Configuration register is a read-write register that controls the error handling of 
the system.

         

DTSZ
Data Flash Size
0000  No Data Flash
0011  64 KB

DVLD

Data Flash Valid

This bit identifies whether or not the on-chip Data Flash is visible in the system memory map. The 
Flash may not be accessible due to security limitations, or because there is no Flash in the system.

1 Data Flash is visible
0 Data Flash is not visible

Table 21. SSCM_MEMCONFIG allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed
Allowed

(also reads SSCM_STATUS 
register)

Write Not allowed Not allowed Not allowed

Table 20. SSCM_MEMCONFIG field descriptions (continued)

Field Description

Figure 19. Error Configuration (SSCM_ERROR)

Offset: 0x06 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE RAE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93/868 Doc ID 16886 Rev 6



RM0045 Microcontroller Boot
         

         

Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

         

         

Table 22. SSCM_ERROR field descriptions

Field Description

PAE

Peripheral Bus Abort Enable

This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This 
feature is intended to aid in debugging when developing application code.

1 Illegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception

RAE

Register Bus Abort Enable

This bit enables bus aborts on illegal accesses to off-platform peripherals. Illegal accesses are defined 
as reads or writes to reserved addresses within the address space for a particular peripheral. This 
feature is intended to aid in debugging when developing application code.
1 Illegal accesses to peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to peripherals do not produce a Prefetch or Data Abort exception
Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that 
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

Table 23. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed

Write Allowed Allowed Not allowed

Figure 20. Debug Status Port Register (SSCM_DEBUGPORT)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DEBUG_MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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PIN[0..7] referred to in Table 25 equates to PC[2..9] (Pad 34..41).

         

Table 24. SSCM_DEBUGPORT field descriptions

Field Description

DEBUG_MODE

Debug Status Port Mode

This field selects the alternate debug functionality for the Debug Status Port.

000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected

Table 25 describes the functionality of the Debug Status Port in each mode.

Table 25. Debug status port modes

Pin
(1)

1. All signals are active high, unless otherwise noted

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

0
SSCM_STATUS

[0]
SSCM_STATUS

[8]
SSCM_MEMCONFI

G[0]
SSCM_MEMCONFI

G[8]
Reserved Reserved Reserved

1
SSCM_STATUS

[1]
SSCM_STATUS

[9]
SSCM_MEMCONFI

G[1]
SSCM_MEMCONFI

G[9]
Reserved Reserved Reserved

2
SSCM_STATUS

[2]
SSCM_STATUS

[10]
SSCM_MEMCONFI

G[2]
SSCM_MEMCONFI

G[10]
Reserved Reserved Reserved

3
SSCM_STATUS

[3]
SSCM_STATUS

[11]
SSCM_MEMCONFI

G[3]
SSCM_MEMCONFI

G[11]
Reserved Reserved Reserved

4
SSCM_STATUS

[4]
SSCM_STATUS

[12]
SSCM_MEMCONFI

G[4]
SSCM_MEMCONFI

G[12]
Reserved Reserved Reserved

5
SSCM_STATUS

[5]
SSCM_STATUS

[13]
SSCM_MEMCONFI

G[5]
SSCM_MEMCONFI

G[13]
Reserved Reserved Reserved

6
SSCM_STATUS

[6]
SSCM_STATUS

[14]
SSCM_MEMCONFI

G[6]
SSCM_MEMCONFI

G[14]
Reserved Reserved Reserved

7
SSCM_STATUS

[7]
SSCM_STATUS

[15]
SSCM_MEMCONFI

G[7]
SSCM_MEMCONFI

G[15]
Reserved Reserved Reserved

Table 26. SSCM_DEBUGPORT allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Not allowed

Write Allowed Allowed Not allowed
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Password comparison registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if 
the password has been provided via serial download.

         

         

         

         

Figure 21. Password Comparison Register High Word (SSCM_PWCMPH)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22. Password Comparison Register Low Word (SSCM_PWCMPL)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 27. Password Comparison Register field descriptions

Field Description

PWD_HI Upper 32 bits of the password

PWD_LO Lower 32 bits of the password
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In order to unsecure the device, the password needs to be written as follows: first the upper 
word to the SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL 
register. The SSCM compares the 64-bit password entered into the SSCM_PWCMPH / 
SSCM_PWCMPL registers with the NVPWM[1,0] private password stored in the shadow 
flash. If the passwords match then the SSCM temporarily uncensors the microcontroller. 

         

         

Table 28. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Allowed
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6 Clock Description

This chapter describes the clock architectural implementation for SPC560D30/40.

6.1 Clock architecture
System clocks are generated from three sources:

● Fast external crystal oscillator 4-16 MHz (FXOSC)

● Fast internal RC oscillator 16 MHz (FIRC)

● Frequency modulated phase locked loop (FMPLL)

Additionally, there is a slow internal RC oscillator 128 kHz (SIRC).

The clock architecture is shown in Figure 23.

         

Figure 23. SPC560D30/40 system clock generation
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6.2 Clock gating
The SPC560D30/40 provides the user with the possibility of gating the clock to the 
peripherals. Table 29 describes for each peripheral the associated gating register address. 
See the ME_PCTLn section in this reference manual.

Additionally, peripheral set (1, 2 or 3) frequency can be configured to be an integer (1 to 16) 
divided version of the main system clock. See the CGM_SC_DC0 section in this reference 
manual for details.

          

6.3 Fast external crystal oscillator (FXOSC) digital interface
The FXOSC digital interface controls the operation of the 4–16 MHz fast external crystal 
oscillator (FXOSC). It holds control and status registers accessible for application.

6.3.1 Main features

● Oscillator powerdown control and status reporting through MC_ME block

● Oscillator clock available interrupt

● Oscillator bypass mode

● Output clock division factors ranging from 1, 2, 3....32

6.3.2 Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It 
provides an output clock that can be provided to the FMPLL or used as a reference clock to 
specific modules depending on system needs.

Table 29. SPC560D30/40 — Peripheral clock sources

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)(1)

1. See the ME_PCTL section in this reference manual for details.

Peripheral set(2)

2. “—” means undivided system clock.

RPP_Z0H Platform none (managed through ME mode) —

DSPI_n 4+n (n = 0..1) 2

FlexCAN 16 2

ADC 32 3

LINFLEX_n 48+n(n = 0..2) 1

CTU 57 3

SIUL 68 —

WKUP 69 —

eMIOS 72 3

RTC/API 91 —

PIT 92 —

CMU 104 —
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The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit 
controls the powerdown of the oscillator based on the current device mode while 
ME_GS[S_XOSC] register provides the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on 
when required. Whenever the crystal oscillator is switched on from the off state, the 
OSCCNT counter starts and when it reaches the value EOCV[7:0]×512, the oscillator clock 
is made available to the system. Also, an interrupt pending FXOSC_CTL[I_OSC] bit is set. 
An interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only 
be set by software. A system reset is needed to reset this bit. In this bypass mode, the 
output clock has the same polarity as the external clock applied on the EXTAL pin and the 
oscillator status is forced to ‘1’. The bypass configuration is independent of the powerdown 
mode of the oscillator.

Table 30 shows the truth table of different oscillator configurations.

         

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to 
generate the divided clock to match system requirements. This division factor is specified by 
FXOSC_CTL[OSCDIV] field.

Table 30. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON] FXOSC_CTL[OSCBYP] XTAL EXTAL FXOSC Oscillator mode

0 0
No crystal, 

High Z
No crystal, 

High Z
0 Powerdown, IDDQ

x 1 x Ext clock EXTAL
Bypass, OSC 

disabled

1 0

Crystal Crystal EXTAL
Normal, OSC 

enabled

Gnd Ext clock EXTAL
Normal, OSC 

enabled
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6.3.3 Register description
         

         

         

Figure 24. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

Address: 0xC3FE_0000 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

(1
)

1. You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCV
W

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
_O

S
C 0 0

OSCDIV

I_
O

S
C

(2
)

2. You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no effect 
on the field value.

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31. FXOSC_CTL field descriptions

Field Description

OSCBYP

Crystal Oscillator bypass.

This bit specifies whether the oscillator should be bypassed or not. 

0 Oscillator output is used as root clock
1 EXTAL is used as root clock

EOCV

End of Count Value.

These bits specify the end of count value to be used for comparison by the oscillator stabilization 
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on 
the FXOSC). This counting period ensures that external oscillator clock signal is stable before it 
can be selected by the system. When oscillator counter reaches the value EOCV × 512, the 
crystal oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept 
under reset if oscillator bypass mode is selected.

M_OSC
Crystal oscillator clock interrupt mask.

0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.

OSCDIV
Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by 
the factor OSCDIV+1.

I_OSC

Crystal oscillator clock interrupt.

This bit is set by hardware when OSCCNT counter reaches the count value EOCV × 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.
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6.4  Slow internal RC oscillator (SIRC) digital interface

6.4.1 Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds 
control and status registers accessible for application.

6.4.2 Functional description

The SIRC provides a low frequency (fSIRC) clock of 128 kHz requiring very low current 
consumption. This clock can be used as the reference clock when a fixed base time is 
required for specific modules.

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is 
controlled by SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in 
SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to 
32 to generate the divided clock to match system requirements. This division factor is 
specified by SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM].  After a power-on 
reset, the SIRC is trimmed using a factory test value stored in test flash memory.  However, 
after a power-on reset the test flash memory value is not visible at SIRC_CTL[SIRCTRIM] 
and this field shows a value of zero.  Therefore, be aware that the SIRC_CTL[SIRCTRIM] 
does not reflect the current trim value until you have written to this field.  Pay particular 
attention to this feature when you initiate a read-modify-write operation on SIRC_CTL, 
because a SIRCTRIM value of zero may be unintentionally written back and this may alter 
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure 
that you only write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code 
increases from –16 to 15. As the trimming code increases, the internal time constant 
increases and frequency reduces. Please refer to device datasheet for average frequency 
variation of the trimming step.
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6.4.3 Register description
         

         

6.5 Fast internal RC oscillator (FIRC) digital interface

6.5.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds 
control and status registers accessible for application.

Figure 25. Low Power RC Control Register (SIRC_CTL)

Address: 0xC3FE_0080 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
SIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

SIRCDIV

0 0 0

S
_S

IR
C

0 0 0

S
IR

C
O

N
_S

T
D

B
Y

W

RESET: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Table 32. SIRC_CTL field descriptions

Field Description

SIRCTRIM

SIRC trimming bits.

This field corresponds (via two’s complement) to a trim factor of –16 to +15.

A +1 change in SIRCTRIM decreases the current frequency by SIRCTRIM (see the device 
data sheet).

A –1 change in SIRCTRIM increases the current frequency by SIRCTRIM (see the device data 
sheet).

SIRCDIV
SIRC clock division factor.

This field specifies the SIRC oscillator output clock division factor. The output clock is divided 
by the factor SIRCDIV+1.

S_SIRC
SIRC clock status.

0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRCON_STDBY
SIRC control in STANDBY mode.

0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.
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6.5.2 Functional description

The FIRC provides a high frequency (fFIRC) clock of 16 MHz. This clock can be used to 
accelerate the exit from reset and wakeup sequence from low power modes of the system. It 
is controlled by the MC_ME module based on the current device mode. The clock source 
status is updated in ME_GS[S_RC]. Please refer to the MC_ME chapter for further details.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to 
generate the divided clock to match system requirements. This division factor is specified by 
RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM].  After a power-on 
reset, the FIRC is trimmed using a factory test value stored in test flash memory.  However, 
after a power-on reset the test flash memory value is not visible at FIRC_CTL[FIRCTRIM], 
and this field will show a value of zero.  Therefore, be aware that the FIRC_CTL[FIRCTRIM] 
field does not reflect the current trim value until you have written to it.  Pay particular 
attention to this feature when you initiate a read-modify-write operation on FIRC_CTL, 
because a FIRCTRIM value of zero may be unintentionally written back and this may alter 
the FIRC frequency. In this case, you should calibrate the FIRC using the CMU or ensure 
that you write only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code 
increases from –32 to 31. As the trimming code increases, the internal time constant 
increases and frequency reduces. Please refer to device datasheet for average frequency 
variation of the trimming step.

During STANDBY mode entry process, the FIRC is controlled based on 
ME_STANDBY_MC[RCON] bit. This is the last step in the standby entry sequence. On any 
system wake-up event, the device exits STANDBY mode and switches on the FIRC. The 
actual powerdown status of the FIRC when the device is in standby is provided by 
RC_CTL[FIRCON_STDBY] bit.
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6.5.3 Register description
         

         

         

6.6 Frequency-modulated phase-locked loop (FMPLL)

6.6.1 Introduction

This section describes the features and functions of the FMPLL module implemented in the 
device.

Figure 26. FIRC Oscillator Control Register (FIRC_CTL)

Address: 0xC3FE_0060 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
FIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

FIRCDIV

0 0

F
IR

C
O

N
_S

T
D

B
Y 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 33. FIRC_CTL field descriptions

Field Description

FIRCTRIM

FIRC trimming bits.

This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in FIRCTRIM decreases the current frequency by FIRCTRIM (see the device data 
sheet).
A –1 change in SIRCTRIM increases the current frequency by FIRCTRIM (see the device data 
sheet).

FIRCDIV
FIRC clock division factor.

This field specifies the FIRC oscillator output clock division factor. The output clock is divided by 
the factor FIRCDIV+1.

FIRCON_STDB
Y

FIRC control in STANDBY mode.

0 FIRC is switched off in STANDBY mode.
1 FIRC is in STANDBY mode.
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6.6.2 Overview

The FMPLL enables the generation of high speed system clocks from a common 4–16 MHz 
input clock. Further, the FMPLL supports programmable frequency modulation of the 
system clock. The FMPLL multiplication factor and output clock divider ratio are all software 
configurable.

SPC560D30/40 has one FMPLL that can generate the system clock and takes advantage of 
the FM mode.

Note: The user must take care not to program device with a frequency higher than allowed (no 
hardware check).

The FMPLL block diagram is shown in Figure 27.

         

         

Figure 27. FMPLL block diagram

6.6.3 Features

The FMPLL has the following major features:

● Input clock frequency 4 MHz – 16 MHz

● Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

● Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to 
relock

● Frequency modulated FMPLL

– Modulation enabled/disabled through software

– Triangle wave modulation

● Programmable modulation depth

– ±0.25% to ±4% deviation from center spread frequency(d)

– 0.5% to +8% deviation from down spread frequency

– Programmable modulation frequency dependent on reference frequency

● Self-clocked mode (SCM) operation

● 4 available modes

– Normal mode

– Progressive clock switching

– Normal mode with frequency modulation

– Powerdown mode

BUFFER

Charge
Pump
Low Pass
Filter

VCOIDF

NDIV
Loop
Frequency
Divider

ODF
PHIFXOSC

d. Spread spectrum should be programmed in line with maximum datasheet frequency figures.
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6.6.4 Memory map(e)

Table 34 shows the memory map of the FMPLL.

         

6.6.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and 
written in supervisor mode only.

Control Register (CR)

         

         

e. FMPLL_x are mapped through the ME_CGM register slot

Table 34. FMPLL memory map

Base address: 0xC3FE_00A0

Address offset Register Location

0x0 Control Register (CR) on page 6-107

0x4 Modulation Register (MR) on page 6-109

Figure 28. Control Register (CR)

Offset: 0x0 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
IDF ODF

0
NDIV

W

Reset 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

E
N

_P
LL

_S
W

0

U
N

LO
C

K
_O

N
C

E

0

I_
LO

C
K

S
_L

O
C

K

P
LL

_F
A

IL
_M

A
S

K

P
LL

_F
A

IL
_F

LA
G

1

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 35. CR field descriptions

Field Description

IDF The value of this field sets the FMPLL input division factor as described in Table 36.

ODF The value of this field sets the FMPLL output division factor as described in Table 37.

NDIV The value of this field sets the FMPLL loop division factor as described in Table 38.
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EN_PLL_SW

This bit is used to enable progressive clock switching. After the PLL locks, the PLL output 
initially is divided by 8, and then progressively decreases until it reaches divide-by-1. 

0 Progressive clock switching disabled.
1 Progressive clock switching enabled.
Note: Note: Progressive clock switching should not be used if a non-changing clock is needed, 

such as for serial communications, until the division has finished.

UNLOCK_ONCE
This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when 
the FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set. 
Only a power-on reset clears this bit.

I_LOCK This bit is set by hardware whenever there is a lock/unlock event.

S_LOCK

This bit is an indication of whether the FMPLL has acquired lock.

0: FMPLL unlocked

1: FMPLL locked
Note:

PLL_FAIL_MASK
This bit is used to mask the pll_fail output.

0 pll_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG
This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL 
is switched on. It is cleared by software writing ‘1’.

Table 36. Input divide ratios

IDF[3:0] Input divide ratios

0000 Divide by 1

0001 Divide by 2

0010 Divide by 3

0011 Divide by 4

0100 Divide by 5

0101 Divide by 6

0110 Divide by 7

0111 Divide by 8

1000 Divide by 9

1001 Divide by 10

1010 Divide by 11

1011 Divide by 12

1100 Divide by 13

1101 Divide by 14

1110 Divide by 15

1111 Clock Inhibit

Table 35. CR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 108/868



Clock Description RM0045
         

         

         

Modulation Register (MR)

         

         

Table 37. Output divide ratios

ODF[1:0] Output divide ratios

00 Divide by 2

01 Divide by 4

10 Divide by 8

11 Divide by 16

Table 38. Loop divide ratios

NDIV[6:0] Loop divide ratios

0000000–0011111 —

0100000 Divide by 32

0100001 Divide by 33

0100010 Divide by 34

... ...

1011111 Divide by 95

1100000 Divide by 96

1100001–1111111 —

Figure 29. Modulation Register (MR)

Offset: 0x4 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
T

R
B

_B
Y

PA
S

S 0

S
P

R
D

_S
E

L

MOD_PERIOD
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

F
M

_E
N

INC_STEP
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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6.6.6 Functional description

Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL 
is in lock state, the FMPLL output clock (PHI) is derived by the reference clock () through this 
relation:

Table 39. MR field descriptions

Field Description

STRB_BYPASS

Strobe bypass.

The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the 
correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).

0 Strobe is used to latch FMPLL modulation control bits
1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed 

only when FMPLL is in powerdown mode.

SPRD_SEL

Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.

0 Center SPREAD
1 Down SPREAD

MOD_PERIOD

Modulation period.

The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following 
formula:

         

where:

fref: represents the frequency of the feedback divider
fmod: represents the modulation frequency

FM_EN
Frequency Modulation Enable. The FM_EN enables the frequency modulation.

0 Frequency modulation disabled
1 Frequency modulation enabled

INC_STEP

Increment step.

The INC_STEP field is the binary equivalent of the value incstep derived from following formula:

         

where:

md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md, 
Downspread -- pk-pk=-2×md)

MDF: represents the nominal value of loop divider (CR[NDIV])

modperiod
fref

4 fmod
---------------------=

incstep round 215 1–  md MDF
100 5 MODPERIOD
----------------------------------------------------------------- 
 =
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where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 36, 
Table 37 and Table 38.

         

Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock 
stepping through different division factors. This means that the current consumption 
gradually increases and, in turn, voltage regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the 
system clock is switched to divided PHI. The FMPLL_clk divider is then progressively 
decreased to the target divider as shown in Table 41.

         

         

Figure 30. FMPLL output clock division flow during progressive switching

phi clkin NDIV
IDF ODF

---------------------------------=

Table 40. FMPLL lookup table

Crystal frequency 
(MHz)

FMPLL output 
frequency (MHz)

CR field values
VCO frequency (MHz)

IDF ODF NDIV

8

32 0 2 32 256

64 0 2 64 512

80 0 1 40 320

16

32 1 2 32 256

64 1 2 64 512

80 1 1 40 320

40

32 4 2 32 256

64 4 2 64 512

80 3 1 32 320

Table 41. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles
FMPLL_clk frequency

(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2

onward FMPLL output clock frequency

FMPLL output clock FMPLL_clkDivision factors of 8, 4, 2 or 1
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Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency 
modulation is enabled, however, two parameters must be set to generate the desired level of 
modulation: the PERIOD, and the STEP. The modulation waveform is always a triangle wave 
and its shape is not programmable.

FM mode is activated in two steps:

1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to ‘1’. FM mode can only 
be enabled when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit 
STRB_BYPASS in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when 
the strobe signal goes high for at least two cycles of CLKIN clock. The strobe signal is 
automatically generated in the FMPLL digital interface when the modulation is enabled 
(FM_EN goes high) if the FMPLL is locked (S_LOCK = 1) or when the modulation has been 
enabled (FM_EN = 1) and FMPLL enters lock state (S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits 
(MOD_PERIOD[12:0], INC_STEP[14:0], SPREAD_CONTROL) need to be static or 
hardwired to constant values. The control bits must be changed only when the FMPLL is in 
powerdown mode.

The modulation depth in % is 

         

Note: The user must ensure that the product of INCTEP and MODPERIOD is less than (215-1).

         

Figure 31. Frequency modulation

ModulationDepth 100 5 INCSTEPxMODPERIOD

215 1–  MDF
------------------------------------------------------------------------------------------------- 
 =
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Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming 
the registers ME_x_MC on the MC_ME module.

6.6.7 Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these 
guidelines:

● The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is 
required when programming the multiplication and division factors to respect this 
requirement. 

● The user must change the multiplication, division factors only when the FMPLL output 
clock is not selected as system clock. Use progressive clock switching if system clock 
changes are required while the PLL is being used as the system clock source. 
MOD_PERIOD, INC_STEP, SPREAD_SEL bits should be modified before activating 
the FM mode. Then strobe has to be generated to enable the new settings. If 
STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP and SPREAD_SEL can be 
modified only when FMPLL is in powerdown mode.

● Use progressive clock switching (FMPLL output clock can be changed when it is the 
system clock, but only when using progressive clock switching).

6.7 Clock monitor unit (CMU)

6.7.1 Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault 
Detector, serves two purposes. The main task is to permanently supervise the integrity of 
the various clock sources, for example a crystal oscillator or FMPLL. In case the FMPLL 
leaves an upper or lower frequency boundary or the crystal oscillator fails it can detect and 
forward these kind of events towards the MC_ME and MC_CGM. The clock management 
unit in turn can then switch to a SAFE mode where it uses the default safe clock source 
(FIRC), reset the device or generate the interrupt according to the system needs. 

It can also monitor the external crystal oscillator clock, which must be greater than the 
internal RC clock divided by a division factor given by CMU_CSR[RCDIV], and generates a 
system clock transition request or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the 
frequency of one clock source vs. a reference clock. This is useful to allow the calibration of 
the on-chip RC oscillator(s), as well as being able to correct/calculate the time deviation of a 
counter which is clocked by the RC oscillator.

6.7.2 Main features

● FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference 
clock

● External oscillator clock monitoring with respect to FIRC_clk/n clock

● FMPLL clock frequency monitoring for a high and low frequency range with FIRC as 
reference clock

● Event generation for various failures detected inside monitoring unit
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6.7.3 Block diagram

         

Figure 32. Clock Monitor Unit diagram

CMU_MDR

XOSC Supervisor
FXOSC < FIRC / n

CMU_HFREFR

CMU_LFREFR

Frequency Meter CMU_FDR

FMPLL Supervisor

OLR_evt

FHH_FLL_OR_evt_a

FXOSC ON/OFF
From MC_ME

FMPLL ON/OFF
From MC_ME

MUX1

CKSEL1[1:0]

00

01

10

11

FIRC_clk

FIRC_clk

SIRC_clk

reserved

FXOSC_clk

FMPLL

FMPLL > hfref
OR
FMPLL < lfref

OLR_evt : It is the event signalling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt 
or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a : It is the event signalling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR 
configuration, if the FMPLL is greater than hign frequency range or less than the low frequency range configuration, this signal is 
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.
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6.7.4 Functional description

The clock and frequency names referenced in this block are defined as follows:

● FXOSC_clk: clock coming from the fast external crystal oscillator

● SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator

● FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator

● FMPLL_clk: clock coming from the FMPLL

● fFXOSC_clk: frequency of fast external crystal oscillator clock

● fSIRC_clk: frequency of slow (low frequency) internal RC oscillator

● fFIRC_clk: frequency of fast (high frequency) internal RC oscillator

● fFMPLL_clk: frequency of FMPLL clock

Crystal clock monitor

If fFXOSC_clk is less than fFIRC_clk divided by 2RCDIV bits of the CMU_CSR and the 
FXOSC_clk is ‘ON’ as signalled by the MC_ME then:

● An event pending bit OLRI in CMU_ISR is set.

● A failure event OLR is signalled to the MC_RGM which in turn can automatically switch 
to a safe fallback clock and generate an interrupt or reset.

FMPLL clock monitor

The fFMPLL_clk can be monitored by programming bit CME of the CMU_CSR register to ‘1’. 
The FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at 
any time by writing bit CME to ‘0’.

If fFMPLL_clk is greater than a reference value determined by bits HFREF[11:0] of the 
CMU_HFREFR and the FMPLL_clk is ‘ON’, as signalled by the MC_ME, then:

● An event pending bit FHHI in CMU_ISR is set.

● A failure event is signalled to the MC_RGM which in turn can generate an interrupt or 
safe mode request or functional reset depending on the programming model.

If fFMPLL_clk is less than a reference value determined by bits LFREF[11:0] of the 
CMU_LFREFR and the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

● An event pending bit FLLI in CMU_ISR is set.

● A failure event FLL is signalled to the MC_RGM which in turn can generate an interrupt 
or safe mode request or functional reset depending on the programming model.

Note: The internal RC oscillator is used as reliable reference clock for the clock supervision. In 
order to avoid false events, proper programming of the dividers is required. These have to 
take into account the accuracy and frequency deviation of the internal RC oscillator.

Note: If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh event. It takes 
approximately 5 s to generate this event.

Frequency meter

The purpose of the frequency meter is twofold:

● to measure the frequency of the oscillators SIRC or FIRC

● to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency
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Hint: This value can then be stored into the flash so that application software can reuse it 
later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value 
of frequencies fFIRC_clk or fSIRC_clk according to CKSEL1 bit value. The measure starts 
when bit SFM (Start Frequency Measure) in the CMU_CSR is set to ‘1’. The measurement 
duration is given by the CMU_MDR in numbers of clock cycles of the selected clock source 
with a width of 20 bits. Bit SFM is reset to ‘0’ by hardware once the frequency measurement 
is done and the count is loaded in the CMU_FDR. The frequency fx

(f) can be derived from 
the value loaded in the CMU_FDR as follows:

Equation 1 fx = (fFXOSC × MD) / n

where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates fFIRC_clk, but software can swap to fSIRC_clk or 
fSXOSC_clk by programming the CKSEL bits in the CMU_CSR.

6.7.5 Memory map and register description

The memory map of the CMU is shown in Table 42.

         

f. x = FIRC or SIRC

Table 42. CMU memory map

Base address: 0xC3FE_0100

Register name Address offset Reset value Location

Control Status Register (CMU_CSR) 0x00 0x00000006
on page 6-

117

Frequency Display Register (CMU_FDR) 0x04 0x00000000
on page 6-

118

High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 0x00000FFF
on page 6-

118

Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000
on page 6-

119

Interrupt Status Register (CMU_ISR) 0x10 0x00000000
on page 6-

119

Reserved 0x14 0x00000000 —

Measurement Duration Register (CMU_MDR) 0x18 0x00000000
on page 6-

120
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Control Status Register (CMU_CSR)

         

         

         

Figure 33. Control Status Register (CMU_CSR)

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

S
F

M
(1

)

1. You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CKSEL1

0 0 0 0 0
RCDIV

C
M

E
_A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 43. CMU_CSR field descriptions

Field Description

SFM

Start frequency measure.

The software can only set this bit to start a clock frequency measure. It is reset by hardware when 
the measure is ready in the CMU_FDR register. 

0 Frequency measurement completed or not yet started.
1 Frequency measurement not completed.

CKSEL1

Clock oscillator selection bit.
CKSEL1 selects the clock to be measured by the frequency meter. 

00 FIRC_clk selected.
01 SIRC_clk selected.
10 reserved.
11 FIRC_clk selected.

RCDIV

RC clock division factor .

These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor 
2RCDIV. This output clock is used to compare with FXOSC_clk for crystal clock monitor feature.The 
clock division coding is as follows.
00 Clock divided by 1 (No division)
01 Clock divided by 2
10 Clock divided by 4
11 Clock divided by 8

CME_A
FMPLL_0 clock monitor enable.
0 FMPLL_0 monitor disabled.
1 FMPLL_0 monitor enabled.
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Frequency Display Register (CMU_FDR)

         

         .

         

High Frequency Reference Register FMPLL (CMU_HFREFR)

         

         

Figure 34. Frequency Display Register (CMU_FDR)

Offset: 0x04 Access: Read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 FD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 44. CMU_FDR field descriptions

Field Description

FD

Measured frequency bits.

This register displays the measured frequency fx with respect to fFXOSC. The measured value is 
given by the following formula: fx = (fFXOSC × MD) / n, where n is the value in CMU_FDR register.

Note: x = FIRC or SIRC.

Figure 35. High Frequency Reference Register FMPLL (CMU_HFREFR)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
HFREF

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 45. CMU_HFREFR field descriptions

Field Description

HFREF
High Frequency reference value.

This field determines the high reference value for the FMPLL clock. The reference value is given 
by: (HFREF  16) × (fFIRC  4).
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Low Frequency Reference Register FMPLL (CMU_LFREFR)

         

         

         

Interrupt Status Register (CMU_ISR)

         

         

         

Figure 36. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
LFREF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 46. CMU_LFREFR field descriptions

Field Description

LFREF
Low Frequency reference value.

This field determines the low reference value for the FMPLL. The reference value is given by: 
(LFREF  16) × (fFIRC  4).

Figure 37. Interrupt status register (CMU_ISR)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0

F
H

H
I

F
LL

I

O
LR

I
W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 47. CMU_ISR field descriptions

Field Description

FHHI

FMPLL clock frequency higher than high reference interrupt.

This bit is set by hardware when fFMPLL_clk becomes higher than HFREF value and FMPLL_clk is 
‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No FHH event.
1 FHH event is pending.
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Measurement Duration Register (CMU_MDR)

         

         

         

         

         

FLLI

FMPLL clock frequency lower than low reference event.

This bit is set by hardware when fFMPLL_clk becomes lower than LFREF value and FMPLL_clk is ‘ON’ 
as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No FLL event.
1 FLL event is pending.

OLRI

Oscillator frequency lower than RC frequency event.

This bit is set by hardware when fFXOSC_clk is lower than FIRC_clk/2RCDIV frequency and FXOSC_clk 
is ‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No OLR event.
1 OLR event is pending.

Table 47. CMU_ISR field descriptions (continued)

Figure 38. Measurement Duration Register (CMU_MDR)

Offset: 0x18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
MD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 48. CMU_MDR field descriptions

Field Description

MD

Measurement duration bits.
This field displays the measurement duration in numbers of clock cycles of the selected clock 
source. This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the 
downcounter starts counting.
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7 Clock Generation Module (MC_CGM)

7.1 Introduction 
This document serves as the block guide for the Clock Generation Module (MC_CGM) 
which includes, but is not limited to, the funtionality, pin description, and registers of the 
MC_CGM module.

7.1.1 Overview

The clock generation module (MC_CGM) generates reference clocks for all the SoC blocks. 
The MC_CGM selects one of the system clock sources to supply the system clock. The 
MC_ME controls the system clock selection (see the MC_ME chapter for more details). A 
set of MC_CGM registers controls the clock dividers which are used for divided system and 
peripheral clock generation. The memory spaces of system and peripheral clock sources 
which have addressable memory spaces are accessed through the MC_CGM memory 
space. The MC_CGM also selects and generates an output clock.

Figure 39 depicts the MC_CGM block diagram.
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7.1.2 Features

The MC_CGM includes the following features:

● generates system and peripheral clocks

● selects and enables/disables the system clock supply from system clock sources 
according to MC_ME control

● contains a set of registers to control clock dividers for divided clock generation

● supports multiple clock sources and maps their address spaces to its memory map

● generates an output clock

● guarantees glitch-less clock transitions when changing the system clock selection

● supports 8, 16 and 32-bit wide read/write accesses

7.2 External Signal Description
The MC_CGM delivers an output clock to the PA[0] pin for off-chip use and/or observation.

7.3 Memory Map and Register Definition
         

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

Table 49. MC_CGM Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE
_0370

CGM_OC_EN Output Clock Enable word read read/write read/write
on page 7-

128

0xC3FE
_0374

CGM_OCDS_SC
Output Clock Division 
Select

byte read read/write read/write
on page 7-

128

0xC3FE
_0378

CGM_SC_SS
System Clock Select 
Status

byte read read read
on page 7-

129

0xC3FE
_037C

CGM_SC_DC0
System Clock Divider 
Configuration 0

byte read read/write read/write
on page 7-

130

0xC3FE
_037D

CGM_SC_DC1
System Clock Divider 
Configuration 1

byte read read/write read/write
on page 7-

130

0xC3FE
_037E

CGM_SC_DC2
System Clock Divider 
Configuration 2

byte read read/write read/write
on page 7-

130
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Table 50. MC_CGM Memory Map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_0000

…
0xC3FE
_001C

FXOSC registers

0xC3FE
_0020

…
0xC3FE
_003C

reserved

0xC3FE
_0040

…
0xC3FE
_005C

SXOSC registers

0xC3FE
_0060

…
0xC3FE
_007C

FIRC registers

0xC3FE
_0080

…
0xC3FE
_009C

SIRC registers

0xC3FE
_00A0

…
0xC3FE
_00BC

FMPLL registers

0xC3FE
_00C0

…
0xC3FE
_00DC

reserved

0xC3FE
_00E0

…
0xC3FE
_00FC

reserved

0xC3FE
_0100

…
0xC3FE
_011C

CMU registers
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0xC3FE
_0120

…
0xC3FE
_013C

reserved

0xC3FE
_0140

…
0xC3FE
_015C

reserved

0xC3FE
_0160

…
0xC3FE
_017C

reserved

0xC3FE
_0180

…
0xC3FE
_019C

reserved

0xC3FE
_01A0

…
0xC3FE
_01BC

reserved

0xC3FE
_01C0

…
0xC3FE
_01DC

reserved

0xC3FE
_01E0

…
0xC3FE
_01FC

reserved

0xC3FE
_0200

…
0xC3FE
_021C

reserved

0xC3FE
_0220

…
0xC3FE
_023C

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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0xC3FE
_0240

…
0xC3FE
_025C

reserved

0xC3FE
_0260

…
0xC3FD
_C27C

reserved

0xC3FE
_0280

…
0xC3FE
_029C

reserved

0xC3FE
_02A0

…
0xC3FE
_02BC

reserved

0xC3FE
_02C0

…
0xC3FE
_02DC

reserved

0xC3FE
_02E0

…
0xC3FE
_02FC

reserved

0xC3FE
_0300

…
0xC3FE
_031C

reserved

0xC3FE
_0320

…
0xC3FE
_033C

reserved

0xC3FE
_0340

…
0xC3FE
_035C

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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7.3.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes 
are ordered according to big endian. For example, the CGM_OC_EN register may be 
accessed as a word at address 0xC3FE_0370, as a half-word at address 0xC3FE_0372, or 
as a byte at address 0xC3FE_0373.

0xC3FE
_0360

…
0xC3FE
_036C

reserved

0xC3FE
_0370

CGM_OC_EN R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

0xC3FE
_0374

CGM_OCDS_
SC

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0378

CGM_SC_SS R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_037C

CGM_SC_DC
0…2

R

D
E

0 0 0 0
DIV0

D
E

1 0 0 0
DIV1

W

R

D
E

2 0 0 0
DIV2

0 0 0 0 0 0 0 0

W

0xC3FE
_0380

…
0xC3FE
_3FFC

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Output Clock Enable Register (CGM_OC_EN)

This register is used to enable and disable the output clock.

         

Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is 
divided before being delivered at the output clock.

Address 0xC3FE_0370 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40. Output Clock Enable Register (CGM_OC_EN)

Table 51. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

EN

Output Clock Enable control

0 Output Clock is disabled

1 Output Clock is enabled

Address 0xC3FE_0374 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 41. Output Clock Division Select Register (CGM_OCDS_SC)
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System Clock Select Status Register (CGM_SC_SS)

This register provides the current system clock source selection.

Table 52. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

SELDIV

Output Clock Division Select

00 output selected Output Clock without division
01 output selected Output Clock divided by 2
10 output selected Output Clock divided by 4
11 output selected Output Clock divided by 8

SELCTL

Output Clock Source Selection Control — This value selects the current source for the output clock.

0000 4-16 MHz ext. xtal osc.
0001 16 MHz int. RC osc.
0010 freq. mod. PLL
0011 system clock
0100 RTC clock
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Address 0xC3FE_0378 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42. System Clock Select Status Register (CGM_SC_SS)
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System Clock Divider Configuration Registers (CGM_SC_DC0…2)

         

These registers control the system clock dividers.

         

Table 53. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field Description

SELSTAT

System Clock Source Selection Status — This value indicates the current source for the system 
clock.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FE_037C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DE0

0 0 0
DIV0 DE1

0 0 0
DIV1

W

Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DE2

0 0 0
DIV2

0 0 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43. System Clock Divider Configuration Registers (CGM_SC_DC0…2)

Table 54. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions

Field Description

DE0
Divider 0 Enable
0 Disable system clock divider 0
1 Enable system clock divider 0

DIV0
Divider 0 Division Value — The resultant peripheral set 1 clock will have a period DIV0 + 1 times that of 
the system clock. If the DE0 is set to ‘0’ (Divider 0 is disabled), any write access to the DIV0 field is 
ignored and the peripheral set 1 clock remains disabled.

DE1
Divider 1 Enable

0 Disable system clock divider 1
1 Enable system clock divider 1
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7.4 Functional Description

7.4.1 System Clock Generation

Figure 44 shows the block diagram of the system clock generation logic. The MC_ME 
provides the system clock select and switch mask (see MC_ME chapter for more details), 
and the MC_RGM provides the safe clock request (see MC_RGM chapter for more details). 
The safe clock request forces the selector to select the 16 MHz int. RC osc. as the system 
clock and to ignore the system clock select.

DIV1
Divider 1 Division Value — The resultant peripheral set 2 clock will have a period DIV1 + 1 times that of 
the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is 
ignored and the peripheral set 2 clock remains disabled.

DE2
Divider 2 Enable
0 Disable system clock divider 2
1 Enable system clock divider 2

DIV2
Divider 2 Division Value — The resultant peripheral set 3 clock will have a period DIV2 + 1 times that of 
the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is 
ignored and the peripheral set 3 clock remains disabled.

Table 54. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions 

Field Description
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System Clock Source Selection

During normal operation, the system clock selection is controlled

● on a SAFE mode or reset event, by the MC_RGM

● otherwise, by the MC_ME

Figure 44. MC_CGM System Clock Generation Overview

4-16 MHz ext. xtal osc. 2
div. ext. xtal osc. 3

freq. mod. PLL 4

div. 16 MHz int. RC osc. 1

system clock

’0’

CGM_SC_SS Register

MC_RGM SAFE mode request

ME_<current mode>
_MC.SYSCLK

CGM_SC_DC0 Register

clock divider peripheral set 1 clock

CGM_SC_DC1 Register

clock divider peripheral set 2 clock

CGM_SC_DC2 Register

clock divider peripheral set 3 clock

system clock is disabled if 
ME_<current mode>_MC.SYSCLK = “1111”

“0000” 1

0

16 MHz int. RC osc. 0
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System Clock Disable

During the STOP0 and TEST modes, the system clock can be disabled by the MC_ME.

System Clock Dividers

The MC_CGM generates the following derived clocks from the system clock:

● peripheral set 1 clock - controlled by the CGM_SC_DC0 register

● peripheral set 2 clock - controlled by the CGM_SC_DC1 register

● peripheral set 3 clock - controlled by the CGM_SC_DC2 register

7.4.2 Dividers Functional Description

Dividers are used for the generation of divided system and peripheral clocks. The MC_CGM 
has the following control registers for built-in dividers:

● Section : System Clock Divider Configuration Registers (CGM_SC_DC0…2)

The reset value of all counters is ‘1’. If a divider has its DE bit in the respective configuration 
register set to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

7.4.3 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can 
then be used as output clock sources. The selection is done via the CGM_OCDS_SC 
register.

7.4.4 Output Clock Division Selection

The MC_CGM provides the following output signals for the output clock generation:

● PA[0] (see Figure 45). This signal is generated by using one of the 3-stage ripple 
counter outputs or the selected signal without division. The non-divided signal is not 
guaranteed to be 50% duty cycle by the MC_CGM.

Figure 45. MC_CGM Output Clock Multiplexer and PA[0] Generation

CGM_OCDS_SC.SELCTL 
CGM_OCDS_SC.SELDIV 

0

1

2

3

Register
Register

4-16 MHz ext. xtal osc. 0
16 MHz int. RC osc. 1

freq. mod. PLL 2
system clock 3

RTC clock 4

PA[0]

’0’

CGM_OC_EN Register 
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The MC_CGM also has an output clock enable register (see Section : Output Clock Enable 
Register (CGM_OC_EN)) which contains the output clock enable/disable control bit.
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8 Mode Entry Module (MC_ME)

8.1 Introduction

8.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states. 
It also contains configuration, control and status registers accessible for the application.

Figure 46 depicts the MC_ME block diagram.
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Platform Interface
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Figure 46. MC_ME Block Diagram
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8.1.2 Features

The MC_ME includes the following features:

● control of the available modes by the ME_ME register

● definition of various device mode configurations by the ME_<mode>_MC registers

● control of the actual device mode by the ME_MCTL register

● capture of the current mode and various resource status within the contents of the 
ME_GS register

● optional generation of various mode transition interrupts

● status bits for each cause of invalid mode transitions

● peripheral clock gating control based on the ME_RUN_PC0…7, ME_LP_PC0…7, and 
ME_PCTL0…143 registers

● capture of current peripheral clock gated/enabled status

8.1.3 Modes of Operation

The MC_ME is based on several device modes corresponding to different usage models of 
the device. Each mode is configurable and can define a policy for energy and processing 
power management to fit particular system requirements. An application can easily switch 
from one mode to another depending on the current needs of the system. The operating 
modes controlled by the MC_ME are divided into system and user modes. The system 
modes are modes such as RESET, DRUN, SAFE, and TEST. These modes aim to ease the 
configuration and monitoring of the system. The user modes are modes such as RUN0…3, 
HALT, STOP, and STANDBY which can be configured to meet the application requirements 
in terms of energy management and available processing power. The modes DRUN, SAFE, 
TEST, and RUN0…3 are the device software running modes.

Table 55 describes the MC_ME modes.

         

Table 55. MC_ME Mode Descriptions

Name Description Entry Exit

RESET This is a chip-wide virtual mode during which the application 
is not active. The system remains in this mode until all 
resources are available for the embedded software to take 
control of the device. It manages hardware initialization of 
chip configuration, voltage regulators, clock sources, and 
flash modules.

system reset 
assertion from 
MC_RGM

system reset 
deassertion from 
MC_RGM

DRUN This is the entry mode for the embedded software. It 
provides full accessibility to the system and enables the 
configuration of the system at startup. It provides the unique 
gate to enter user modes. BAM when present is executed in 
DRUN mode.

system reset 
deassertion from 
MC_RGM, software 
request from SAFE, 
TEST and 
RUN0…3, wakeup 
request from 
STANDBY

system reset 
assertion, 
RUN0…3, TEST, 
STANDBY via 
software, SAFE via 
software or 
hardware failure.

SAFE This is a chip-wide service mode which may be entered on 
the detection of a recoverable error. It forces the system into 
a pre-defined safe configuration from which the system may 
try to recover.

hardware failure, 
software request 
from DRUN, TEST, 
and RUN0…3

system reset 
assertion, DRUN 
via software
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8.2 External Signal Description
The MC_ME has no connections to any external pins.

8.3 Memory Map and Register Definition
The MC_ME contains registers for:

● mode selection and status reporting

● mode configuration

● mode transition interrupts status and mask control

● scalable number of peripheral sub-mode selection and status reporting

TEST This is a chip-wide service mode which is intended to 
provide a control environment for device software teting.

software request 
from DRUN

system reset 
assertion, DRUN 
via software

RUN0…3 These are software running modes where most processing 
activity is done. These various run modes allow to enable 
different clock & power configurations of the system with 
respect to each other.

software request 
from DRUN or other 
RUN0…3, interrupt 
event from HALT, 
interrupt or wakeup 
event from STOP

system reset 
assertion, SAFE via 
software or 
hardware failure, 
other RUN0…3 
modes, HALT, 
STOP, STANDBY 
via software

HALT This is a reduced-activity low-power mode during which the 
clock to the core is disabled. It can be configured to switch 
off analog peripherals like clock sources, flash, main 
regulator, etc. for efficient power management at the cost of 
higher wakeup latency.

software request 
from RUN0…3

system reset 
assertion, SAFE on 
hardware failure, 
RUN0…3 on 
interrupt event

STOP This is an advanced low-power mode during which the clock 
to the core is disabled. It may be configured to switch off 
most of the peripherals including clock sources for efficient 
power management at the cost of higher wakeup latency. 

software request 
from RUN0…3

system reset 
assertion, SAFE on 
hardware failure, 
RUN0…3 on 
interrupt event or 
wakeup event

STANDBY This is a reduced-leakage low-power mode during which 
power supply is cut off from most of the device. Wakeup 
from this mode takes a relatively long time, and content is 
lost or must be restored from backup.

software request 
from RUN0…3, 
DRUN modes

system reset 
assertion, DRUN on 
wakeup event

Table 55. MC_ME Mode Descriptions (continued)

Name Description Entry Exit
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8.3.1 Memory Map
         

Table 56. MC_ME Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FD_C000 ME_GS Global Status word read read read
on page 8-

146

0xC3FD_C004 ME_MCTL Mode Control word read read/write read/write
on page 8-

148

0xC3FD_C008 ME_ME Mode Enable word read read/write read/write
on page 8-

150

0xC3FD_C00C ME_IS Interrupt Status word read read/write read/write
on page 8-

151

0xC3FD_C010 ME_IM Interrupt Mask word read read/write read/write
on page 8-

152

0xC3FD_C014 ME_IMTS
Invalid Mode Transition 
Status

word read read/write read/write on page 8-
153

0xC3FD_C018 ME_DMTS
Debug Mode Transition 
Status

word read read read on page 8-
154

0xC3FD_C020 ME_RESET_MC
RESET Mode 
Configuration

word read read read
on page 8-

157

0xC3FD_C024 ME_TEST_MC
TEST Mode 
Configuration

word read read/write read/write
on page 8-

158

0xC3FD_C028 ME_SAFE_MC
SAFE Mode 
Configuration

word read read/write read/write
on page 8-

158

0xC3FD_C02C ME_DRUN_MC
DRUN Mode 
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C030 ME_RUN0_MC
RUN0 Mode 
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C034 ME_RUN1_MC
RUN1 Mode 
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C038 ME_RUN2_MC
RUN2 Mode 
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C03C ME_RUN3_MC
RUN3 Mode 
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C040 ME_HALT_MC
HALT Mode 
Configuration

word read read/write read/write
on page 8-

160

0xC3FD_C048 ME_STOP_MC
STOP Mode 
Configuration

word read read/write read/write
on page 8-

160

0xC3FD_C054 ME_STANDBY_MC
STANDBY Mode 
Configuration

word read read/write read/write
on page 8-

161

0xC3FD_C060 ME_PS0 Peripheral Status 0 word read read read
on page 8-

163
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0xC3FD_C064 ME_PS1 Peripheral Status 1 word read read read
on page 8-

163

0xC3FD_C068 ME_PS2 Peripheral Status 2 word read read read
on page 8-

164

0xC3FD_C06C ME_PS3 Peripheral Status 3 word read read read
on page 8-

164

0xC3FD_C080 ME_RUN_PC0
Run Peripheral 
Configuration 0

word read read/write read/write
on page 8-

165

0xC3FD_C084 ME_RUN_PC1
Run Peripheral 
Configuration 1

word read read/write read/write
on page 8-

165

…

0xC3FD_C09C ME_RUN_PC7
Run Peripheral 
Configuration 7

word read read/write read/write
on page 8-

165

0xC3FD_C0A0 ME_LP_PC0
Low-Power Peripheral 
Configuration 0

word read read/write read/write
on page 8-

166

0xC3FD_C0A4 ME_LP_PC1
Low-Power Peripheral 
Configuration 1

word read read/write read/write
on page 8-

166

…

0xC3FD_C0BC ME_LP_PC7
Low-Power Peripheral 
Configuration 7

word read read/write read/write
on page 8-

166

0xC3FD_C0C4 ME_PCTL4 DSPI0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0C5 ME_PCTL5 DSPI1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0D0 ME_PCTL16 FlexCAN0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0D7 ME_PCTL23 DMA_CH_MUX Control byte read read/write read/write
on page 8-

167

0xC3FD_C0E1 ME_PCTL33 ADC1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F0 ME_PCTL48 LINFlex0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F1 ME_PCTL49 LINFlex1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F2 ME_PCTL50 LINFlex2 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F9 ME_PCTL57 CTUL Control byte read read/write read/write
on page 8-

167

0xC3FD_C104 ME_PCTL68 SIUL Control byte read read/write read/write
on page 8-

167

Table 56. MC_ME Register Description (continued)

Address Name Description Size
Access

Location
User Supervisor Test
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Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

         

0xC3FD_C105 ME_PCTL69 WKPU Control byte read read/write read/write
on page 8-

167

0xC3FD_C108 ME_PCTL72 eMIOS0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C11B ME_PCTL91 RTC_API Control byte read read/write read/write
on page 8-

167

0xC3FD_C11C ME_PCTL92 PIT_RTI Control byte read read/write read/write
on page 8-

167

0xC3FD_C128 ME_PCTL104 CMU Control byte read read/write read/write
on page 8-

167

Table 56. MC_ME Register Description (continued)

Address Name Description Size
Access

Location
User Supervisor Test

Table 57. MC_ME Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FD_
C000

ME_GS

R S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

R 0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

0xC3FD_
C004

ME_MCTL R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

0xC3FD_
C008

ME_ME R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

141/868 Doc ID 16886 Rev 6



RM0045 Mode Entry Module (MC_ME)
0xC3FD_
C00C

ME_IS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

0xC3FD_
C010

ME_IM R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

0xC3FD_
C014

ME_IMTS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

0xC3FD_
C018

ME_DMTS

R PREVIOUS_MODE 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

R 0

V
R

E
G

_C
S

R
C

_S
C

C
S

R
C

_C
S

R
C

_S
C

F
IR

C
_S

C

S
C

S
R

C
_S

C

S
Y

S
C

LK
_S

W

D
F

LA
S

H
_S

C

C
F

LA
S

H
_S

C

C
D

P
_P

R
P

H
_0

_1
43

0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

0xC3FD_
C01C

reserved

0xC3FD_
C020

ME_RESET
_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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0xC3FD_
C024

ME_TEST_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD_
C028

ME_SAFE_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C02C

ME_DRUN_
MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N
SYSCLK

W

0xC3FD_
C030

…
0xC3FD_

C03C

ME_RUN0
…3_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C040

ME_HALT_
MC

R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD_
C044

reserved

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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0xC3FD_
C048

ME_STOP_
MC

R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C04C

…
0xC3FD_

C050

reserved

0xC3FD_
C054

ME_STAND
BY_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

0xC3FD_
C058

…
0xC3FD_

C05C

reserved

0xC3FD_
C060

ME_PS0

R 0 0 0 0 0 0 0 0

S
_D

M
A

_C
H

_M
U

X

0 0 0 0 0 0

S
_F

le
xC

A
N

0

W

R 0 0 0 0 0 0 0 0 0 0

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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0xC3FD_
C064

ME_PS1

R 0 0 0 0 0 0

S
_C

T
U

L

0 0 0 0 0 0

S
_L

IN
F

le
x2

S
_L

IN
F

le
x1

S
_L

IN
F

le
x0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

1

0

W

0xC3FD_
C068

ME_PS2

R 0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

_A
P

I

0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

0xC3FD_
C06C

ME_PS3 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

0xC3FD_
C070

reserved

0xC3FD_
C074

…
0xC3FD_

C07C

reserved

0xC3FD_
C080

…
0xC3FD_

C09C

ME_RUN_P
C0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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8.3.2 Register Description

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 
8-bit bytes. The bytes are ordered according to big endian. For example, the ME_RUN_PC0 
register may be accessed as a word at address 0xC3FD_C080, as a half-word at address 
0xC3FD_C082, or as a byte at address 0xC3FD_C083.

Global Status Register (ME_GS)

         

0xC3FD_
C0A0

…
0xC3FD_

C0BC

ME_LP_PC
0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P 0

H
A

LT

0 0 0 0 0 0 0 0

W

0xC3FD_
C0C0

…
0xC3FD_

C14C

ME_PCTL0
…143

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

R 0
D

B
G

_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

0xC3FD_
C150

…
0xC3FD_

FFFC

reserved

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 47. Global Status Register (ME_GS)

Address 0xC3FD_C000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

Reset 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
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This register contains global mode status.

         

Table 58. Global Status Register (ME_GS) Field Descriptions

Field Description

S_CURRENT
_MODE

Current device mode status
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

S_MTRANS
Mode transition status
0 Mode transition process is not active
1 Mode transition is ongoing

S_DC

Device current consumption status
0 Device consumption is low enough to allow powering down of main voltage regulator
1 Device consumption requires main voltage regulator to remain powered regardless of mode 

configuration

S_PDO

Output power-down status — This bit specifies output power-down status of I/Os. This bit is 
asserted whenever outputs of pads are forced to high impedance state or the pads power sequence 
driver is switched off.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and the pads power 

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power 
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode, the 
power sequence driver and all pads except those mapped on wakeup lines are not powered and 
therefore high impedance. Wakeup lines configuration remains unchanged

S_MVR
Main voltage regulator status
0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA

Data flash availability status
00 Data flash is not available
01 Data flash is in power-down mode
10 Data flash is not available
11 Data flash is in normal mode and available for use

S_CFLA

Code flash availability status
00 Code flash is not available
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode and available for use
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Mode Control Register (ME_MCTL)

         

This register is used to trigger software-controlled mode changes. Depending on the modes 
as enabled by ME_ME register bits, configurations corresponding to unavailable modes are 

S_FMPLL
frequency modulated phase locked loop status
0 frequency modulated phase locked loop is not stable
1 frequency modulated phase locked loop is providing a stable clock

S_FXOSC
fast external crystal oscillator (4-16 MHz) status
0 fast external crystal oscillator (4-16 MHz) is not stable
1 fast external crystal oscillator (4-16 MHz) is providing a stable clock

S_FIRC
fast internal RC oscillator (16 MHz) status
0 fast internal RC oscillator (16 MHz) is not stable
1 fast internal RC oscillator (16 MHz) is providing a stable clock

S_SYSCLK

System clock switch status — These bits specify the system clock currently used by the system.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Table 58. Global Status Register (ME_GS) Field Descriptions (continued)

Field Description

Figure 48. Mode Control Register (ME_MCTL)

Address 0xC3FD_C004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
Doc ID 16886 Rev 6 148/868



Mode Entry Module (MC_ME) RM0045
reserved and access to ME_<mode>_MC registers must respect this for successful mode 
requests.

Note: Byte and half-word write accesses are not allowed for this register as a predefined key is 
required to change its value.

         

Table 59. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

TARGET_MODE

Target device mode — These bits provide the target device mode to be entered by software 
programming. The mechanism to enter into any mode by software requires the write operation 
twice: first time with key, and second time with inverted key. These bits are automatically updated 
by hardware while entering SAFE on hardware request. Also, while exiting from the HALT and 
STOP modes on hardware exit events, these are updated with the appropriate RUN0…3 mode 
value.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

KEY

Control key — These bits enable write access to this register. Any write access to the register 
with a value different from the keys is ignored. Read access will always return inverted key.

KEY:0101101011110000 (0x5AF0)
INVERTED KEY:1010010100001111 (0xA50F)
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Mode Enable Register (ME_ME)

         

This register allows a way to disable the device modes which are not required for a given 
device. RESET, SAFE, DRUN, and RUN0 modes are always enabled.

         

Figure 49. Mode Enable Register (ME_ME)

Address 0xC3FD_C008 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
TA

N
D

B
Y

0 0
S

TO
P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Table 60. Mode Enable Register (ME_ME) Field Descriptions

Field Description

STANDBY
STANDBY mode enable
0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP
STOP mode enable
0 STOP mode is disabled
1 STOP mode is enabled

HALT
HALT mode enable
0 HALT mode is disabled
1 HALT mode is enabled

RUN3
RUN3 mode enable
0 RUN3 mode is disabled
1 RUN3 mode is enabled

RUN2
RUN2 mode enable
0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1
RUN1 mode enable
0 RUN1 mode is disabled
1 RUN1 mode is enabled

RUN0
RUN0 mode enable
0 RUN0 mode is disabled
1 RUN0 mode is enabled
Doc ID 16886 Rev 6 150/868



Mode Entry Module (MC_ME) RM0045
Interrupt Status Register (ME_IS)

         

This register provides the current interrupt status.

DRUN
DRUN mode enable
0 DRUN mode is disabled
1 DRUN mode is enabled

SAFE
SAFE mode enable
0 SAFE mode is disabled
1 SAFE mode is enabled

TEST
TEST mode enable
0 TEST mode is disabled
1 TEST mode is enabled

RESET
RESET mode enable
0 RESET mode is disabled
1 RESET mode is enabled

Table 60. Mode Enable Register (ME_ME) Field Descriptions (continued)

Field Description

Figure 50. Interrupt Status Register (ME_IS)

Address 0xC3FD_C00C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Interrupt Mask Register (ME_IM)

         

This register controls whether an event generates an interrupt or not.

Table 61. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

I_ICONF

Invalid mode configuration interrupt — This bit is set whenever a write operation to 
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’ 
to this bit.

0 No invalid mode configuration interrupt occurred
1 Invalid mode configuration interrupt is pending

I_IMODE

Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is 
cleared by writing a ‘1’ to this bit.
0 No invalid mode interrupt occurred
1 Invalid mode interrupt is pending

I_SAFE

SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware 
requests generated in the system. It is cleared by writing a ‘1’ to this bit.

0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending

I_MTC

Mode transition complete interrupt — This bit is set whenever the mode transition process 
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode 
transition interrupt bit will not be set while entering low-power modes HALT, STOP, or STANDBY.

0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

Figure 51. Interrupt Mask Register (ME_IM)

Address 0xC3FD_C010 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Invalid Mode Transition Status Register (ME_IMTS)

         

This register provides the status bits for the possible causes of an invalid mode interrupt.

         

Table 62. Interrupt Mask Register (ME_IM) Field Descriptions

Field Description

M_ICONF
Invalid mode configuration interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_IMODE
Invalid mode interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_SAFE
SAFE mode interrupt mask
0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled

M_MTC
Mode transition complete interrupt mask
0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled

Figure 52. Invalid Mode Transition Status Register (ME_IMTS)

Address 0xC3FD_C014 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions

Field Description

S_MTI

Mode Transition Illegal status — This bit is set whenever a new mode is requested while some 
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5 Mode 
Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal

S_MRI

Mode Request Illegal status — This bit is set whenever the target mode requested is not a valid 
mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode
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Debug Mode Transition Status Register (ME_DMTS)

         

This register provides the status of different factors which influence mode transitions. It is 
used to give an indication of why a mode transition indicated by ME_GS.S_MTRANS may 
be taking longer than expected.

Note: The ME_DMTS register does not indicate whether a mode transition is ongoing. Therefore, 
some ME_DMTS bits may still be asserted after the mode transition has completed.

S_DMA

Disabled Mode Access status — This bit is set whenever the target mode requested is one of those 
disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode

S_NMA

Non-existing Mode Access status — This bit is set whenever the target mode requested is one of 
those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode

S_SEA

SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit is 
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to 
this bit.

0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending

Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions (continued)

Field Description

Figure 53. Debug Mode Transition Status Register (ME_DMTS)

Address 0xC3FD_C018 Access: User read, Supervisor read/write, Test read/write
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Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

PREVIOUS_MODE

Previous device mode — These bits show the mode in which the device was prior to the 
latest change to the current mode.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

MPH_BUSY

MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested 
a mode change from the MC_PCU and the MC_PCU has not yet responded. It is cleared 
when the MC_PCU has responded.

0 Handshake is not busy
1 Handshake is busy

PMC_PROG

MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the 
process of powering up or down power domains. It is cleared when all power-up/down 
processes have completed.

0 Power-up/down transition is not in progress
1 Power-up/down transition is in progress

CORE_DBG

Processor is in Debug mode indicator — This bit is set while the processor is in debug 
mode.

0 The processor is not in debug mode
1 The processor is in debug mode

SMR

SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE 
mode request has been triggered. It is cleared when the hardware SAFE mode request has 
been cleared.

0 A SAFE mode request is not active
1 A SAFE mode request is active

VREG_CSRC_SC

Main VREG dependent Clock Source State Change during mode transition indicator — This 
bit is set when a clock source which depends on the main voltage regulator to be powered-
up is requested to change its power up/down state. It is cleared when the clock source has 
completed its state change.
0 No state change is taking place
1 A state change is taking place

CSRC_CSRC_SC

(Other) Clock Source dependent Clock Source State Change during mode transition 
indicator — This bit is set when a clock source which depends on another clock source to 
be powered-up is requested to change its power up/down state. It is cleared when the clock 
source has completed its state change.

0 No state change is taking place
1 A state change is taking place
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FIRC_SC

FIRC State Change during mode transition indicator — This bit is set when the fast internal 
RC oscillator (16 MHz) is requested to change its power up/down state. It is cleared when 
the fast internal RC oscillator (16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place

SYSCLK_SW
System Clock Switching pending status — 

0 No system clock source switching is pending
1 A system clock source switching is pending

DFLASH_SC

DFLASH State Change during mode transition indicator — This bit is set when the DFLASH 
is requested to change its power up/down state. It is cleared when the DFLASH has 
completed its state change.

0 No state change is taking place
1 A state change is taking place

CFLASH_SC

CFLASH State Change during mode transition indicator — This bit is set when the CFLASH 
is requested to change its power up/down state. It is cleared when the DFLASH has 
completed its state change.

0 No state change is taking place
1 A state change is taking place

CDP_PRPH_0_143

Clock Disable Process Pending status for Peripherals 0…143 — This bit is set when any 
peripheral has been requested to have its clock disabled. It is cleared when all the 
peripherals which have been requested to have their clocks disabled have entered the state 
in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_96_127

Clock Disable Process Pending status for Peripherals 96…127 — This bit is set when any 
peripheral appearing in ME_PS3 has been requested to have its clock disabled. It is cleared 
when all these peripherals which have been requested to have their clocks disabled have 
entered the state in which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_64_95

Clock Disable Process Pending status for Peripherals 64…95 — This bit is set when any 
peripheral appearing in ME_PS2 has been requested to have its clock disabled. It is cleared 
when all these peripherals which have been requested to have their clocks disabled have 
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description
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RESET Mode Configuration Register (ME_RESET_MC)

         

This register configures system behavior during RESET mode. Please refer to Table 65 for 
details.

CDP_PRPH_32_63

Clock Disable Process Pending status for Peripherals 32…63 — This bit is set when any 
peripheral appearing in ME_PS1 has been requested to have its clock disabled. It is cleared 
when all these peripherals which have been requested to have their clocks disabled have 
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_0_31

Clock Disable Process Pending status for Peripherals 0…31 — This bit is set when any 
peripheral appearing in ME_PS0 has been requested to have its clock disabled. It is cleared 
when all these peripherals which have been requested to have their clocks disabled have 
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description

Figure 54. RESET Mode Configuration Register (ME_RESET_MC)

Address 0xC3FD_C020 Access: User read, Supervisor read/write, Test read/write
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TEST Mode Configuration Register (ME_TEST_MC)

         

This register configures system behavior during TEST mode. Please see Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

SAFE Mode Configuration Register (ME_SAFE_MC)

         

This register configures system behavior during SAFE mode. Please see Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

Figure 55. TEST Mode Configuration Register (ME_TEST_MC)

Address 0xC3FD_C024 Access: User read, Supervisor read/write, Test read/write
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Figure 56. SAFE Mode Configuration Register (ME_SAFE_MC)

Address 0xC3FD_C028 Access: User read, Supervisor read/write, Test read/write
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DRUN Mode Configuration Register (ME_DRUN_MC)

         

This register configures system behavior during DRUN mode. Please see Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

Note: The clock source and flash configuration values are retained through STANDBY mode.

RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

         

This register configures system behavior during RUN0…3 modes. Please see Table 65 for 
details.

Figure 57. DRUN Mode Configuration Register (ME_DRUN_MC)

Address 0xC3FD_C02C Access: User read, Supervisor read/write, Test read/write
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Figure 58. RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

Address 0xC3FD_C030 - 0xC3FD_C03C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Note: Byte write accesses are not allowed to this register.

HALT Mode Configuration Register (ME_HALT_MC)

         

This register configures system behavior during HALT mode. Please refer to Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

STOP Mode Configuration Register (ME_STOP_MC)

         

This register configures system behavior during STOP mode. Please refer to Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

Figure 59. HALT Mode Configuration Register (ME_HALT_MC)

Address 0xC3FD_C040 Access: User read, Supervisor read/write, Test read/write
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Figure 60. STOP Mode Configuration Register (ME_STOP_MC)

Address 0xC3FD_C048 Access: User read, Supervisor read/write, Test read/write
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STANDBY Mode Configuration Register (ME_STANDBY_MC)

         

This register configures system behavior during STANDBY mode. Please see Table 65 for 
details.

Note: Byte write accesses are not allowed to this register.

         

Figure 61. STANDBY Mode Configuration Register (ME_STANDBY_MC)

Address 0xC3FD_C054 Access: User read, Supervisor read/write, Test read/write
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Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions

Field Description

PDO

I/O output power-down control — This bit controls the output power-down of I/Os.

0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power 

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power 
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode, 
power sequence driver and all pads except those mapped on wakeup lines are not powered and 
therefore high impedance. Wakeup line configuration remains unchanged

MVRON

Main voltage regulator control — This bit specifies whether main voltage regulator is switched off 
or not while entering this mode.

0 Main voltage regulator is switched off
1 Main voltage regulator is switched on

DFLAON Data flash power-down control — This bit specifies the operating mode of the data flash after 
entering this mode.

00 reserved
01 Data flash is in power-down mode
10 reserved
11 Data flash is in normal mode
Note: If the flash memory is to be powered down in any mode, then your software must ensure that 

reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.6, 
Functional Event Short Sequence Register (RGM_FESS)).
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CFLAON Code flash power-down control — This bit specifies the operating mode of the code flash after 
entering this mode.

00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode

FMPLLON
frequency modulated phase locked loop control
0 frequency modulated phase locked loop is switched off
1 frequency modulated phase locked loop is switched on

FXOSCON
fast external crystal oscillator (4-16 MHz) control
0 fast external crystal oscillator (4-16 MHz) is switched off
1 fast external crystal oscillator (4-16 MHz) is switched on

FIRCON
fast internal RC oscillator (16 MHz) control
0 fast internal RC oscillator (16 MHz) is switched off
1 fast internal RC oscillator (16 MHz) is switched on

SYSCLK

System clock switch control — These bits specify the system clock to be used by the system.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled in STOP and TEST modes, reserved in all other modes

Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions (continued)

Field Description
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Peripheral Status Register 0 (ME_PS0)

         

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 1 (ME_PS1)

         

This register provides the status of the peripherals. Please see Table 66 for details.

Figure 62. Peripheral Status Register 0 (ME_PS0)

Address 0xC3FD_C060 Access: User read, Supervisor read, Test read
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Figure 63. Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C064 Access: User read, Supervisor read, Test read
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Peripheral Status Register 2 (ME_PS2)

         

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 3 (ME_PS3)

         

This register provides the status of the peripherals. Please see Table 66 for details.

Figure 64. Peripheral Status Register 2 (ME_PS2)

Address 0xC3FD_C068 Access: User read, Supervisor read, Test read
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Figure 65. Peripheral Status Register 3 (ME_PS3)

Address 0xC3FD_C06C Access: User read, Supervisor read, Test read
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Run Peripheral Configuration Registers (ME_RUN_PC0…7)

         

These registers configure eight different types of peripheral behavior during run modes.

         

         

Table 66. Peripheral Status Registers 0…4 (ME_PS0…4) Field Descriptions

Field Description

S_<periph>

Peripheral status — These bits specify the current status of the peripherals in the system. If no 
peripheral is mapped on a particular position (i.e., the corresponding MODS bit is ‘0’), the 
corresponding bit is always read as ‘0’.

0 Peripheral is frozen
1 Peripheral is active

Figure 66. Run Peripheral Configuration Registers (ME_RUN_PC0…7)

Address 0xC3FD_C080 - 0xC3FD_C09C Access: User read, Supervisor read/write, Test read/write
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Table 67. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions

Field Description

RUN3
Peripheral control during RUN3
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2
Peripheral control during RUN2

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1
Peripheral control during RUN1
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN0
Peripheral control during RUN0

0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN
Peripheral control during DRUN

0 Peripheral is frozen with clock gated
1 Peripheral is active
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Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

         

These registers configure eight different types of peripheral behavior during non-run modes.

         

SAFE
Peripheral control during SAFE

0 Peripheral is frozen with clock gated
1 Peripheral is active

TEST
Peripheral control during TEST

0 Peripheral is frozen with clock gated
1 Peripheral is active

RESET
Peripheral control during RESET
0 Peripheral is frozen with clock gated
1 Peripheral is active

Table 67. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions 

Field Description

Figure 67. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

Address 0xC3FD_C0A0 - 0xC3FD_C0BC Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 68. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) Field Descriptions

Field Description

STANDBY
Peripheral control during STANDBY
0 Peripheral is frozen with clock gated
1 Peripheral is active

STOP
Peripheral control during STOP

0 Peripheral is frozen with clock gated
1 Peripheral is active

HALT
Peripheral control during HALT

0 Peripheral is frozen with clock gated
1 Peripheral is active
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Peripheral Control Registers (ME_PCTL0…143)

         

These registers select the configurations during run and non-run modes for each peripheral.

         

         

Figure 68. Peripheral Control Registers (ME_PCTL0…143)

Address 0xC3FD_C0C0 - 0xC3FD_C14F Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R 0
DBG_F LP_CFG RUN_CFG

W

Reset 0 0 0 0 0 0 0 0

Table 69. Peripheral Control Registers (ME_PCTL0…143) Field Descriptions

Field Description

DBG_F

Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode

0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode
1 Peripheral is frozen if not already frozen in device modes.
Note: This feature is useful to freeze the peripheral state while entering debug. For example, this 

may be used to prevent a reference timer from running while making a debug accesses.

LP_CFG

Peripheral configuration select for non-run modes — These bits associate a configuration as 
defined in the ME_LP_PC0…7 registers to the peripheral.

000 Selects ME_LP_PC0 configuration
001 Selects ME_LP_PC1 configuration
010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PC5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG

Peripheral configuration select for run modes — These bits associate a configuration as defined 
in the ME_RUN_PC0…7 registers to the peripheral.
000 Selects ME_RUN_PC0 configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

Table 70. Peripheral control registers by peripheral

Peripheral ME_PCTLn

DSPI_0 4

DSPI_1 5

FlexCAN_0 16

DMA_MUX 23
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8.4 Functional Description

8.4.1 Mode Transition Request

The transition from one mode to another mode is normally handled by software by 
accessing the mode control register ME_MCTL. But the in case of special events, the mode 
transition can be automatically managed by hardware. In order to switch from one mode to 
another, the application should access the ME_MCTL register twice by writing 

● the first time with the value of the key (0x5AF0) into the KEY bit field and the required 
target mode into the TARGET_MODE bit field,

● and the second time with the inverted value of the key (0xA50F) into the KEY bit field 
and the required target mode into the TARGET_MODE bit field.

Once a valid mode transition request is detected, the target mode configuration information 
is loaded from the corresponding ME_<mode>_MC register. The mode transition request 
may require a number of cycles depending on the programmed configuration, and software 
should check the S_CURRENT_MODE bit field and the S_MTRANS bit of the global status 
register ME_GS to verify when the mode has been correctly entered and the transition 
process has completed. For a description of valid mode requests, please refer to 
Section 8.4.5 Mode Transition Interrupts.

Any modification of the mode configuration register of the currently selected mode will not 
be taken into account immediately but on the next request to enter this mode. This means 
that transition requests such as RUN0…3  RUN0…3, DRUN  DRUN, SAFE  SAFE, 
and TEST  TEST are considered valid mode transition requests. As soon as the mode 
request is accepted as valid, the S_MTRANS bit is set till the status in the ME_GS register 
matches the configuration programmed in the respective ME_<mode>_MC register.

Note: It is recommended that software poll the S_MTRANS bit in the ME_GS register after 
requesting a transition to HALT, STOP, or STANDBY modes.

ADC_1 33

I2C 44

LINFlex_0 48

LINFlex_1 49

LINFlex_2 50

CTU 57

CAN sampler 60

SIUL 68

WKPU 69

eMIOS_0 72

RTC/API 91

PIT 92

CMU 104

Table 70. Peripheral control registers by peripheral (continued)

Peripheral ME_PCTLn
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8.4.2 Modes Details

RESET Mode

The device enters this mode on the following events:

● from SAFE, DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the 
ME_MCTL register is written with “0000”

● from any mode due to a system reset by the MC_RGM because of some non-
recoverable hardware failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset 
sequence is finished. The mode configuration information for this mode is provided by the 
ME_RESET_MC register. This mode has a pre-defined configuration, and the 16 MHz int. 
RC osc. is selected as the system clock. All power domains are made active in this mode.

SAFE

DRUN

TEST

RESET

RUN0

RUN1

HALT

STOP

SYSTEM MODES USER MODES

software
request

non-recoverable
failure

RUN2

RUN3

recoverable
hardware failure

Figure 69. MC_ME Mode Diagram

         

STANDBY
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DRUN Mode

The device enters this mode on the following events:

● automatically from RESET mode after completion of the reset sequence

● from RUN0…3, SAFE, or TEST mode when the TARGET_MODE bit field of the 
ME_MCTL register is written with “0011” 

● from the STANDBY mode after an external wakeup event or internal wakeup alarm 
(e.g., RTC/API event)

As soon as any of the above events has occurred, a DRUN mode transition request is 
generated. The mode configuration information for this mode is provided by the 
ME_DRUN_MC register. In this mode, the flashes, all clock sources, and the system clock 
configuration can be controlled by software as required. After system reset, the software 
execution starts with the default configuration selecting the 16 MHz int. RC osc. as the 
system clock.

This mode is intended to be used by software

● to initialize all registers as per the system needs

● to execute small routines in a ‘ping-pong’ with the STANDBY mode

When this mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC 
register content is restored to its pre-STANDBY values, and the mode starts in that 
configuration.

All power domains are active when this mode is entered due to a system reset sequence 
initiated by a destructive reset event. the exit from STANDBY after a wakeup event,

Note: Software must ensure that the code executes from RAM before changing to this mode if the 
flashes are configured to be in the low-power or power-down state in this mode.

SAFE Mode

The device enters this mode on the following events:

● from DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the 
ME_MCTL register is written with “0010”

● from any mode except RESET due to a SAFE mode request generated by the 
MC_RGM because of some potentially recoverable hardware failure in the system (see 
the MC_RGM chapter for details)

As soon as any of the above events has occurred, a SAFE mode transition request is 
generated. The mode configuration information for this mode is provided by the 
ME_SAFE_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC 
osc. is selected as the system clock. All power domains are made active in this mode.

If the SAFE mode is requested by software while some other mode transition process is 
ongoing, the new target mode becomes the SAFE mode regardless of other pending 
requests or new requests during the mode transition. No new mode request made during a 
transition to the SAFE mode will cause an invalid mode interrupt.

Note: If software requests to change to the SAFE mode and then requests to change back to the 
parent mode before the mode transition is completed, the device’s final mode after mode 
transition will be the SAFE mode.

As long as a SAFE event is active, the system remains in the SAFE mode, and any software 
mode request during this time is ignored and lost.
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This mode is intended to be used by software

● to assess the severity of the cause of failure and then to either

– re-initialize the device via the DRUN mode, or

– completely reset the device via the RESET mode.

If the outputs of the system I/Os need to be forced to a high impedance state upon entering 
this mode, the PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’ 
power sequence driver cell is also disabled. The input levels remain unchanged.

TEST Mode

The device enters this mode on the following events:

● from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is 
written with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is 
generated. The mode configuration information for this mode is provided by the 
ME_TEST_MC register. Except for the main voltage regulator, all resources of the system 
are configurable in this mode. The system clock to the whole system can be stopped by 
programming the SYSCLK bit field to “1111”, and in this case, the only way to exit this mode 
is via a device reset.

This mode is intended to be used by software

● to execute software test routines

Note: Software must ensure that the code executes from RAM before changing to this mode if the 
flashes are configured to be in the low-power or power-down state in this mode.

RUN0…3 Modes

The device enters one of these modes on the following events:

● from the DRUN, SAFE, or another RUN0…3 mode when the TARGET_MODE bit field 
of the ME_MCTL register is written with “0100…0111”

● from the HALT mode due to an interrupt event

● from the STOP mode due to an interrupt or wakeup event

As soon as any of the above events has occurred, a RUN0…3 mode transition request is 
generated. The mode configuration information for these modes is provided by the 
ME_RUN0…3_MC registers. In these modes, the flashes, all clock sources, and the system 
clock configuration can be controlled by software as required.

These modes are intended to be used by software

● to execute application routines

Note: Software must ensure that the code executes from RAM before changing to this mode if the 
flashes are configured to be in the low-power or power-down state in this mode.

HALT Mode

The device enters this mode on the following events:

● from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL 
register is written with “1000”.

As soon as any of the above events has occurred, a HALT mode transition request is 
generated. The mode configuration information for this mode is provided by ME_HALT_MC 
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register. This mode is quite configurable, and the ME_HALT_MC register should be 
programmed according to the system needs. The main voltage regulator and the flashes 
can be put in low-power or power-down mode as needed. If there is a HALT mode request 
while an interrupt request is active, the transition to HALT is aborted with the resultant mode 
being the current mode, SAFE (on SAFE mode request), or DRUN (on reset), and an invalid 
mode interrupt is not generated.

This mode is intended as a first-level low-power mode with

● the core clock frozen

● only a few peripherals running

and to be used by software

● to wait until it is required to do something and then to react quickly (i.e., within a few 
system clock cycles of an interrupt event)

STOP Mode

The device enters this mode on the following events:

● from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL 
register is written with “1010”.

As soon as any of the above events has occurred, a STOP mode transition request is 
generated. The mode configuration information for this mode is provided by the 
ME_STOP_MC register. This mode is fully configurable, and the ME_STOP_MC register 
should be programmed according to the system needs.

The main voltage regulator and the flashes can be put in power-down mode as needed. If 
there is a STOP mode request while any interrupt or wakeup event is active, the transition to 
STOP is aborted with the resultant mode being the current mode, SAFE (on SAFE mode 
request), or DRUN (on reset), and an invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all 
peripherals stopped.

This mode is intended as an advanced low-power mode with

● the system clock frozen

● almost all peripherals stopped

and to be used by software

● to wait until it is required to do something with no need to react quickly (e.g., allow for 
system clock source to be re-started)

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the 
PDO bit of the ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources and thus preserve the device status. When 
exiting the STOP mode, the fast internal RC oscillator (16 MHz) clock is selected as the 
system clock until the target clock is available.

STANDBY Mode

The device enters this mode on the following events:

● from the DRUN or one of the RUN0…3 modes when the TARGET_MODE bit field of 
the ME_MCTL register is written with “1101”.
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As soon as any of the above events occur, a STANDBY mode transition request is 
generated. The mode configuration information for this mode is provided by the 
ME_STANDBY_MC register. In this mode, the power supply is turned off for most of the 
device. The only parts of the device that are still powered during this mode are pads 
mapped on wakeup lines and power domain #0 which contains the MC_RGM, MC_PCU, 
WKPU, 8K RAM, RTC_API, SIRC, FIRC, and device and user option bits. The FIRC can be 
optionally switched off. This is the lowest power consumption mode possible on the device.

This mode is intended as an extreme low-power mode with

● the core, the flashes, and almost all peripherals and memories powered down

and to be used by software

● to wait until it is required to do something with no need to react quickly (i.e., allow for 
system power-up and system clock source to be re-started)

The exit sequence of this mode is similar to the reset sequence. However, in addition to 
booting from the default location, the device can also be configured to boot from the backup 
RAM (see the RGM_STDBY register description in the MC_RGM chapter for details). In the 
case of booting from backup RAM, it is also possible to keep the flashes disabled by writing 
“01” to the CFLAON and DFLAON fileds in the ME_DRUN_MC register prior to STANDBY 
entry.

If there is a STANDBY mode request while any wakeup event is active, the device mode 
does not change.

All power domains except power domain #0 are configurable in this mode in order to reduce 
leakage consumption.

8.4.3 Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner 
depending on the current device mode and the requested target mode. In many cases of 
mode transition, not all steps need to be executed based on the mode control information, 
and some steps may not be applicable according to the mode definition itself.

Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys. 
This mode transition request by software must be a valid request satisfying a set of pre-
defined rules to initiate the process. If the request fails to satisfy these rules, it is ignored, 
and the TARGET_MODE bit field is not updated. An optional interrupt can be generated for 
invalid mode requests. Refer to Section 8.4.5 Mode Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a 
SAFE mode request, or interrupt requests and wakeup events to exit from low-power 
modes, the TARGET_MODE bit field of the ME_MCTL register is automatically updated with 
the appropriate target mode. The mode change process start is indicated by the setting of 
the mode transition status bit S_MTRANS of the ME_GS register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which 
generates a global system reset and initiates the reset sequence. The RESET mode 
request has the highest priority, and the MC_ME is kept in the RESET mode during the 
entire reset sequence. 

The SAFE mode request has the next highest priority after reset. It can be generated either 
by software via the ME_MCTL register from all software running modes including DRUN, 
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RUN0…3, and TEST or by the MC_RGM after the detection of system hardware failures, 
which may occur in any mode.

Target Mode Configuration Loading

On completion of the Target Mode Request step, the target mode configuration from the 
ME_<target mode>_MC register is loaded to start the resources (voltage sources, clock 
sources, flashes, pads, etc.) control process.

An overview of resource control possibilities for each mode is shown in Table 71. A ‘’ 
indicates that a given resource is configurable for a given mode.

         

Peripheral Clocks Disable

On completion of the Target Mode Request step, the MC_ME requests each peripheral to 
enter its stop mode when:

● the peripheral is configured to be disabled via the target mode, the peripheral 
configuration registers ME_RUN_PC0…7 and ME_LP_PC0…7, and the peripheral 
control registers ME_PCTL0…143

Caution: The MC_ME does not automatically request peripherals to enter their stop modes if the 
power domains in which they are residing are to be turned off due to a mode change. 
Therefore, it is software’s responsibility to ensure that those peripherals that are to be 
powered down are configured in the MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The 
MC_ME then disables the corresponding clock(s) to this peripheral.

Table 71. MC_ME Resource Control Overview

Resource
Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

FIRC
   

on on on on on on on on

FXOSC
    

off off off off off off off off

FMPLL
   

off off off off off off off off

CFLASH

    

normal normal normal normal normal low-power
power-
down

power-
down

DFLASH

    

normal normal normal normal normal low-power
power-
down

power-
down

MVREG
 

on on on on on on on off

PDO
  

off off on off off off off on
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In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals 
to acknowledge the stop requests. The SAFE mode clock gating configuration is applied 
immediately regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6 Peripheral Clock Gating for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected 
ensures that these outputs are forced to a safe or recessive state when the device enters 
the SAFE mode.

Processor Low-Power Mode Entry

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the HALT 
mode, the MC_ME requests the processor to enter its halted state. The processor 
acknowledges its halt state request after completing all outstanding bus transactions.

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the STOP or 
STANDBY mode, the MC_ME requests the processor to enter its stopped state. The 
processor acknowledges its stop state request after completing all outstanding bus 
transactions.

Processor and System Memory Clock Disable

If, on completion of the Processor Low-Power Mode Entry step, the mode transition is to the 
HALT, STOP, or STANDBY mode and the processor is in its appropriate halted or stopped 
state, the MC_ME disables the processor and system memory clocks to achieve further 
power saving.

The clocks to the processor and system memory are unaffected while transitioning between 
software running modes such as DRUN, RUN0…3, and SAFE.

Caution: Clocks to the whole device including the processor and system memory can be disabled in 
TEST mode.

Clock Sources (Main Voltage Regulator Independent) Switch-On

On completion of the Processor Low-Power Mode Entry step, the MC_ME switches on all 
clock sources, which do not need the main voltage regulator to be on, based on the 
<clock source>ON bits of the ME_<current mode>_MC and ME_<target mode>_MC 
registers. The following clock sources are switched on at this step:

Note: Clock sources which need the main voltage regulator to be stable are not controlled by this 
step.

The clock sources that are required by the target mode are switched on. The duration 
required for the output clocks to be stable depends on the type of source, and all further 
steps of mode transition depending on one or more of these clocks waits for the stable 
status of the respective clocks. The availability status of these clocks is updated in the 
S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order 
to not disturb the system clock which might require one of these clocks before switching to a 
different target clock.

Main Voltage Regulator Switch-On

On completion of the Target Mode Request step, if the main voltage regulator needs to be 
switched on from its off state based on the MVRON bit of the ME_<current mode>_MC and 
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ME_<target mode>_MC registers, the MC_ME requests the MC_PCU to power-up the 
regulator and waits for the output voltage stable status in order to update the S_MVR bit of 
the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this 
step, the fast internal RC oscillator (16 MHz) is switched on regardless of the target mode 
configuration, as the main voltage regulator requires the 16 MHz int. RC osc. during power-
up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the 
main voltage regulator, and the MC_ME is kept in RESET or shut off (depending on the 
power domain #1 status).

Flash Modules Switch-On

On completion of the Main Voltage Regulator Switch-On step, if one or more of the flashes 
needs to be switched to normal mode from its low-power or power-down mode based on the 
CFLAON and DFLAON bit fields of the ME_<current mode>_MC and 
ME_<target mode>_MC registers, the MC_ME requests the flash to exit from its low-
power/power-down mode. When the flashes are available for access, the S_CFLA and 
S_DFLA bit fields of the ME_GS register are updated to “11” by hardware. 

If the main regulator is also off in device low-power modes, then during the exit sequence, 
the flash is kept in its low-power state and is switched on only when the Main Voltage 
Regulator Switch-On process has completed.

Caution: It is illegal to switch the flashes from low-power mode to power-down mode and from power-
down mode to low-power mode. The MC_ME, however, does not prevent this nor does it flag 
it.

Clock Sources (Main Voltage Regulator Dependent) Switch-On

On completion of the Clock Sources (Main Voltage Regulator Independent) Switch-On and 
Main Voltage Regulator Switch-On, the MC_ME controls all clock sources, which need the 
main voltage regulator to be on, based on the <clock source>ON bits of the 
ME_<current mode>_MC and ME_<target mode>_MC registers. The following clock 
sources are switched on at this step: 

Pad Outputs-On

On completion of the Main Voltage Regulator Switch-On step, if the PDO bit of the 
ME_<target mode>_MC register is cleared, then

● all pad outputs are enabled to return to their previous state

● the I/O pads power sequence driver is switched on

Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers 
ME_RUN_PC0…7, ME_LP_PC0…7, and the peripheral control registers ME_PCTL0…143, 
the MC_ME enables the clocks for selected modules as required. This step is executed only 
after the Main Voltage Regulator Switch-On process is completed.

Also, if a mode change translates to a power up of one or more power domains, the 
MC_PCU indicates the MC_ME after completing the power-up sequence upon which the 
MC_ME may assert the peripheral clock enables of the peripherals residing in those power 
domains. 
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Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALT or STOP to RUN0…3, the 
clocks to the processor and system memory are enabled. The process of enabling these 
clocks is executed only after the Flash Modules Switch-On process is completed. 

Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALT, STOP, or STANDBY to 
RUN0…3, the MC_ME requests the processor to exit from its halted or stopped state. This 
step is executed only after the Processor and Memory Clock Enable process is completed.

System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and 
ME_<target mode>_MC registers, if the target and current system clock configurations 
differ, the following method is implemented for clock switching:

● The target clock configuration for the 16 MHz int. RC osc. takes effect only after the 
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator 
(16 MHz) has stabilized).

● The target clock configuration for the div. 16 MHz int. RC osc. takes effect only after the 
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator 
(16 MHz) has stabilized).

● The target clock configuration for the 4-16 MHz ext. xtal osc. takes effect only after the 
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal 
oscillator (4-16 MHz) has stabilized).

● The target clock configuration for the div. ext. xtal osc. takes effect only after the 
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal 
oscillator (4-16 MHz) has stabilized).

● The target clock configuration for the freq. mod. PLL takes effect only after the 
S_FMPLL bit of the ME_GS register is set by hardware (i.e., the frequency modulated 
phase locked loop has stabilized).

● If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”. 
This is possible only in the STOP and TEST modes. In the STANDBY mode, the clock 
configuration is fixed, and the system clock is automatically forced to ‘0’. 

The current system clock configuration can be observed by reading the S_SYSCLK bit field 
of the ME_GS register, which is updated after every system clock switching. Until the target 
clock is available, the system uses the previous clock configuration.

System clock switching starts only after

● the Peripheral Clocks Disable process has completed in order not to change the 
system clock frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in 
Table 72. A ‘’ indicates that a given clock source is selectable for a given mode.
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Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then

● the outputs of the pads are forced to the high impedance state if the target mode is 
SAFE or TEST

● I/O pads power sequence driver is switched off if the target mode is one of SAFE, 
TEST, or STOP modes

In STANDBY mode, the power sequence driver and all pads except the external reset and 
those mapped on wakeup lines are not powered and therefore high impedance. The wakeup 
line configuration remains unchanged.

This step is executed only after the Peripheral Clocks Disable process has completed.

Clock Sources Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC 
registers, if a given clock source is to be switched off, the MC_ME requests the clock source 
to power down and updates its availability status bit S_<clock source> of the ME_GS 
register to ‘0’. The following clock sources switched off at this step: 

This step is executed only after the System Clock Switching process has completed.

Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and 
ME_<target mode>_MC registers, if any of the flashes is to be put in its low-power or power-
down mode, the MC_ME requests the flash to enter the corresponding power mode and 
waits for the flash to acknowledge. The exact power mode status of the flashes is updated in 

Table 72. MC_ME System Clock Selection Overview

System 
Clock 

Source

Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

16 MHz int. 
RC osc.


(default)


(default)


(default)


(default)


(default)


(default)


(default)

div. 16 
MHz int. 
RC osc.

    

4-16 MHz 
ext. xtal 

osc.
    

div. ext. 
xtal osc.

    

freq. mod. 
PLL

   

system 
clock is 
disabled



1. disabling the system clock during TEST mode will require a reset in order to exit TEST mode

 
(default)
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the S_CFLA and S_DFLA bit fields of the ME_GS register. This step is executed only when 
the Processor and System Memory Clock Disable process has completed.

Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC 
registers, if the main voltage regulator is to be switched off, the MC_ME requests it to power 
down and clears the availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This 
step is executed only after completing the following processes:

● Clock Sources Switch-Off

● Flash Switch-Off

● the device consumption is less than the pre-defined threshold value (i.e., the S_DC bit 
of the ME_GS register is ‘0’).

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME 
and the STANDBY request is asserted after the above processes have completed upon 
which the MC_PCU takes control of the main regulator. As the MC_PCU needs the 16 MHz 
int. RC osc., the fast internal RC oscillator (16 MHz) remains active until all the STANDBY 
steps are executed by the MC_PCU after which it may be switched off depending on the 
FIRCON bit of the ME_STANDBY_MC register.

Current Mode Update

The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated 
with the target mode bit field TARGET_MODE of the ME_MCTL register when:

● all the updated status bits in the ME_GS register match the configuration specified in 
the ME_<target mode>_MC register

● power sequences are done

● clock disable/enable process is finished

● processor low-power mode (halt/stop) entry and exit processes are finished

Software can monitor the mode transition status by reading the S_MTRANS bit of the 
ME_GS register. The mode transition latency can differ from one mode to another 
depending on the resources’ availability before the new mode request and the target mode’s 
requirements.

If a mode transition is taking longer to complete than is expected, the ME_DMTS register 
can indicate which process is still in progress.
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8.4.4 Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules 
must be respected. Otherwise, the write operation is ignored and an invalid mode 
configuration interrupt may be generated.

● If the 16 MHz int. RC osc. is selected as the system clock, FIRC must be on.

● If the div. 16 MHz int. RC osc. clock is selected as the system clock, RC must be on.

● If the 4-16 MHz ext. xtal osc. clock is selected as the system clock, OSC must be on.

● If the div. ext. xtal osc. clock is selected as the system clock, OSC must be on.

● If the freq. mod. PLL clock is selected as the system clock, PLL must be on.

Note: Software must ensure that clock sources with dependencies other than those mentioned 
above are swithced on as needed. There is no automatic protection mechanism to check 
this in the MC_ME.

● Configuration “00” for the CFLAON and DFLAON bit fields is reserved.

● Configuration “10” for the DFLAON bit field is reserved.

● If the DFLAON bit field is set to “11”, the CFLAON field must also be set to “11”.

● MVREG must be on if any of the following is active:

– CFLASH

– DFLASH

● System clock configurations marked as ‘reserved’ may not be selected.

● Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST 
modes, and only in this case may all system clock sources be turned off.

Caution: If the system clock is stopped during TEST mode, the device can exit only via a system 
reset.

8.4.5 Mode Transition Interrupts

The MC_ME provides interrupts for incorrectly configuring a mode, requesting an invalid 
mode transition, indicating a SAFE mode transition not due to a software request, and 
indicating when a mode transition has completed.

Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the 
protection rules mentioned in the Section 8.4.4 Protection of Mode Configuration Registers, 
the interrupt pending bit I_ICONF of the ME_IS register is set and an interrupt request is 
generated if the mask bit M_ICONF of ME_IM register is ‘1’.

Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

● If the system is in the SAFE mode and the SAFE mode request from MC_RGM is 
active, and if the target mode requested is other than RESET or SAFE, then this new 
mode request is considered to be invalid, and the S_SEA bit of the ME_IMTS register is 
set.

● If the TARGET_MODE bit field of the ME_MCTL register is written with a value different 
from the specified mode values (i.e., a non-existing mode), an invalid mode transition 
event is generated. When such a non existing mode is requested, the S_NMA bit of the 
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ME_IMTS register is set. This condition is detected regardless of whether the proper 
key mechanism is followed while writing the ME_MCTL register.

● If some of the device modes are disabled as programmed in the ME_ME register, their 
respective configurations are considered reserved, and any access to the ME_MCTL 
register with those values results in an invalid mode transition request. When such a 
disabled mode is requested, the S_DMA bit of the ME_IMTS register is set. This 
condition is detected regardless of whether the proper key mechanism is followed while 
writing the ME_MCTL register.

● If the target mode is not a valid mode with respect to the current mode, the mode 
request illegal status bit S_MRI of the ME_IMTS register is set. This condition is 
detected only when the proper key mechanism is followed while writing the ME_MCTL 
register. Otherwise, the write operation is ignored.

● If further new mode requests occur while a mode transition is in progress (the 
S_MTRANS bit of the ME_GS register is ‘1’), the mode transition illegal status bit 
S_MTI of the ME_IMTS register is set. This condition is detected only when the proper 
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write 
operation is ignored.

Note: As the causes of invalid mode transitions may overlap at the same time, the priority 
implemented for invalid mode transition status bits of the ME_IMTS register in the order 
from highest to lowest is S_SEA, S_NMA, S_DMA, S_MRI, and S_MTI.

As an exception, the mode transition request is not considered as invalid under the following 
conditions:

● A new request is allowed to enter the RESET or SAFE mode irrespective of the mode 
transition status.

● As the exit of HALT and STOP modes depends on the interrupts of the system which 
can occur at any instant, these requests to return to RUN0…3 modes are always valid.

● In order to avoid any unwanted lockup of the device modes, software can abort a mode 
transition by requesting the parent mode if, for example, the mode transition has not 
completed after a software determined ‘reasonable’ amount of time for whatever 
reason. The parent mode is the device mode before a valid mode request was made. 

● Self-transition requests (e.g., RUN0  RUN0) are not considered as invalid even when 
the mode transition process is active (i.e., S_MTRANS is ‘1’). During the low-power 
mode exit process, if the system is not able to enter the respective RUN0…3 mode 
properly (i.e., all status bits of the ME_GS register match with configuration bits in the 
ME_<mode>_MC register), then software can only request the SAFE or RESET mode. 
It is not possible to request any other mode or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the 
ME_IS register is set, and an interrupt request is generated if the mask bit M_IMODE of the 
ME_IM register is ‘1’.

SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the 
MC_RGM due to a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register 
is set, and an interrupt is generated if the mask bit M_SAFE of ME_IM register is ‘1’. 

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is 
deasserted by the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE 
mode request). If the system is already in SAFE mode, any new SAFE mode request by the 
MC_RGM also sets the interrupt pending bit I_SAFE. However, the SAFE mode interrupt 
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pending bit is not set when the SAFE mode is entered by a software request (i.e., 
programming of ME_MCTL register).

Mode Transition Complete interrupt 

Whenever the system fully completes a mode transition (i.e., the S_MTRANS bit of ME_GS 
register transits from ‘1’ to ‘0’), the interrupt pending bit I_MTC of the ME_IS register is set, 
and an interrupt request is generated if the mask bit M_MTC of the ME_IM register is ‘1’. 
The interrupt bit I_MTC is not set when entering low-power modes HALT and STOP in order 
to avoid the same event requesting the immediate exit of these low-power modes.

8.4.6 Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating 
policy determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PC0…7 are chosen only during the 
software running modes DRUN, TEST, SAFE, and RUN0…3. All configurations are 
programmable by software according to the needs of the application. Each configuration 
register contains a mode bit which determines whether or not a peripheral clock is to be 
gated. Run configuration selection for each peripheral is done by the RUN_CFG bit field of 
the ME_PCTL0…143 registers.

The low-power peripheral configuration registers ME_LP_PC0…7 are chosen only during 
the low-power modes HALT, STOP, and STANDBY. All configurations are programmable by 
software according to the needs of the application. Each configuration register contains a 
mode bit which determines whether or not a peripheral clock is to be gated. Low-power 
configuration selection for each peripheral is done by the LP_CFG bit field of the 
ME_PCTL0…143 registers.

Any modifications to the ME_RUN_PC0…7, ME_LP_PC0…7, and ME_PCTL0…143 
registers do not affect the clock gating behavior until a new mode transition request is 
generated.

Whenever the processor enters a debug session during any mode, the following occurs for 
each peripheral:

● The clock is gated if the DBG_F bit of the associated ME_PCTL0…143 register is set. 
Otherwise, the peripheral clock gating status depends on the RUN_CFG and LP_CFG 
bits. Any further modifications of the ME_RUN_PC0…7, ME_LP_PC0…7, and 
ME_PCTL0…143 registers during a debug session will take affect immediately without 
requiring any new mode request.

8.4.7 Application Example

Figure 71 shows an example application flow for requesting a mode change and then 
waiting until the mode transition has completed.
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Figure 71. MC_ME Application Example Flow Diagram
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9 Reset Generation Module (MC_RGM)

9.1 Introduction

9.1.1 Overview

The reset generation module (MC_RGM) centralizes the different reset sources and 
manages the reset sequence of the device. It provides a register interface and the reset 
sequencer. Various registers are available to monitor and control the device reset sequence. 
The reset sequencer is a state machine which controls the different phases (PHASE0, 
PHASE1, PHASE2, PHASE3, and IDLE) of the reset sequence and controls the reset 
signals generated in the system.

Figure 72 depicts the MC_RGM block diagram.
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9.1.2 Features

The MC_RGM contains the functionality for the following features:

● ‘destructive’ resets management

● ‘functional’ resets management

● signalling of reset events after each reset sequence (reset status flags)

● conversion of reset events to SAFE mode or interrupt request events

● short reset sequence configuration

● bidirectional reset behavior configuration

● selection of alternate boot via the backup RAM on STANDBY mode exit

● boot mode capture on RESET deassertion

9.1.3 Reset sources

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

● A ‘destructive’ reset source is associated with an event related to a critical - usually 
hardware - error or dysfunction. When a ‘destructive’ reset event occurs, the full reset 
sequence is applied to the device starting from PHASE0. This resets the full device 
ensuring a safe start-up state for both digital and analog modules. ‘Destructive’ resets 
are

– power-on reset

– 1.2V low-voltage detected (power domain #0)

– 1.2V low-voltage detected (power domain #1)

– software watchdog timer

– 2.7V low-voltage detected

– 2.7V low-voltage detected (VREG)

● A ‘functional’ reset source is associated with an event related to a less-critical - usually 
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial 
reset sequence is applied to the device starting from PHASE1. In this case, most digital 
modules are reset normally, while analog modules or specific digital modules’ (e.g., 
debug modules, flash modules) state is preserved. ‘Functional’ resets are

– external reset

– JTAG initiated reset

– debug control core reset

– software reset

– checkstop reset

– FMPLL fail

– FXOSC frequency lower than reference

– CMU clock frequency higher/lower than reference

– 4.5V low-voltage detected

– code or data flash fatal error

When a reset is triggered, the MC_RGM state machine is activated and proceeds through 
the different phases (i.e., PHASEn states). Each phase is associated with a particular 
device reset being provided to the system. A phase is completed when all corresponding 
phase completion gates from either the system or internal to the MC_RGM are 
acknowledged. The device reset associated with the phase is then released, and the state 
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machine proceeds to the next phase up to entering the IDLE phase. During this entire 
process, the MC_ME state machine is held in RESET mode. Only at the end of the reset 
sequence, when the IDLE phase is reached, does the MC_ME enter the DRUN mode.

Alternatively, it is possible for software to configure some reset source events to be 
converted from a reset to either a SAFE mode request issued to the MC_ME or to an 
interrupt issued to the core (see Section Functional Event Reset Disable Register 
(RGM_FERD) and Section Functional Event Alternate Request Register (RGM_FEAR) for 
‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins 
PA[9:8].

9.3 Memory map and register definition
         

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

Table 73. MC_RGM register description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE_
4000

RGM_FES Functional Event Status half-word read read/write(1) read/write(1) on page 9-
191

0xC3FE_
4002

RGM_DES Destructive Event Status half-word read read/write(1)

1. individual bits cleared on writing ‘1’

read/write(1) on page 9-
192

0xC3FE_
4004

RGM_FERD
Functional Event Reset 
Disable

half-word read read/write(2)

2. write once: ‘0’ = enable, ‘1’ = disable.

read/write(2) on page 9-
193

0xC3FE_
4006

RGM_DERD
Destructive Event Reset 
Disable

half-word read read read
on page 9-

195

0xC3FE_
4018

RGM_FESS
Functional Event Short 
Sequence

half-word read read/write read/write
on page 9-

196

0xC3FE_
401A

RGM_STDBY STANDBY Reset Sequence half-word read read/write read/write
on page 9-

198

0xC3FE_
401C

RGM_FBRE
Functional Bidirectional 
Reset Enable

half-word read read/write read/write
on page 9-

198
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Table 74. MC_RGM memory map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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9.3.1 Register descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or 
8-bit bytes. The bytes are ordered according to big endian. For example, the 
RGM_DES[8:15] register bits may be accessed as a word at address 0xC3FE_4000, as a 
half-word at address 0xC3FE_4002, or as a byte at address 0xC3FE_4004.
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Table 74. MC_RGM memory map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
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Functional Event Status Register (RGM_FES)

         

This register contains the status of the last asserted functional reset sources. It can be 
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on 
write ‘1’.

         

Figure 73. Functional Event Status Register (RGM_FES)

Address 0xC3FE_4000 Access: User read, Supervisor read/write, Test read/write
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Table 75. Functional Event Status Register (RGM_FES) Field Descriptions

Field Description

F_EXR

Flag for External Reset 
0 No external reset event has occurred since either the last clear or the last destructive reset 

assertion
1 An external reset event has occurred

F_FLASH

Flag for code or data flash fatal error
0 No code or data flash fatal error event has occurred since either the last clear or the last 

destructive reset assertion
1 A code or data flash fatal error event has occurred

F_LVD45

Flag for 4.5V low-voltage detected
0 No 4.5V low-voltage detected event has occurred since either the last clear or the last 

destructive reset assertion
1 A 4.5V low-voltage detected event has occurred

F_CMU_FHL

Flag for CMU clock frequency higher/lower than reference
0 No CMU clock frequency higher/lower than reference event has occurred since either the last 

clear or the last destructive reset assertion
1 A CMU clock frequency higher/lower than reference event has occurred

F_CMU_OLR

Flag for FXOSC frequency lower than reference
0 No FXOSC frequency lower than reference event has occurred since either the last clear or the 

last destructive reset assertion
1 A FXOSC frequency lower than reference event has occurred

F_FMPLL

Flag for FMPLL fail
0 No FMPLL fail event has occurred since either the last clear or the last destructive reset 

assertion
1 A FMPLL fail event has occurred
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Destructive Event Status Register (RGM_DES)

         

This register contains the status of the last asserted destructive reset sources. It can be 
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on 
write ‘1’.

         

F_CHKSTOP

Flag for checkstop reset
0 No checkstop reset event has occurred since either the last clear or the last destructive reset 

assertion
1 A checkstop reset event has occurred

F_SOFT

Flag for software reset
0 No software reset event has occurred since either the last clear or the last destructive reset 

assertion
1 A software reset event has occurred

F_CORE

Flag for debug control core reset
0 No debug control core reset event has occurred since either the last clear or the last destructive 

reset assertion
1 A debug control core reset event has occurred; this event can only be asserted when the 

DBCR0[RST] field is set by an external debugger. See the "Debug Support" chapter of the core 
reference manual for more details.

F_JTAG

Flag for JTAG initiated reset
0 No JTAG initiated reset event has occurred since either the last clear or the last destructive 

reset assertion
1 A JTAG initiated reset event has occurred

Table 75. Functional Event Status Register (RGM_FES) Field Descriptions (continued)

Field Description

Figure 74. Destructive Event Status Register (RGM_DES)

Address 0xC3FE_4002 Access: User read, Supervisor read/write, Test read/write
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Note: The F_POR flag is automatically cleared on a 1.2V low-voltage detected (power domain #0 
or #1) or a 2.7V low-voltage detected. This means that if the power-up sequence is not 
monotonic (i.e., the voltage rises and then drops enough to trigger a low-voltage detection), 
the F_POR flag may not be set but instead the <register>F_LVD12_PD0, 
<register>F_LVD12_PD1, or <register>F_LVD27 flag is set on exiting the reset sequence. 
Therefore, if the F_POR, <register>F_LVD12_PD0, <register>F_LVD12_PD1, or 
<register>F_LVD27 flags are set on reset exit, software should interpret the reset cause as 
power-on.

Functional Event Reset Disable Register (RGM_FERD)

         

Table 76. Destructive Event Status Register (RGM_DES) Field Descriptions

Field Description

F_POR
Flag for Power-On reset
0 No power-on event has occurred since the last clear
1 A power-on event has occurred

F_LVD27_VREG

Flag for 2.7V low-voltage detected (VREG)
0 No 2.7V low-voltage detected (VREG) event has occurred since either the last clear or the 

last power-on reset assertion
1 A 2.7V low-voltage detected (VREG) event has occurred

F_LVD27

Flag for 2.7V low-voltage detected
0 No 2.7V low-voltage detected event has occurred since either the last clear or the last power-

on reset assertion
1 A 2.7V low-voltage detected event has occurred

F_SWT

Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-

on reset assertion
1 A software watchdog timer event has occurred

F_LVD12_PD1

Flag for 1.2V low-voltage detected (power domain #1)
0 No 1.2V low-voltage detected (power domain #1) event has occurred since either the last 

clear or the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #1) event has occurred

F_LVD12_PD0

Flag for 1.2V low-voltage detected (power domain #0)
0 No 1.2V low-voltage detected (power domain #0) event has occurred since either the last 

clear or the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #0) event has occurred

Figure 75. Functional Event Reset Disable Register (RGM_FERD)

Address 0xC3FE_4004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
_E

X
R 0 0 0 0 0 0

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T

D
_C

O
R

E

D
_J

TA
G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
193/868 Doc ID 16886 Rev 6



RM0045 Reset Generation Module (MC_RGM)
This register provides dedicated bits to disable functional reset sources.When a functional 
reset source is disabled, the associated functional event will trigger either a SAFE mode 
request or an interrupt request (see Section Functional Event Alternate Request Register 
(RGM_FEAR)). It can be accessed in read/write in either supervisor mode or test mode. It 
can be accessed in read only in user mode. Each byte can be written only once after power-
on reset.

         

         

Table 77. Functional Event Reset Disable Register (RGM_FERD) Field Descriptions

Field Description

D_EXR
Disable External Reset
0 An external reset event triggers a reset sequence

D_FLASH
Disable code or data flash fatal error
0 A code or data flash fatal error event triggers a reset sequence

D_LVD45

Disable 4.5V low-voltage detected
0 A 4.5V low-voltage detected event triggers a reset sequence
1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request 

depending on the value of RGM_FEAR.AR_LVD45

D_CMU_FHL

Disable CMU clock frequency higher/lower than reference
0 A CMU clock frequency higher/lower than reference event triggers a reset sequence
1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or 

an interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL

D_CMU_OLR

Disable FXOSC frequency lower than reference
0 A FXOSC frequency lower than reference event triggers a reset sequence
1 A FXOSC frequency lower than reference event generates either a SAFE mode or an 

interrupt request depending on the value of RGM_FEAR.AR_CMU_OLR

D_FMPLL

Disable FMPLL fail
0 A FMPLL fail event triggers a reset sequence
1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the 

value of RGM_FEAR.AR_FMPLL

D_CHKSTOP
Disable checkstop reset
0 A checkstop reset event triggers a reset sequence

D_SOFT
Disable software reset
0 A software reset event triggers a reset sequence

D_CORE

Disable debug control core reset
0 A debug control core reset event triggers a reset sequence
1 A debug control core reset event generates either a SAFE mode or an interrupt request 

depending on the value of RGM_FEAR.AR_CORE

D_JTAG

Disable JTAG initiated reset
0 A JTAG initiated reset event triggers a reset sequence
1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request 

depending on the value of RGM_FEAR.AR_JTAG
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Destructive Event Reset Disable Register (RGM_DERD)

         

         

This register provides dedicated bits to disable particular destructive reset sources. 

         

Functional Event Alternate Request Register (RGM_FEAR)

         

Figure 76. Destructive Event Reset Disable Register (RGM_DERD)

Address 0xC3FE_4006 Access: Read
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Table 78. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions

Field Description

D_LVD27_VREG
Disable 2.7V low-voltage detected (VREG)
0 A 2.7V low-voltage detected (VREG) event triggers a reset sequence

D_LVD27
Disable 2.7V low-voltage detected
0 A 2.7V low-voltage detected event triggers a reset sequence

D_SWT
Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence

D_LVD12_PD1
Disable 1.2V low-voltage detected (power domain #1)
0 A 1.2V low-voltage detected (power domain #1) event triggers a reset sequence

D_LVD12_PD0
Disable 1.2V low-voltage detected (power domain #0)
0 A 1.2V low-voltage detected (power domain #0) event triggers a reset sequence

Figure 77. Functional Event Alternate Request Register (RGM_FEAR)

Address 0xC3FE_4010 Access: User read, Supervisor read/write, Test read/write
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This register defines an alternate request to be generated when a reset on a functional 
event has been disabled. The alternate request can be either a SAFE mode request to 
MC_ME or an interrupt request to the system. It can be accessed in read/write in either 
supervisor mode or test mode. It can be accessed in read only in user mode.

         

Functional Event Short Sequence Register (RGM_FESS)

         

Table 79. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions

Field Description

AR_LVD45
Alternate Request for 4.5V low-voltage detected
0 Generate a SAFE mode request on a 4.5V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 4.5V low-voltage detected event if the reset is disabled

AR_CMU_FHL

Alternate Request for CMU clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference 

event if the reset is disabled
1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event 

if the reset is disabled

AR_CMU_OLR

Alternate Request for FXOSC frequency lower than reference
0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the 

reset is disabled
1 Generate an interrupt request on a FXOSC frequency lower than reference event if the reset 

is disabled
For the case when RGM_FERD[D_CMU_OLR] = 1 & RGM_FEAR[AR_CMU_OLR] = 1, an 

RGM interrupt will not be generated for an FXOSC failure when the system clock = FXOSC 
as there will be no system clock to execute the interrupt service routine. However, the 
interrupt service routine will be executed if the FXOSC recovers at some point.  The 
recommended use case for this feature is when the system clock = FIRC or FMPLL.

AR_FMPLL
Alternate Request for FMPLL fail
0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled

AR_CORE
Alternate Request for debug control core reset
0 Generate a SAFE mode request on a debug control core reset event if the reset is disabled
1 Generate an interrupt request on a debug control core reset event if the reset is disabled

AR_JTAG
Alternate Request for JTAG initiated reset
0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

Figure 78. Functional Event Short Sequence Register (RGM_FESS)

Address 0xC3FE_4018 Access: User read, Supervisor read/write, Test read/write
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This register defines which reset sequence will be done when a functional reset sequence is 
triggered. The functional reset sequence can either start from PHASE1 or from PHASE3, 
skipping PHASE1 and PHASE2.

Note: This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed 
in read in user mode.

         

Table 80. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions

Field Description

SS_EXR
Short Sequence for External Reset
0 The reset sequence triggered by an external reset event will start from PHASE1

SS_FLASH
Short Sequence for code or data flash fatal error
0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1

SS_LVD45

Short Sequence for 4.5V low-voltage detected
0 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE1
1 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE3, 

skipping PHASE1 and PHASE2

SS_CMU_FHL

Short Sequence for CMU clock frequency higher/lower than reference
0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event 

will start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event 

will start from PHASE3, skipping PHASE1 and PHASE2

SS_CMU_OLR

Short Sequence for FXOSC frequency lower than reference
0 The reset sequence triggered by a FXOSC frequency lower than reference event will start 

from PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start 

from PHASE3, skipping PHASE1 and PHASE2

SS_FMPLL

Short Sequence for FMPLL fail
0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
1 The reset sequence triggered by a FMPLL fail event will start from PHASE3, skipping 

PHASE1 and PHASE2

SS_CHKSTOP
Short Sequence for checkstop reset
0 The reset sequence triggered by a checkstop reset event will start from PHASE1

SS_SOFT
Short Sequence for software reset
0 The reset sequence triggered by a software reset event will start from PHASE1

SS_CORE

Short Sequence for debug control core reset
0 The reset sequence triggered by a debug control core reset event will start from PHASE1
1 The reset sequence triggered by a debug control core reset event will start from PHASE3, 

skipping PHASE1 and PHASE2

SS_JTAG

Short Sequence for JTAG initiated reset
0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
1 The reset sequence triggered by a JTAG initiated reset event will start from PHASE3, 

skipping PHASE1 and PHASE2
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STANDBY Reset Sequence Register (RGM_STDBY)

         

This register defines reset sequence to be applied on STANDBY mode exit. It can be 
accessed in read/write in either supervisor mode or test mode. It can be accessed in read 
only in user mode.

         

Note: This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

Functional Bidirectional Reset Enable Register (RGM_FBRE)

         

This register enables the generation of an external reset on functional reset. It can be 
accessed in read/write in either supervisor mode or test mode. It can be accessed in read in 
user mode.

Figure 79. STANDBY Reset Sequence Register (RGM_STDBY)

Address 0xC3FE_401A Access: User read, Supervisor read/write, Test read/write
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Table 81. STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions

Field Description

BOOT_
FROM_

BKP_RAM

Boot from Backup RAM indicator — This bit indicates whether the system will boot from backup 
RAM or flash out of STANDBY exit.
0 Boot from flash on STANDBY exit
1 Boot from backup RAM on STANDBY exit

Figure 80. Functional Bidirectional Reset Enable Register (RGM_FBRE)

Address 0xC3FE_401C Access: User read, Supervisor read/write, Test read/write
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9.4 Functional description

9.4.1 Reset State Machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the 
correct parts of the device are reset based on the reset source event. This is summarized in 
Table 83.

Table 82. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field Description

BE_EXR
Bidirectional Reset Enable for External Reset
0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_FLASH
Bidirectional Reset Enable for code or data flash fatal error
0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45
Bidirectional Reset Enable for 4.5V low-voltage detected
0 RESET is asserted on a 4.5V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5V low-voltage detected event

BE_CMU_FHL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference
0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset 

is enabled
1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_OLR
Bidirectional Reset Enable for FXOSC frequency lower than reference
0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL
Bidirectional Reset Enable for FMPLL fail
0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKSTOP
Bidirectional Reset Enable for checkstop reset
0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT
Bidirectional Reset Enable for software reset
0 RESET is asserted on a software reset event if the reset is enabled
1 RESET is not asserted on a software reset event

BE_CORE
Bidirectional Reset Enable for debug control core reset
0 RESET is asserted on a debug control core reset event if the reset is enabled
1 RESET is not asserted on a debug control core reset event

BE_JTAG
Bidirectional Reset Enable for JTAG initiated reset
0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event
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Note: JTAG logic has its own independent reset control and is not controlled by the MC_RGM in 
any way.

The reset sequence is comprised of five phases managed by a state machine, which 
ensures that all phases are correctly processed through waiting for a minimum duration and 
until all processes that need to occur during that phase have been completed before 
proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 81.

Table 83. MC_RGM Reset Implications

Source What Gets Reset
External Reset

Assertion(1)

1. ‘external reset assertion’ means that the RESET pin is asserted by the MC_RGM until the end of reset PHASE3

Boot Mode
Capture

power-on reset all yes yes

‘destructive’ resets all except some clock/reset management yes yes

external reset
all except some clock/reset management and 
debug

programmable(2)

2. the assertion of the external reset is controlled via the RGM_FBRE register

yes

‘functional’ resets
all except some clock/reset management and 
debug

programmable(2) programmable(3)

3. the boot mode is captured if the external reset is asserted

shortened ‘functional’ resets(4)

4. the short sequence is enabled via the RGM_FESS register

flip-flops except some clock/reset 
management

programmable(2) programmable(3)
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Figure 81. MC_RGM State Machine
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PHASE0 Phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’ 
reset event. The reset state machine exits PHASE0 and enters PHASE1 on verification of 
the following:

● all enabled ‘destructive’ resets have been processed

● all processes that need to be done in PHASE0 are completed

– FIRC stable, VREG voltage okay

● a minimum of 3 fast internal RC oscillator (16 MHz) clock cycles have elapsed since 
power-up completion and the last enabled ‘destructive’ reset event

PHASE1 Phase

This phase is entered either on exit from PHASE0 or immediately from PHASE2, PHASE3, 
or IDLE on a non-masked external or ‘functional’ reset event if it has not been configured to 
trigger a ‘short’ sequence. The reset state machine exits PHASE1 and enters PHASE2 on 
verification of the following:

● all enabled, non-shortened ‘functional’ resets have been processed

● a minimum of 10 fast internal RC oscillator (16 MHz) clock cycles have elapsed since 
the last enabled external or non-shortened ‘functional’ reset event

PHASE2 Phase

This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and 
enters PHASE3 on verification of the following:

● all processes that need to be done in PHASE2 are completed

– code and data flash initialization

● a minimum of 8 fast internal RC oscillator (16 MHz) clock cycles have elapsed since 
entering PHASE2

PHASE3 Phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an 
enabled, shortened ‘functional’ reset event. The reset state machine exits PHASE3 and 
enters IDLE on verification of the following:

● all processes that need to be done in PHASE3 are completed

– code and data flash initialization

● a minimum of 40 fast internal RC oscillator (16 MHz) clock cycles have elapsed since 
the last enabled, shortened ‘functional’ reset event

IDLE Phase
This is the final phase and is entered on exit from PHASE3. When this phase is reached, the 
MC_RGM releases control of the system to the platform and waits for new reset events that 
can trigger a reset sequence.

9.4.2 Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or 
memory content can no longer be guaranteed.
Doc ID 16886 Rev 6 202/868



Reset Generation Module (MC_RGM) RM0045
The status flag associated with a given ‘destructive’ reset event 
(RGM_DES.F_<destructive reset> bit) is set when the ‘destructive’ reset is asserted and the 
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously, 
and it is software’s responsibility to determine which reset source is the most critical for the 
application.

The device’s low-voltage detector threshold ensures that, when 1.2V low-voltage detected 
(power domain #0) is enabled, the supply is sufficient to have the destructive event correctly 
propagated through the digital logic. Therefore, if a given ‘destructive’ reset is enabled, the 
MC_RGM ensures that the associated reset event will be correctly triggered to the full 
system. However, if the given ‘destructive’ reset is disabled and the voltage goes below the 
digital functional threshold, functionality can no longer be ensured, and the reset may or 
may not be asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of 
PHASE0.

9.4.3 External Reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling 
edge on RESET will start the reset sequence from the beginning of PHASE1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit) 
is set when the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR. 

Note: The RGM_FERD register can be written only once between two power-on reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning 
of PHASE1. Nevertheless, the RGM_FESS register enables the further configuring of the 
reset sequence triggered by the external reset. When RGM_FESS.SS_EXR is set, the 
external reset will trigger a reset sequence starting directly from the beginning of PHASE3, 
skipping PHASE1 and PHASE2. This can be useful especially when an external reset 
should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by 
one of the following:

● a power-on reset

● a ‘destructive’ reset event

● an external reset event

● a ‘functional’ reset event configured via the RGM_FBRE register to assert the external 
reset

In this case, the external reset is asserted until the end of PHASE3.

9.4.4 Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed 
that critical register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event 
(RGM_FES.F_<functional reset> bit) is set when the ‘functional’ reset is asserted and the 
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously, 
and it is software’s responsibility to determine which reset source is the most critical for the 
application.
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The ‘functional’ reset can be optionally disabled by software writing bit 
RGM_FERD.D_<functional reset>.

Note: The RGM_FERD register can be written only once between two power-on reset events.

An enabled functional reset will normally trigger a reset sequence starting from the 
beginning of PHASE1. Nevertheless, the RGM_FESS register enables the further 
configuring of the reset sequence triggered by a functional reset. When 
RGM_FESS.SS_<functional reset> is set, the associated ‘functional’ reset will trigger a 
reset sequence starting directly from the beginning of PHASE3, skipping PHASE1 and 
PHASE2. This can be useful especially in case a functional reset should not reset the flash 
module.

9.4.5 STANDBY Entry Sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry, 
the MC_RGM moves to PHASE1. The minimum duration counter in PHASE1 does not start 
until STANDBY mode is exited. On entry to PHASE1 due to STANDBY mode entry, the 
resets for all power domains except power domain #0 are asserted. During this time, 
RESET is not asserted as the external reset can act as a wakeup for the device.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit 
by configuring the DRUN mode before STANDBY entry so that the flash is in power-down or 
low-power mode. If the flash is to be inaccessible, the PHASE2 and PHASE3 states do not 
wait for the flash to complete initialization before exiting, and the reset to the flash remains 
asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

9.4.6 Alternate Event Generation

The MC_RGM provides alternative events to be generated on reset source assertion. When 
a reset source is asserted, the MC_RGM normally enters the reset sequence. Alternatively, 
it is possible for some reset source events to be converted from a reset to either a SAFE 
mode request issued to the MC_ME or to an interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_FERD and 
RGM_FEAR registers as shown in Table 84.

         

The alternate event is cleared by deasserting the source of the request (i.e., at the reset 
source that caused the alternate request) and also clearing the appropriate RGM_FES 
status bit.

Note: Alternate requests (SAFE mode as well as interrupt requests) are generated regardless of 
whether the system clock is running.

Table 84. MC_RGM Alternate Event Selection

RGM_FERD
Bit Value

RGM_FEAR
Bit Value

Generated Event

0 X reset

1 0 SAFE mode request

1 1 interrupt request
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Note: If a masked ‘functional’ reset event which is configured to generate a SAFE mode/interrupt 
request occurs during PHASE1, it is ignored, and the MC_RGM will not send any safe 
mode/interrupt request to the MC_ME.

9.4.7 Boot Mode Capturing

The MC_RGM provides sampling of the boot mode PA[9:8] for use by the system. This 
sampling is done five fast internal RC oscillator (16 MHz) clock cycles before the rising edge 
of RESET. The result of the sampling is then provided to the system. For each bit, a value of 
‘1’ is produced only if each of the oldest three of the five samples have the value ‘1’, 
otherwise a value of ‘0’ is produced.

Note: In order to ensure that the boot mode is correctly captured, the application needs to apply 
the valid boot mode value to the device at least five fast internal RC oscillator (16 MHz) clock 
periods before the external reset deassertion crosses the VIH threshold.

Note: RESET can be low as a consequence of the internal reset generation. This will force re-
sampling of the boot mode pins. (See Table 83 for details.)
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10 Power Control Unit (MC_PCU)

10.1 Introduction

10.1.1 Overview

The power control unit (MC_PCU) is used to reduce the overall SoC power consumption. 
Power can be saved by disconnecting parts of the SoC from the power supply via a power 
switching device. The SoC is grouped into multiple parts having this capability which are 
called “power domains”.

When a power domain is disconnected from the supply, the power consumption is reduced 
to zero in that domain. Any status information of such a power domain is lost. When re-
connecting a power domain to the supply voltage, the domain draws an increased current 
until the power domain reaches its operational voltage.

Power domains are controlled on a device mode basis. For each mode, software can 
configure whether a power domain is connected to the supply voltage (power-up state) or 
disconnected (power-down state). Maximum power saving is reached by entering the 
STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the 
power domain configuration registers and initiates a power-down or a power-up sequence 
for each individual power domain. The power-up/down sequences are handled by finite state 
machines to ensure a smooth and safe transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power 
domains other than power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU 
address space.

Figure 82 depicts the MC_PCU block diagram.
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10.1.2 Features

The MC_PCU includes the following features:

● support for 2 power domains

● support for device modes RESET, DRUN, SAFE, TEST, RUN0…3, HALT, HALT, and 
STANDBY (for further mode details, please see the MC_ME chapter)

● power states updating on each mode change and on system wakeup

● a handshake mechanism for power state changes thus guaranteeing operable voltage

● maps the VREG registers to the MC_PCU address space

10.2 External Signal Description
The MC_PCU has no connections to any external pins.

MC_ME

FIRC

VREG

WKPUpower
domains

Power Domain 
State Machines

Registers

Platform Interface

MC_PCU

Figure 82. MC_PCU Block Diagram
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10.3 Memory Map and Register Definition

10.3.1 Memory Map
         

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

         

Table 85. MC_PCU Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE_
8000

PCU_PCONF0
Power Domain #0 
Configuration

word read read read
on page 10-

209

0xC3FE_
8004

PCU_PCONF1
Power Domain #1 
Configuration

word read read read
on page 10-

211

0xC3FE_
8040

PCU_PSTAT
Power Domain Status 
Register

word read read read
on page 10-

211

Table 86. MC_PCU Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE_
8000

PCU_PCONF0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE_
8004

PCU_PCONF1

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE_
8008

…
0xC3FE_

803C

reserved

0xC3FE_
8040

PCU_PSTAT

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P
D

1

P
D

0

W
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10.3.2 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes 
are ordered according to big endian. For example, the PD0 field of the PCU_PSTAT register 
may be accessed as a word at address 0xC3FE_8040, as a half-word at address 
0xC3FE_8042, or as a byte at address 0xC3FE_8043.

Power Domain #0 Configuration Register (PCU_PCONF0)

         

This register defines for power domain #0 whether it is on or off in each device mode. As 
power domain #0 is the always-on power domain (and includes the MC_PCU), none of its 
bits are programmable. This register is available for completeness reasons.

0x044

…
0x07C

reserved

0xC3FE_
8080

…
0xC3FE_

80FC

VREG registers

0xC3FE_
8100

…
0xC3FE_

BFFC

reserved

Table 86. MC_PCU Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 83. Power Domain #0 Configuration Register (PCU_PCONF0)

Address 0xC3FE_8000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1
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Table 87. Power Domain Configuration Register Field Descriptions

Field Description

RST
Power domain control during RESET mode

0 Power domain off
1 Power domain on

TEST
Power domain control during TEST mode

0 Power domain off
1 Power domain on

SAFE
Power domain control during SAFE mode

0 Power domain off
1 Power domain on

DRUN
Power domain control during DRUN mode

0 Power domain off
1 Power domain on

RUN0
Power domain control during RUN0 mode

0 Power domain off
1 Power domain on

RUN1
Power domain control during RUN1 mode

0 Power domain off
1 Power domain on

RUN2
Power domain control during RUN2 mode

0 Power domain off
1 Power domain on

RUN3
Power domain control during RUN3 mode

0 Power domain off
1 Power domain on

HALT
Power domain control during HALT mode

0 Power domain off
1 Power domain on

HALT
Power domain control during HALT mode

0 Power domain off
1 Power domain on

STBY0
Power domain control during STANDBY mode
0 Power domain off
1 Power domain on
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Power Domain #1 Configuration Register (PCU_PCONF1)

         

This register defines for power domain #1 whether it is on or off in each device mode. The 
bit field description is the same as in Table 87. As the platform, clock generation, and mode 
control reside in power domain #1, this power domain is only powered down during the 
STANDBY mode. Therefore, none of the bits is programmable. This register is available for 
completeness reasons. 

The difference between PCU_PCONF0 and PCU_PCONF1 is the reset value of the STBY0 
bit: During the STANDBY mode, power domain #1 is disconnected from the power supply, 
and therefore PCU_PCONF1.STBY0 is always ‘0’. Power domain #0 is always on, and 
therefore PCU_PCONF0.STBY0 is ‘1’.

For further details about STANDBY mode, please refer to Section STANDBY Mode 
Transition.

Power Domain Status Register (PCU_PSTAT)

         

This register reflects the power status of all available power domains.

Figure 84. Power Domain #1 Configuration Register (PCU_PCONF1)

Address 0xC3FE_8004 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U
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U

N
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R
U

N
1

R
U
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D
R

U
N
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E
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E
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S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 85. Power Domain Status Register (PCU_PSTAT)

Address 0xC3FE_8040 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P
D

1

P
D

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
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10.4 Functional Description

10.4.1 General

The MC_PCU controls all available power domains on a device mode basis. The 
PCU_PCONFn registers specify during which system/user modes a power domain is 
powered up. The power state for each individual power domain is reflected by the bits in the 
PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power 
state. The power state is controlled by a state machine (FSM) for each individual power 
domain which ensures a clean and safe state transition.

10.4.2 Reset / Power-On Reset

After any reset, the SoC will transition to the RESET mode during which all power domains 
are powered up (see the MC_ME chapter). Once the reset sequence has been completed, 
the DRUN mode is entered and software can begin the MC_PCU configuration.

10.4.3 MC_PCU Configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can 
change the configuration for each power domain on a mode basis by programming the 
PCU_PCONFn registers.

Each power domain which is powered down is held in a reset state. Read/write accesses to 
peripherals in those power domains will result in a transfer error.

10.4.4 Mode Transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power 
configurations for all power domains. It compares the settings in the PCU_PCONFn 
registers for the new mode with the settings for the current mode. If the configuration for a 
power domain differs between the modes, a power state change request is generated. 
These requests are handled by a finite state machine to ensure a smooth and safe transition 
from one power state to another.

STANDBY Mode Transition

STANDBY offers the maximum power saving. The level of power saving is software-
controllable via the settings in the PCU_PCONFn registers for power domain #2 onwards. 
Power domain #0 stays connected to the power supply while power domain #1 is 
disconnected from the power supply. Amongst others power domain #1 contains the 
platform and the MC_ME. Therefore this mode differs from all other user/system modes.

Table 88. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

PDn
Power status for power domain #n

0 Power domain is inoperable
1 Power domain is operable
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Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY 
mode, all power domains are powered up according to the settings in the PCU_PCONFn 
registers, and the DRUN mode is entered. In DRUN mode, at least power domains #0 and 
#1 are powered.

Figure 86 shows an example for a mode transition from RUN0 to STANDBY to DRUN. All 
power domains which have PCU_PCONFn.STBY0 cleared will enter power-down phase. In 
this example only power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the 
power down phase for power domain #1. During the power down phase, clocks are disabled 
and reset is asserted resulting in a loss of all information for this power domain. Then the 
power domain is disconnected from the power supply (power-down state).

         

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The 
power domain is re-connected to the power supply and the voltage in power domain #1 will 
increase slowly. Once the voltage is in an operable range, clocks are enabled and the reset 
is be deasserted (power-up state).

Note: It is possible that due to a wakeup request, power-up is requested before a power domain 
completed its power-down sequence. In this case, the information in that power domain is 
lost.

Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a 
power saving state. No software configuration is required to enable this power saving state. 
While a memory is residing in this state an increased power saving is achieved. Data in the 
memories is retained. 

Figure 86. MC_PCU Events During Power Sequences (STANDBY mode)

new mode

power-down

RUN0

voltage in 

PSTAT.PD1

STANDBY

Notes:

Not drawn to scale; PCONF1.RUN0 = 1; PCONF1.STBY0 = 0

current mode

power-up phase

power domain #1

RUN0 STANDBY DRUN

requested by ME

power-down state power-up statepower-up state
phase

Mode set due to reset being asserted to power domain #1

wakeup request
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10.5 Initialization Information
To initialize the MC_PCU, the registers PCU_PCONF2 should be programmed. After 
programming is done, those registers should no longer be changed.

10.6 Application Information

10.6.1 STANDBY Mode Considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time 
a power domain is disconnected from the supply. Increased power is required when a power 
domain is re-connected to the power supply. Additional power is required during restoring 
the information (e.g., in the platform). Care should be taken that the time during which the 
SoC is operating in STANDBY mode is significantly longer than the required time for 
restoring the information.
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11 Voltage Regulators and Power Supplies

11.1 Voltage regulators
The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main 
supply is (3.3 V–5 V ± 10%) and digital/regulated output supply is (1.2 V ± 10%). The 
voltage regulator used in SPC560D30/40 comprises three regulators.

● High power regulator (HPREG)

● Low power regulator (LPREG)

● Ultra low power regulator (ULPREG)

The HPREG and LPREG regulators are switched off during STANDBY mode to save 
consumption from the regulator itself. In STANDBY mode, the supply is provided by the 
ULPREG regulator. 

In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME 
chapter). In this case, when current is low enough to be handled by LPREG alone, the 
HPREG regulator is switch-off and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to 
the device in order to provide a stable low voltage digital supply to the device. Capacitances 
should be placed on the board as near as possible to the associated pins.

The regulator has two digital domains, one for the high power regulator (HPREG) and the 
low power regulator (LPREG) called “High Power domain” and another one for the ultra low 
power regulator (ULPREG) called “Standby domain.” For each domain there is a low voltage 
detector for the 1.2 V output voltage. Additionally there are two low voltage detectors for the 
main/input supply with different thresholds, one at the 3.3 V level and the other one at the 
5 V level.

11.1.1 High power regulator (HPREG)

The HPREG converts the 3.3 V–5 V input supply to a 1.2 V digital supply. For more 
information, see the voltage regulator electrical characteristics section of the datasheet.

The regulator can be switched off by software. Refer to the main voltage regulator control bit 
(MVRON) of the mode configuration registers in the mode entry module chapter of the 
reference manuals.

11.1.2 Low power regulator (LPREG)

The LPREG generates power for the device in the STOP mode, providing the output supply 
of 1.2 V. It always sees the minimum external capacitance. The control part of the regulator 
can be used to disable the low power regulator. It is managed by MC_ME.

11.1.3 Ultra low power regulator (ULPREG)

The ULPREG generates power for the standby domain as well as a part of the main domain 
and might or might not see the external capacitance. The control circuit of ULPREG can be 
used to disable the ultra low power regulator by software: This action is managed by 
MC_ME.
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11.1.4 LVDs and POR

There are three kinds of LVD available:

1. LVD_MAIN for the 3.3 V–5 V input supply with thresholds at approximately 3 V level(g)

2. LVD_MAIN5 for the 3.3 V–5 V input supply with threshold at approximately 4.5 V levelg

3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAIN5 sense the 3.3 V–5 V power supply for CORE, shared with 
IO ring supply and indicate when the 3.3 V–5 V supply is stabilized. 

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power 
domain and senses the HPREG/LPREG output notifying that the 1.2 V output is stable. The 
other LVD_DIG is placed in the standby domain and senses the standby 1.2 V supply level 
notifying that the 1.2 V output is stable. The reference voltage used for all LVDs is generated 
by the low power reference generator and is trimmed for LVD_DIG, using the bits LP[4:7]. 
Therefore, during the pre-trimming period, LVD_DIG exhibits higher thresholds, whereas 
during post trimming, the thresholds come in the desired range. Power-down pins are 
provided for LVDs. When LVDs are power-down, their outputs are pulled high.

POR is required to initialize the device during supply rise. POR works only on the rising 
edge of the main supply. To ensure its functioning during the following rising edge of the 
supply, it is reset by the output of the LVD_MAIN block when main supply reaches below the 
lower voltage threshold of the LVD_MAIN.

POR is asserted on power-up when Vdd supply is above VPORUP min (refer to datasheet for 
details). It will be released only after Vdd supply is above VPORH (refer to datasheet for 
details). Vdd above VPORH ensures power management module including internal LVDs 
modules are fully functional.

11.1.5 VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up 
and at exit from low-power modes. A signal, indicating that Ultra Low Power domain is 
powered, is used at power-up to release reset to temporization counter. At exit from low-
power modes, the power-down for high power regulator request signal is monitored by the 
digital interface and used to release reset to the temporization counter. In both cases, on 
completion of the delay counter, a end-of-count signal is released, it is gated with an other 
signal indicating main domain voltage fine in order to release the VREGOK signal. This is 
used by MC_RGM to release the reset to the device. It manages other specific 
requirements, like the transition between high power/low power mode to ultra low power 
mode avoiding a voltage drop below the permissible threshold limit of 1.08 V.

The VREG digital interface also holds control register to mask 5 V LVD status coming from 
the voltage regulator at the power-up.

11.1.6 Register description

The VREG_CTL register is mapped to the MC_PCU address space as described in 10, 
Power Control Unit (MC_PCU).

g. See section “Voltage monitor electrical characteristics” of the datasheet for detailed information about this 
voltage value.
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11.2 Power supply strategy
From a power-routing perspective, the device is organized as follows.

The device provides four dedicated supply domains at package level:

1. HV (high voltage external power supply for I/Os and most analog module) — This must 
be provided externally through VDD_HV/VSS_HV power pins. Voltage values should 
be aligned with VDD/VSS. Refer to datasheet for details.

2. ADC (high voltage external power supply for ADC module) — This must be provided 
externally through VDD_HV_ADC/VSS_HV_ADC power pins. Voltage values should 
be aligned with VDD_HV_ADC/VSS_HV_ADC. Refer to datasheet for details.

3. BV (high voltage external power supply for voltage regulator module) — This must be 
provided externally through VDD_BV_/VSS_BV power pins. Voltage values should be 
aligned with VDD/VSS. Refer to datasheet for details.

4. LV (low voltage internal power supply for core, FMPLL and Flash digital logic) — This is 
generated internally by embedded voltage regulator and provided to the core, FMPLL 
and Flash. Three VDD_LV/VSS_LV pins pairs are provided to connect the three 
decoupling capacitances. This is generated internally by internal voltage regulator but 
provided outside to connect stability capacitor. Refer to datasheet for details.

Figure 87. Voltage Regulator Control Register (VREG_CTL)

Address: 0xC3FE_8080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5V
_L

V
D

_M
A

S
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 89. VREG_CTL field descriptions

Field Description

5V_LVD_MASK

Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘1’ by software to generate LVD 
functional reset request to MC_RGM for 5 V trip.
1: 5 V LVD is masked
0: 5 V LVD is not masked.
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The four dedicated supply domains are further divided within the package in order to reduce 
as much as possible EMC and noise issues.

● HV_IO: High voltage pad supply

● HV_FLAn: High voltage Flash supply

● HV_OSC0REG(h): High voltage external oscillator and regulator supply

● HV_ADR: High voltage reference for ADC module. Supplies are further star routed to 
reduce impact of ADC resistive reference on ADC capacitive reference accuracy.

● HV_ADV: High voltage supply for ADC module

● BV: High voltage supply for voltage regulator ballast. These two ballast pads are used 
to supply core and Flash. Each pad contains two ballasts to supply 80 mA and 20 mA 
respectively. Core is hence supplied through two ballasts of 80 mA capability and 
CFlash and DFlash through two 20 mA ballasts. The HV supply for both ballasts is 
shorted through double bonding.

● LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL 
through double bonding.

● LV_FLAn: Low voltage supply for Flash module n. It is supplied with dedicated ballast 
and shorted to LV_COR through double bonding.

● LV_PLL(i): Low voltage supply for FMPLL

11.3 Power domain organization
Based on stringent requirements for current consumption in different operational modes, the 
device is partitioned into different power domains. Organization into these power domains 
primarily means separate power supplies which are separated from each other by use of 
power switches (switch SW1 for power domain No. 1 and switch SW2 for power domain No. 
2). These different separated power supplies are hence enabling to switch off power to 
certain regions of the device to avoid even leakage current consumption in logic supplied by 
the corresponding power supply.

This device employs three primary power domains, namely PD0, PD1 and PD2.As PCU 
supports dynamic power down of domains based on different device mode, such a possible 
domain is depicted below in dotted periphery.

         

h. Regulator ground is separated from oscillator ground and shorted to the LV ground through star routing

i. During production test, it is also possible to provide the VDD_LV externally through pins by configuring 
regulator in bypass mode.
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12 Wakeup Unit (WKPU)

12.1 Overview
The Wakeup Unit supports 2 internal sources and up to 18(j) external sources that can 
generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt 
requests or wakeup events. Figure 88 is the block diagram of the Wakeup Unit and its 
interfaces to other system components.

The wakeup vector mapping is shown in Table 90. All unused WKPU pins must use a pull 
resistor — either pullup (internal or external) or pulldown (external) — to ensure no leakage 
from floating inputs.

         

j. Up to 18 external sources in 100-pin LQFP; up to 12 external sources in 64-pin LQFP

Table 90. Wakeup vector mapping

Wakeup 
number

Port
SIU 

PCR#

Port input 
function(1) (can 

be used in 
conjunction 
with WKPU 
function)

WKPU IRQ to 
INTC

IRQ# WISR
Register(2) 
bit position

Package

64
-p

in
 Q

F
P

10
0-

p
in

 Q
F

P

WKPU0  API n/a(3) —

WakeUp_IRQ_0 46

EIF0 31 (3) (3)

WKPU1  RTC n/a(3) — EIF1 30 (3) (3)

WKPU2  PA1 PCR1 NMI EIF2 29  

WKPU3  PA2 PCR2 — EIF3 28  

WKPU4  PB1 PCR17 
LIN0-RX, CAN0-

RX
EIF4 27  

WKPU5  PC11 PCR43 — EIF5 26 x(4) 

WKPU6  PE0 PCR64 — EIF6 25 x4 

WKPU7  PE9 PCR73 — EIF7 24 x4 

WKPU8  PB10 PCR26 —

WakeUp_IRQ_1 47

EIF8 23  

WKPU9  PA4 PCR4 — EIF9 22  

WKPU10  PA15 PCR15 — EIF10 21  

WKPU11  PB3 PCR19 LIN0-RX EIF11 20  

WKPU12  PC7 PCR39 LIN1-RX EIF12 19  

WKPU13  PC9 PCR41 LIN2-RX EIF13 18  

WKPU14  PE11 PCR75 — EIF14 17 x(4) 

WKPU15

RESERVED
WKPU16

WKPU17

WKPU18
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WKPU19  PA0 PCR0 — WakeUp_IRQ_2 48 EIF19 12  

WKPU20

RESERVED

WKPU21

WKPU22

WKPU23

WKPU24

WKPU25 PB8 PCR24 —

WakeUp_IRQ_3 49

EIF25 6  

WKPU26 PB9 PCR25 — EIF26 5  

WKPU27 PD0 PCR48 — EIF27 4 x(4) 

WKPU28 PD1 PCR49 — EIF28 3 x(4) 

1. This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication 
functions (such as CAN and LINFlex Rx) that could be used to wake up the microcontroller. DSPI pins are not included 
because DSPI would typically be used in master mode. 

2. WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER

3. Port not required to use timer functions.

4. Unavailable WKPU pins must  use internal pullup enabled using WIPUER.

Table 90. Wakeup vector mapping (continued)

Wakeup 
number

Port
SIU 

PCR#

Port input 
function(1) (can 

be used in 
conjunction 
with WKPU 
function)

WKPU IRQ to 
INTC

IRQ# WISR
Register(2) 
bit position

Package

64
-p

in
 Q

F
P

10
0-

p
in

 Q
F

P
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Figure 88. WKPU block diagram
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12.2 Features
The Wakeup Unit supports these distinctive features:

● Non-maskable interrupt support with

– 1 NMI source with bypassable glitch filter

– Independent interrupt destination: non-maskable interrupt, critical interrupt, or 
machine check request

– Edge detection

● External wakeup/interrupt support with

– 4 system interrupt vectors for up to 18 interrupt sources

– Analog glitch filter per each wakeup line

– Independent interrupt mask

– Edge detection

– Configurable system wakeup triggering from all interrupt sources

– Configurable pullup

● On-chip wakeup support

– 2 wakeup sources

– Wakeup status mapped to same register as external wakeup/interrupt status

12.3 External signal description
The Wakeup Unit has 18 signal inputs that can be used as external interrupt sources in 
normal RUN mode or as system wakeup sources in all power down modes.

The 18 external signal inputs include one signal input that can be used as a non-maskable 
interrupt source in normal RUN, HALT or STOP modes or a system wakeup source in STOP 
or STANDBY modes.

Note: The user should be aware that the Wake-up pins are enabled in ALL modes, therefore, the 
Wake-up pins should be correctly terminated to ensure minimal current consumption. Any 
unused Wake-up signal input should be terminated by using an external pull-up or pull-
down, or by internal pull-up enabled at WKPU_WIPUER. Also, care has to be taken on 
packages where the Wake-up signal inputs are not bonded. For these packages the user 
must ensure the internal pull-up are enabled for those signals not bonded.

12.4 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

12.4.1 Memory map

Table 91 gives an overview on the WKPU registers implemented.
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Note: Reserved registers will read as 0, writes will have no effect. If SSCM_ERROR[RAE] is 
enabled, a transfer error will be issued when trying to access completely reserved register 
space.

12.4.2 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

         

Table 91. WKPU memory map

Base address: 0xC3F9_4000

Address offset Register name Location

0x00 NMI Status Flag Register (NSR) on page 12-223

0x04 – 0x07 Reserved

0x08 NMI Configuration Register (NCR) on page 12-224

0x0C – 0x13 Reserved

0x14 Wakeup/Interrupt Status Flag Register (WISR) on page 12-225

0x18 Interrupt Request Enable Register (IRER) on page 12-226

0x1C Wakeup Request Enable Register (WRER) on page 12-226

0x20 – 0x27 Reserved

0x28 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) on page 12-227

0x2C Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) on page 12-227

0x30 Wakeup/Interrupt Filter Enable Register (WIFER) on page 12-228

0x34 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 12-228

Figure 89. NMI Status Flag Register (NSR)

Offset: 0x00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NIF0

N
O

V
F

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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12.4.3 NMI Configuration Register (NCR)

This register holds the configuration bits for the non-maskable interrupt settings.

         

Table 92. NSR field descriptions

Field Description

NIF0

NMI Status Flag

If enabled (NREE0 or NFEE0 set), NIF0 causes an interrupt request.

1 An event as defined by NREE0 and NFEE0 has occurred
0 No event has occurred on the pad

NOVF0

NMI Overrun Status Flag

It will be a copy of the current NIF0 value whenever an NMI event occurs, thereby indicating to the 
software that an NMI occurred while the last one was not yet serviced. If enabled (NREE0 or NFEE0 
set), NOVF0 causes an interrupt request.
1 An overrun has occurred on NMI input
0 No overrun has occurred on NMI input

Figure 90. NMI Configuration Register (NCR)

Offset: 0x08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
LO

C
K

0

NDSS0

N
W

R
E

0 0

N
R

E
E

0

N
F

E
E

0

NFE0
0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 93. NCR field descriptions

Field Description

NLOCK0
NMI Configuration Lock Register

Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing 
a 0 has no effect.

NDSS0

NMI Destination Source Select
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated
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Note: Writing a ‘0’ to both NREE0 and NFEE0 disables the NMI functionality completely (that is, 
no system wakeup or interrupt will be generated on any pad activity)!

12.4.4 Wakeup/Interrupt Status Flag Register (WISR)

This register holds the wakeup/interrupt flags.

         

         

Note: Status bits associated with on-chip wakeup sources are located to the left of the external 
wakeup/interrupt status bits and are read only. The wakeup for these sources must be 

NWRE0

NMI Wakeup Request Enable

1 A set NIF0 bit or set NOVF0 bit causes a system wakeup request
0 System wakeup requests from the corresponding NIF0 bit are disabled
Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured. 

This should be noted when booting from RESET or STANDBY mode as all registers will have 
been cleared to their reset state.

NREE0
NMI Rising-edge Events Enable

1 Rising-edge event is enabled
0 Rising-edge event is disabled

NFEE0
NMI Falling-edge Events Enable

1 Falling-edge event is enabled
0 Falling-edge event is disabled

NFE0

NMI Filter Enable
Enable analog glitch filter on the NMI pad input.

1 Filter is enabled
0 Filter is disabled

Table 93. NCR field descriptions (continued)

Field Description

Figure 91. Wakeup/Interrupt Status Flag Register (WISR)

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 EIF[28:25] 0 0 0 0 0

E
IF

[1
9]

0 0 0 0 EIF[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 94. WISR field descriptions

Field Description

EIF[x]

External Wakeup/Interrupt WKPU[x] Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRER[x]), EIF[x] 
causes an interrupt request.
1 An event as defined by WIREER and WIFEER has occurred
0 No event has occurred on the pad
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configured and cleared at the on-chip wakeup source. Also, the configuration registers for 
the external interrupts/wakeups do not have corresponding bits.

12.4.5 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to 
the interrupt controller.

         

         

12.4.6 Wakeup Request Enable Register (WRER)

This register is used to enable the system wakeup messaging from the wakeup/interrupt 
pads to the mode entry and power control modules.

         

         

Figure 92. Interrupt Request Enable Register (IRER)

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 EIRE[28:25] 0 0 0 0 0

E
IR

E
[1

9]

0 0 0 0 EIRE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 95. IRER field descriptions

Field Description

EIRE[x]
External Interrupt Request Enable x
1 A set EIF[x] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled

Figure 93. Wakeup Request Enable Register (WRER)

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 WRE[28:25] 0 0 0 0 0

W
R

E
[1

9]

0 0 0 0 WRE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 96. WRER field descriptions

Field Description

WRE[x]
External Wakeup Request Enable x

1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled
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12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding 
wakeup/interrupt pads.

Note: The RTC_API can only be configured on the rising edge.

         .

         

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

This register is used to enable falling-edge triggered events on the corresponding 
wakeup/interrupt pads.

         

         

Figure 94. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IREE[28:25] 0 0 0 0 0

IR
E

E
[1

9]

0 0 0 0 IREE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 97. WIREER field descriptions

Field Description

IREE[x]
External Interrupt Rising-edge Events Enable x

1 Rising-edge event is enabled
0 Rising-edge event is disabled

Figure 95. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IFEE[28:25] 0 0 0 0 0

IF
E

E
[1

9]

0 0 0 0 IFEE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 98. WIFEER field descriptions

Field Description

IFEEx
External Interrupt Falling-edge Events Enable x

1 Falling-edge event is enabled
0 Falling-edge event is disabled
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12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter 
out glitches on the inputs.

Note: There is no analog filter for the RTC_API.

         

         

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pullup on the corresponding interrupt pads to pull an 
unconnected wakeup/interrupt input to a value of ‘1’.

         

         

Figure 96. Wakeup/Interrupt Filter Enable Register (WIFER)

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IFE[28:25] 0 0 0 0 0

IF
E

[1
9]

0 0 0 0 IFE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 99. WIFER field descriptions

Field Description

IFE[x]

External Interrupt Filter Enable x
Enable analog glitch filter on the external interrupt pad input.

1 Filter is enabled
0 Filter is disabled

Figure 97. Wakeup/Interrupt Pullup Enable Register (WIPUER)

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IPUE[28:25] 0 0 0 0 0

IP
U

E
[1

9]

0 0 0 0 IPUE[14:0]

W w1c w
1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 100. WIPUER field descriptions

Field Description

IPUE[x]
External Interrupt Pullup Enable x
1 Pullup is enabled
0 Pullup is disabled
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12.5 Functional description

12.5.1 General

This section provides a complete functional description of the Wakeup Unit.

12.5.2 Non-maskable interrupts

The Wakeup Unit supports one non-maskable interrupt which is allocated to the following 
pins:

● 64-pin LQFP: Pin 4

● 100-pin LQFP: Pin 7

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The 
Wakeup Unit supports the capturing of a second event per NMI input before the interrupt is 
cleared, thus reducing the chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

Note: Glitch filter control and pad configuration should be done while the NMI is disabled in order 
to avoid erroneous triggering by glitches caused by the configuration process itself.

         

Figure 98. NMI pad diagram
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NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all 
configuration bits for an NMI in a single byte (see Figure 90). The pad defined as an NMI 
can be configured by the user to recognize interrupts with an active rising edge, an active 
falling edge or both edges being active. A setting of having both edge events disabled 
results in no interrupt being detected and should not be configured.

The active NMI edge is controlled by the user through the configuration of the NREE0 and 
NFEE0 bits.

Note: After reset, NREE0 and NFEE0 are set to ‘0’, therefore the NMI functionality is disabled after 
reset and must be enabled explicitly by software.

Once the pad’s NMI functionality has been enabled, the pad cannot be reconfigured in the 
IOMUX to override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the 
NDSS0 field. See Table 93 for details.

An NMI supports a status flag and an overrun flag which are located in the NSR register 
(see Figure 89). The NIF0 and NOVF0 fields in this register are cleared by writing a ‘1’ to 
them; this prevents inadvertent overwriting of other flags in the register. The status flag is set 
whenever an NMI event is detected. The overrun flag is set whenever an NMI event is 
detected and the status flag is set (that is, has not yet been cleared).

Note: The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in the NSR register. 
If the status bit is cleared and the overrun bit is still set, the pending interrupt will not be 
cleared.

12.5.3 External wakeups/interrupts

The Wakeup Unit supports up to 18 external wakeup/interrupts which can be allocated to 
any pad necessary at the SoC level. This allocation is fixed per SoC.

The Wakeup Unit supports up to four interrupt vectors to the interrupt controller of the SoC. 
Each interrupt vector can support up to the number of external interrupt sources from the 
device pads with the total across all vectors being equal to the number of external interrupt 
sources. Each external interrupt source is assigned to exactly one interrupt vector. The 
interrupt vector assignment is sequential so that one interrupt vector is for external interrupt 
sources 0 through N-1, the next is for N through N+M-1, and so forth.

See Figure 99 for an overview of the external interrupt implementation for the example of 
four interrupt vectors with up to eight external interrupt sources each.
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Figure 99. External interrupt pad diagram

All of the external interrupt pads within a single group have equal priority. It is the 
responsibility of the user software to search through the group of sources in the most 
appropriate way for their application.

Note: Glitch filter control and pad configuration should be done while the external interrupt line is 
disabled in order to avoid erroneous triggering by glitches caused by the configuration 
process itself.

External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed 
using a single rolled up register (Figure 92). A pad defined as an external interrupt can be 
configured by the user to recognize external interrupts with an active rising edge, an active 
falling edge or both edges being active.

Note: Writing a ‘0’ to both IREE[x] and IFEE[x] disables the external interrupt functionality for that 
pad completely (that is, no system wakeup or interrupt will be generated on any activity on 
that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers 
WIREER and WIFEER.

Each external interrupt supports an individual flag which is held in the flag register (WISR). 
The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent 
overwriting of other flags in the register.
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12.5.4 On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups 
with the external ones to generate a single wakeup to the system.

On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups 
are reported along with external wakeups in the WISR register (see Figure 91 for details). 
Enabling and clearing of these wakeups are done via the on-chip wakeup source’s own 
registers.
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13 Real Time Clock / Autonomous Periodic Interrupt 
(RTC/API)

13.1 Overview
The RTC/API is a free running counter used for time keeping applications. The RTC may be 
configured to generate an interrupt at a predefined interval independent of the mode of 
operation (run mode or low power mode). If in a low power mode when the RTC interval is 
reached, the RTC first generates a wakeup and then assert the interrupt request. The RTC 
also supports an autonomous periodic interrupt (API) function used to generate a periodic 
wakeup request to exit a low power mode or an interrupt request.

13.2 Features
Features of the RTC/API include:

● 2 selectable counter clock sources

– SIRC (128 kHz)

– FIRC (16 MHz)

● Optional 512 prescaler and optional 32 prescaler

● 32-bit counter

– Supports times up to 1.5 months with 1 ms resolution

– Runs in all modes of operation

– Reset when disabled by software and by POR

● 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s 
resolution

● RTC compare value changeable while counter is running

● RTC status and control register are reset only by POR

● Autonomous periodic interrupt (API)

– 10-bit compare value to support wakeup intervals of 1.0 ms to 1 s

– Compare value changeable while counter is running

● Configurable interrupt for RTC match, API match, and RTC rollover

● Configurable wakeup event for RTC match, API match, and RTC rollover
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Figure 100. RTC/API block diagram
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Figure 101. Clock gating for RTC clocks

13.3 Device-specific information
For SPC560D30/40, the device specific information is the following:

● FIRC and SIRC clocks are provided as counter clocks for the RTC. Default clock on 
reset is SIRC divided by 4.

● The RTC will be reset on destructive reset, with the exception of software watchdog 
reset.

● The RTC provides a configurable divider by 512 to be optionally used when FIRC 
source is selected.

13.4 Modes of operation

13.4.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power 
mode. In normal operation, all RTC registers can read or written and the input isolation is 
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disabled. The RTC/API and associated interrupts are optionally enabled. In low power 
mode, the bus interface is disabled and the input isolation is enabled. The RTC/API is 
enabled if enabled prior to entry into low power mode.

13.4.2 Debug mode

On entering into the debug mode the RTC counter freezes on the last valid count if the 
RTCC[FRZEN] is set. On exit from debug mode counter continues from the frozen value.

13.5 Register descriptions
Table 101 lists the RTC/API registers.

         

13.5.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are 
accessible in supervisor mode or user mode.

Note: RTCSUPV register is accessible only in supervisor mode.

         

         

Table 101. RTC/API register map

Base address: 0xC3FE_C000

Address offset Register Location

0x0 RTC Supervisor Control Register (RTCSUPV) on page 13-236

0x4 RTC Control Register (RTCC) on page 13-237

0x8 RTC Status Register (RTCS) on page 13-239

0xC RTC Counter Register (RTCCNT) on page 13-240

Figure 102. RTC Supervisor Control Register (RTCSUPV)

Offset: 0x0 Access: Read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
U

P
V

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 102. RTCSUPV field descriptions

Field Description

SUPV

RTC Supervisor Bit

0 All registers are accessible in both user as well as supervisor mode.
1 All other registers are accessible in supervisor mode only.
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13.5.2 RTC Control Register (RTCC)

The RTCC register contains:

● RTC counter enable

● RTC interrupt enable

● RTC clock source select

● RTC compare value

● API enable

● API interrupt enable

● API compare value

         

         

Figure 103. RTC Control Register (RTCC)
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Table 103. RTCC field descriptions

Field Description

CNTEN

Counter Enable

The CNTEN field enables the RTC counter. Making CNTEN bit 1’b0 has the effect of 
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for 
the RTC configuration and clock source selection to be updated without causing synchronization 
issues.

1 Counter enabled
0 Counter disabled

RTCIE

RTC Interrupt Enable

The RTCIE field enables interrupts requests to the system if RTCF is asserted.

1 RTC interrupts enabled
0 RTC interrupts disabled

FRZEN

Freeze Enable

The counter freezes on entering the debug mode on the last valid count value if the FRZEN bit is 
set. After coming out of the debug mode, the counter starts from the frozen value.

0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.
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ROVREN

Counter Roll Over Wakeup/Interrupt Enable

The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from 
0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt 
from a counter rollover.

1 RTC rollover wakeup/interrupt enabled
0 RTC rollover wakeup/interrupt disabled

RTCVAL
Note: RTC Compare Value

The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF. 
RTCVAL can be updated when the counter is running.

APIEN

Autonomous Periodic Interrupt Enable
The APIEN bit enables the autonomous periodic interrupt function.

1 API enabled
0 API disabled

APIIE

API Interrupt Enable
The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 API interrupts enabled
0 API interrupts disabled

CLKSEL

Clock Select
This field selects the clock source for the RTC. CLKSEL may only be updated when CNTEN is 0. 
The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 Reserved
01 SIRC
10 FIRC
11 Reserved

DIV512EN

Divide by 512 enable
The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is 
0.

0 Divide by 512 is disabled.

1 Divide by 512 is enabled.

DIV32EN

Divide by 32 enable
The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.

0 Divide by 32 is disabled.

1 Divide by 32 is enabled.

APIVAL

API Compare Value
The APIVAL field is compared with bits 22:31 of the RTC counter and if match asserts an 
interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or API function is 
undefined.

Note: API functionality starts only when APIVAL is non zero. The first API interrupt takes two more 
cycles because of synchronization of APIVAL to the RTC clock. After that interrupts are 
periodic in nature. The minimum supported value of APIVAL is 4.

Table 103. RTCC field descriptions (continued)

Field Description
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13.5.3 RTC Status Register (RTCS)

The RTCS register contains:

● RTC interrupt flag

● API interrupt flag

● ROLLOVR Flag

         

         

Figure 104. RTC Status Register (RTCS)

Offset: 0x8 Access: User read/write
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Table 104. RTCS field descriptions

Field Description

RTCF

RTC Interrupt Flag

The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL. 
RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.

1 RTC counter matches RTCVAL
0 RTC counter is not equal to RTCVAL

APIF

API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset 
value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
1 API interrupt
0 No API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’b1 RTC counts

ROVRF

Counter Roll Over Interrupt Flag

The ROVRF bit indicates that the RTC has rolled over from 0xffff_ffff to 0x0000_0000. ROVRF is 
cleared by writing a 1 to ROVRF.

1 RTC has rolled over
0 RTC has not rolled over
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13.5.4 RTC Counter Register (RTCCNT)

The RTCCNT register contains the current value of the RTC counter.

         

         

13.6 RTC functional description
The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit 
(CNTEN when negated asynchronously resets the counter and synchronously enables the 
counter when enabled). The value of the counter may be read via the RTCCNT register. 
Note that due to the clock synchronization, the RTCCNT value may actually represent a 
previous counter value. The difference between the counter and the read value depends on 
ratio of counter clock and system clock. Maximum possible difference between the two is 6 
count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives the 
options for clocking the RTC/API. The output of the clock mux can be optionally divided by 
combination of 512 and 32 to give a 1 ms RTC/API count period for different clock sources. 
Note that the RTCC[CNTEN] bit must be disabled when the RTC/API clock source is 
switched.

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL] 
field, then the RTCS[RTCF] interrupt flag bit is set (after proper clock synchronization). If the 
RTCC[RTCIE] interrupt enable bit is set, then the RTC interrupt request is generated. The 
RTC supports interrupt requests in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution. If 
there is a match while in low power mode then the RTC will first generate a wakeup request 
to force a wakeup to run mode, then the RTCF flag will be set. 

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count 
of 0xFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the 
RTCC[ROVREN] bit. An RTC counter rollover with this bit will cause a wakeup from low 
power mode. An interrupt request is generated for an RTC counter rollover when both the 
RTCC[ROVREN] and RTCC[RTCIE] bits are set.

All the flags and counter values are synchronized with the system clock. It is assumed that 
the system clock frequency is always more than or equal to the rtc_clk used to run the 
counter.

Figure 105. RTC Counter Register (RTCCNT)

Offset: 0xC Access: Read
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Table 105. RTCCNTfield descriptions

Field Description

RTCCNT
RTC Counter Value
Due to the clock synchronization, the RTCCNT value may actually represent a previous counter 
value.
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13.7 API functional description
Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit 
RTCC[APIVAL] field selects the time interval for triggering an interrupt and/or wakeup event. 
Since the RTC is a free running counter, the APIVAL is added to the current count to 
calculate an offset. When the counter reaches the offset count, a interrupt and/or wakeup 
request is generated. Then the offset value is recalculated and again re-triggers a new 
request when the new value is reached. APIVAL may only be updated when APIEN is 
disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper 
clock synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the API interrupt 
request is generated. If there is a match while in low power mode, then the API will first 
generate a wakeup request to force a wakeup into normal operation, then the APIF flag will 
be set.
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14 e200z0h Core

14.1 Overview
The e200 processor family is a set of CPU cores that implement cost-efficient versions of 
the Power Architecture®. e200 processors are designed for deeply embedded control 
applications which require low cost solutions rather than maximum performance.

The e200z0h processors integrate an integer execution unit, branch control unit, instruction 
fetch and load/store units, and a multi-ported register file capable of sustaining three read 
and two write operations per clock. Most integer instructions execute in a single clock cycle. 
Branch target prefetching is performed by the branch unit to allow single-cycle branches in 
some cases.

The e200z0h core is a single-issue, 32-bit Power Architecture technology VLE-only design 
with 32-bit general purpose registers (GPRs). All arithmetic instructions that execute in the 
core operate on data in the general purpose registers (GPRs).

Instead of the base Power Architecture technology support, the e200z0h core only 
implements the VLE (variable-length encoding) APU, providing improved code density. 

14.2 Microarchitecture summary
The e200z0h processor utilizes a four stage pipeline for instruction execution. The 
Instruction Fetch (stage 1), Instruction Decode/Register file Read/Effective Address 
Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback (stage 4) 
stages operate in an overlapped fashion, allowing single clock instruction execution for most 
instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-
bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation 
Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result 
feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the 
divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to 
minimize delays during change of flow operations. Sequential prefetching is performed to 
ensure a supply of instructions into the execution pipeline. Branch target prefetching from 
the BTB is performed to accelerate certain taken branches in the e200z0h. Prefetched 
instructions are placed into an instruction buffer with 4entries in e200z0h, each capable of 
holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with 
successful target prefetching have an effective execution time of one clock on e200z0h. All 
other taken branches have an execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data 
with automatic zero or sign extension of byte and halfword load data as well as optional byte 
reversal of data. These instructions can be pipelined to allow effective single cycle 
throughput. Load and store multiple word instructions allow low overhead context save and 
restore operations. The load/store unit contains a dedicated effective address adder to allow 
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effective address generation to be optimized. Also, a load-to-use dependency does not incur 
any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register 
operations defined by the Power Architecture platform. The condition register consists of 
eight 4-bit fields that reflect the results of certain operations, such as move, integer and 
floating-point compare, arithmetic, and logical instructions, and provide a mechanism for 
testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support 
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with 
no software overhead.
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14.3 Block diagram
         

Figure 106. e200z0h block diagram
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14.4 Features
The following is a list of some of the key features of the e200z0h core: 

● 32-bit Power Architecture VLE-only programmer’s model

● Single issue, 32-bit CPU

● Implements the VLE APU for reduced code footprint

● In-order execution and retirement

● Precise exception handling

● Branch processing unit

– Dedicated branch address calculation adder

– Branch acceleration using Branch Target Buffer

● Supports independent instruction and data accesses to different memory subsystems, 
such as SRAM and Flash memory via independent Instruction and Data bus interface 
units (BIUs) (e200z0h only).

● Load/store unit

– 1 cycle load latency

– Fully pipelined

– Big-endian support only

– Misaligned access support

– Zero load-to-use pipeline bubbles for aligned transfers

● Power management

– Low power design

– Power saving modes: nap, sleep, and wait

– Dynamic power management of execution units

● Testability

– Synthesizeable, full MuxD scan design

– ABIST/MBIST for optional memory arrays

14.4.1 Instruction unit features

The features of the e200 Instruction unit are:

● 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up 
to two 16-bit VLE instructions per clock

● Instruction buffer with 4 entries in e200z0h, each holding a single 32-bit instruction, or a 
pair of 16-bit instructions

● Dedicated PC incrementer supporting instruction prefetches

● Branch unit with dedicated branch address adder supporting single cycle of execution 
of certain branches, two cycles for all others
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14.4.2 Integer unit features

The e200 integer unit supports single cycle execution of most integer instructions:

● 32-bit AU for arithmetic and comparison operations

● 32-bit LU for logical operations

● 32-bit priority encoder for count leading zero’s function

● 32-bit single cycle barrel shifter for shifts and rotates

● 32-bit mask unit for data masking and insertion

● Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution 
timing

● 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

14.4.3 Load/Store unit features

The e200 load/store unit supports load, store, and the load multiple / store multiple 
instructions:

● 32-bit effective address adder for data memory address calculations

● Pipelined operation supports throughput of one load or store operation per cycle

● 32-bit interface to memory (dedicated memory interface on e200z0h)

14.4.4 e200z0h system bus features

The features of the e200z0h system bus interface are as follows:

● Independent instruction and data buses

● AMBA(k) AHB(l) Lite Rev 2.0 specification with support for ARM v6 AMBA extensions

– Exclusive access monitor

– Byte lane strobes

– Cache allocate support

● 32-bit address bus plus attributes and control on each bus

● 32-bit read data bus for instruction interface

● Separate uni-directional 32-bit read data bus and 32-bit write data bus for data interface

● Overlapped, in-order accesses

14.5 Core registers and programmer’s model
This section describes the registers implemented in the e200z0h cores. It includes an 
overview of registers defined by the Power Architecture platform, highlighting differences in 
how these registers are implemented in the e200 core, and provides a detailed description 
of e200-specific registers. Full descriptions of the architecture-defined register set are 
provided in the Power Architecture specification.

The Power Architecture defines register-to-register operations for all computational 
instructions. Source data for these instructions are accessed from the on-chip registers or 

k. Advanced Microcontroller Bus Architecture

l. Advanced High Performance Bus
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are provided as immediate values embedded in the opcode. The three-register instruction 
format allows specification of a target register distinct from the two source registers, thus 
preserving the original data for use by other instructions. Data is transferred between 
memory and registers with explicit load and store instructions only.

Figure 107, and Figure 106 show the e200 register set including the registers which are 
accessible while in supervisor mode, and the registers which are accessible in user mode. 
The number to the right of the special-purpose registers (SPRs) is the decimal number used 
in the instruction syntax to access the register (for example, the integer exception register 
(XER) is SPR 1).

Note: e200z0h is a 32-bit implementation of the Power Architecture specification. In this 
document, register bits are sometimes numbered from bit 0 (Most Significant Bit) to 31 
(Least Significant Bit), rather than the Book E numbering scheme of 32:63, thus register bit 
numbers for some registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in parentheses.
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Figure 107. e200z0 SUPERVISOR Mode Program Model SPRs
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15 Enhanced Direct Memory Access (eDMA)

15.1 Device-specific features
●  16 programmable channels to support independent 8, 16 or 32-bit single value or block 

transfers

● Support of variable sized queues and circular queues

● Source and destination address registers independently configured to post-
incrementor remain constant

● Each transfer initiated by peripheral, CPU, periodic timer interrupt or eDMA channel 
request

● Peripheral eDMA request sources possible from:

– DSPI

– 12-bit ADC

– eMIOS

● Each eDMA channel able to optionally send interrupt request to CPU on completion of 
single value or block transfer

● DMA transfers possible between system memories and all accessible memory mapped 
locations including peripheral and registers

● Programmable eDMA Channel Mux allows assignment of any eDMA source to any 
available eDMA channel with total of up to 32 request sources

● DMA supports the following functionality:

– Scatter Gather

– Channel Linking

– Inner Loop Offset

– Arbitration

Fixed Group, fixed channel

Round Robin Group, fixed channel

Round Robin Group, Round Robin Channel

Fixed Group, Round Robin Channel

– Channel preemption

– Cancel channel transfer

● Interrupts – The eDMA has a single interrupt request for each implemented channel 
and a combined eDMA Error interrupt to flag transfer errors to the system. Each 
channel eDMA interrupt can be enabled or disabled and provides notification of a 
completed transfer. Refer to the Interrupt Vector table of in the Interrupts chapter of the 
reference manual for the allocation of these interrupts.

15.1.1 Registers unavailable on this device

The following registers are unavailable on this device:

● DMA Channel 16–63 Priority (DCHPRI16–DCHPRI63)

● Transfer Control Descriptors 16–63 (TCD16–TCD63)
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15.2 Introduction
The enhanced direct memory access controller (eDMA) is a second-generation platform 
block capable of performing complex data movements through 16 programmable channels, 
with minimal intervention from the host processor. The hardware microarchitecture includes 
a DMA engine that performs source and destination address calculations, and the actual 
data movement operations, along with an SRAM-based memory containing the transfer 
control descriptors (TCD) for the channels. This implementation minimizes the overall block 
size.

Figure 108 is a block diagram of the eDMA module. 

         

Figure 108. eDMA block diagram
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15.2.1 Features

The eDMA module supports the following features:

● All data movement via dual-address transfers: read from source, write to destination

– Programmable source, destination addresses, transfer size, plus support for 
enhanced addressing modes

● Transfer control descriptor organized to support two-deep, nested transfer operations

– An inner data transfer loop defined by a “minor” byte transfer count

– An outer data transfer loop defined by a “major” iteration count

● Channel service request via one of three methods:

– Explicit software initiation

– Initiation via a channel-to-channel linking mechanism for continuous transfers
 – Independent channel linking at end of minor loop and/or major loop

– Peripheral-paced hardware requests (one per channel)

– For all three methods, one service request per execution of the minor loop is 
required

● Support for fixed-priority and round-robin channel arbitration

● Channel completion reported via optional interrupt requests

– One interrupt per channel, optionally asserted at completion of major iteration 
count

– Error terminations are optionally enabled per channel, and logically summed 
together to form a small number of error interrupt outputs

● Support for scatter/gather eDMA processing

● Support for complex data structures

● Support to cancel transfers via software or hardware

15.3 Memory map and register definition

15.3.1 Memory map

The eDMA memory map is shown in Table 106. The eDMA base address is 0xFFF4_4000. 
The address of each register is given as an offset to the eDMA base address. Registers are 
listed in address order, identified by complete name and mnemonic, and list the type of 
accesses allowed.

The eDMA’s programming model is partitioned into two regions—the first region defines a 
number of registers providing control functions; the second region corresponds to the local 
transfer control descriptor memory. 

         

Table 106. eDMA memory map

Base address: 0xFFF4_4000

Address offset Register Location

0x0000 EDMA_CR — eDMA control register on page 15-253

0x0004 EDMA_ESR — eDMA error status register on page 15-255

0x0008 Reserved
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0x000C EDMA_ERQRL — eDMA enable request low register (channels 15–00) on page 15-257

0x0010 Reserved

0x0014 EDMA_EEIRL — eDMA enable error interrupt low register (channels 15–00) on page 15-258

0x0018 EDMA_SERQR — eDMA set enable request register on page 15-259

0x0019 EDMA_CERQR — eDMA clear enable request register on page 15-260

0x001A EDMA_SEEIR — eDMA set enable error interrupt register on page 15-260

0x001B EDMA_CEEIR — eDMA clear enable error interrupt register on page 15-261

0x001C EDMA_CIRQR — eDMA clear interrupt request register on page 15-261

0x001D EDMA_CER — eDMA clear error register on page 15-262

0x001E EDMA_SSBR — eDMA set start bit register on page 15-262

0x001F EDMA_CDSBR — eDMA clear done status bit register on page 15-263

0x0020 Reserved

0x0024 EDMA_IRQRL — eDMA interrupt request low register on page 15-263

0x0028 Reserved

0x002C  EDMA_ERL — eDMA error low register on page 15-264

0x0030 Reserved

0x0034 EDMA_HRSL — eDMA hardware request status register on page 15-265

0x0038 – 0x01FC Reserved

0x0100 EDMA_CPR0 — eDMA channel 0 priority register on page 15-265

0x0101 EDMA_CPR1 — eDMA channel 1 priority register on page 15-265

0x0102 EDMA_CPR2 — eDMA channel 2 priority register on page 15-265

0x0103 EDMA_CPR3 — eDMA channel 3 priority register on page 15-265

0x0104 EDMA_CPR4 — eDMA channel 4 priority register on page 15-265

0x0105 EDMA_CPR5 — eDMA channel 5 priority register on page 15-265

0x0106 EDMA_CPR6 — eDMA channel 6 priority register on page 15-265

0x0107 EDMA_CPR7 — eDMA channel 7 priority register on page 15-265

0x0108 EDMA_CPR8 — eDMA channel 8 priority register on page 15-265

0x0109 EDMA_CPR9 — eDMA channel 9 priority register on page 15-265

0x010A EDMA_CPR10 — eDMA channel 10 priority register on page 15-265

0x010B EDMA_CPR11 — eDMA channel 11 priority register on page 15-265

0x010C EDMA_CPR12 — eDMA channel 12 priority register on page 15-265

0x010D EDMA_CPR13 — eDMA channel 13 priority register on page 15-265

0x010E EDMA_CPR14 — eDMA channel 14 priority register on page 15-265

Table 106. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location
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15.3.2 Register descriptions

DMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA. 

Arbitration among the channels can be configured to use a fixed priority or a round robin. In 
fixed-priority arbitration, the highest priority channel requesting service is selected to 
execute. The priorities are assigned by the channel priority registers (see Section DMA 
Channel n Priority (EDMA_CPRn)”). In round-robin arbitration mode, the channel priorities 
are ignored and the channels are cycled through, from channel 15 down to channel 0, 
without regard to priority.

See Figure 109 and Table 107 for the EDMA_CR definition.

0x010F EDMA_CPR15 — eDMA channel 15 priority register on page 15-265

0x0110 Reserved

0x1000 TCD00 — eDMA transfer control descriptor 00 on page 15-267

0x1020 TCD01 — eDMA transfer control descriptor 01 on page 15-267

0x1040 TCD02 — eDMA transfer control descriptor 02 on page 15-267

0x1060 TCD03 — eDMA transfer control descriptor 03 on page 15-267

0x1080 TCD04 — eDMA transfer control descriptor 04 on page 15-267

0x10A0 TCD05 — eDMA transfer control descriptor 05 on page 15-267

0x10C0 TCD06 — eDMA transfer control descriptor 06 on page 15-267

0x10E0 TCD07 — eDMA transfer control descriptor 07 on page 15-267

0x1100 TCD08 — eDMA transfer control descriptor 08 on page 15-267

0x1120 TCD09 — eDMA transfer control descriptor 09 on page 15-267

0x1140 TCD10 — eDMA transfer control descriptor 10 on page 15-267

0x1160 TCD11 — eDMA transfer control descriptor 11 on page 15-267

0x1180 TCD12 — eDMA transfer control descriptor 12 on page 15-267

0x11A0 TCD13 — eDMA transfer control descriptor 13 on page 15-267

0x11C0 TCD14 — eDMA transfer control descriptor 14 on page 15-267

0x11E0 TCD15 — eDMA transfer control descriptor 15 on page 15-267

0x1200 Reserved

Table 106. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location
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Figure 109. DMA Control Register (EDMA_CR)

Offset: 0x0000 Access: Read/write
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Table 107. EDMA_CR field descriptions

Field Description

CX 

Cancel Transfer

0    Normal operation.
1    Cancel the remaining data transfer. Stop the executing channel and force the minor loop 

to be finished. The cancel takes effect after the last write of the current read/write 
sequence. The CXFR bit clears itself after the cancel has been honored. This cancel 
retires the channel normally as if the minor loop was completed.

ECX 

Error Cancel Transfer

0    Normal operation.
1 Cancel the remaining data transfer in the same fashion as the CX cancel transfer. Stop 

the executing channel and force the minor loop to be finished. The cancel takes effect 
after the last write of the current read/write sequence. The ECX bit clears itself after the 
cancel has been honored. In addition to cancelling the transfer, the ECX treats the cancel 
as an error condition; thus updating the EDMA_ESR register and generating an optional 
error interrupt (see Section DMA Error Status (EDMA_ESR)). 

GRP0PRI 
Channel Group 0 Priority

Group 0 priority level when fixed priority group arbitration is enabled.

EMLM 

Enable Minor Loop Mapping

0    Minor loop mapping disabled. TCDn.word2 is defined as a 32-bit nbytes field.
1    Minor loop mapping enabled. When set,
      TCDn.word2 is redefined to include individual enable fields, an offset field and the nbytes 

field. The individual enable fields allow the minor loop offset to be applied to the source 
address, the destination address, or both. The nbytes field is reduced when either offset 
is enabled.

CLM 

Continuous Link Mode

0    A minor loop channel link made to itself will go through channel arbitration before being 
activated again.

1    A minor loop channel link made to itself will not go through channel arbitration before 
being activated again. Upon minor loop completion the channel will active again if that 
channel has a minor loop channel link enabled and the link channel is itself. This 
effectively applies the minor loop offsets and restarts the next minor loop.
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DMA Error Status (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors 
can be caused by a configuration error (an illegal setting in the transfer control descriptor or 
an illegal priority register setting in fixed-arbitration mode) or an error termination to a bus 
master read or write cycle.

A configuration error is caused when the starting source or destination address, source or 
destination offsets, minor loop byte count, and the transfer size represent an inconsistent 
state. The addresses and offsets must be aligned on 0-modulo-transfer_size boundaries, 
and the minor loop byte count must be a multiple of the source and destination transfer 
sizes. All source reads and destination writes must be configured to the natural boundary of 
the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority 
levels are equal and any channel is activated. The ERRCHN field is undefined for this type 
of error. All channel priority levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is 
reported if the scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary. 
If minor loop channel linking is enabled on channel completion, a configuration error is 
reported when the link is attempted if the TCD.CITER.E_LINK bit is not equal to the 
TCD.BITER.E_LINK bit. All configuration error conditions except scatter-gather and minor 
loop link error are reported as the channel is activated and assert an error interrupt request 
if enabled. When properly enabled, a scatter-gather configuration error is reported when the 

HALT 

Halt DMA Operations

0    Normal operation.
1    Stall the start of any new channels. Executing channels are allowed to complete. Channel 

execution will resume when the HALT bit is cleared.

HOE 

Halt On Error
0    Normal operation.
1    Any error will cause the HALT bit to be set. Subsequently, all service requests will be 

ignored until the HALT bit is cleared.

ERGA 
Enable Round Robin Group Arbitration

0    Fixed priority arbitration is used for selection among the groups.
1    Round robin arbitration is used for selection among the groups.

ERCA 
Enable Round Robin Channel Arbitration
0    Fixed priority arbitration is used for channel selection within each group.
1    Round robin arbitration is used for channel selection within each group.

EDBG 

Enable Debug

0    The assertion of the device debug mode is ignored.
1    The assertion of the device debug mode causes the eDMA to stall the start of a new 

channel. Executing channels are allowed to complete. Channel execution will resume 
when either the device comes out of debug mode or the EDBG bit is cleared.

EBW 
0    The bufferable write signal (hprot[2]) is not asserted during AMBA AHB writes.
1    The bufferable write signal (hprot[2]) is asserted on all AMBA AHB writes except for the 

last write sequence.

Table 107. EDMA_CR field descriptions (continued)

Field Description
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scatter-gather operation begins at major loop completion. A minor loop channel link 
configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately 
stopped and the appropriate bus error flag is set. In this case, the state of the channel’s 
transfer control descriptor is updated by the DMA engine with the current source address, 
destination address, and minor loop byte count at the point of the fault. If a bus error occurs 
on the last read prior to beginning the write sequence, the write will execute using the data 
captured during the bus error. If a bus error occurs on the last write prior to switching to the 
next read sequence, the read sequence will execute before the channel is terminated due to 
the destination bus error.

The occurrence of any type of error causes the DMA engine to stop the active channel and 
the appropriate channel bit in the eDMA error register to be asserted. At the same time, the 
details of the error condition are loaded into the EDMA_ESR. The major loop complete 
indicators, setting the transfer control descriptor DONE flag and the possible assertion of an 
interrupt request, are not affected when an error is detected. After the error status has been 
updated, the DMA engine continues to operate by servicing the next appropriate channel. A 
channel that experiences an error condition is not automatically disabled. If a channel is 
terminated by an error and then issues another service request before the error is fixed, that 
channel will execute and terminate with the same error condition.

         

         

Figure 110. DMA Error Status (EDMA_ESR) Register

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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R 0 CPE ERRCHN[0:5] SAE SOE DAE DOE NCE SGE SBE DBE

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 108. EDMA_ESR field descriptions

Field Description

VLD 
Logical OR of all EDMA_ERL status bits. 

0    No EDMA_ERL bits are set.
1    At least one EDMA_ERL bit is set indicating a valid error exists that has not been cleared.

CPE 

Channel Priority Error

0    No channel priority error.
1    The last recorded error was a configuration error in the channel priorities within a group. 

All channel priorities within a group are not unique.

ERRCHN[0:5] 
Error Channel Number or Cancelled Channel Number 

The channel number of the last recorded error (excluding GPE and CPE errors) or last 
recorded transfer that was error cancelled. 
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DMA Enable Request (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 16 channels to enable the request signal for 
each channel. EDMA_ERQRL maps to channels 15–0.

The state of any given channel enable is directly affected by writes to this register; the state 
is also affected by writes to the EDMA_SERQR, and EDMA_CERQR registers. The 
EDMA_CERQR and EDMA_SERQR registers are provided so the request enable for a 
single channel can be modified without performing a read-modify-write sequence to the 
EDMA_ERQRL register.

Both the eDMA request input signal and this enable request flag must be asserted before a 
channel’s hardware service request is accepted. The state of the eDMA enable request flag 
does not affect a channel service request made through software or a linked channel 
request.

SAE 

Source Address Error

0    No source address configuration error.
1    The last recorded error was a configuration error detected in the TCD.saddr field. 

TCD.saddr is inconsistent with TCD.ssize.

SOE 

Source Offset Error
0    No source offset configuration error.
1    The last recorded error was a configuration error detected in the TCD.soff field. TCD.soff 

is inconsistent with TCD.ssize.

DAE 

Destination Address Error

0    No destination address configuration error.
1    The last recorded error was a configuration error detected in the TCD.daddr field. 

TCD.daddr is inconsistent with TCD.dsize.

DOE 

Destination Offset Error 

0    No destination offset configuration error.
1    The last recorded error was a configuration error detected in the TCD.doff field. TCD.doff 

is inconsistent with TCD.dsize.

NCE 

Nbytes/Citer Configuration Error
0    No nbytes/citer configuration error.
1    The last recorded error was a configuration error detected in the TCD.nbytes or TCD.citer 

fields. TCD.nbytes is not a multiple of TCD.ssize and TCD.dsize, or TCD.citer is equal to 
zero, or TCD.citer.e_link is not equal to TCD.biter.e_link.

SGE 

Scatter/Gather Configuration Error
0    No scatter/gather configuration error.
1    The last recorded error was a configuration error detected in the TCD.dlast_sga field. 

This field is checked at the beginning of a scatter/gather operation after major loop 
completion if TCD.e_sg is enabled. TCD.dlast_sga is not on a 32 byte boundary.

SBE 
Source Bus Error
0    No source bus error.
1    The last recorded error was a bus error on a source read.

DBE 
Destination Bus Error

0    No destination bus error.
1    The last recorded error was a bus error on a destination write.

Table 108. EDMA_ESR field descriptions (continued)

Field Description
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As a given channel completes the processing of its major iteration count, there is a flag in 
the transfer control descriptor that may affect the ending state of the EDMA_ERQRL bit for 
that channel. If the TCD.d_req bit is set, then the corresponding EDMA_ERQRL bit is 
cleared, disabling the eDMA request; else if the d_req bit is cleared, the state of the 
EDMA_ERQRL bit is unaffected.

DMA Enable Error Interrupt (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 16 channels to enable the error interrupt signal 
for each channel. EDMA_EEIRL maps to channels 15–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these 
registers; it is also affected by writes to the EDMA_SEEIR and EDMA_CEEIR registers. The 
EDMA_SEEIR and EDMA_CEEIR registers are provided so that the error interrupt enable 
for a single channel can be modified without the performing a read-modify-write sequence to 
the EDMA_EEIRL register.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before 
an error interrupt request for a given channel is asserted. See Figure 112 and Table 110 for 
the EDMA_EEIRL definition.

Figure 111. DMA Enable Request (EDMA_ERQRL) Registers

Offset: 0x000C Access: Read/write
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R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 109. EDMA_ERQRL field descriptions

Field Description

ERQn
Enable eDMA Request n

0    The eDMA request signal for channel n is disabled.
1    The eDMA request signal for channel n is enabled.
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DMA Set Enable Request (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the 
EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a 
register write causes the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1 
(SERQ[0]) provides a global set function, forcing the entire contents of EDMA_ERQRL to be 
asserted. Reads of this register return all zeroes.

          

         

Figure 112. DMA Enable Error Interrupt (EDMA_EEIRL) Register

Offset: 0x0014 Access: Read/write
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
E

I1
5

E
E

I1
4

E
E

I1
3

E
E

I1
2

E
E

I1
1

E
E

I1
0

E
E

I0
9

E
E

I0
8

E
E

I0
7

E
E

I0
6

E
E

I0
5

E
E

I0
4

E
E

I0
3

E
E

I0
2

E
E

I0
1

E
E

I0
0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 110. EDMA_EEIRL field descriptions

Field Description

EEIn
Enable Error Interrupt n

0    The error signal for channel n does not generate an error interrupt.
1    The assertion of the error signal for channel n generate an error interrupt request.

Figure 113. DMA Set Enable Request (EDMA_SERQR) Register

Offset: 0x0018 Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SERQ

RESET: 0 0 0 0 0 0 0 0

Table 111. EDMA_SERQR field descriptions

Field Description

SERQ
Set Enable Request
0- Set the corresponding bit in EDMA_ERQRL

64-127  Set all bits in EDMA_ERQRL
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DMA Clear Enable Request (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in 
the EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a 
register write causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1 
(CERQ[0]) provides a global clear function, forcing the entire contents of the EDMA_ERQRL 
to be zeroed, disabling all eDMA request inputs. Reads of this register return all zeroes. See 
Figure 114 and Table 112 for the EDMA_CERQR definition.

         

         

DMA Set Enable Error Interrupt (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the 
EDMA_EEIRL to enable the error interrupt for a given channel. The data value on a register 
write causes the corresponding bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0]) 
provides a global set function, forcing the entire contents of EDMA_EEIRL to be asserted. 
Reads of this register return all zeroes. See Figure 115 and Table 113 for the EDMA_SEEIR 
definition.

         

         

Figure 114. DMA Clear Enable Request (EDMA_CERQR) Register

Offset: 0x0019 Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERQ

RESET: 0 0 0 0 0 0 0 0

Table 112. EDMA_CERQR field descriptions

Field Description

CERQ

Clear Enable Request

0-63      Clear corresponding bit in EDMA_ERQRL
64-127  Clear all bits in EDMA_ERQRL

Figure 115. DMA Set Enable Error Interrupt (EDMA_SEEIR) Register

Offset: 0x001A Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SEEI

RESET: 0 0 0 0 0 0 0 0

Table 113. EDMA_SEEIR field descriptions

Name Description

SEEI
Set Enable Error Interrupt
0-63      Set the corresponding bit in EDMA_EEIRL

64-127  Set all bits in EDMA_EEIRL
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DMA Clear Enable Error Interrupt (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the 
EDMA_EEIRL to disable the error interrupt for a given channel. The data value on a register 
write causes the corresponding bit in the EDMA_EEIRL to be cleared. Setting bit 1 
(CEEI[0]) provides a global clear function, forcing the entire contents of the EDMA_EEIRL to 
be zeroed, disabling error interrupts for all channels. Reads of this register returns all 
zeroes. See Figure 116 and Table 114 for the EDMA_CEEIR definition.

         

         

DMA Clear Interrupt Request (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the 
EDMA_IRQRL to disable the interrupt request for a given channel. The given value on a 
register write causes the corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1 
(CINT[0]) provides a global clear function, forcing the entire contents of the EDMA_IRQRL 
to be zeroed, disabling all eDMA interrupt requests. Reads of this register return all zeroes. 
See Figure 117 and Table 115 for the EDMA_CIRQR definition.

         

         

Figure 116. DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register

Offset: 0x001B Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CEEI[0:6]

RESET: 0 0 0 0 0 0 0 0

Table 114. EDMA_CEEIR field descriptions

Field Description

CEEI

Clear Enable Error Interrupt

0-63      Clear corresponding bit in EDMA_EEIRL
64-127  Clear all bits in EDMA_EEIRL

Figure 117. DMA Clear Interrupt Request (EDMA_CIRQR) Fields

Offset: 0x001C Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CINT

RESET: 0 0 0 0 0 0 0 0

Table 115. EDMA_CIRQR field descriptions

Field Description

CINT[0:6]
Clear Interrupt Request
0-63      Clear the corresponding bit in EDMA_IRQRL

64-127  Clear all bits in EDMA_IRQRL
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DMA Clear Error (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the 
EDMA_ERL to disable the error condition flag for a given channel. The given value on a 
register write causes the corresponding bit in the EDMA_ERL to be cleared. Setting bit 1 
(CERR[0]) provides a global clear function, forcing the entire contents of the EDMA_ERL to 
be zeroed, clearing all channel error indicators. Reads of this register return all zeroes. See 
Figure 118 and Table 116 for the EDMA_CER definition.

         

         

         

DMA Set START Bit (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD 
of the given channel. The data value on a register write causes the START bit in the 
corresponding transfer control descriptor to be set. Setting bit 1 (SSB[0]) provides a global 
set function, forcing all START bits to be set. Reads of this register return all zeroes. See 
Table 124 for the TCD START bit definition.

         

Figure 118. DMA Clear Error (EDMA_CER) Register

Offset: 0x001D Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERR

RESET: 0 0 0 0 0 0 0 0

Table 116. EDMA_CER field descriptions

Field Description

CERR
Clear Error Indicator
0-63      Clear corresponding bit in EDMA_ERL

64-127  Clear all bits in EDMA_ERL

Figure 119. DMA Set START Bit (EDMA_SSBR) Register

Offset: 0x001E Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SSRT

RESET: 0 0 0 0 0 0 0 0
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DMA Clear DONE Status (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the 
TCD of the given channel. The data value on a register write causes the DONE bit in the 
corresponding transfer control descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a 
global clear function, forcing all DONE bits to be cleared. See Table 124 for the TCD DONE 
bit definition.

         

         

DMA Interrupt Request (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 16 channels signaling the presence of an 
interrupt request for each channel. EDMA_IRQRL maps to channels 15–0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a 
data transfer as defined in the transfer control descriptor by setting the appropriate bit in this 
register. The outputs of this register are directly routed to the interrupt controller (INTC). 
During the execution of the interrupt service routine associated with any given channel, 
software must clear the appropriate bit, negating the interrupt request. Typically, a write to 
the EDMA_CIRQR in the interrupt service routine is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this 
register; it is also affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a 
1 in any bit position clears the corresponding channel’s interrupt request. A 0 in any bit 
position has no affect on the corresponding channel’s current interrupt status. The 
EDMA_CIRQR is provided so the interrupt request for a single channel can be cleared 
without performing a read-modify-write sequence to the EDMA_IRQRL. See Figure 121 and 
Table 119 for the EDMA_IRQL definition.

Table 117. EDMA_SSBR field descriptions

Field Description

SSRT

Set START Bit (Channel Service Request)

0-63      Set the corresponding channel’s TCD.start

64-127  Set all TCD.start bits

Figure 120. DMA Clear DONE Status (EDMA_CDSBR) Register

Offset: 0x001F Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CDNE[0:6]

RESET: 0 0 0 0 0 0 0 0

Table 118. EDMA_CDSBR field descriptions

Field Description

CDNE[0:6]
Clear DONE Status Bit
0-63     Clear the corresponding channel’s DONE bit 64-127  Clear all TCD DONE bits
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DMA Error (EDMA_ERL)

The EDMA_ERL provides a bit map for the 16 channels signaling the presence of an error 
for each channel. EDMA_ERL maps to channels 15-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in 
this register. The outputs of this register are enabled by the contents of the EDMA_EEIR, 
then logically summed across 16 channels to form an error interrupt request, which is then 
routed to the interrupt controller. During the execution of the interrupt service routine 
associated with any eDMA errors, it is software’s responsibility to clear the appropriate bit, 
negating the error interrupt request. Typically, a write to the EDMA_CER in the interrupt 
service routine is used for this purpose. The normal eDMA channel completion indicators, 
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt 
request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence 
of a channel error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a 
logical OR of all bits in this register and it provides a single bit indication of any errors. The 
state of any given channel’s error indicators is affected by writes to this register; it is also 
affected by writes to the EDMA_CER. On writes to EDMA_ERL, a 1 in any bit position clears 
the corresponding channel’s error status. A 0 in any bit position has no affect on the 
corresponding channel’s current error status. The EDMA_CER is provided so the error 
indicator for a single channel can be cleared. See Figure 122 and Table 120 for the 
EDMA_ERL definition.

Figure 121. DMA Interrupt Request (EDMA_IRQRL) Registers

Offset: 0x0024 Access: Read/write
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Table 119. EDMA_IRQRL field descriptions

Field Description

INTn
DMA Interrupt Request n

0    The interrupt request for channel n is cleared.
1    The interrupt request for channel n is active. 
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DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL register provides a bit map for the implemented channels to show the 
current hardware request status for each channel. This view into the hardware request 
signals may be used for debug purposes.

See Figure 123 and Figure 121 for the EDMA_HRSL definition.

         

Figure 122. DMA Error (EDMA_ERL) Registers

Offset: 0x002C Access: Read/write
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Table 120. EDMA_ERL field descriptions

Field Description

ERRn
DMA Error n

0    An error in channel n has not occurred.
1    An error in channel n has occurred. 

Figure 123. DMA Hardware Request Status (EDMA_HRSL) Register

Offset: 0x0034 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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DMA Channel n Priority (EDMA_CPRn) 

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the 
contents of these registers define the unique priorities associated with each channel. The 
channel priorities are evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next 
higher priority, then 2, 3, etc. If software modifies channel priority values, then the software 
must ensure that the channel priorities contain unique values, otherwise a configuration 
error will be reported. The range of the priority value is limited to the values of 0 through 15.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the 
EDMA_CPRn register. Channel preemption allows the executing channel’s data transfers to 
be temporarily suspended in favor of starting a higher priority channel. After the preempting 
channel has completed all its minor loop data transfers, the preempted channel is restored 
and resumes execution. After the restored channel completes one read/write sequence, it is 
again eligible for preemption. If any higher priority channel requests service, the restored 
channel will be suspended and the higher priority channel will be serviced. Nested 
preemption (attempting to preempt a preempting channel) is not supported. After a 
preempting channel begins execution, it cannot be preempted. Preemption is available only 
when fixed arbitration is selected for channel arbitration mode 

A channel’s ability to preempt another channel can be disabled by setting the DPA bit in the 
EDMA_CPRn register. When a channel’s preempt ability is disabled, that channel cannot 
suspend a lower priority channel’s data transfer; regardless of the lower priority channel’s 
ECP setting. This allows for a pool of low priority, large data moving channels to be defined. 
These low priority channels can be configured to not preempt each other, thus preventing a 
low priority channel from consuming the preempt slot normally available a true, high priority 
channel. See Figure 124 and Table 122 for the EDMA_CPRn definition.

         

Table 121. EDMA_HRSL field descriptions

Field Description

HRSn

DMA Hardware Request Status n

0    A hardware service request for channel n is not present.
1    A hardware service request for channel n is present.

Note: The hardware request status reflects the state of the request as seen by the 
arbitration logic. Therefore, this status is affected by the EDMA_ERQRL[n] bit. 

Figure 124. DMA Channel n Priority (EDMA_CPRn) Register

Offset: 0x0100 + n Access: Read/write

0 1 2 3 4 5 6 7

R
ECP DPA

GRPPRI
CHPRI

W

RESET: 0 0 * * * * * *

* = defaults to channel number (n) after reset
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Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data 
movement operation. The channel descriptors are stored in the local memory in sequential 
order: channel 0, channel 1,... channel 15. The definitions of the TCD are presented as eight 
32-bit values. Table 123 is a field list of the basic TCD structure.

         

Figure 125 and Table 124 define the fields of the TCDn structure.

Table 122. EDMA_CPRn field descriptions

Field Description

ECP 

Enable Channel Preemption

0    Channel n cannot be suspended by a higher priority channel’s service request.
1    Channel n can be temporarily suspended by the service request of a higher priority 

channel.

DPA 
Disable Preempt Ability

0    Channel n can suspend a lower priority channel.
1    Channel n cannot suspend any channel, regardless of channel priority.

CHPRI[0:3] 
Channel n Arbitration Priority

Channel priority when fixed-priority arbitration is enabled.

Table 123. TCDn 32-bit memory structure

eDMA offset TCDn field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status
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Note: The TCD structures for the eDMA channels shown in Figure 125 are implemented in 
internal SRAM. These structures are not initialized at reset; therefore, all channel TCD 
parameters must be initialized by the application code before activating that channel.

Figure 125. TCD structure

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES(1)

1. The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to 0 or 1. See Table 107.
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Table 124. TCDn field descriptions

Bits /
Word Offset 

[n:n]
Name Description

0–31 /

0x0 [0:31]

SADDR

[0:31]
Source address. Memory address pointing to the source data. 
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD

[0:4]

Source address modulo.

0  Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the 

value after SADDR + SOFF calculation is performed or the original 
register value. The setting of this field provides the ability to easily 
implement a circular data queue. For data queues requiring power-of-
2 size bytes, the queue should start at a 0-modulo-size address and 
the SMOD field should be set to the appropriate value for the queue, 
freezing the desired number of upper address bits. The value 
programmed into this field specifies the number of lower address bits 
that are allowed to change. For this circular queue application, the 
SOFF is typically set to the transfer size to implement post-increment 
addressing with the SMOD function constraining the addresses to a 
0-modulo-size range.

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size. 

000 8-bit
001 16-bit
010 32-bit
011 Reserved 
100 16-byte (32-bit, 4-beat, WRAP4 burst)
101 32-byte (32-bit, 8 beat, WRAP8 burst)
110 Reserved
111 Reserved

The attempted specification of a reserved encoding causes a configuration 
error.

40–44 /

0x4 [8:12]

DMOD

[0:4]
Destination address modulo. See the SMOD[0:5] definition.

45–47 /

0x4 [13:15]

DSIZE

[0:2]
Destination data transfer size. See the SSIZE[0:2] definition.

48–63 /

0x4 [16:31]

SOFF

[0:15]

Source address signed offset. Sign-extended offset applied to the current 
source address to form the next-state value as each source read is 
completed.

64–95 /
0x8 [0:31]

NBYTES
[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each 
service request of the channel. As a channel is activated, the contents of 
the appropriate TCD is loaded into the DMA engine, and the appropriate 
reads and writes performed until the complete byte transfer count has been 
transferred. This is an indivisible operation and cannot be stalled or halted. 
After the minor count is exhausted, the current values of the SADDR and 
DADDR are written back into the local memory, the major iteration count is 
decremented and restored to the local memory. If the major iteration count 
is completed, additional processing is performed.

Note:  The NBYTES value of 0x0000_0000 is interpreted as 
0x1_0000_0000, thus specifying a 4 GB transfer.
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64–95 /
0x8 [0:31]

NBYTES(1)

[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each 
service request of the channel. As a channel is activated, the contents of 
the appropriate TCD is loaded into the eDMA engine, and the appropriate 
reads and writes performed until the complete byte transfer count has been 
transferred. This is an indivisible operation and cannot be stalled or halted. 
Once the minor count is exhausted, the current values of the SADDR and 
DADDR are written back into the local memory, the major iteration count is 
decremented and restored to the local memory. If the major iteration count 
is completed, additional processing is performed.

Note:  The NBYTES value of 0x0000_0000 is interpreted as 
0x1_0000_0000, thus specifying a 4 Gbyte transfer.

64
0x8 [0]

SMLOE (1)

0

Source minor loop offset enable
This flag selects whether the minor loop offset is applied to the source 
address upon minor loop completion.

0    The minor loop offset is not applied to the saddr.
1    The minor loop offset is applied to the saddr.

65
0x8 [1]

DMLOE (1)

1

Destination minor loop offset enable
This flag selects whether the minor loop offset is applied to the destination 
address upon minor loop completion.

0    The minor loop offset is not applied to the daddr.
1    The minor loop offset is applied to the daddr.

66–85

0x8 [2-21]

MLOFF or

NBYTES (1)

[0:19]

Inner “minor” byte transfer count or Minor loop offset
If both SMLOE and DMLOE are cleared, this field is part of the byte 
transfer count.

If either SMLOE or DMLOE are set, this field represents a sign-extended 
offset applied to the source or destination address to form the next-state 
value after the minor loop is completed.

86–95 /

0x8 [22:31]

NBYTES (1)

Inner “minor” byte transfer count. Number of bytes to be transferred in each 
service request of the channel. As a channel is activated, the contents of 
the appropriate TCD is loaded into the eDMA engine, and the appropriate 
reads and writes performed until the complete byte transfer count has been 
transferred. This is an indivisible operation and cannot be stalled or halted. 
Once the minor count is exhausted, the current values of the SADDR and 
DADDR are written back into the local memory, the major iteration count is 
decremented and restored to the local memory. If the major iteration count 
is completed, additional processing is performed.

Note:  The NBYTES value of 0x0000_0000 is interpreted as 
0x1_0000_0000, thus specifying a 4 GByte transfer.

96–127 /

0xC [0:31]

SLAST

[0:31]

Last source address adjustment. Adjustment value added to the source 
address at the completion of the outer major iteration count. This value can 
be applied to “restore” the source address to the initial value, or adjust the 
address to reference the next data structure.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset 

[n:n]
Name Description
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128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160 /

0x14 [0]
CITER.E_LINK

Enable channel-to-channel linking on minor loop completion. As the 
channel completes the inner minor loop, this flag enables the linking to 
another channel, defined by CITER.LINKCH[0:5]. The link target channel 
initiates a channel service request via an internal mechanism that sets the 
TCD.START bit of the specified channel. If channel linking is disabled, the 
CITER value is extended to 15 bits in place of a link channel number. If the 
major loop is exhausted, this link mechanism is suppressed in favor of the 
MAJOR.E_LINK channel linking. 

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note:  This bit must be equal to the BITER.E_LINK bit otherwise a 
configuration error will be reported.

161–166 /
0x14 [1:6]

CITER

[0:5]
or

CITER.LINKCH

[0:5]

Current major iteration count or link channel number. 

If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then 
– No channel-to-channel linking (or chaining) is performed after the inner 

minor loop is exhausted. TCD bits [161:175] are used to form a 15-bit 
CITER field.

Otherwise,
– After the minor loop is exhausted, the DMA engine initiates a channel 

service request at the channel defined by CITER.LINKCH[0:5] by setting 
that channel’s TCD.START bit.

167–175 /

0x14 [7:15]

CITER

[6:14]

Current major iteration count. This 9 or 15-bit count represents the current 
major loop count for the channel. It is decremented each time the minor 
loop is completed and updated in the transfer control descriptor memory. 
After the major iteration count is exhausted, the channel performs a 
number of operations (for example, final source and destination address 
calculations), optionally generating an interrupt to signal channel 
completion before reloading the CITER field from the beginning iteration 
count (BITER) field.
Note:   When the CITER field is initially loaded by software, it must be set 
to the same value as that contained in the BITER field.
Note:  If the channel is configured to execute a single service request, the 
initial values of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the 
current destination address to form the next-state value as each 
destination write is completed.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset 

[n:n]
Name Description
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192–223 /

0x18 [0:31]

DLAST_SGA

[0:31]

Last destination address adjustment or the memory address for the next 
transfer control descriptor to be loaded into this channel (scatter-gather).

If scatter-gather processing for the channel is disabled (TCD.E_SG = 0) 
then

– Adjustment value added to the destination address at the completion of 
the outer major iteration count. 

This value can be applied to restore the destination address to the initial 
value, or adjust the address to reference the next data structure.

Otherwise,
– This address points to the beginning of a 0-modulo-32 byte region 

containing the next transfer control descriptor to be loaded into this 
channel. This channel reload is performed as the major iteration count 
completes. The scatter-gather address must be 0-modulo-32 byte, 
otherwise a configuration error is reported.

224 /

0x1C [0]
BITER.E_LINK

Enables channel-to-channel linking on minor loop complete. As the 
channel completes the inner minor loop, this flag enables the linking to 
another channel, defined by BITER.LINKCH[0:5]. The link target channel 
initiates a channel service request via an internal mechanism that sets the 
TCD.START bit of the specified channel. If channel linking is disabled, the 
BITER value is extended to 15 bits in place of a link channel number. If the 
major loop is exhausted, this link mechanism is suppressed in favor of the 
MAJOR.E_LINK channel linking. 

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note:  When the TCD is first loaded by software, this field must be set 
equal to the corresponding CITER field, otherwise a configuration error will 
be reported. As the major iteration count is exhausted, the contents of this 
field is reloaded into the CITER field.

225–230 /

0x1C [1:6]

BITER

[0:5]
or

BITER.LINKCH[0:5]

Starting major iteration count or link channel number. 
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then 

– No channel-to-channel linking (or chaining) is performed after the inner 
minor loop is exhausted. TCD bits [225:239] are used to form a 15-bit 
BITER field.

Otherwise,

– After the minor loop is exhausted, the DMA engine initiates a channel 
service request at the channel, defined by BITER.LINKCH[0:5], by 
setting that channel’s TCD.START bit.

Note:  When the TCD is first loaded by software, this field must be set 
equal to the corresponding CITER field, otherwise a configuration error will 
be reported. As the major iteration count is exhausted, the contents of this 
field is reloaded into the CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first 
loaded by software, this field must be equal to the value in the CITER field. 
As the major iteration count is exhausted, the contents of this field are 
reloaded into the CITER field.

Note:  If the channel is configured to execute a single service request, the 
initial values of BITER and CITER should be 0x0001.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset 

[n:n]
Name Description
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240–241 /
0x1C [16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively 
throttle the amount of bus bandwidth consumed by the eDMA. In general, 
as the eDMA processes the inner minor loop, it continuously generates 
read/write sequences until the minor count is exhausted. This field forces 
the eDMA to stall after the completion of each read/write access to control 
the bus request bandwidth seen by the system bus crossbar switch 
(XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /

0x1C [18:23]

MAJOR.LINKCH

[0:5]

Link channel number.
If channel-to-channel linking on major loop complete is disabled 
(TCD.MAJOR.E_LINK = 0) then,
– No channel-to-channel linking (or chaining) is performed after the outer 

major loop counter is exhausted.
Otherwise

– After the major loop counter is exhausted, the DMA engine initiates a 
channel service request at the channel defined by MAJOR.LINKCH[0:5] 
by setting that channel’s TCD.START bit.

248 /
0x1C [24]

DONE

Channel done. This flag indicates the eDMA has completed the outer 
major loop. It is set by the DMA engine as the CITER count reaches zero; it 
is cleared by software or hardware when the channel is activated (when 
the DMA engine has begun processing the channel, not when the first data 
transfer occurs).

Note:   This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /

0x1C [25]
ACTIVE

Channel active. This flag signals the channel is currently in execution. It is 
set when channel service begins, and is cleared by the DMA engine as the 
inner minor loop completes or if any error condition is detected.

250 /

0x1C [26]
MAJOR.E_LINK

Enable channel-to-channel linking on major loop completion. As the 
channel completes the outer major loop, this flag enables the linking to 
another channel, defined by MAJOR.LINKCH[0:5]. The link target channel 
initiates a channel service request via an internal mechanism that sets the 
TCD.START bit of the specified channel. 

NOTE: To support the dynamic linking coherency model, this field is forced 
to zero when written to while the TCD.DONE bit is set.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset 

[n:n]
Name Description
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15.4 Functional description
This section provides an overview of the microarchitecture and functional operation of the 
eDMA block. 

251 /

0x1C [27]
E_SG

Enable scatter-gather processing. As the channel completes the outer 
major loop, this flag enables scatter-gather processing in the current 
channel. If enabled, the DMA engine uses DLAST_SGA as a memory 
pointer to a 0-modulo-32 address containing a 32-byte data structure 
which is loaded as the transfer control descriptor into the local memory. 

NOTE: To support the dynamic scatter-gather coherency model, this field 
is forced to zero when written to while the TCD.DONE bit is set.

0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The 

DLAST_SGA field provides a memory pointer to the next TCD to be 
loaded into this channel after the outer major loop completes its 
execution.

252 /

0x1C [28]
D_REQ

Disable hardware request. If this flag is set, the eDMA hardware 
automatically clears the corresponding EDMA_ERQRL bit when the 
current major iteration count reaches zero.

0 The channel’s EDMA_ERQRL bit is not affected.
1 The channel’s EDMA_ERQRL bit is cleared when the outer major loop is 

complete.

253 /

0x1C [29]
INT_HALF

Enable an interrupt when major counter is half complete. If this flag is set, 
the channel generates an interrupt request by setting the appropriate bit in 
the EDMA_ERQRL when the current major iteration count reaches the 
halfway point. Specifically, the comparison performed by the eDMA engine 
is (CITER == (BITER >> 1)). This halfway point interrupt request is 
provided to support double-buffered (aka ping-pong) schemes, or other 
types of data movement where the processor needs an early indication of 
the transfer’s progress. CITER = BITER = 1 with INT_HALF enabled will 
generate an interrupt as it satisfies the equation (CITER == (BITER >> 1)) 
after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254 /

0x1C [30]
INT_MAJ

Enable an interrupt when major iteration count completes. If this flag is set, 
the channel generates an interrupt request by setting the appropriate bit in 
the EDMA_ERQRL when the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /

0x1C [31]
START

Channel start. If this flag is set the channel is requesting service. The 
eDMA hardware automatically clears this flag after the channel begins 
execution.

0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

1. The fields implemented at 0x8 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 107.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset 

[n:n]
Name Description
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The eDMA module is partitioned into two major modules: the DMA engine and the transfer 
control descriptor local memory. The DMA engine is further partitioned into four 
submodules, which are detailed below.

● DMA engine

– Address path: This module implements registered versions of two channel transfer 
control descriptors: channel x and channel y, and is responsible for all the master 
bus address calculations. All the implemented channels provide the same 
functionality. This hardware structure allows the data transfers associated with one 
channel to be preempted after the completion of a read/write sequence if a higher 
priority channel service request is asserted while the first channel is active. After a 
channel is activated, it runs until the minor loop is completed unless preempted by 
a higher priority channel. This capability provides a mechanism (optionally 
enabled by EDMA_CPRn[ECP]) where a large data move operation can be 
preempted to minimize the time another channel is blocked from execution.

When another channel is activated, the contents of its transfer control descriptor is 
read from the local memory and loaded into the registers of the other address path 
channel{x,y}. After the inner minor loop completes execution, the address path 
hardware writes the new values for the TCDn.{SADDR, DADDR, CITER} back into 
the local memory. If the major iteration count is exhausted, additional processing is 
performed, including the final address pointer updates, reloading the TCDn.CITER 
field, and a possible fetch of the next TCDn from memory as part of a scatter-
gather operation.

– Data path: This module implements the actual bus master read/write datapath. It 
includes 32 bytes of register storage (matching the maximum transfer size) and 
the necessary mux logic to support any required data alignment. The system read 
data bus is the primary input, and the system write data bus is the primary output.

The address and data path modules directly support the two-stage pipelined 
system bus. The address path module represents the 1st stage of the bus pipeline 
(the address phase), while the data path module implements the second stage of 
the pipeline (the data phase).

– Program model/channel arbitration: This module implements the first section of 
eDMA’s programming model and also the channel arbitration logic. The 
programming model registers are connected to the slave bus (not shown). The 
eDMA peripheral request inputs and eDMA interrupt request outputs are also 
connected to this module (via the control logic).

– Control: This module provides all the control functions for the DMA engine. For 
data transfers where the source and destination sizes are equal, the DMA engine 
performs a series of source read, destination write operations until the number of 
bytes specified in the inner minor loop byte count has been moved. 

A minor loop interaction is defined as the number of bytes to transfer (nbytes) 
divided by the transfer size. Transfer size is defined as:

if (SSIZE < DSIZE) 

transfer size = destination transfer size (# of bytes) 

else 

transfer size = source transfer size (# of bytes) 

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR, 
DADDR, BWC, ACTIVE, AND START. Major loop TCD variables are DLAST, 
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SLAST, CITER, BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and 
INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size 
data are required for each reference of the larger size. For example, if the source 
size references 16-bit data and the destination is 32-bit data, two reads are 
performed, then one 32-bit write.

● TCD local memory

– Memory controller: This logic implements the required dual-ported controller, 
handling accesses from both the DMA engine as well as references from the slave 
bus. As noted earlier, in the event of simultaneous accesses, the DMA engine is 
given priority and the slave transaction is stalled. The hooks to a BIST controller 
for the local TCD memory are included in this module.

– Memory array: The TCD is implemented using a single-ported, synchronous 
compiled RAM memory array.

15.4.1 eDMA basic data flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data 
transfer can be partitioned into three segments. As shown in Figure 126, the first segment 
involves the channel service request. In the diagram, this example uses the assertion of the 
eDMA peripheral request signal to request service for channel n. Channel service request 
via software and the TCDn.START bit follows the same basic flow as an eDMA peripheral 
request. The eDMA peripheral request input signal is registered internally and then routed to 
through the DMA engine, first through the control module, then into the program 
model/channel arbitration module. In the next cycle, the channel arbitration is performed 
using the fixed-priority or round-robin algorithm. After the arbitration is complete, the 
activated channel number is sent through the address path and converted into the required 
address to access the TCD local memory. Next, the TCD memory is accessed and the 
required descriptor read from the local memory and loaded into the DMA engine address 
path channel{x,y} registers. The TCD memory is organized 64-bits in width to minimize the 
time needed to fetch the activated channel’s descriptor and load it into the eDMA engine 
address path channel{x,y} registers. 
Doc ID 16886 Rev 6 276/868



Enhanced Direct Memory Access (eDMA) RM0045
         

Figure 126. eDMA operation, part 1

In the second part of the basic data flow as shown in Figure 127, the modules associated 
with the data transfer (address path, data path, and control) sequence through the required 
source reads and destination writes to perform the actual data movement. The source reads 
are initiated and the fetched data is temporarily stored in the data path module until it is 
gated onto the system bus during the destination write. This source read/destination write 
processing continues until the inner minor byte count has been transferred. The eDMA done 
handshake signal is asserted at the end of the minor byte count transfer.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA interrupt request

Bus read data

channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 16 channels
277/868 Doc ID 16886 Rev 6



RM0045 Enhanced Direct Memory Access (eDMA)
         

Figure 127. eDMA operation, part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is 
performed. In this segment, the address path logic performs the required updates to certain 
fields in the channel’s TCD; for example, SADDR, DADDR, CITER. If the outer major 
iteration count is exhausted, then there are additional operations performed. These include 
the final address adjustments and reloading of the BITER field into the CITER. Additionally, 
assertion of an optional interrupt request occurs at this time, as does a possible fetch of a 
new TCD from memory using the scatter-gather address pointer included in the descriptor. 
The updates to the TCD memory and the assertion of an interrupt request are shown in 
Figure 128.
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Figure 128. eDMA operation, part 3

15.5 Initialization / application information

15.5.1 eDMA initialization 

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other 
than the default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL 
registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware 
(slave device asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the 
arbitration and priority levels written into the programmer's model. The DMA engine will read 
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the entire TCD, including the primary transfer control parameter shown in Table 125, for the 
selected channel into its internal address path module. As the TCD is being read, the first 
transfer is initiated on the system bus unless a configuration error is detected. Transfers 
from the source (as defined by the source address, TCD.SADDR) to the destination (as 
defined by the destination address, TCD.DADDR) continue until the specified number of 
bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA 
engine's local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main 
TCD memory and any minor loop channel linking is performed, if enabled. If the major loop 
is exhausted, further post processing is executed; for example, interrupts, major loop 
channel linking, and scatter-gather operations, if enabled.

         

Figure 129 shows how each DMA request initiates one minor loop transfer (iteration) without 
CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor 
loop DMA preemption is allowed. The number of minor loops in a major loop is specified by 
the beginning iteration count (biter).

Table 125. TCD primary control and status fields

TCD field name Description

START
Control bit to start channel when using a software initiated DMA service 
(Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE
Status bit indicating major loop completion (cleared by software when using a 
software initiated DMA service)

D_REQ
Control bit to disable DMA request at end of major loop completion when using 
a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes
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Figure 129. Example of multiple loop iterations

Figure 130 lists the memory array terms and how the TCD settings interrelate.

         

Figure 130. Memory array terms

15.5.2 DMA programming errors

The DMA performs various tests on the transfer control descriptor to verify consistency in 
the descriptor data. Most programming errors are reported on a per-channel basis with the 
exception of channel-priority error, or EDMA_ESR[CPE].

For all error types other than channel-priority errors, the channel number causing the error is 
recorded in the EDMA_ESR. If the error source is not removed before the next activation of 
the problem channel, the error will be detected and recorded again.
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If priority levels are not unique, the highest (channel) priority that has an active request is 
selected, but the lowest numbered (channel) with that priority is selected by arbitration and 
executed by the DMA engine. The hardware service request handshake signals, error 
interrupts, and error reporting are associated with the selected channel.

15.5.3 DMA request assignments

The assignments between the DMA requests from the modules to the channels of the 
eDMA are shown in Table 126. The source column is written in C language syntax. The 
syntax is module_instance.register[bit]. 

         

15.5.4 DMA arbitration mode considerations

Fixed-channel crbitration

In this mode, the channel service request from the highest priority channel is selected to 
execute. Preemption is available in this scenario only.

Round-robin channel arbitration

In this mode, channels are serviced starting with the highest channel number and rotating 
through to the lowest channel number without regard to the assigned channel priority levels.

Table 126. DMA Request Summary for eDMA 

DMA Request Channel Source Description

MA_MUX_CHCONFIG0_SOURCE 0 DMA_MUX.CHCONFIG0[SOURCE] DMA MUX channel 0 source

MA_MUX_CHCONFIG1_SOURCE 1 DMA_MUX.CHCONFIG1[SOURCE] DMA MUX channel 1 source

MA_MUX_CHCONFIG2_SOURCE 2 DMA_MUX.CHCONFIG2[SOURCE] DMA MUX channel 2 source

MA_MUX_CHCONFIG3_SOURCE 3 DMA_MUX.CHCONFIG3[SOURCE] DMA MUX channel 3 source

MA_MUX_CHCONFIG4_SOURCE 4 DMA_MUX.CHCONFIG4[SOURCE] DMA MUX channel 4 source

MA_MUX_CHCONFIG5_SOURCE 5 DMA_MUX.CHCONFIG5[SOURCE] DMA MUX channel 5 source

MA_MUX_CHCONFIG6_SOURCE 6 DMA_MUX.CHCONFIG6[SOURCE] DMA MUX channel 6 source

MA_MUX_CHCONFIG7_SOURCE 7 DMA_MUX.CHCONFIG7[SOURCE] DMA MUX channel 7 source

MA_MUX_CHCONFIG8_SOURCE 8 DMA_MUX.CHCONFIG8[SOURCE] DMA MUX channel 8 source

MA_MUX_CHCONFIG9_SOURCE 9 DMA_MUX.CHCONFIG9[SOURCE] DMA MUX channel 9 source

MA_MUX_CHCONFIG10_SOURCE 10 DMA_MUX.CHCONFIG10[SOURCE] DMA MUX channel 10 source

MA_MUX_CHCONFIG11_SOURCE 11 DMA_MUX.CHCONFIG11[SOURCE] DMA MUX channel 11 source

MA_MUX_CHCONFIG12_SOURCE 12 DMA_MUX.CHCONFIG12[SOURCE] DMA MUX channel 12 source

MA_MUX_CHCONFIG13_SOURCE 13 DMA_MUX.CHCONFIG13[SOURCE] DMA MUX channel 13 source

MA_MUX_CHCONFIG14_SOURCE 14 DMA_MUX.CHCONFIG14[SOURCE] DMA MUX channel 14 source

MA_MUX_CHCONFIG15_SOURCE 15 DMA_MUX.CHCONFIG15[SOURCE] DMA MUX channel 15 source
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15.5.5 DMA transfer

Single request 

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1 
(TCD.CITER = TCD.BITER = 1). The data transfer will begin after the channel service 
request is acknowledged and the channel is selected to execute. After the transfer is 
complete, the TCD.DONE bit will be set and an interrupt will be generated if properly 
enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is 
programmed for one iteration of the major loop transferring 16 bytes per iteration. The 
source memory has a byte wide memory port located at 0x1000. The destination memory 
has a word wide port located at 0x2000. The address offsets are programmed in increments 
to match the size of the transfer; one byte for the source and four bytes for the destination. 
The final source and destination addresses are adjusted to return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= -16

TCD.INT_MAJ = 1

TCD.START = 1 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This would generate the following sequence of events:
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1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop  major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1 
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

Multiple requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware 
requests. The only fields that change are the major loop iteration count and the final address 
offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes 
per iteration. After the channel’s hardware requests are enabled in the EDMA_ERQR, 
channel service requests are initiated by the slave device (ERQR should be set after TCD). 
Note that TCD.START = 0.

TCD.CITER = TCD.BITER = 2

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –32

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –32

TCD.INT_MAJ = 1

TCD.START = 0 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This generates the following sequence of events:
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1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires  one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)

b) write_word(0x2010)  first iteration of the minor loop

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)

d) write_word(0x2014)  second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)

f) write_word(0x2018)  third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)

h) write_word(0x201c)  last iteration of the minor loop  major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2 
(TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires  major loop complete.

The eDMA goes idle or services the next channel.

Modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in 
which the size of the queue is a power of two. MOD is a 5-bit bitfield for both the source and 
destination in the TCD and specifies which lower address bits are allowed to increment from 
their original value after the address + offset calculation. All upper address bits remain the 
same as in the original value. A setting of 0 for this field disables the modulo feature.
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Table 127 shows how the transfer addresses are specified based on the setting of the MOD 
field. Here a circular buffer is created where the address wraps to the original value while 
the 28 upper address bits (0x1234567x) retain their original value. In this example the 
source address is set to 0x12345670, the offset is set to 4 bytes and the mod field is set to 
4, allowing for a 24 byte (16-byte) size queue.

         

15.5.6 TCD status 

Minor loop complete

There are two methods to test for minor loop completion when using software initiated 
service requests. The first method is to read the TCD.CITER field and test for a change. 
Another method may be extracted from the sequence below. The second method is to test 
the TCD.START bit AND the TCD.ACTIVE bit. The minor loop complete condition is 
indicated by both bits reading zero after the TCD.START was written to a 1. Polling the 
TCD.ACTIVE bit may be inconclusive because the active status may be missed if the 
channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via 
software).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor 
loop and is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major 
loop and is idle).

The best method to test for minor loop completion when using hardware initiated service 
requests is to read the TCD.CITER field and test for a change. The hardware request and 
acknowledge handshakes signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor 
loop and is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major 
loop and is idle).

Table 127. Modulo Feature Example

Transfer 
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674
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For both activation types, the major loop complete status is explicitly indicated via the 
TCD.DONE bit. 

The TCD.START bit is cleared automatically when the channel begins execution, regardless 
of how the channel was activated.

Active channel TCD reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if 
read while a channel is executing. The true values of the SADDR, DADDR, and NBYTES 
are the values the eDMA engine is currently using in its internal register file and not the 
values in the TCD local memory for that channel. The addresses (SADDR and DADDR) and 
NBYTES (decrements to zero as the transfer progresses) can give an indication of the 
progress of the transfer. All other values are read back from the TCD local memory. 

Preemption status

Preemption is available only when fixed arbitration is selected for channel-arbitration mode. 
A preempt-able situation is one in which a preempt-enabled channel is running and a higher 
priority request becomes active. When the eDMA engine is not operating in fixed-channel 
arbitration mode, the determination of the relative priority of the actively running and the 
outstanding requests become undefined. Channel priorities are treated as equal (or more 
exactly, constantly rotating) when round-robin arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the 
preemption. The preempted channel is temporarily suspended while the preempting 
channel executes one iteration of the major loop. Two TCD.ACTIVE bits set at the same time 
in the overall TCD map indicates a higher priority channel is actively preempting a lower 
priority channel.

15.5.7 Channel linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit 
of another channel (or itself), thus initiating a service request for that channel. This operation 
is automatically performed by the eDMA engine at the conclusion of the major or minor loop 
when properly enabled. 

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of 
the major loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop 
link is requested. When enabled, the channel link is made after each iteration of the minor 
loop except for the last. When the major loop is exhausted, only the major loop channel link 
fields are used to determine if a channel link should be made. For example, with the initial 
fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

will execute as:
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1. Minor loop done  set channel 12 TCD.START bit

2. Minor loop done  set channel 12 TCD.START bit

3. Minor loop done  set channel 12 TCD.START bit

4. Minor loop done, major loop done  set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a 
nine bit vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a 
15-bit vector to form the current iteration count. The bits associated with the 
TCD.CITER.LINKCH field are concatenated onto the CITER value to increase the range of 
the CITER.

Note: After configuration, the TCD.CITER.E_LINK bit and the TCD.BITER.E_LINK bit must be 
equal or a configuration error will be reported. The CITER and BITER vector widths must be 
equal to calculate the major loop, halfway done interrupt point.

Table 128 summarizes how a DMA channel can link to another DMA channel, i.e, use 
another channel’s TCD, at the end of a loop.

         

15.5.8 Dynamic programming

This section provides recommended methods to change the programming model during 
channel execution.

Dynamic channel linking and dynamic scatter-gather operation

Dynamic channel linking and dynamic scatter-gather operation is the process of changing 
the TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read 
from the TCD local memory at the end of channel execution thus allowing the user to enable 
either feature during channel execution. 

Because the user is allowed to change the configuration during execution, a coherency 
model is needed. Consider a scenario where the user attempts to execute a dynamic 
channel link by enabling the TCD.MAJOR.E_LINK bit at the same time the eDMA engine is 
retiring the channel. The TCD.MAJOR.E_LINK would be set in the programmer’s model, but 
it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link or 
dynamic scatter-gather request:

Table 128. Channel linking parameters

Desired Link 
Behavior

TCD Control Field Name Description

Link at end of 
minor loop

citer.e_link
Enable channel-to-channel linking on minor loop 
completion (current iteration).

citer.linkch
Link channel number when linking at end of minor loop 
(current iteration).

Link at end of 
major loop

major.e_link
Enable channel-to-channel linking on major loop 
completion.

major.linkch
Link channel number when linking at end of major 
loop.
Doc ID 16886 Rev 6 288/868



Enhanced Direct Memory Access (eDMA) RM0045
1. Set the TCD.MAJOR.E_LINK bit.

2. Read back the TCD.MAJOR.E_LINK bit

3. Test the TCD.MAJOR.E_LINK request status:

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was 
already retiring.

This same coherency model is true for dynamic scatter-gather operations. For both dynamic 
requests, the TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG 
bits to zero on any writes to a channel’s TCD after that channel’s TCD.DONE bit is set 
indicating the major loop is complete. 

Note: The user must clear the TCD.DONE bit before writing the TCD.MAJOR.E_LINK or 
TCD.E_SG bits. The TCD.DONE bit is cleared automatically by the eDMA engine after a 
channel begins execution.
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16 eDMA Channel Multiplexer (DMA_MUX)

16.1 Introduction
The eDMA channel multiplexer (DMA_MUX) allows the routing of 16 DMA sources (slots) to 
16 eDMA channels. This is illustrated in Figure 131.

         

Figure 131. DMA_MUX block diagram
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16.2 Features
The DMA_MUX has these major features:

● 16 independently selectable eDMA channel routers

– 2 channels with normal or periodic triggering capability

– 12 channels with normal capability

● Capability to assign each channel router to 1 of 16 possible peripheral DMA sources, 2 
always enabled sources or 1 always disabled source

● 3 modes of operation:

– Disabled

– Normal

– Periodic Trigger

16.3 Modes of operation
The following operation modes are available:

● Disabled Mode — In this mode, the eDMA channel is disabled. Since disabling and 
enabling of eDMA channels is done primarily via the eDMA configuration registers, this 
mode is used mainly as the reset state for a eDMA channel in the DMA_MUX. It may 
also be used to temporarily suspend a eDMA channel while reconfiguration of the 
system takes place (for example, changing the period of a eDMA trigger).

● Normal Mode — In this mode, a eDMA source (such as DSPI_0_TX or DSPI_0_RX 
example) is routed directly to the specified eDMA channel. The operation of the 
DMA_MUX in this mode is completely transparent to the system.

● Periodic Trigger Mode — In this mode, a eDMA source may only request a eDMA 
transfer (such as when a transmit buffer becomes empty or a receive buffer becomes 
full) periodically. The period is configured in the registers of the Periodic Interrupt Timer 
(PIT).

eDMA channels 0–3 may be used in all three modes, but channels 4–15 may only be 
configured to disabled or normal mode.

16.4 External signal description
The DMA_MUX has no external pins.

16.5 Memory map and register definition
Table 129 shows the memory map for the DMA_MUX. Note that all addresses are offsets; 
the absolute address may be computed by adding the specified offset to the base address 
of the DMA_MUX.
291/868 Doc ID 16886 Rev 6



RM0045 eDMA Channel Multiplexer (DMA_MUX)
         

All registers are accessible via 8, 16 or 32-bit accesses. However, 16-bit accesses must be 
aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As 
an example, CHCONFIG0 through CHCONFIG3 are accessible by a 32-bit READ/WRITE to 
address ‘Base + 0x00’, but performing a 32-bit access to address ‘Base + 0x01’ is illegal.

16.5.1 Channel configuration registers (CHCONFIGn)

Each of the total of 16 eDMA channels can be independently enabled/disabled and 
associated with 1 of the 28 peripheral eDMA sources + 1 of the 4 always enabled eDMA 
sources in the system.

         

         

Table 129. DMA_MUX memory map

Base address: 0xFFFD_C000

Address offset Register Location

0x0 Channel #0 Configuration (CHCONFIG0) on page 16-292

0x1 Channel #1 Configuration (CHCONFIG1) on page 16-292

... ... ...

0xF Channel #15 Configuration (CHCONFIG15) on page 16-292

Figure 132. Channel Configuration Registers (CHCONFIGn)

Offset: 0x0 + n (16 registers) Access: User read/write

0 1 2 3 4 5 6 7

R
ENBL TRIG SOURCE

W

Reset 0 0 0 0 0 0 0 0

Table 130. CHCONFIGn field descriptions

Field Description

ENBL

eDMA Channel Enable

ENBL enables the eDMA channel.
0 eDMA channel is disabled. This mode is primarily used during configuration of the DMA_MUX. The 

eDMA has separate channel enables/disables, which should be used to disable or reconfigure a 
eDMA channel.

1 eDMA channel is enabled

TRIG

eDMA Channel Trigger Enable (for triggered channels only)

TRIG enables the periodic trigger capability for the eDMA channel.
0 Periodic triggering is disabled. If periodic triggering is disabled, and the ENBL bit is set, the 

DMA_MUX will simply route the specified source to the eDMA channel.
1 Triggering is enabled

SOURCE
eDMA Channel Source (slot)

SOURCE specifies which eDMA source, if any, is routed to a particular eDMA channel. Please see 
Table 132 for DMA_MUX inputs mapping.
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Note: Setting multiple CHCONFIG registers with the same Source value results in unpredictable 
behavior.

Note: Before changing the trigger or source settings a eDMA channel must be disabled via the 
CHCONFIGn[ENBL] bit.

16.6 DMA_MUX inputs

16.6.1 DMA_MUX peripheral sources
         

Table 131. Channel and trigger enabling

ENBL TRIG Function Mode

0 X eDMA channel is disabled Disabled Mode

1 0
eDMA channel is enabled with no triggering 
(transparent)

Normal Mode

1 1 eDMA channel is enabled with triggering Periodic Trigger Mode

Table 132. eDMA channel mapping

DMA_MUX channel Module eDMA requesting module DMA_MUX input #

0 — Always disabled —

1 DSPI 0 DSPI_0 TX DMA_MUX Source #1

2 DSPI 0 DSPI_0 RX DMA_MUX Source #2

3 DSPI 1 DSPI_1 TX DMA_MUX Source #3

4 DSPI 1 DSPI_1 RX DMA_MUX Source #4

5 — — DMA_MUX Source #5

6 — — DMA_MUX Source #6

7 — — DMA_MUX Source #7

8 — — DMA_MUX Source #8

9 — — DMA_MUX Source #9

10 — — DMA_MUX Source #10

11 — — DMA_MUX Source #11

12 — — DMA_MUX Source #12

13 — — DMA_MUX Source #13

14 — — DMA_MUX Source #14

15 — — DMA_MUX Source #15

16 — — DMA_MUX Source #16

17 eMIOS 0 EMIOS0_CH0 DMA_MUX Source #17

18 eMIOS 0 EMIOS0_CH1 DMA_MUX Source #18

19 eMIOS 0 EMIOS0_CH9 DMA_MUX Source #19
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20 eMIOS 0 EMIOS0_CH18 DMA_MUX Source #20

21 eMIOS 0 EMIOS0_CH25 DMA_MUX Source #21

22 eMIOS 0 EMIOS0_CH26 DMA_MUX Source #22

23 — — DMA_MUX Source #23

24 — — DMA_MUX Source #24

25 — — DMA_MUX Source #25

26 — — DMA_MUX Source #26

27 — — DMA_MUX Source #27

28 — — DMA_MUX Source #28

29 — — DMA_MUX Source #29

30 ADC 1 ADC1_EOC DMA_MUX Source #30

31 — — DMA_MUX Source #31

32 — — DMA_MUX Source #32

33 LINFLEX 0 LINFLEX0_RX DMA_MUX Source #33

34 LINFLEX 0 LINFLEX0_TX DMA_MUX Source #34

35 — — DMA_MUX Source #35

36 — — DMA_MUX Source #36

37 — — DMA_MUX Source #37

38 — — DMA_MUX Source #38

39 — — DMA_MUX Source #39

40 — — DMA_MUX Source #40

41 — — DMA_MUX Source #41

42 — — DMA_MUX Source #42

43 — — DMA_MUX Source #43

44 — — DMA_MUX Source #44

45 — — DMA_MUX Source #45

46 — — DMA_MUX Source #46

47 — — DMA_MUX Source #47

48 — — DMA_MUX Source #48

49 — — DMA_MUX Source #49

50 — — DMA_MUX Source #50

51 — — DMA_MUX Source #51

52 — — DMA_MUX Source #52

53 — — DMA_MUX Source #53

54 — — DMA_MUX Source #54

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
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16.6.2 DMA_MUX periodic trigger inputs
         

16.7 Functional description
The primary purpose of the DMA_MUX is to provide flexibility in the system’s use of the 
available eDMA channels. As such, configuration of the DMA_MUX is intended to be a static 
procedure done during execution of the system boot code. However, if the procedure 
outlined in Section 16.8.2, Enabling and configuring sources, is followed, the configuration 
of the DMA_MUX may be changed during the normal operation of the system.

Functionally, the DMA_MUX channels may be divided into two classes: Channels, which 
implement the normal routing functionality plus periodic triggering capability, and channels, 
which implement only the normal routing functionality.

16.7.1 eDMA channels with periodic triggering capability

Besides the normal routing functionality, the first four channels of the DMA_MUX provide a 
special periodic triggering capability that can be used to provide an automatic mechanism to 
transmit bytes, frames or packets at fixed intervals without the need for processor 
intervention. The trigger is generated by the periodic interrupt timer (PIT); as such, the 
configuration of the periodic triggering interval is done via configuration registers in the PIT. 
Please refer to the periodic interrupt timer chapter of the reference manual for more 
information on this topic.

Note: Because of the dynamic nature of the system (such as eDMA channel priorities, bus 
arbitration, or interrupt service routine lengths), the number of clock cycles between a 
trigger and the actual eDMA transfer cannot be guaranteed.

55 — — DMA_MUX Source #55

56 — — DMA_MUX Source #56

57 — — DMA_MUX Source #57

58 — — DMA_MUX Source #58

59 — — DMA_MUX Source #59

60 PIT_0 ALWAYS ENABLED DMA_MUX Source #60

61 PIT_1 ALWAYS ENABLED DMA_MUX Source #61

62 — — DMA_MUX Source #62

63 — — DMA_MUX Source #63

Table 133. DMA_MUX periodic trigger inputs

DMA_MUX trigger input PIT channel

Trigger #1 PIT0

Trigger #2 PIT1

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
295/868 Doc ID 16886 Rev 6



RM0045 eDMA Channel Multiplexer (DMA_MUX)
         

Figure 133. DMA_MUX channel 0–3 block diagram

The eDMA channel triggering capability allows the system to “schedule” regular eDMA 
transfers, usually on the transmit side of certain peripherals, without the intervention of the 
processor. This trigger works by gating the request from the peripheral to the eDMA until a 
trigger event has been seen. This is illustrated in Figure 134.

         

Figure 134. DMA_MUX channel triggering: Normal operation

Once the eDMA request has been serviced, the peripheral will negate its request, effectively 
resetting the gating mechanism until the peripheral re-asserts its request AND the next 
trigger event is seen. This means that if a trigger is seen, but the peripheral is not requesting 
a transfer, that triggered will be ignored. This situation is illustrated in Figure 135.

DMA Channel #0

Trigger #4

Trigger #2

Trigger #1

Source #1

Source #2

Source #3

Source #28

Always enabled

Always enabled

DMA Channel #3

Periph Request

Trigger

DMA Request
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Figure 135. DMA_MUX channel triggering: Ignored trigger

This triggering capability may be used with any peripheral that supports eDMA transfers, 
and is most useful for periodically polling external devices on a particular bus.

As an example, the transmit side of a DSPI is assigned to a eDMA channel with a trigger, as 
described above. Once set up, the SPI will request eDMA transfers (presumably from 
memory) as long as its transmit buffer is empty. By using a trigger on this channel, the DSPI 
transfers can be automatically performed every 5µs (as an example). On the receive side of 
the SPI, the SPI and eDMA can be configured to transfer receive data into memory, 
effectively implementing a method to periodically read data from external devices and 
transfer the results into memory without processor intervention.

A more detailed description of the capability of each trigger (such as resolution, or range of 
values) may be found in the periodic interrupt timer chapter of the reference manual.

16.7.2 eDMA channels with no triggering capability

Channels 4–15 of the DMA_MUX provide the normal routing functionality as described in 
Section 16.3, Modes of operation.

Periph Request

Trigger

DMA Request
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Figure 136. DMA_MUX channel 4–15 block diagram

16.8 Initialization/Application information

16.8.1 Reset

The reset state of each individual bit is shown in Section 16.5, Memory map and register 
definition. In summary, after reset, all channels are disabled and must be explicitly enabled 
before use.

16.8.2 Enabling and configuring sources

Enabling a source with periodic triggering

The following describes how to enable a source with periodic triggering:

Source #1

Source #2

Source #3

Source #28

DMA Channel #4

DMA Channel #15
Always enabled

Always enabled
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1. Determine with which eDMA channel the source will be associated. Remember that 
only the first four eDMA channels have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel 
may be enabled at this point.

4. In the PIT, configure the corresponding timer.

5. Select the source to be routed to the eDMA channel. Write to the corresponding 
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 1 Configure source #3 Transmit for use with eDMA Channel 2, with periodic 
triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Configure Timer 4 in the Periodic Interrupt Timer (PIT) for the desired trigger interval

4. Write 0xC3 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #4 above:
In File registers.h:

#define DMAMUX_BASE_ADDR     0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) 

(DMAMUX_BASE_ADDR+0x0002);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0xC3;

Enabling a source without periodic triggering

The following describes how to enable a source without periodic triggering:

1. Determine with which eDMA channel the source will be associated. Remember that 
only eDMA channels 0–3 have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel 
may be enabled at this point.

4. Select the source to be routed to the eDMA channel. Write to the corresponding 
CHCONFIG register, ensuring that the ENBL is set and the TRIG bit is cleared.

Example 2 Configure source #5 Transmit for use with eDMA Channel 2, without 
periodic triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Write 0x85 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #3 above:
In File registers.h:

#define DMAMUX_BASE_ADDR     0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
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volatile unsigned char *CHCONFIG2 = (volatile unsigned char *) 
(DMAMUX_BASE_ADDR+0x0002);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0x85;

Disabling a source

A particular eDMA source may be disabled by not writing the corresponding source value 
into any of the CHCONFIG registers. Additionally, some module specific configuration may 
be necessary. Please refer to the appropriate section for more details.

Switching the source of a eDMA channel

The following describes how to switch the source of a eDMA channel:

1. Disable the eDMA channel in the eDMA and reconfigure the channel for the new 
source.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Select the source to be routed to the eDMA channel. Write to the corresponding 
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 3 Switch eDMA Channel 8 from source #5 transmit to source #7 transmit

1. In the eDMA configuration registers, disable eDMA channel 8 and re-configure it to 
handle the transfers to peripheral slot 7. This example assumes channel 8 doesn’t have 
triggering capability.

2. Write 0x00 to CHCONFIG8 (Base Address + 0x08)

3. Write 0x87 to CHCONFIG8 (Base Address + 0x08).

The following code example illustrates steps #2 and #3 above:
In File registers.h:

#define DMAMUX_BASE_ADDR     0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *) 

(DMAMUX_BASE_ADDR+0x0008);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG8 = 0x00;
*CHCONFIG8 = 0x87;
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17 Interrupt Controller (INTC)

17.1 Introduction 
The INTC provides priority-based preemptive scheduling of interrupt service requests 
(ISRs). This scheduling scheme is suitable for statically scheduled hard real-time systems. 
The INTC supports 95 interrupt requests. It is targeted to work with a Power Architecture 
technology processor and automotive powertrain applications where the ISRs nest to 
multiple levels, but it also can be used with other processors and applications.

For high priority interrupt requests in these target applications, the time from the assertion of 
the peripheral’s interrupt request from the peripheral to when the processor is performing 
useful work to service the interrupt request needs to be minimized. The INTC supports this 
goal by providing a unique vector for each interrupt request source. It also provides 16 
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. Since 
each individual application will have different priorities for each source of interrupt request, 
the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be 
supported. The INTC supports the priority ceiling protocol for coherent accesses. By 
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks 
which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software 
configurable interrupt requests. These same software configurable interrupt requests also 
can be used to break the work involved in servicing an interrupt request into a high priority 
portion and a low priority portion. The high priority portion is initiated by a peripheral 
interrupt request, but then the ISR can assert a software configurable interrupt request to 
finish the servicing in a lower priority ISR. Therefore these software configurable interrupt 
requests can be used instead of the peripheral ISR scheduling a task through the RTOS.

17.2 Features
● Supports 87 peripheral and 8 software-configurable interrupt request sources

● Unique 9-bit vector per interrupt source

● Each interrupt source can be programmed to one of 16 priorities

● Preemption

– Preemptive prioritized interrupt requests to processor

– ISR at a higher priority preempts ISRs or tasks at lower priorities

– Automatic pushing or popping of preempted priority to or from a LIFO

– Ability to modify the ISR or task priority; modifying the priority can be used to 
implement the priority ceiling protocol for accessing shared resources.

● Low latency – 3 clocks from receipt of interrupt request from peripheral to interrupt 
request to processor
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17.3 Block diagram
Figure 137 provides a block diagram of the INTC.

Table 134. Interrupt sources available

Interrupt sources (95) Number available

Software 8

ECSM 1 

eDMA 17

Software Watchdog (SWT) 1

STM 4

Flash/SRAM ECC (SEC-DED) 2

Real Time Counter (RTC/API) 2

System Integration Unit Lite (SIUL) 3

WKPU 4

MC_ME 4

MC_RGM 1

FXOSC 1

PIT 4

ADC_1 2

FlexCAN_0 7

LINFlex_0 3

LINFlex_1 3

LINFlex_2 3

DSPI_0 5

DSPI_1 5

Enhanced Modular I/O Subsystem 0 (eMIOS_0) 14
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Figure 137. INTC block diagram

17.4 Modes of operation

17.4.1 Normal mode

In normal mode, the INTC has two handshaking modes with the processor: software vector 
mode and hardware vector mode.

Software vector mode

In software vector mode, software, that is the interrupt exception handler, must read a 
register in the INTC to obtain the vector associated with the interrupt request to the 
processor. The INTC will use software vector mode for a given processor when its 
associated HVEN bit in INTC_MCR is negated. The hardware vector enable signal to 
processor 0 or processor 1 is driven as negated when its associated HVEN bit is negated. 
The vector is read from INC_IACKR. Reading the INTC_IACKR negates the interrupt 
request to the associated processor. Even if a higher priority interrupt request arrived while 
waiting for this interrupt acknowledge, the interrupt request to the processor will negate for 
at least one clock. The reading also pushes the PRI value in INTC_CPR onto the associated 
LIFO and updates PRI in the associated INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt 
acknowledge signal from the associated processor is ignored.
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Hardware vector mode

In hardware vector mode, the hardware is the interrupt vector signal from the INTC in 
conjunction with a processor with the capability use that vector. In hardware vector mode, 
this hardware causes the first instruction to be executed in handling the interrupt request to 
the processor to be specific to that vector. Therefore the interrupt exception handler is 
specific to a peripheral or software configurable interrupt request rather than being common 
to all of them. The INTC uses hardware vector mode for a given processor when the 
associated HVEN bit in the INTC_MCR is asserted. The hardware vector enable signal to 
the associated processor is driven as asserted. When the interrupt request to the 
associated processor asserts, the interrupt vector signal is updated. The value of that 
interrupt vector is the unique vector associated with the preempting peripheral or software 
configurable interrupt request. The vector value matches the value of the INTVEC field in 
the INTC_IACKR field in the INTC_IACKR, depending on which processor was assigned to 
handle a given interrupt source.

The processor negates the interrupt request to the processor driven by the INTC by 
asserting the interrupt acknowledge signal for one clock. Even if a higher priority interrupt 
request arrived while waiting for the interrupt acknowledge, the interrupt request to the 
processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the 
associated PRI value in the associated INTC_CPR register onto the associated LIFO and 
updates the associated PRI in the associated INTC_CPR register with the new priority. This 
pushing of the PRI value onto the associated LIFO and updating PRI in the associated 
INTC_CPR does not occur when the associated interrupt acknowledge signal asserts and 
INTC_SSCIR0_3–INTC_SSCIR4_7 is written at a time such that the PRI value in the 
associated INTC_CPR register would need to be pushed and the previously last pushed 
PRI value would need to be popped simultaneously. In this case, PRI in the associated 
INTC_CPR is updated with the new priority, and the associated LIFO is neither pushed or 
popped.

Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

Stop mode

The INTC supports STOP mode. The INTC can have its clock input disabled at any time by 
the clock driver on the device. While its clocks are disabled, the INTC registers are not 
accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an 
interrupt request to the processor. Since the INTC is not clocked in STOP mode, peripheral 
interrupt requests can not be used as a wakeup source, unless the device supports that 
interrupt request as a wakeup source.

17.5 Memory map and register description

17.5.1 Module memory map

Table 135 shows the INTC memory map.
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17.5.2 Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any 
combination of accessing the four bytes of a register with a single access is supported, 
provided that the access does not cross a register boundary. These supported accesses 
include types and sizes of eight bits, aligned 16 bits, misaligned 16 bits to the middle two 
bytes, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8 bits wide, they can be accessed with a single 
16-bit or 32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless 
of the size of the read. In either software or hardware vector mode, the size of a write to 
either INTC_SSCIR0_3–INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of 
the write.

INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

Table 135. INTC memory map

Base address: 0xFFF4_8000

Address offset Register Location

0x0000 INTC Module Configuration Register (INTC_MCR) on page 17-305

0x0004 Reserved

0x0008 INTC Current Priority Register for Processor (INTC_CPR) on page 17-306

0x000C Reserved

0x0010 INTC Interrupt Acknowledge Register (INTC_IACKR) on page 17-308

0x0014 Reserved

0x0018 INTC End-of-Interrupt Register (INTC_EOIR) on page 17-309

0x001C Reserved

0x0020–0x0027
INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3–
INTC_SSCIR4_7)

on page 17-309

0x0028–0x003C Reserved

0x0040–0x00D0
INTC Priority Select Registers (INTC_PSR0_3–
INTC_PSR152_154)(1)

1. The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in Figure 139.

on page 17-311
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INTC Current Priority Register for Processor (INTC_CPR)

         

         

         

Figure 138. INTC Module Configuration Register (INTC_MCR)

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

V
T

E
S 0 0 0 0

H
V

E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 136. INTC_MCR field descriptions

Field Description

VTES

Vector table entry size.
Controls the number of ‘0’s to the right of INTVEC in Section INTC Interrupt Acknowledge Register 
(INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a vectortable as 
in software vector mode, then the number of rightmost ‘0’s will determine the size of each vector table 
entry. VTES impacts software vector mode operation but also affects INTC_IACKR[INTVEC] position 
in both hardware vector mode and software vector mode.
0 4 bytes
1 8 bytes

HVEN

Hardware vector enable.

Controls whether the INTC is in hardware vector mode or software vector mode. Refer to 
Section 17.4 Modes of operation, for the details of the handshaking with the processor in each mode.

0 Software vector mode
1 Hardware vector mode

Figure 139. INTC Current Priority Register (INTC_CPR)

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PRI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 137. INTC_CPR field descriptions

Field Description

PRI
Priority

PRI is the priority of the currently executing ISR according to the field values defined in Table 138.
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The INTC_CPR masks any peripheral or software configurable interrupt request set at the 
same or lower priority as the current value of the INTC_CPR[PRI] field from generating an 
interrupt request to the processor. When the INTC interrupt acknowledge register 
(INTC_IACKR) is read in software vector mode or the interrupt acknowledge signal from the 
processor is asserted in hardware vector mode, the value of PRI is pushed onto the LIFO, 
and PRI is updated with the priority of the preempting interrupt request. When the INTC 
end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the INTC_CPR’s 
PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the 
PCP. Refer to Section 17.7.5 Priority ceiling protocol.

Note: A store to modify the PRI field which closely precedes or follows an access to a shared 
resource can result in a non-coherent access to that resource. Refer to Section Ensuring 
coherency for example code to ensure coherency.

         

Table 138. PRI values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority
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INTC Interrupt Acknowledge Register (INTC_IACKR)

         

         

         

The interrupt acknowledge register provides a value which can be used to load the address 
of an ISR from a vector table. The vector table can be composed of addresses of the ISRs 
specific to their respective interrupt vectors.

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must 
not be speculatively read while in this mode. The side effects are the same regardless of the 

Figure 140. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 0

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[20:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[4:0]

INTVEC 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 141. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 1

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[19:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[3:0]

INTVEC 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 139. INTC_IACKR field descriptions

Field Description

VTBA
Vector Table Base Address

Can be the base address of a vector table of addresses of ISRs.

INTVEC

Interrupt Vector
It is the vector of the peripheral or software configurable interrupt request that caused the interrupt 
request to the processor. When the interrupt request to the processor asserts, the INTVEC is 
updated, whether the INTC is in software or hardware vector mode.
Doc ID 16886 Rev 6 308/868



Interrupt Controller (INTC) RM0045
size of the read. Reading the INTC_IACKR does not have side effects in hardware vector 
mode.

INTC End-of-Interrupt Register (INTC_EOIR)

         

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt 
request. When the INTC_EOIR is written, the priority last pushed on the LIFO is popped into 
INTC_CPR. An exception to this behavior is described in Section Hardware vector mode. 
The values and size of data written to the INTC_EOIR are ignored. The values and sizes 
written to this register neither update the INTC_EOIR contents or affect whether the LIFO 
pops. For possible future compatibility, write four bytes of all 0s to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3–
INTC_SSCIR4_7)

         

Figure 142. INTC End-of-Interrupt Register (INTC_EOIR)

Offset: 0x0018 Access: Write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W See text

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 143. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

0 0 0 0 0 0 0 0

C
LR

1

W SET0 SET1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

2 0 0 0 0 0 0 0
C

LR
3

W SET2 SET3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
309/868 Doc ID 16886 Rev 6



RM0045 Interrupt Controller (INTC)
         

         

The software set/clear interrupt registers support the setting or clearing of software 
configurable interrupt request. These registers contain eight independent sets of bits to set 
and clear a corresponding flag bit by software. Excepting being set by software, this flag bit 
behaves the same as a flag bit set within a peripheral. This flag bit generates an interrupt 
request within the INTC like a peripheral interrupt request. Writing a 1 to SETx will leave 
SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect. CLRx is the flag bit. 
Writing a 1 to CLRx clears it. Writing a 0 to CLRx has no effect. If a 1 is written 
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of 
whether CLRx was asserted before the write.

Figure 144. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

4 0 0 0 0 0 0 0

C
LR

5

W SET4 SET5

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

6 0 0 0 0 0 0 0

C
LR

7

W SET6 SET7

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 140. INTC_SSCIR[0:7] field descriptions

Field Description

SETx
Set Flag Bits
Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SETx always will be read 
as a 0.

CLRx

Clear Flag Bits

CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its 
corresponding SETx bit. Writing a 0 to CLRx has no effect.

0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC
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INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154)

         

         

         

         

Figure 145. INTC Priority Select Register 0–3 (INTC_PSR[0:3])

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PRI0 0 0 0 0 PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 PRI2 0 0 0 0 PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 146. INTC Priority Select Register 152-154 (INTC_PSR[152:154])

Offset: 0x0D8C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PRI152

0 0 0 0
PRI153

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PRI154

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 141. INTC_PSR0_3–INTC_PSR152_154 field descriptions

Field Description

PRI
Priority Select

PRIx selects the priority for interrupt requests. See Section 17.6 Functional description.

Table 142. INTC Priority Select Register address offsets

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

INTC_PSR0_3 0x0040 INTC_PSR80_83 0x0090

INTC_PSR4_7 0x0044 INTC_PSR84_87 0x0094

INTC_PSR8_11 0x0048 INTC_PSR88_91 0x0098

INTC_PSR12_15 0x004C INTC_PSR92_95 0x009C

INTC_PSR16_19 0x0050 INTC_PSR96_99 0x00A0
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17.6 Functional description
The functional description involves the areas of interrupt request sources, priority 
management, and handshaking with the processor.

Note: The INTC has no spurious vector support. Therefore, if an asserted peripheral or software 
settable interrupt request, whose PRIn value in INTC_PSR0–INTC_PSR154 is higher than 
the PRI value in INTC_CPR, negates before the interrupt request to the processor for that 
peripheral or software settable interrupt request is acknowledged, the interrupt request to 
the processor still can assert or will remain asserted for that peripheral or software settable 
interrupt request. In this case, the interrupt vector will correspond to that peripheral or 
software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated 
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral 
interrupt request’s enable bit in the peripheral or, alternatively, setting its mask bit has the 
same consequences as clearing its flag bit. Setting its enable bit or clearing its mask bit 
while its flag bit is asserted has the same effect on the INTC as an interrupt event setting the 
flag bit.

         

INTC_PSR20_23 0x0054 INTC_PSR100_103 0x00A4

INTC_PSR24_27 0x0058 INTC_PSR104_107 0x00A8

INTC_PSR28_31 0x005C INTC_PSR108_111 0x00AC

INTC_PSR32_35 0x0060 INTC_PSR112_115 0x00B0

INTC_PSR36_39 0x0064 INTC_PSR116_119 0x00B4

INTC_PSR40_43 0x0068 INTC_PSR120_123 0x00B8

INTC_PSR44_47 0x006C INTC_PSR124_127 0x00BC

INTC_PSR48_51 0x0070 INTC_PSR128_131 0x00C0

INTC_PSR52_55 0x0074 INTC_PSR132_135 0x00C4

INTC_PSR56_59 0x0078 INTC_PSR136_139 0x00C8

INTC_PSR60_63 0x007C INTC_PSR140_143 0x00CC

INTC_PSR64_67 0x0080 INTC_PSR144_147 0x00D0

INTC_PSR68_71 0x0084 INTC_PSR148_151 0x00D4

INTC_PSR72_75 0x0088 INTC_PSR152_154 0x00D8

INTC_PSR76_79 0x008C

Table 142. INTC Priority Select Register address offsets (continued)

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

Table 143. Interrupt vector table

IRQ # Offset
Size

(bytes)
Interrupt Module

Section A (Core Section)

— 0x0000 16
Critical Input
(INTC software vector mode) / NMI

Core

— 0x0010 16 Machine check / NMI Core
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— 0x0020 16 Data Storage Core

— 0x0030 16 Instruction Storage Core

— 0x0040 16
External Input

(INTC software vector mode)
Core

— 0x0050 16 Alignment Core

— 0x0060 16 Program Core

— 0x0070 16 Reserved Core

— 0x0080 16 System call Core

— 0x0090 96 Unused Core

— 0x00F0 16 Debug Core

— 0x0100 1792 Unused Core

Section B (On-Platform Peripherals)

0 0x0800 4 Software configurable flag 0 Software

1 0x0804 4 Software configurable flag 1 Software

2 0x0808 4 Software configurable flag 2 Software

3 0x080C 4 Software configurable flag 3 Software

4 0x0810 4 Software configurable flag 4 Software

5 0x0814 4 Software configurable flag 5 Software

6 0x0818 4 Software configurable flag 6 Software

7 0x081C 4 Software configurable flag 7 Software

8 0x0820 4 Reserved

9 0x0824 4

Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |

Platform Flash Bank 1 Abort |

Platform Flash Bank 1 Stall |

ECSM

10 0x0828 4 Combined Error eDMA

11 0x082C 4 Channel 0 eDMA

12 0x0830 4 Channel 1 eDMA

13 0x0834 4 Channel 2 eDMA

14 0x0838 4 Channel 3 eDMA

15 0x083C 4 Channel 4 eDMA

16 0x0840 4 Channel 5 eDMA

17 0x0844 4 Channel 6 eDMA

18 0x0848 4 Channel 7 eDMA

19 0x084C 4 Channel 8 eDMA

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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20 0x0850 4 Channel 9 eDMA

21 0x0854 4 Channel 10 eDMA

22 0x0858 4 Channel 11 eDMA

23 0x085C 4 Channel 12 eDMA

24 0x0860 4 Channel 13 eDMA

25 0x0864 4 Channel 14 eDMA

26 0x0868 4 Channel 15 eDMA

27 0x086C 4 Reserved

28 0x0870 4 Timeout SWT

29 0x0874 4 Reserved

30 0x0878 4 Match on channel 0 STM

31 0x087C 4 Match on channel 1 STM

32 0x0880 4 Match on channel 2 STM

33 0x0884 4 Match on channel 3 STM

34 0x0888 4 Reserved

35 0x088C 4
ECC_DBD_PlatformFlash |

ECC_DBD_PlatformRAM
Platform ECC Double Bit Detection

36 0x0890 4
ECC_SBC_PlatformFlash |

ECC_SBC_PlatformRAM
Platform ECC Single Bit Correction

37 0x0894 4 Reserved

Section C

38 0x0898 4 RTC RTC/API

39 0x089C 4 API RTC/API

40 0x08A0 4 Reserved

41 0x08A4 4 SIU External IRQ_0 SIUL

42 0x08A8 4 SIU External IRQ_1 SIUL

43 0x08AC 4 SIU External IRQ_2 SIUL

44 0x08B0 4 Reserved

45 0x08B4 4 Reserved

46 0x08B8 4 WakeUp_IRQ_0 WKPU

47 0x08BC 4 WakeUp_IRQ_1 WKPU

48 0x08C0 4 WakeUp_IRQ_2 WKPU

49 0x08C4 4 WakeUp_IRQ_3 WKPU

50 0x08C8 4 Reserved

51 0x08CC 4 Safe Mode Interrupt MC_ME

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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52 0x08D0 4 Mode Transition Interrupt MC_ME

53 0x08D4 4 Invalid Mode Interrupt MC_ME

54 0x08D8 4 Invalid Mode Config MC_ME

55 0x08DC 4 Reserved

56 0x08E0 4
Functional and destructive reset alternate 
event interrupt (ipi_int)

MC_RGM

57 0x08E4 4 FXOSC counter expired (ipi_int_osc) FXOSC

58 0x08E8 4 Reserved

59 0x08EC 4 PITimer Channel 0 PIT

60 0x08F0 4 PITimer Channel 1 PIT

61 0x08F4 4 PITimer Channel 2 PIT

62 0x08F8 4 Reserved

63 0x08FC 4 Reserved

64 0x0900 4 Reserved

65 0x0904 4 FlexCAN_ESR[ERR_INT] FlexCAN_0

66 0x0908 4

FlexCAN_ESR_BOFF |

FlexCAN_Transmit_Warning |

FlexCAN_Receive_Warning

FlexCAN_0

67 0x090C 4 Reserved

68 0x0910 4 FlexCAN_BUF_00_03 FlexCAN_0

69 0x0914 4 FlexCAN_BUF_04_07 FlexCAN_0

70 0x0918 4 FlexCAN_BUF_08_11 FlexCAN_0

71 0x091C 4 FlexCAN_BUF_12_15 FlexCAN_0

72 0x0920 4 FlexCAN_BUF_16_31 FlexCAN_0

73 0x0924 4 Reserved

74 0x0928 4
DSPI_SR[TFUF]
DSPI_SR[RFOF]

DSPI_0

75 0x092C 4 DSPI_SR[EOQF] DSPI_0

76 0x0930 4 DSPI_SR[TFFF] DSPI_0

77 0x0934 4 DSPI_SR[TCF] DSPI_0

78 0x0938 4 DSPI_SR[RFDF] DSPI_0

79 0x093C 4 LINFlex_RXI LINFlex_0

80 0x0940 4 LINFlex_TXI LINFlex_0

81 0x0944 4 LINFlex_ERR LINFlex_0

82 0x0948 4 ADC_EOC ADC_1

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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83 0x094C 4 Reserved

84 0x0950 4 ADC_WD ADC_1

85 0x0954 4 Reserved

86 0x0958 4 Reserved

87 0x095C 4 Reserved

88 0x0960 4 Reserved

89 0x0964 4 Reserved

90 0x0968 4 Reserved

91 0x096C 4 Reserved

92 0x0970 4 Reserved

93 0x0974 4 Reserved

94 0x0978 4
DSPI_SR[TFUF]

DSPI_SR[RFOF]
DSPI_1

95 0x097C 4 DSPI_SR[EOQF] DSPI_1

96 0x0980 4 DSPI_SR[TFFF] DSPI_1

97 0x0984 4 DSPI_SR[TCF] DSPI_1

98 0x0988 4 DSPI_SR[RFDF] DSPI_1

99 0x098C 4 LINFlex_RXI LINFlex_1

100 0x0990 4 LINFlex_TXI LINFlex_1

101 0x0994 4 LINFlex_ERR LINFlex_1

102 0x0998 4 Reserved

103 0x099C 4 Reserved

104 0x09A0 4 Reserved

105 0x09A4 4 Reserved

106 0x09A8 4 Reserved

107 0x09AC 4 Reserved

108 0x09B0 4 Reserved

109 0x09B4 4 Reserved

110 0x09B8 4 Reserved

111 0x09BC 4 Reserved

112 0x09C0 4 Reserved

113 0x09C4 4 Reserved

114 0x09C8 4 Reserved

115 0x09CC 4 Reserved

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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116 0x09D0 4 Reserved

117 0x09D4 4 Reserved

118 0x09D8 4 Reserved

119 0x09DC 4 LINFlex_RXI LINFlex_2

120 0x09E0 4 LINFlex_TXI LINFlex_2

121 0x09E4 4 LINFlex_ERR LINFlex_2

122 0x09E8 4 Reserved

123 0x09EC 4 Reserved

124 0x09F0 4 Reserved

125 0x09F4 4 Reserved

126 0x09F8 4 Reserved

127 0x09FC 4 PITimer Channel 3 PIT

128 0x0A00 4 Reserved

129 0x0A04 4 Reserved

130 0x0A08 4 Reserved

131 0x0A0C 4 Reserved

132 0x0A10 4 Reserved

133 0x0A14 4 Reserved

134 0x0A18 4 Reserved

135 0x0A1C 4 Reserved

136 0x0A20 4 Reserved

137 0x0A24 4 Reserved

138 0x0A28 4 Reserved

139 0x0A2C 4 Reserved

140 0x0A30 4 Reserved

141 0x0A34 4 EMIOS_GFR[F0,F1] eMIOS_0

142 0x0A38 4 EMIOS_GFR[F2,F3] eMIOS_0

143 0x0A3C 4 EMIOS_GFR[F4,F5] eMIOS_0

144 0x0A40 4 EMIOS_GFR[F6,F7] eMIOS_0

145 0x0A44 4 EMIOS_GFR[F8,F9] eMIOS_0

146 0x0A48 4 EMIOS_GFR[F10,F11] eMIOS_0

147 0x0A4C 4 EMIOS_GFR[F12,F13] eMIOS_0

148 0x0A50 4 EMIOS_GFR[F14,F15] eMIOS_0

149 0x0A54 4 EMIOS_GFR[F16,F17] eMIOS_0

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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17.6.1 Interrupt request sources

The INTC has two types of interrupt requests, peripheral and software configurable. These 
interrupt requests can assert on any clock cycle.

Peripheral interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral. 
The interrupt request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC 
to the time that the INTC starts to drive the interrupt request to the processor is three clocks.

External interrupts are handled by the SIU (see Section 19.6.3 External interrupts).

Software configurable interrupt requests

An interrupt request is triggered by software by writing a 1 to a SETx bit in 
INTC_SSCIR0_3–INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRx, 
resulting in the interrupt request. The interrupt request is cleared by writing a 1 to the CLRx 
bit.

The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt 
request to the processor is four clocks.

Unique vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique 
9-bit vector. Software configurable interrupts 0–7 are assigned vectors 0–7 respectively. The 
peripheral interrupt requests are assigned vectors 8 to as high as needed to include all the 
peripheral interrupt requests. The peripheral interrupt request input ports at the boundary of 
the INTC block are assigned specific hardwired vectors within the INTC (see Table 134).

17.6.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set 
in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154). The result is 
compared to PRI in the associated INTC_CPR. The results of those comparisons manage 
the priority of the ISR executed by the associated processor. The associated LIFO also 
assists in managing that priority.

150 0x0A58 4 EMIOS_GFR[F18,F19] eMIOS_0

151 0x0A5C 4 EMIOS_GFR[F20,F21] eMIOS_0

152 0x0A60 4 EMIOS_GFR[F22,F23] eMIOS_0

153 0x0A64 4 EMIOS_GFR[F24,F25] eMIOS_0

154 0x0A68 4 EMIOS_GFR[F26,F27] eMIOS_0

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
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Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 137 
compare the priority of the asserted interrupt requests to the current priority. If the priority of 
any asserted peripheral or software configurable interrupt request is higher than the current 
priority for a given processor, then the interrupt request to the processor is asserted. Also, a 
unique vector for the preempting peripheral or software configurable interrupt request is 
generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware vector 
mode, for the interrupt vector provided to the processor.

Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the 
asserted interrupt requests assigned to that processor, both peripheral and software 
configurable. The output of the priority arbitrator subblock is the highest of those priorities 
assigned to a given processor. Also, any interrupt requests which have this highest priority 
are output as asserted interrupt requests to the associated request selector subblock.

Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then 
it is passed as asserted to the associated vector encoder subblock. If multiple interrupt 
requests from the associated priority arbitrator subblock are asserted, the only the one with 
the lowest vector is passed as asserted to the associated vector encoder subblock. The 
lower vector is chosen regardless of the time order of the assertions of the peripheral or 
software configurable interrupt requests.

Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt 
request from the request selector subblock for the associated processor.

Priority Comparator subblock

The priority comparator subblock compares the highest priority output from the priority 
arbitrator subblock with PRI in INTC_CPR. If the priority comparator subblock detects that 
this highest priority is higher than the current priority, then it asserts the interrupt request to 
the associated processor. This interrupt request to the processor asserts whether this 
highest priority is raised above the value of PRI in INTC_CPR or the PRI value in 
INTC_CPR is lowered below this highest priority. This highest priority then becomes the new 
priority which will be written to PRI in INTC_CPR when the interrupt request to the 
processor is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not 
cause a preemption because their PRIn will not be higher than PRI in INTC_CPR.

Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these 
priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the 
beginning of the interrupt exception handler the PRI value in the INTC_CPR does not need 
to be loaded from the INTC_CPR and stored onto the context stack. Likewise at the end of 
the interrupt exception handler, the priority does not need to be loaded from the context 
stack and stored into the INTC_CPR. 

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in 
softwarevector mode or the interrupt acknowledge signal from the processor is asserted in 
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hardware vector mode. The priority is popped into PRI in the INTC_CPR whenever the 
INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal 
to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15 priorities. 
However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because 
of how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is 
pushed 15 or more times than it is popped, the priorities first pushed are overwritten. A 
priority of 0 would be an overwritten priority. However, the LIFO will pop ‘0’s if it is popped 
more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is 
regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

17.6.3 Handshaking with processor

Software vector mode handshaking

This section describes handshaking in software vector mode.

Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector 
mode, along with the handshaking near the end of the interrupt exception handler, is shown 
in Figure 147. The INTC examines the peripheral and software configurable interrupt 
requests. When it finds an asserted peripheral or software configurable interrupt request 
with a higher priority than PRI in the associated INTC_CPR, it asserts the interrupt request 
to the processor. The INTVEC field in the associated INTC_IACKR is updated with the 
preempting interrupt request’s vector when the interrupt request to the processor is 
asserted. The INTVEC field retains that value until the next time the interrupt request to the 
processor is asserted. The rest of the handshaking is described in Section Software vector 
mode.

End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register 
(INTC_EOIR) must be written.When written, the associated LIFO is popped so the 
preempted priority is restored into PRI of the INTC_CPR. Before it is written, the peripheral 
or software configurable flag bit must be cleared so that the peripheral or software 
configurable interrupt request is negated.

Note: To ensure proper operation across all Power Architecture® MCUs, execute an MBAR or 
MSYNC instruction between the access to clear the flag bit and the write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or 
software settable interrupt request whose ISR was preempted. Depending on how much the 
ISR progressed, that interrupt request may no longer even be asserted. When PRI in 
INTC_CPR is lowered to the priority of the preempted ISR, the interrupt request for the 
preempted ISR or any other asserted peripheral or software settable interrupt request at or 
below that priority will not cause a preemption. Instead, after the restoration of the 
preempted context, the processor will return to the instruction address that it was to next 
execute before it was preempted. This next instruction is part of the preempted ISR or the 
interrupt exception handler’s prolog or epilog.
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Figure 147. Software vector mode handshaking timing diagram

Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector 
mode, along with the handshaking near the end of the interrupt exception handler, is shown 
in Figure 148. As in software vector mode, the INTC examines the peripheral and software 
settable interrupt requests, and when it finds an asserted one with a higher priority than PRI 
in INTC_CPR, it asserts the interrupt request to the processor. The INTVEC field in the 
INTC_IACKR is updated with the preempting peripheral or software settable interrupt 
request’s vector when the interrupt request to the processor is asserted. The INTVEC field 
retains that value until the next time the interrupt request to the processor is asserted. In 
addition, the value of the interrupt vector to the processor matches the value of the INTVEC 
field in the INTC_IACKR. The rest of the handshaking is described in Section Hardware 
vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the 
INTC_EOIR, is the same as in software vector mode. Refer to Section End of interrupt 
exception handler.
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Figure 148. Hardware vector mode handshaking timing diagram

17.7 Initialization/application information

17.7.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–
INTC_PSR154) will be zero, and PRI in INTC current priority register (INTC_CPR) will be 
15. These reset values will prevent the INTC from asserting the interrupt request to the 
processor. The enable or mask bits in the peripherals are reset such that the peripheral 
interrupt requests are negated. An initialization sequence for allowing the peripheral and 
software settable interrupt requests to cause an interrupt request to the processor 
is:interrupt_request_initialization:

interrupt_request_initialization:
configure VTES and HVEN in INTC_MCR
configure VTBA in INTC_IACKR
raise the PRIn fields in INTC_PSRn
set the enable bits or clear the mask bits for the peripheral interrupt 
requests
lower PRI in INTC_CPR to zero
enable processor recognition of interrupts

17.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture™ assembly code. 
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Software vector mode

interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1
lis r3,INTC_IACKR@ha # form adjusted upper half of INTC_IACKR address
lwz r3,INTC_IACKR@l(r3) # load INTC_IACKR, which clears request to 
processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC_IACKR contents into link register
blrl # branch to ISR; link register updated with epilog

# address

epilog:
code to restore most of context required by e500 EABI

# Popping the LIFO after the restoration of most of the context and the 
disabling of processor
# recognition of interrupts eases the calculation of the maximum stack depth 
at the cost of
# postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower 
priority

code to restore SRR0 and SRR1, restore working registers, and delete stack 
frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1
.
.
.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations 
which support a hardware vector. This example assumes that each 
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interrupt_exception_handlerx only has space for four instructions, and therefore a branch to 
interrupt_exception_handler_continuedx is needed.

interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch 
to continue
interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

# Popping the LIFO after the restoration of most of the context and the 
disabling of processor
# recognition of interrupts eases the calculation of the maximum stack depth 
at the cost of
# postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower 
priority

code to restore SRR0 and SRR1, restore working registers, and delete stack 
frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC
blr # branch to epilog

17.7.3 ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current 
priority register (INTC_CPR) having a value of 0. The RTOS will execute the tasks according 
to whatever priority scheme that it may have, but that priority scheme is independent and 
has a lower priority of execution than the priority scheme of the INTC. In other words, the 
ISRs execute above INTC_CPR priority 0 and outside the control of the RTOS, the RTOS 
executes at INTC_CPR priority 0, and while the tasks execute at different priorities under 
the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared 
resource, then the task’s priority can be elevated in the INTC_CPR while the shared 
resource is being accessed. 
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An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR154) has a 
value of 0 will not cause an interrupt request to the processor, even if its peripheral or 
software settable interrupt request is asserted. For a peripheral interrupt request, not setting 
its enable bit or disabling the mask bit will cause it to remain negated, which consequently 
also will not cause an interrupt request to the processor. Since the ISRs are outside the 
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt 
exception handler, perhaps after executing another ISR.

17.7.4 Order of execution 

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the 
unique vectors associated with each of their peripheral or software configurable interrupt 
requests. However, if multiple peripheral or software configurable interrupt requests are 
asserted, more than one has the highest priority, and that priority is high enough to cause 
preemption, the INTC selects the one with the lowest unique vector regardless of the order 
in time that they asserted. However, the ability to meet deadlines with this scheduling 
scheme is no less than if the ISRs execute in the time order that their peripheral or software 
configurable interrupt requests asserted.

The example in Table 144 shows the order of execution of both ISRs with different priorities 
and the same priority.

         

Table 144. Order of ISR execution example

StepNo. Step description

Code Executing at End of Step PRI in
INTC_CPR
at End of

Step
RTOS

ISR108
(1) ISR208 ISR308 ISR408

Interrupt
exception
handler

1 RTOS at priority 0 is executing. X 0

2
Peripheral interrupt request 100 at 
priority 1 asserts. Interrupt taken.

X 1

3
Peripheral interrupt request 400 at 
priority 4 is asserts. Interrupt taken.

X 4

4
Peripheral interrupt request 300 at 
priority 3 is asserts.

X 4

5
Peripheral interrupt request 200 at 
priority 3 is asserts.

X 4

6
ISR408 completes. Interrupt 
exception handler writes to 
INTC_EOIR.

X 1

7
Interrupt taken. ISR208 starts to 
execute, even though peripheral 
interrupt request 300 asserted first.

X 3

8
ISR208 completes. Interrupt 
exception handler writes to 
INTC_EOIR.

X 1

9
Interrupt taken. ISR308 starts to 
execute.

X 3
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17.7.5 Priority ceiling protocol

Elevating priority

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities 
of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to 
that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3. 
They share the same resource. Before ISR1 or ISR2 can access that resource, they must 
raise the PRI value in INTC_CPR to 3, the ceiling of all of the ISR priorities. After they 
release the resource, the PRI value in INTC_CPR can be lowered. If they do not raise their 
priority, ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting 
the shared resource. Another possible failure mechanism is deadlock if the higher priority 
ISR needs the lower priority ISR to release the resource before it can continue, but the lower 
priority ISR cannot release the resource until the higher priority ISR completes and 
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time 
when accessing a shared resource that all higher priority interrupts are blocked. For 
example, while ISR3 cannot preempt ISR1 while it is accessing the shared resource, all of 
the ISRs with a priority higher than 3 can preempt ISR1.

Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1 
and ISR2 are both running on the same core and both share a resource. ISR1 has a lower 
priority than ISR2. ISR1 is executing and writes to the INTC_CPR. The instruction following 
this store is a store to a value in a shared coherent data block. Either immediately before or 
at the same time as the first store, the INTC asserts the interrupt request to the processor 
because the peripheral interrupt request for ISR2 has asserted. As the processor is 
responding to the interrupt request from the INTC, and as it is aborting transactions and 
flushing its pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that 
it can access the data block coherently, but the data block has been corrupted.

10
ISR308 completes. Interrupt 
exception handler writes to 
INTC_EOIR.

X 1

11
ISR108 completes. Interrupt 
exception handler writes to 
INTC_EOIR.

X 0

12 RTOS continues execution. X 0

1. ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt 
requests.

Table 144. Order of ISR execution example (continued)

StepNo. Step description

Code Executing at End of Step PRI in
INTC_CPR
at End of

Step
RTOS

ISR108
(1) ISR208 ISR308 ISR408

Interrupt
exception
handler
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OSEK uses the GetResource and ReleaseResource system services to manage access to 
a shared resource. To prevent corruption of a coherent data block, modifications to PRI in 
INTC_CPR can be made by those system services with the code sequence:

disable processor recognition of interrupts
PRI modification
enable processor recognition of interrupts

17.7.6 Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling 
(RMS) or a superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which 
have higher request rates have higher priorities. In DMS, if the deadline is before the next 
time the ISR is requested, then the ISR is assigned a priority according to the time from the 
request for the ISR to the deadline, not from the time of the request for the ISR to the next 
request for it.

For example, ISR1 executes every 100 µs, ISR2 executes every 200 µs, and ISR3 executes 
every 300 µs. ISR1 has a higher priority than ISR2 which has a higher priority than ISR3; 
however, if ISR3 has a deadline of 150 µs, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the 
ISRs should be grouped with other ISRs that have similar deadlines. For example, a priority 
could be allocated for every time the request rate doubles. ISRs with request rates around 
1 ms would share a priority, ISRs with request rates around 500 µs would share a priority, 
ISRs with request rates around 250 µs would share a priority, etc. With this approach, a 
range of ISR request rates of 216 could be included, regardless of the number of ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines. 
However, reducing the number of priorities can reduce the size and latency through the 
interrupt controller. It also allows easier management of ISRs with similar deadlines that 
share a resource. They do not need to use the PCP to access the shared resource.

17.7.7 Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to 
schedule a lower priority portion of an ISR and they may also be used by processors to 
interrupt other processors in a multiple processor system.

Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in the INTC Priority Select 
Registers (INTC_PSR0_3–INTC_PSR152_154), which becomes the PRI value in 
INTC_CPR with the interrupt acknowledge. The ISR, however, can have a portion that does 
not need to be executed at this higher priority. Therefore, executing the later portion that 
does not need to be executed at this higher priority can prevent the execution of ISRs which 
do not have a higher priority than the earlier portion of the ISR but do have a higher priority 
than what the later portion of the ISR needs. This preemptive scheduling inefficiency 
reduces the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule 
through the RTOS a task to execute the later lower priority portion. However, some RTOSs 
can require a large amount of time for an ISR to schedule a task. Therefore, a second option 
is for the ISR, after completing the higher priority portion, to set a SETx bit in 
INTC_SSCIR0_3–INTC_SSCIR4_7. Writing a 1 to SETx causes a software configurable 
interrupt request. This software configurable interrupt request will usually have a lower PRIx 
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value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After 
generating a software settable interrupt request, the higher priority ISR completes. The 
lower priority ISR is scheduled according to its priority. Execution of the higher priority ISR is 
not resumed after the completion of the lower priority ISR.

Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-
processor systems can schedule ISRs on the other processors. One application is that one 
processor wants to command another processor to perform a piece of work and the initiating 
processor does not need to use the results of that work. If the initiating processor is 
concerned that the processor executing the software configurable ISR has not completed 
the work before asking it to again execute the ISR, it can check if the corresponding CLRx 
bit in INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has 
completed accessing a block of data and wants a second processor to then access it. 
Furthermore, after the second processor has completed accessing the block of data, the 
first processor again wants to access it. The accesses to the block of data must be done 
coherently. To do this, the first processor writes a 1 to a SETx bit on the second processor. 
After accessing the block of data, the second processor clears the corresponding CLRx bit 
and then writes 1 to a SETx bit on the first processor, informing it that it can now access the 
block of data.

17.7.8 Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose 
work spans multiple priorities (see Section Scheduling a lower priority portion of an ISR) is 
to lower the current priority. However, the INTC has a LIFO whose depth is determined by 
the number of priorities.

Note: Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s corresponding PRI 
value in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154) allows 
more preemptions than the LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to 
avoid preemptive scheduling inefficiencies.

17.7.9 Negating an interrupt request outside of its ISR

Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral 
interrupt request. For example, reading a specific register can clear the flag bits and their 
corresponding interrupt requests. This clearing as a side effect of servicing a peripheral 
interrupt request can cause the negation of other peripheral interrupt requests besides the 
peripheral interrupt request whose ISR presently is executing. This negating of a peripheral 
interrupt request outside of its ISR can be a desired effect.

Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag 
bits is because it serviced those flag bits, and therefore the ISRs for these flag bits do not 
need to be executed.
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Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR 
execution or the intentional clearing a flag bit, the priorities of the peripheral or software 
configurable interrupt requests for these other flag bits must be selected properly. Their 
PRIx values in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154) 
must be selected to be at or lower than the priority of the ISR that cleared their flag bits. 
Otherwise, those flag bits can cause the interrupt request to the processor to assert. 
Furthermore, the clearing of these other flag bits also has the same timing relationship to 
the writing to INTC_SSCIR0_3–INTC_SSCIR4_7 as the clearing of the flag bit that caused 
the present ISR to be executed (see Section End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be 
cleared at any time, regardless of the peripheral interrupt request’s PRIx value in 
INTC_PSRx_x.

17.7.10 Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even 
know how deeply the LIFO is nested. However, if he wants to read the contents, such as in 
debug mode, they are not memory mapped. The contents can be read by popping the LIFO 
and reading the PRI field in either INTC_CPR. The code sequence is:

pop_lifo:
store to INTC_EOIR 
load INTC_CPR, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to 
pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push_lifo:
load stacked PRI value and store to INTC_CPR
load INTC_IACKR 
if stacked PRI values are not depleted, branch to push_lifo
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18 Crossbar Switch (XBAR)

18.1 Introduction
This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous 
connections between two master ports and three slave ports. XBAR supports a 32-bit 
address bus width and a 32-bit data bus width at all master and slave ports.

18.2 Block diagram
Figure 149 shows a block diagram of the crossbar switch.

         

Figure 149. XBAR block diagram

Table 145 gives the crossbar switch port for each master and slave, and the assigned and 
fixed ID number for each master. The table shows the master ID numbers as they relate to 
the master port numbers.

         

CPU

Crossbar Switch

Flash

Master modules

Slave modules

CPU data /

Internal Peripheral
bridges

instructions Nexus

memory SRAM

Table 145. XBAR switch ports for SPC560D30/40

Module
Port

Physical master ID
Type Logical number

e200z0 core–CPU instructions Master 0 0

e200z0 core–CPU data / Nexus Master 0 1

Flash memory Slave 0 —

Internal SRAM Slave 2 —

Peripheral bridges Slave 7 —
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18.3 Overview
The XBAR allows for concurrent transactions to occur from any master port to any slave 
port. It is possible for all master ports and slave ports to be in use at the same time as a 
result of independent master requests. If a slave port is simultaneously requested by more 
than one master port, arbitration logic selects the higher priority master and grants it 
ownership of the slave port. All other masters requesting that slave port are stalled until the 
higher priority master completes its transactions.

Requesting masters are granted access based on a fixed priority.

18.4 Features
● 2 master ports:

– Core: e200z0 core instructions

– Core: e200z0 core data / Nexus

● 3 slave ports

– Flash (refer to the flash memory chapter for information on accessing flash 
memory)

– Internal SRAM 

– Peripheral bridges

● 32-bit address, 32-bit data paths

● Fully concurrent transfers between independent master and slave ports

● Fixed priority scheme and fixed parking strategy

18.5 Modes of operation

18.5.1 Normal mode

In normal mode, the XBAR provides the logic that controls crossbar switch configuration.

18.5.2 Debug mode

The XBAR operation in debug mode is identical to operation in normal mode.

         

18.6 Functional description
This section describes the functionality of the XBAR in more detail.

18.6.1 Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple 
masters to communicate concurrently with multiple slaves. To maximize data throughput, it 
is essential to keep arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves, 
detailing when the XBAR stalls masters, or inserts bubbles on the slave side.
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18.6.2 General operation

When a master makes an access to the XBAR from an idle master state, the access is taken 
immediately by the XBAR. If the targeted slave port of the access is available (that is, the 
requesting master is currently granted ownership of the slave port), the access is 
immediately presented on the slave port. It is possible to make single clock (zero wait state) 
accesses through the XBAR by a granted master. If the targeted slave port of the access is 
busy or parked on a different master port, the requesting master receives wait states until 
the targeted slave port can service the master request. The latency in servicing the request 
depends on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master 
device has no indication that it owns the slave port it is targeting. While the master does not 
have control of the slave port it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different 
slave port has completed, regardless of its priority on the newly targeted slave port. This 
prevents deadlock from occurring when a master has the following conditions:

● Outstanding request to slave port A that has a long response time

● Pending access to a different slave port B

● Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle 
of arbitration, assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of 
that slave port until it gives up the slave port by running an IDLE cycle, leaves that slave port 
for its next access, or loses control of the slave port to a higher priority master with a request 
to the same slave port. However, because all masters run a fixed-length burst transfer to a 
slave port, it retains control of the slave port until that transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master which did the last transfer.

18.6.3 Master ports

A master access is taken if the slave port to which the access decodes is either currently 
servicing the master or is parked on the master. In this case, the XBAR is completely 
transparent and the master access is immediately transmitted on the slave bus and no 
arbitration delays are incurred. A master access stall if the access decodes to a slave port 
that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting 
access to the slave port, then only one clock of arbitration is incurred. If the slave port is 
currently serving another master of a lower priority and the master has a higher priority than 
all other requesting masters, then the master gains control over the slave port as soon as 
the data phase of the current access is completed. If the slave port is currently servicing 
another master of a higher priority, then the master gains control of the slave port after the 
other master releases control of the slave port if no other higher priority master is also 
waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not 
occupied by a slave port. This is the only time the XBAR directly responds with an error 
response. All other error responses received by the master are the result of error responses 
on the slave ports being passed through the XBAR.
Doc ID 16886 Rev 6 332/868



Crossbar Switch (XBAR) RM0045
18.6.4 Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when 
masters are actively making requests. To do this the XBAR must not insert any bubbles onto 
the slave bus unless absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a 
master is actively making a request. This occurs when a handoff of bus ownership occurs 
and there are no wait states from the slave port. A requesting master which does not own 
the slave port is granted access after a one clock delay.

18.6.5 Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). The following 
table shows the priority levels assigned to each master (the lowest has highest priority).

         

18.6.6 Arbitration

XBAR supports only a fixed-priority comparison algorithm.

Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority 
level in the XBAR_MPR. If two masters both request access to a slave port, the master with 
the highest priority in the selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new 
requesting master’s priority level is higher than that of the master that currently has control 
over the slave port (if any). The slave port does an arbitration check at every clock edge to 
ensure that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently 
has control of the slave port, the higher priority master is granted control at the termination 
of any currently pending access, assuming the pending transfer is not part of a burst 
transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is 
granted control of the slave port. But if the new requesting master’s priority level is lower 
than that of the master that currently has control of the slave port, the new requesting 
master is forced to wait until the master that currently has control of the slave port is finished 
accessing the current slave port.

Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port 
parks always to the last master (park-on-last). When parked on the last master, the slave 
port is passing that master’s signals through to the slave bus. When the master accesses 

Table 146. Hardwired bus master priorities

Module
Port

Priority level
Type Number

e200z0 core–CPU instructions Master 0 7

e200z0 core–CPU data / Nexus Master 0 6
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the slave port again, no other arbitration penalties are incurred except that a one clock 
arbitration penalty is incurred for each access request to the slave port made by another 
master port. All other masters pay a one clock penalty.
Doc ID 16886 Rev 6 334/868



System Integration Unit Lite (SIUL) RM0045
19 System Integration Unit Lite (SIUL)

19.1 Introduction
This chapter describes the System Integration Unit Lite (SIUL), which is used for the 
management of the pads and their configuration. It controls the multiplexing of the alternate 
functions used on all pads as well as being responsible for the management of the external 
interrupts to the device.

19.2 Overview
The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-
purpose input and output (GPIO) signals and external interrupts with trigger event 
configuration. Figure 150 provides a block diagram of the SIUL and its interfaces to other 
system components.

The module provides the capability to configure, read, and write to the device’s general-
purpose I/O pads that can be configured as either inputs or outputs. 

● When a pad is configured as an input, the state of the pad (logic high or low) is 
obtained by reading an associated data input register. 

● When a pad is configured as an output, the value driven onto the pad is determined by 
writing to an associated  data output register. Enabling the input buffers when a pad is 
configured as an output allows the actual state of the pad to be read.

● To enable monitoring of an output pad value, the pad can be configured as both output 
and input so the actual pad value can be read back and compared with the expected 
value. 
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Figure 150. System Integration Unit Lite block diagram
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Notes:

1. Up to 45 I/O pins in 64-pin packages; up to 79 I/O pins in 100-pin packages

2. Up to 11 I/O pins in 64-pin packages; up to 20 I/O pins in 100-pin packages
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19.3 Features
The System Integration Unit Lite supports these distinctive features:

● GPIO

– GPIO function on up to 79 I/O pins

– Dedicated input and output registers for most GPIO pins(m)

● External interrupts

– 3 interrupt vectors dedicated to 20 external interrupts

– 24 programmable digital glitch filters

– Independent interrupt mask

– Edge detection

● System configuration

– Pad configuration control

19.4 External signal description
Most device pads support multiple device functions. Pad configuration registers are 
provided to enable selection between GPIO and other signals. These other signals, also 
referred to as alternate functions, are typically peripheral functions. 

GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate 
configuration, all pins in a port can be read or written to in parallel with a single R/W access. 

Note: In order to use GPIO port functionality, all pads in the port must be configured as GPIO 
rather than as alternate functions.

Table 147 lists the external pins configurable via the SIUL.

         (

m. Some device pins, e.g., analog pins, do not have both input and output functionality.

Table 147. SIUL signal properties

GPIO[0:122](1)

category

1. GPIO[77:120] not available in SPC560D30/40; GPIO[43:120] not available in 64-pin LQFP

Name
I/O

direction
Function

System configuration

GPIO [0:19] [26:47] [60:76] 
[121:122]

Input/Output General-purpose input/output

GPIO [20:25] [48:59] Input
Analog precise channels, low power oscillator 
pins

External interrupt

PA[3], PA[6:8], PA[11:12], 
PA[14], PC[2:5], PC[12], 
PC[14:15], PE[2], PE[4], 
PE[6:7], PE[10], PE[12](2)

2. PC[12], PC[14:15], PE[2], PE[4], PE[6:7], PE[10] and PE[12] not available in 64-pin

Input
Pins with External Interrupt Request 
functionality. Please see the signal description 
chapter of this reference manual for details.
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19.4.1 Detailed signal descriptions

General-purpose I/O pins (GPIO[0:122])(n)

The GPIO pins provide general-purpose input and output function. The GPIO pins are 
generally multiplexed with other I/O pin functions. Each GPIO input and output is separately 
controlled by an input (GPDIn_n) or output (GPDOn_n) register.

External interrupt request input pins (EIRQ[0:23])(o)

The EIRQ[0:23] pins are connected to the SIUL inputs. Rising- or falling-edge events are 
enabled by setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

n. GPIO[0–76] and GPIO[121–122] in 100-pin LQFP; GPIO[0–43] and GPIO[121–122] in 64-pin LQFP

o. EIRQ[0:11] plus EIRQ[16:23] in 100-pin LQFP; EIRQ[0:7] plus EIRQ[16:18] in 64-pin LQFP
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19.5 Memory map and register description
This section provides a detailed description of all registers accessible in the SIUL module.

19.5.1 SIUL memory map

Table 148 gives an overview of the SIUL registers implemented.

         

Table 148. SIUL memory map

Base address: 0xC3F9_0000

Address offset Register Location

0x0000 Reserved

0x0004 MCU ID Register #1 (MIDR1) on page 19-341

0x0008 MCU ID Register #2 (MIDR2) on page 19-342

0x000C–0x0013 Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 19-343

0x0018 Interrupt Request Enable Register (IRER) on page 19-344

0x001C–0x0027 Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 19-344

0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 19-345

0x0030 Interrupt Filter Enable Register (IFER) on page 19-346

0x0034–0x003F Reserved

0x0040–0x0134 Pad Configuration Registers (PCR0–PCR122)(1) on page 19-347

0x0136–0x04FF Reserved

0x0500–0x053C
Pad Selection for Multiplexed Inputs Registers (PSMI0_3–
PSMI60_63)

on page 19-349

0x0540–0x05FF Reserved

0x0600–0x0678
GPIO Pad Data Output Registers (GPDO0_3–
GPDO120_123)(2) on page 19-352

0x067C–0x07FF Reserved

0x0800–0x0878 GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)(3) on page 19-353

0x087C–0x0BFF Reserved

0x0C00–0x0C0C Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3) on page 19-353

0x0C10–0x0C3F Reserved

0x0C40–0x0C4C Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3) on page 19-354

0x0C50–0x0C7F Reserved

0x0C80–0x0C9C
Masked Parallel GPIO Pad Data Out Register (MPGPDO0–
MPGPDO7)

on page 19-355

0x0CA0–0x0FFF Reserved
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Note: A transfer error will be issued when trying to access completely reserved register space.

19.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes 
using the Register Protection module. The following registers can be protected:

● Interrupt Request Enable Register (IRER)

● Interrupt Rising-Edge Event Enable Register (IREER)

● Interrupt Falling-Edge Event Enable Register (IFEER)

● Interrupt Filter Enable Register (IFER), 

● Pad Configuration Registers (PCR0–PCR122). Note that only the following registers 
can be protected: 

– PCR[0:15] (Port A)

– PCR[16:19] (Port B[0:3])

– PCR[34:47] (Port C[2:15])

● Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI60_63)

● Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23). Note that only 
IFMC[0:15] can be protected.

● Interrupt Filter Clock Prescaler Register (IFCPR)

See the “Register Under Protection” appendix for more details.

19.5.3 Register descriptions

MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

0x1000–0x105C
Interrupt Filter Maximum Counter Registers (IFMC0–
IFMC23)(4) on page 19-356

0x1060–0x107C Reserved

0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 19-357

0x1084–0x3FFF Reserved

1. PCR[0:76] and PCR[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is PCR[0:43] and 
PCR[121:122], so all the remaining registers are reserved.

2. GPDO[0:76] and GPDO[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDO[0:43] and 
GPDO[121:122], so all the remaining registers are reserved.

3. GPDI0[0:76] and GPDI0[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDI0[0:43] and 
GPDI0[121:122], so all the remaining registers are reserved.

4. IFMC[0:11] plus IFMC[16:23] in 100-pin LQFP, while in the 64-pin LQFP package is IFMC[0:7] plus IFMC[16:18]—all 
remaining registers are reserved.

Table 148. SIUL memory map (continued)

Base address: 0xC3F9_0000

Address offset Register Location
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Figure 151. MCU ID Register #1 (MIDR1)

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM[15:0]

W

Reset 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSP PKG 0 0 MAJOR_MASK MINOR_MASK

W

Reset 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Table 149. MIDR1 field descriptions

Field Description

PARTNUM[15:0]

MCU Part Number, lower 16 bits

Device part number of the MCU.
0101_0110_0000_0001:128 KB

0101_0110_0000_0010: 256 KB

For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].

CSP Always reads back 0

PKG

Package Settings

Can be read by software to determine the package type that is used for the particular 
device as described below. Any values not explicitly specified are reserved.

0b00001: 64-pin LQFP

0b01001: 100-pin LQFP

MAJOR_MASK
Major Mask Revision
Counter starting at 0x0. Incremented each time there is a resynthesis.

MINOR_MASK
Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.
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MCU ID Register #2 (MIDR2)

         

         

Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

Figure 152. MCU ID Register #2 (MIDR2)

Offset: 0x0008 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SF FLASH_SIZE_1 FLASH_SIZE_2 0 0 0 0 0 0 0

W

Reset 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PARTNUM[23:16] 0 0 0 EE 0 0 0 0

W

Reset 0 1 0 0 0 1 0 0 0 0 0 1 0(1)

1. Static bit fixed in hardware

0(1) 0(1) 0

Table 150. MIDR2 field descriptions

Field Description

SF
Manufacturer

0 Reserved
1 ST

FLASH_SIZE_1

Coarse granularity for Flash memory size

Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

0011 128 KB
0100 256 KB
0101 512 KB

FLASH_SIZE_2

Fine granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

0000 0 x (FLASH_SIZE_1 / 8)
0010 2 x (FLASH_SIZE_1 / 8)
0100 4 x (FLASH_SIZE_1 / 8)

PARTNUM
[23:16]

MCU Part Number, upper 8 bits containing the ASCII character within the MCU part number

0x44h: Character ‘D’ 

For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].

EE
Data Flash present

0 No Data Flash is present
1 Data Flash is present
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Figure 153. Interrupt Status Flag Register (ISR)

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 EIF[23:16](1)

1. 20 flags in 100-pin LQFP; 11 flags in 64-pin LQFP: EIF[18:16] plus EIF[7:0] (register bits 8-12 and 20–23 reserved).

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 EIF[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 151. ISR field descriptions

Field Description

EIF[x]

External Interrupt Status Flag x

This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[x]), 
EIF[x] causes an interrupt request.

0 No interrupt event has occurred on the pad
1 An interrupt event as defined by IREER[x] and IFEER[x] has occurred
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Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

         

         

Interrupt Rising-Edge Event Enable Register (IREER)

This register is used to enable rising-edge triggered events on the corresponding interrupt 
pads.

         

Figure 154. Interrupt Request Enable Register (IRER)

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IRE[23:16](1)

1. 20 enable requests in 100-pin LQFP; 11 enable requests in 64-pin LQFP: IRE[18:16] plus IRE[7:0] (register bits 8-12 and 
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IRE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 152. IRER field descriptions

Field Description

IRE[x]
External Interrupt Request Enable x

0 Interrupt requests from the corresponding ISR[EIF[x]] bit are disabled.
1 Interrupt requests from the corresponding ISR[EIF[x]] bit are enabled.

Figure 155. Interrupt Rising-Edge Event Enable Register (IREER)

Offset:0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IREE[23:16](1)

1. 20 enable events in 100-pin LQFP; 11 enable events in 64-pin LQFP: IREE[18:16] plus IREE[7:0] (register bits 8-12 and 
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IREE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events on the corresponding interrupt 
pads.

         

         

Note: If both the IREER[IREE] and IFEER[IFEE] bits are cleared for the same interrupt source, the 
interrupt status flag for the corresponding external interrupt will never be set. If IREER[IREE] 
and IFEER[IFEE] bits are set for the same source the interrupts are triggered by both rising 
edge events and falling edge events.

Table 153. IREER field descriptions

Field Description

IREE[x]
Enable rising-edge events to cause the ISR[EIF[x]] bit to be set.

0 Rising-edge event is disabled
1 Rising-edge event is enabled

Figure 156. Interrupt Falling-Edge Event Enable Register (IFEER)

Offset:0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IFEE[23:16](1)

1. 20 enabling events in 100-pin LQFP; 11 enabling events in 64-pin LQFP: IFEE[18:16] plus IFEE[7:0] (register bits 8-12 and 
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IFEE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 154. IFEER field descriptions

Field Description

IFEE[x]
Enable falling-edge events to cause the ISR[EIF[x]] bit to be set.
0Falling-edge event is disabled

1Falling-edge event is enabled
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Interrupt Filter Enable Register (IFER)

This register is used to enable a digital filter counter on the corresponding interrupt pads to 
filter out glitches on the inputs.

         

         

Pad Configuration Registers (PCR0–PCR122)

The Pad Configuration Registers allow configuration of the static electrical and functional 
characteristics associated with I/O pads. Each PCR controls the characteristics of a single 
pad.

Please note that input and output peripheral muxing are separate.

● For output pads:

– Select the appropriate alternate function in Pad Config Register (PCR)

– OBE is not required for functions other than GPIO

● For INPUT pads:

– Select the feature location from PSMI register

– Set the IBE bit in the appropriate PCR

● For normal GPIO (not alternate function):

– Configure PCR 

– Read from GPDI or write to GPDO

Figure 157. Interrupt Filter Enable Register (IFER)

Offset:0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IFE[23:16](1)

1. 20 bits in 100-pin LQFP; 11 bits in 64-pin LQFP: IFE[18:16] plus IEE[7:0] (register bits 8-12 and 20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IFE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 155. IFER field descriptions

Field Description

IFE[x]

Enable digital glitch filter on the interrupt pad input

0 Filter is disabled
1 Filter is enabled

See the IFMC field descriptions in Table 165 for details on how the filter works.
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Note: 16/32-bit access is supported.

In addition to the bit map above, the following Table 156 describes the PCR depending on 
the pad type (pad types are defined in the “Pad types” section of this reference manual). The 
bits in shaded fields are not implemented for the particular I/O type. The PA field selecting 
the number of alternate functions may or may not be present depending on the number of 
alternate functions actually mapped on the pad.

         

Figure 158. Pad Configuration Registers (PCRx)

Offsets: Base + 0x0040 (PCR0)( registers)

Base + 0x0042 (PCR1)

...
Base + 0x0 (PCR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SMC APC PA[1:0] OBE IBE

0 0
ODE

0 0
SRC WPE WPS

W

Reset 0 0(1)

1. SMC and PA[1] are ‘1’ for JTAG pads

0 0 0(1) 0 0(2)

2. OBE is ‘1’ for TDO

0(3)

3. IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS

0 0 0 0 0 0 0(3) 1(4)

4. WPS is ‘0’ for input only pad with analog feature and FAB

Table 156. PCRx field descriptions

Field Description

SMC

Safe Mode Control.

This bit supports the overriding of the automatic deactivation of the output buffer of the 
associated pad upon entering SAFE mode of the device.

0 In SAFE mode, the output buffer of the pad is disabled.
1 In SAFE mode, the output buffer remains functional.

APC

Analog Pad Control.

This bit enables the usage of the pad as analog input.

0 Analog input path from the pad is gated and cannot be used
1 Analog input path switch can be enabled by the ADC

PA[1:0]

Pad Output Assignment

This field is used to select the function that is allowed to drive the output of a multiplexed pad.

00 Alternative Mode 0 — GPIO
01 Alternative Mode 1 — See the signal description chapter
10 Alternative Mode 2 — See the signal description chapter
11 Alternative Mode 3 — See the signal description chapter

Note: Number of bits depends on the actual number of actual alternate functions. Please see 
datasheet.

OBE

Output Buffer Enable

This bit enables the output buffer of the pad in case the pad is in GPIO mode.
0 Output buffer of the pad is disabled when PA[1:0] = 00
1 Output buffer of the pad is enabled when PA[1:0] = 00
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Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI60_63)

In some cases, a peripheral input signal can be selected from more than one pin. For 
example, the CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and 
PF[15]. Only one can be active at a time. To select the pad to be used as input to the 
peripheral:

● Select the signal via the pad’s PCR register using the PA field.

● Specify the pad to be used via the appropriate PSMI field.

IBE

Input Buffer Enable

This bit enables the input buffer of the pad.
0 Input buffer of the pad is disabled
1 Input buffer of the pad is enabled

ODE

Open Drain Output Enable

This bit controls output driver configuration for the pads connected to this signal. Either open 
drain or push/pull driver configurations can be selected. This feature applies to output pads only.

0 Pad configured for push/pull output
1 Pad configured for open drain

SRC

Slew Rate Control

This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is 
the following:

0 Pad configured as slow (default)
1 Pad is configured as medium or fast (depending on the pad)
Note: PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

WPE

Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad 
connected to this signal.
0 Weak pull device disabled for the pad
1 Weak pull device enabled for the pad

WPS

Weak Pull Up/Down Select

This bit controls whether weak pull up or weak pull down devices are used for the pads 
connected to this signal when weak pull up/down devices are enabled.

0 Weak pull-down selected
1 Weak pull-up selected

Table 156. PCRx field descriptions (continued)

Field Description
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In order to multiplex different pads to the same peripheral input, the SIUL provides a register 
that controls the selection between the different sources.

         

Figure 159. Pad Selection for Multiplexed Inputs Register (PSMI0_3)

Offsets:0x0500–0x053C (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PADSEL0

0 0 0 0
PADSEL1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PADSEL2

0 0 0 0
PADSEL3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 157. PSMI0_3 field descriptions

Field Description

PADSEL0–3,

PADSEL4–7,
...

PADSEL60–63

Pad Selection Bits
Each PADSEL field selects the pad currently used for a certain input function. See Table 158.

Table 158. Peripheral input pin selection

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)

PSMI0_3

PADSEL0 0x500 Reserved —

PADSEL1 0x501 Reserved —

PADSEL2 0x502 Reserved —

PADSEL3 0x503 Reserved —

PSMI4_7

PADSEL4 0x504 Reserved —

PADSEL5 0x505 SCK_0 / DSPI_0
00: PCR[14]

01: PCR[15]

PADSEL6 0x506 CS0_0 / DSPI_0
00: PCR[14]
01: PCR[15]
10: PCR[27]

PADSEL7 0x507 SCK_1 / DSPI_1
00: PCR[34]
01: PCR[68]
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PSMI8_11

PADSEL8 0x508 SIN_1 / DSPI_1
00: PCR[36]
01: PCR[66]

PADSEL9 0x509 CS0_1 / DSPI_1

00: PCR[35]
01: PCR[61]
10: PCR[69]
11: PCR[4]

PADSEL10 0x50A Reserved —

PADSEL11 0x50B Reserved —

PSMI12_15

PADSEL12 0x50C Reserved —

PADSEL13 0x50D E1UC[3] / eMIOS_0

00: PCR[3]

01: PCR[27]
10: PCR[40]

PADSEL14 0x50E E0UC[4] / eMIOS_0
00: PCR[4]
01: PCR[28]

PADSEL15 0x50F E0UC[5] / eMIOS_0
00: PCR[5]
01: PCR[29]

PSMI16_19

PADSEL16 0x510 E0UC[6] / eMIOS_0
00: PCR[6]
01: PCR[30]

PADSEL17 0x511 E0UC[7] / eMIOS_0
00: PCR[7]
01: PCR[31]

10: PCR[41]

PADSEL18 0x512 Reserved —

PADSEL19 0x513 Reserved —

PSMI20_23

PADSEL20 0x514 Reserved —

PADSEL21 0x515 E0UC[13] / eMIOS_0
00: PCR[45]

10: PCR[0]

PADSEL22 0x516 E0UC[14] / eMIOS_0
00: PCR[46]

10: PCR[8]

PADSEL23 0x517 E0UC[22] / eMIOS_0
00: PCR[70]
01: PCR[72]

PSMI24_27

PADSEL24 0x518 E0UC[23] / eMIOS_0
00: PCR[71]
01: PCR[73]

PADSEL25 0x519 E0UC[24] / eMIOS_0
00: PCR[60]

10: PCR[75]

PADSEL26 0x51A Reserved —

PADSEL27 0x51B Reserved —

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)
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PSMI28_31

PADSEL28 0x51C Reserved —

PADSEL29 0x51D Reserved —

PADSEL30 0x51E Reserved —

PADSEL31 0x51F Reserved —

PSMI32_35

PADSEL32 0x520 Reserved —

PADSEL33 0x521 Reserved —

PADSEL34 0x522 Reserved —

PADSEL35 0x523 Reserved —

PSMI36_39

PADSEL36 0x524 Reserved —

PADSEL37 0x525 Reserved —

PADSEL38 0x526 E0UC[0] / eMIOS_0
00: PCR[0]

01: PCR[14]

PADSEL39 0x527 E0UC[1] / eMIOS_0
00: PCR[1]

01: PCR[15]

PSMI40_43

PADSEL40 0x528 Reserved —

PADSEL41 0x529 Reserved —

PADSEL42 0x52A Reserved —

PADSEL43 0x52B Reserved —

PSMI44_47

PADSEL44 0x52C Reserved —

PADSEL45 0x52D Reserved —

PADSEL46 0x52E Reserved —

PADSEL47 0x52F Reserved —

PSMI48_51

PADSEL48 0x530 Reserved —

PADSEL49 0x531 Reserved —

PADSEL50 0x532 Reserved —

PADSEL51 0x533 Reserved —

PSMI52_55

PADSEL52 0x534 Reserved —

PADSEL53 0x535 Reserved —

PADSEL54 0x536 Reserved —

PADSEL55 0x537 Reserved —

PSMI56_59

PADSEL56 0x538 Reserved —

PADSEL57 0x539 Reserved —

PADSEL58 0x53A LIN2RX / LINFlex _2
00: PCR[41]
01: PCR[11]

PADSEL59 0x53B Reserved —

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)
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GPIO Pad Data Output Registers (GPDO0_3–GPDO120_123)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled 
separately with a byte access.

         

         

Caution: Toggling several IOs at the same time can significantly increase the current in a pad group. 
Caution must be taken to avoid exceeding maximum current thresholds. Please see 
datasheet.

GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)

These registers are used to read the GPIO pad data with a byte access.

PSMI60_63(2)

PADSEL60 0x53C Reserved —

PADSEL61 0x53D Reserved —

PADSEL62 0x53E LIN0RX / LINFlex _0
00: PCR[19]
01: PCR[17]

1. See the signal description chapter of this reference manual for correspondence between PCR and pinout

2. PADSEL63 is not implemented

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)

Figure 160. Port GPIO Pad Data Output Register 0–3 (GPDO0_3)

Offsets: 0x0600–0x0678 (31 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

O
[0

]

0 0 0 0 0 0 0

P
D

O
[1

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

O
[2

]

0 0 0 0 0 0 0

P
D

O
[3

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 159. GPDO0_3 field descriptions

Field Description

PDO[x]

Pad Data Out

This bit stores the data to be driven out on the external GPIO pad controlled by this register.
0 Logic low value is driven on the corresponding GPIO pad when the pad is configured as an 

output
1 Logic high value is driven on the corresponding GPIO pad when the pad is configured as an 

output
Doc ID 16886 Rev 6 352/868



System Integration Unit Lite (SIUL) RM0045
         

         

Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3)

SPC560D30/40 devices ports are constructed such that they contain 16 GPIO pins, for 
example PortA[0..15]. Parallel port registers for input (PGPDI) and output (PGPDO) are 
provided to allow a complete port to be written or read in one operation, dependent on the 
individual pad configuration. 

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is 
also a masked parallel port output register allowing the user to determine which pins within 
a port are written.

While very convenient and fast, this approach does have implications regarding current 
consumption for the device power segment containing the port GPIO pads. Toggling several 
GPIO pins simultaneously can significantly increase current consumption.

Caution: Caution must be taken to avoid exceeding maximum current thresholds when toggling 
multiple GPIO pins simultaneously. Please see datasheet.

Table 161 shows the locations and structure of the PGPDOx registers.

Figure 161. Port GPIO Pad Data Input Register 0–3 (GPDI0_3)

Offsets: 0x0800–0x0878 (31 registers) Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

I[0
]

0 0 0 0 0 0 0

P
D

I[1
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

I[2
]

0 0 0 0 0 0 0

P
D

I[3
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 160. GPDI0_3 field descriptions

Field Description

PDI[x]

Pad Data In
This bit stores the value of the external GPIO pad associated with this register.

0 Value of the data in signal for the corresponding GPIO pad is logic low
1 Value of the data in signal for the corresponding GPIO pad is logic high
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It is important to note the bit ordering of the ports in the parallel port registers. The most 
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 161, the PGPDO0 register contains fields for Port A and Port B.

● Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, 
which is mapped to Port A[15]

● Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, 
which is mapped to Port B[15].

Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the 
previous section (Section Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3)) 
but they are used to read port pins simultaneously. 

Note: The port pins to be read need to be configured as inputs but even if a single pin within a port 
has IBE set, then you can still read that pin using the parallel port register. However, this 
does mean you need to be very careful. 

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but 
significantly faster since as many as two ports can be read simultaneously with a single 32-
bit read operation.

Table 162 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx 
register contains two 16-bit fields, each field containing the values for a separate port.

         

It is important to note the bit ordering of the ports in the parallel port registers. The most 
significant bit of the parallel port register corresponds to the least significant pin in the port.

Table 161. PGPDO0 – PGPDO3 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address 

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C00 PGPDO0 Port A Port B

0x0C04 PGPDO1 Port C Port D

0x0C08 PGPDO2 Port E Port F

0x0C0C PGPDO3 Port G Port H

Table 162. PGPDI0 – PGPDI3 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address 

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C40 PGPDI0 Port A Port B

0x0C44 PGPDI1 Port C Port D

0x0C48 PGPDI2 Port E Port F

0x0C4C PGPDI3 Port G Port H
Doc ID 16886 Rev 6 354/868



System Integration Unit Lite (SIUL) RM0045
For example in Table 162, the PGPDI0 register contains fields for Port A and Port B.

● Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15, 
which is mapped to Port A[15]

● Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31, 
which is mapped to Port B[15].

Masked Parallel GPIO Pad Data Out Register (MPGPDO0–MPGPDO7)

The MPGPDOx registers are similar in operation to the PGPDOx ports described in 
Section Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3), but with two 
significant differences:

● The MPGPDOx registers support masked port-wide changes to the data out on the 
pads of the respective port. Masking effectively allows selective bitwise writes to the full 
16-bit port.

● Each 32-bit MPGPDOx register is associated to only one port.

Note: The MPGPDOx registers may only be accessed with 32-bit writes. 8-bit or 16-bit writes will 
not modify any bits in the register and will cause a transfer error response by the module. 
Read accesses return ‘0’.

Table 163 shows the locations and structure of the MPGPDOx registers. Each 32-bit 
MPGPDOx register contains two 16-bit fields (MASKx and MPPDOx). The MASK field is a 
bitwise mask for its associated port. The MPPDO0 field contains the data to be written to the 
port.

         

It is important to note the bit ordering of the ports in the parallel port registers. The most 
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 163, the MPGPDO0 register contains field MASK0, which is the 
bitwise mask for Port A and field MPPDO0, which contains data to be written to Port A.

● MPGPDO0[0] is the mask bit for Port A[0], MPGPDO0[1] is the mask bit for Port A[1] 
and so on, through MPGPDO0[15], which is the mask bit for Port A[15]

● MPGPDO0[16] is the data bit mapped to Port A[0], MPGPDO0[17] is mapped to Port 
A[1] and so on, through MPGPDO0[31], which is mapped to Port A[15].

Table 163. MPGPDO0 – MPGPDO7 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address 

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C80 MPGPDO0 MASK0 (Port A) MPPDO0 (Port A)

0x0C84 MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)

0x0C88 MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)

0x0C8C MPGPDO3 MASK3 (Port D) MPPDO3 (Port D)

0x0C90 MPGPDO4 MASK4 (Port E) MPPDO4 (Port E)

0x0C94 MPGPDO5 MASK5 (Port F) MPPDO5 (Port F)

0x0C98 MPGPDO6 MASK6 (Port G) MPPDO6 (Port G)

0x0C9C MPGPDO7 MASK7 (Port H) MPPDO7 (Port H)
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Caution: Toggling several IOs at the same time can significantly increase the current in a pad group. 
Caution must be taken to avoid exceeding maximum current thresholds. Please see 
datasheet.

Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

These registers are used to configure the filter counter associated with each digital glitch 
filter.

Note: For the pad transition to trigger an interrupt it must be steady for at least the filter period. 

         

Table 164. MPGPDO0..MPGPDO7 field descriptions

Field Description

MASKx

[15:0]

Mask Field

Each bit corresponds to one data bit in the MPPDOx register at the same bit location.

0 Associated bit value in the MPPDOxfield is ignored
1 Associated bit value in the MPPDOx field is written

MPPDOx

[15:0]

Masked Parallel Pad Data Out

Write the data register that stores the value to be driven on the pad in output mode.

Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data 
Output Registers (GPDO0_3–GPDO120_123).

The x and bit index define which MPPDO register bit is equivalent to which PDO register bit 
according to the following equation:

MPPDO[x][y] = PDO[(x*16)+y]

Figure 162. Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

Offset: 0x1000–) ( registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
MAXCNTx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all 
digital filter counters in the SIUL.

         

Table 166. IFCPR field descriptions

19.6 Functional description

19.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It 
provides a consistent interface for all pads, both on a by-port and a by-bit basis. The pad 
configuration registers (PCRn, see Section Pad Configuration Registers (PCR0–PCR122)) 

Table 165. IFMC field descriptions

Field Description

MAXCNTx

Maximum Interrupt Filter Counter setting

Filter Period = T(CK)*MAXCNTx + n*T(CK) 

Where (n can be 1 to 3)
MAXCNTx can be 0 to 15

T(CK): Prescaled Filter Clock Period, which is FIRC clock prescaled to IFCP value

T(FIRC): Basic Filter Clock Period: 62.5 ns (fFIRC = 16 MHz)

Figure 163. Interrupt Filter Clock Prescaler Register (IFCPR)

Offsets:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFCP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

IFCP

Interrupt Filter Clock Prescaler setting
Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)

T(FIRC) is the fast internal RC oscillator period.

IFCP can be 0 to 15.
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allow software control of the static electrical characteristics of external pins with a single 
write. These are used to configure the following pad features:

● Open drain output enable

● Slew rate control

● Pull control

● Pad assignment

● Control of analog path switches

● Safe mode behavior configuration

19.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 123 GPIO pads organized as ports that can be accessed for data 
reads and writes as 32, 16 or 8-bit(p).

Note: Ports are organized as groups of 16 GPIO pads, with the exception of Port J, which has 5. A 
32-bit R/W operation accesses two ports simultaneously. A 16-bit operation accesses a full 
port and an 8-bit access either the upper or lower byte of a port.

As shown in Figure 164, all port accesses are identical with each read or write being 
performed only at a different location to access a different port width.

         

Figure 164. Data Port example arrangement showing configuration for different port width 
accesses

The SIUL has separate data input (GPDIn_n, see Section GPIO Pad Data Input Registers 
(GPDI0_3–GPDI120_123)) and data output (GPDOn_n, see Section GPIO Pad Data 
Output Registers (GPDO0_3–GPDO120_123)) registers for all pads, allowing the possibility 
of reading back an input or output value of a pad directly. This supports the ability to validate 
what is present on the pad rather than simply confirming the value that was written to the 
data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-
pull or open drain drive). Input registers are read-only and reflect the respective pad value.

When the pad is configured to use one of its alternate functions, the data input value reflects 
the respective value of the pad. If a write operation is performed to the data output register 
for a pad configured as an alternate function (non-GPIO), this write will not be reflected by 
the pad value until reconfigured to GPIO.

p. There are exceptions. Some pads, e.g., precision analog pads, are input only.
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The allocation of what input function is connected to the pin is defined by the PSMI registers 
(PCRn, see Section Pad Selection for Multiplexed Inputs Registers (PSMI0_3–
PSMI60_63)).”

19.6.3 External interrupts

The SIUL supports 24 external interrupts, EIRQ0–EIRQ23. In the signal description chapter 
of this reference manual, mapping is shown for external interrupts to pads.

The SIUL supports threeinterrupt vectors to the interrupt controller. Each vector interrupt 
has eight external interrupts combined together with the presence of flag generating an 
interrupt for that vector if enabled. All of the external interrupt pads within a single group 
have equal priority.

See Figure 165 for an overview of the external interrupt implementation.

         

Figure 165. External interrupt pad diagram

3. 20 interrupts in 100-pin LQFP; 11 interrupts in 64-pin LQFP.

Each interrupt can be enabled or disabled independently. This can be performed using the 
IRER. A pad defined as an external interrupt can be configured to recognize interrupts with 
an active rising edge, an active falling edge or both edges being active. A setting of having 
both edge events disabled is reserved and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and 
IFEER.

Each external interrupt supports an individual flag which is held in the Interrupt Status Flag 
Register (ISR). The bits in the ISR[EIF] field are cleared by writing a ‘1’ to them; this 
prevents inadvertent overwriting of other flags in the register.
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19.7 Pin muxing
For pin muxing, please see the signal description chapter of this reference manual.
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20 LIN Controller (LINFlex)

20.1 Introduction
The LINFlex (Local Interconnect Network Flexible) controller interfaces the LIN network and 
supports the LIN protocol versions 1.3; 2.0 and 2.1; and J2602 in both Master and Slave 
modes. LINFlex includes a LIN mode that provides additional features (compared to 
standard UART) to ease LIN implementation, improve system robustness, minimize CPU 
load and allow slave node resynchronization.

20.2 Main features

20.2.1 LIN mode features

● Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

● Master mode with autonomous message handling

● Classic and enhanced checksum calculation and check

● Single 8-byte buffer for transmission/reception

● Extended frame mode for In-Application Programming (IAP) purposes

● Wake-up event on dominant bit detection

● True LIN field state machine

● Advanced LIN error detection

● Header, response and frame timeout

● Slave mode

– Autonomous header handling

– Autonomous transmit/receive data handling

● LIN automatic resynchronization, allowing operation with 16 MHz fast internal RC 
oscillator as clock source

● 16 identifier filters for autonomous message handling in Slave mode

20.2.2 UART mode features

● Full duplex communication

● 8- or 9-bit with parity

● 4-byte buffer for reception, 4-byte buffer for transmission

● 8-bit counter for timeout management
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20.2.3 Features common to LIN and UART

● Fractional baud rate generator

● 3 operating modes for power saving and configuration registers lock:

– Initialization

– Normal

– Sleep

● 2 test modes:

– Loop Back

– Self Test

● Maskable interrupts

20.3 General description
The increasing number of communication peripherals embedded on microcontrollers, for 
example CAN, LIN and SPI, requires more and more CPU resources for communication 
management. Even a 32-bit microcontroller is overloaded if its peripherals do not provide 
high-level features to autonomously handle the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still 
generates a non-negligible load on the CPU if the LIN is implemented on a standard UART, 
as usually the case.

To minimize the CPU load in Master mode, LINFlex handles the LIN messages 
autonomously.

In Master mode, once the software has triggered the header transmission, LINFlex does not 
request any software intervention until the next header transmission request in transmission 
mode or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlex requires software intervention only to:

● Trigger transmission or reception or data discard depending on the identifier

● Write data into the buffer (transmission mode) or read data from the buffer (reception 
mode) after checksum reception

If filter mode is activated for Slave mode, LINFlex requires software intervention only to write 
data into the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to: 

● Configure LIN parameters (for example, baud rate or mode)

● Request transmissions

● Handle receptions

● Manage interrupts

● Configure LIN error and timeout detection

● Process diagnostic information

The message buffer stores transmitted or received LIN frames.
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Figure 166. LIN topology network

         

Figure 167. LINFlex block diagram

20.4 Fractional baud rate generation
The baud rates for the receiver and transmitter are both set to the same value as 
programmed in the Mantissa (LINIBRR) and Fraction (LINFBRR) registers.
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Equation 2

LFDIV is an unsigned fixed point number. The 12-bit mantissa is coded in the LINIBRR and 
the fraction is coded in the LINFBRR.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register 
values:

Example 4 Deriving LFDIV from LINIBRR and LINFBRR register values

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 5 Programming LFDIV from LINIBRR and LINFBRR register values

To program LFDIV = 25.62d, 

LINFBRR = 16 × 0.62 = 9.92, nearest real number 10d = 0xA

LINIBRR = mantissa (25.620d) = 25d = 0x19

Note: The baud counters are updated with the new value of the baud registers after a write to 
LINIBRR. Hence the baud register value must not be changed during a transaction. The 
LINFBRR (containing the Fraction bits) must be programmed before the LINIBRR.

Note: LFDIV must be greater than or equal to 1.5d, i.e. LINIBRR = 1 and LINFBRR = 8. Therefore, 
the maximum possible baudrate is fperiph_set_1_clk / 24.

         

Tx/ Rx baud =
fperiph_set_1_clk

(16 × LFDIV)

Table 167. Error calculation for programmed baud rates

Baud
rate

fperiph_set_1_clk = 48 MHz fperiph_set_1_clk = 16 MHz

Actual

Value programmed in
the baud rate register

% Error =
(Calculated – 

Desired) 
baud rate
/ Desired 
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated – 

Desired) 
baud rate
/ Desired 
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

2400 2400.00 1250 0 0.000 2399.88 416 11 -0.005

9600 9600.00 312 8 0.000 9598.08 104 3 -0.02

10417 10416.67 287 16 -0.003 10416.7 95 16 -0.003

19200 19200.00 156 4 0.000 19207.7 52 1 0.04

57600 57623.05 52 1 0.040 57554 17 6 -0.08

115200 115107.91 26 1 -0.080 115108 8 11 -0.08

230400 230769.23 13 0 0.160 231884 4 5 0.644

460800 461538.46 6 8 0.160 457143 2 3 -0.794

921600 923076.92 3 4 0.160 941176 1 1 2.124
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20.5 Operating modes
LINFlex has three main operating modes: Initialization, Normal and Sleep. After a hardware 
reset, LINFlex is in Sleep mode to reduce power consumption. The software instructs 
LINFlex to enter Initialization mode or Sleep mode by setting the INIT bit or SLEEP bit in the 
LINCR1.

         

Figure 168. LINFlex operating modes

20.5.1 Initialization mode

The software can be initialized while the hardware is in Initialization mode. To enter this 
mode the software sets the INIT bit in the LINCR1.

To exit Initialization mode, the software clears the INIT bit.

While in Initialization mode, all message transfers to and from the LIN bus are stopped and 
the status of the LIN bus output LINTX is recessive (high).

Entering Initialization mode does not change any of the configuration registers.

To initialize the LINFlex controller, the software selects the mode (LIN Master, LIN Slave or 
UART), sets up the baud rate register and, if LIN Slave mode with filter activation is 
selected, initializes the identifier list.

20.5.2 Normal mode

Once initilization is complete, software clears the INIT bit in the LINCR1 to put the hardware 
into Normal mode.

20.5.3 Low power mode (Sleep)

To reduce power consumption, LINFlex has a low power mode called Sleep mode. To enter 
Sleep mode, software sets the SLEEP bit in the LINCR1. In this mode, the LINFlex clock is 
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stopped. Consequently, the LINFlex will not update the status bits but software can still 
access the LINFlex registers.

LINFlex can be awakened (exit Sleep mode) either by software clearing the SLEEP bit or on 
detection of LIN bus activity if automatic wake-up mode is enabled (AWUM bit is set).

On LIN bus activity detection, hardware automatically performs the wake-up sequence by 
clearing the SLEEP bit if the AWUM bit in the LINCR1 is set. To exit from Sleep mode if the 
AWUM bit is cleared, software clears the SLEEP bit when a wake-up event occurs.

20.6 Test modes
Two test modes are available to the user: Loop Back mode and Self Test mode. They can be 
selected by the LBKM and SFTM bits in the LINCR1. These bits must be configured while 
LINFlex is in Initialization mode. Once one of the two test modes has been selected, LINFlex 
must be started in Normal mode.

20.6.1 Loop Back mode

LINFlex can be put in Loop Back mode by setting the LBKM bit in the LINCR. In Loop Back 
mode, the LINFlex treats its own transmitted messages as received messages.

         

Figure 169. LINFlex in loop back mode

This mode is provided for self test functions. To be independent of external events, the LIN 
core ignores the LINRX signal. In this mode, the LINFlex performs an internal feedback from 
its Tx output to its Rx input. The actual value of the LINRX input pin is disregarded by the 
LINFlex. The transmitted messages can be monitored on the LINTX pin.

20.6.2 Self Test mode

LINFlex can be put in Self Test mode by setting the LBKM and SFTM bits in the LINCR. This 
mode can be used for a “Hot Self Test”, meaning the LINFlex can be tested as in Loop Back 
mode but without affecting a running LIN system connected to the LINTX and LINRX pins. In 
this mode, the LINRX pin is disconnected from the LINFlex and the LINTX pin is held 
recessive.

LINTX LINRX

LINFlex

Tx Rx
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Figure 170. LINFlex in self test mode

20.7 Memory map and registers description

20.7.1 Memory map

See the “Memory map” chapter of this reference manual for the base addresses for the 
LINFlex modules.

Table 168 shows the LINFlex memory map.

         

LINFlex

LINTX LINRX

Tx Rx

= 1

Table 168. LINFlex memory map

Address offset Register Location

0x0000 LIN control register 1 (LINCR1) on page 20-368

0x0004 LIN interrupt enable register (LINIER) on page 20-371

0x0008 LIN status register (LINSR) on page 20-373

0x000C LIN error status register (LINESR) on page 20-376

0x0010 UART mode control register (UARTCR) on page 20-377

0x0014 UART mode status register (UARTSR) on page 20-379

0x0018 LIN timeout control status register (LINTCSR) on page 20-381

0x001C LIN output compare register (LINOCR) on page 20-382

0x0020 LIN timeout control register (LINTOCR) on page 20-382

0x0024 LIN fractional baud rate register (LINFBRR) on page 20-383

0x0028 LIN integer baud rate register (LINIBRR) on page 20-384

0x002C LIN checksum field register (LINCFR) on page 20-385

0x0030 LIN control register 2 (LINCR2) on page 20-385

0x0034 Buffer identifier register (BIDR) on page 20-387

0x0038 Buffer data register LSB (BDRL)(1) on page 20-388

0x003C Buffer data register MSB (BDRM)(2) on page 20-388

0x0040 Identifier filter enable register (IFER) on page 20-389
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0x0044 Identifier filter match index (IFMI) on page 20-390

0x0048 Identifier filter mode register (IFMR) on page 20-391

0x004C Identifier filter control register 0 (IFCR0) on page 20-392

0x0050 Identifier filter control register 1 (IFCR1) on page 20-393

0x0054 Identifier filter control register 2 (IFCR2) on page 20-393

0x0058 Identifier filter control register 3 (IFCR3) on page 20-393

0x005C Identifier filter control register 4 (IFCR4) on page 20-393

0x0060 Identifier filter control register 5 (IFCR5) on page 20-393

0x0064 Identifier filter control register 6 (IFCR6) on page 20-393

0x0068 Identifier filter control register 7 (IFCR7) on page 20-393

0x006C Identifier filter control register 8 (IFCR8) on page 20-393

0x0070 Identifier filter control register 9 (IFCR9) on page 20-393

0x0074 Identifier filter control register 10 (IFCR10) on page 20-393

0x0078 Identifier filter control register 11 (IFCR11) on page 20-393

0x007C Identifier filter control register 12 (IFCR12) on page 20-393

0x0080 Identifier filter control register 13 (IFCR13) on page 20-393

0x0084 Identifier filter control register 14 (IFCR14) on page 20-393

0x0088 Identifier filter control register 15 (IFCR15) on page 20-393

0x008C–0x000F Reserved

1. LSB: Least significant byte

2. MSB: Most significant byte

Table 168. LINFlex memory map (continued)

Address offset Register Location

Figure 171. LIN control register 1 (LINCR1)

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CCD CFD LASE AWUM MBL BF SFTM LBKM MME SBDT RBLM SLEEP INIT

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
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Table 169. LINCR1 field descriptions

Field Description

CCD

Checksum calculation disable

This bit disables the checksum calculation (see Table 170).
0 Checksum calculation is done by hardware. When this bit is 0, the LINCFR is read-only.
1 Checksum calculation is disabled. When this bit is set the LINCFR is read/write. User can 

program this register to send a software-calculated CRC (provided CFD is 0).
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD

Checksum field disable

This bit disables the checksum field transmission (see Table 170).

0 Checksum field is sent after the required number of data bytes is sent.
1 No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE

LIN Slave Automatic Resynchronization Enable

0 Automatic resynchronization disable.
1 Automatic resynchronization enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM

Automatic Wake-Up Mode
This bit controls the behavior of the LINFlex hardware during Sleep mode.

0 The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR.
1 The Sleep mode is exited automatically by hardware on LINRX dominant state detection. The 

SLEEP bit of the LINCR is cleared by hardware whenever WUF bit in the LINSR is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

MBL

LIN Master Break Length

This field indicates the Break length in Master mode (see Table 171).
Note: This field can be written in Initialization mode only. It is read-only in Normal or Sleep 

mode.

BF

Bypass filter

0 No interrupt if identifier does not match any filter. 
1 An RX interrupt is generated on identifier not matching any filter.
Note:

– If no filter is activated, this bit is reserved and always reads 1.
– This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM

Self Test Mode

This bit controls the Self Test mode. For more details, see Section 20.6.2, Self Test mode.
0 Self Test mode disable.
1 Self Test mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM

Loop Back Mode

This bit controls the Loop Back mode. For more details see Section 20.6.1, Loop Back mode. 
0 Loop Back mode disable.
1 Loop Back mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode
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MME

Master Mode Enable

0 Slave mode enable.
1 Master mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT

Slave Mode Break Detection Threshold

0 11-bit break.
1 10-bit break.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM

Receive Buffer Locked Mode
0 Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming 

message overwrites the previous one.
1 Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming 

message is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP

Sleep Mode Request
This bit is set by software to request LINFlex to enter Sleep mode.

This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and 
the WUF bit in LINSR are set (see Table 172).

INIT
Initialization Request
The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset, 
LINFlex enters Normal mode when clearing the INIT bit (see Table 172).

Table 170. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 171. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

Table 169. LINCR1 field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 370/868



LIN Controller (LINFlex) RM0045
         

LIN interrupt enable register (LINIER)

         

         

         

         

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 172. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal

Table 171. LIN master break length selection (continued)

MBL Length

Figure 172. LIN interrupt enable register (LINIER)

Offset: 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SZIE OCIE BEIE CEIE HEIE

0 0
FEIE BOIE LSIE WUIE DBFIE DBEIE DRIE DTIE HRIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 173. LINIER field descriptions

Field Description

SZIE
Stuck at Zero Interrupt Enable
0 No interrupt when SZF bit in LINESR or UARTSR is set.
1 Interrupt generated when SZF bit in LINESR or UARTSR is set.
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OCIE
Output Compare Interrupt Enable

0 No interrupt when OCF bit in LINESR or UARTSR is set.
1 Interrupt generated when OCF bit in LINESR or UARTSR is set.

BEIE
Bit Error Interrupt Enable

0 No interrupt when BEF bit in LINESR is set.
1 Interrupt generated when BEF bit in LINESR is set.

CEIE
Checksum Error Interrupt Enable
0 No interrupt on Checksum error.
1 Interrupt generated when checksum error flag (CEF) in LINESR is set.

HEIE
Header Error Interrupt Enable

0 No interrupt on Break Delimiter error, Synch Field error, Identifier field error.
1 Interrupt generated on Break Delimiter error, Synch Field error, Identifier field error.

FEIE
Framing Error Interrupt Enable

0 No interrupt on Framing error.
1 Interrupt generated on Framing error.

BOIE
Buffer Overrun Interrupt Enable
0 No interrupt on Buffer overrun.
1 Interrupt generated on Buffer overrun.

LSIE

LIN State Interrupt Enable

0 No interrupt on LIN state change.
1 Interrupt generated on LIN state change.

This interrupt can be used for debugging purposes. It has no status flag but is reset when writing 
‘1111’ into LINS[0:3] in the LINSR.

WUIE
Wake-up Interrupt Enable

0 No interrupt when WUF bit in LINSR or UARTSR is set.
1 Interrupt generated when WUF bit in LINSR or UARTSR is set.

DBFIE
Data Buffer Full Interrupt Enable
0 No interrupt when buffer data register is full.
1 Interrupt generated when data buffer register is full.

DBEIE
Data Buffer Empty Interrupt Enable

0 No interrupt when buffer data register is empty.
1 Interrupt generated when data buffer register is empty.

DRIE
Data Reception Complete Interrupt Enable
0 No interrupt when data reception is completed.
1 Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set.

DTIE
Data Transmitted Interrupt Enable

0 No interrupt when data transmission is completed.
1 Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR.

HRIE
Header Received Interrupt Enable

0 No interrupt when a valid LIN header has been received. 
1 Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR is set. 

Table 173. LINIER field descriptions (continued)

Field Description
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Figure 173. LIN status register (LINSR)

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LINS 0 0 RMB 0 RBSY RPS WUF DBFF DBEF DRF DTF HRF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
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Table 174. LINSR field descriptions

Field Description

LINS

LIN modes / normal mode states

0000: Sleep mode
LINFlex is in Sleep mode to save power consumption.

0001: Initialization mode
LINFlex is in Initialization mode.

Normal mode states

0010: Idle
This state is entered on several events:

– SLEEP bit and INIT bit in LINCR1 have been cleared by software,

– A falling edge has been received on RX pin and AWUM bit is set,
– The previous frame reception or transmission has been completed or aborted.

0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.
Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on 

last bit state. If last bit is dominant new LIN state is Break, otherwise Idle.
In Master mode, Break transmission ongoing.

0100: Break Delimiter
In Slave mode, a valid Break has been detected. See Section , LIN control register 1 (LINCR1) 
for break length configuration (10-bit or 11-bit). Waiting for a rising edge.

In Master mode, Break transmission has been completed. Break Delimiter transmission is 
ongoing.

0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit 
time). Receiving Synch Field.
In Master mode, Synch Field transmission is ongoing.

0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving Identifier Field.
In Master mode, identifier transmission is ongoing.

0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR.
In Master mode, header transmission is completed.

1000: Data reception/transmission
Response reception/transmission is ongoing.

1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.

In UART mode, only the following states are flagged by the LIN state bits:

– Init
– Sleep

– Idle

– Data transmission/reception
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RMB

Release Message Buffer

0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data 

received in the buffer.
This bit is cleared by hardware in Initialization mode.

RBSY

Receiver Busy Flag

0 Receiver is idle
1 Reception ongoing
Note: In Slave mode, after header reception, if BIDR[DIR] = 0 and reception starts then this bit 

is set. In this case, user cannot program LINCR2[DTRQ] = 1.

RPS
LIN receive pin state
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge 
on the LINRX pin when:
– Slave is in Sleep mode

– Master is in Sleep mode or idle state

This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is 
generated if WUIE bit in LINIER is set.

DBFF

Data Buffer Full Flag

This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended 
frames (DFL > 7).

This bit must be cleared by software.

It is reset by hardware in Initialization mode.

DBEF

Data Buffer Empty Flag

This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting 
extended frames (DFL > 7).

This bit must be cleared by software, once buffer has been filled again, in order to start 
transmission.

This bit is reset by hardware in Initialization mode.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.

It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error or framing error.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error if IOBE bit is reset.

Table 174. LINSR field descriptions (continued)

Field Description
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HRF

Header Reception Flag

This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.

This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.

Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is 
to say:

– All filters are inactive and BF bit in LINCR1 is set
– No match in any filter and BF bit in LINCR1 is set

– TX filter match

Table 174. LINSR field descriptions (continued)

Field Description

Figure 174. LIN error status register (LINESR)

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF BEF CEF SFEF BDEF IDPEF FEF BOF 0 0 0 0 0 0 NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 175. LINESR field descriptions

Field Description

SZF
Stuck at Zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. If the dominant 
state continues, SZF flag is set again after 87-bit time. It is cleared by software.

OCF

Output Compare Flag

0 No output compare event occurred
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit 

is set and IOT bit in LINTCSR is set, LINFlex moves to Idle state.
If LTOM bit in LINTCSR is set, then OCF is cleared by hardware in Initialization mode. If LTOM bit is 
cleared, then OCF maintains its status whatever the mode is.

BEF

Bit Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a bit error. This 
error can occur during response field transmission (Slave and Master modes) or during header 
transmission (in Master mode).

This bit is cleared by software.
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CEF

Checksum Error Flag

This bit is set by hardware and indicates that the received checksum does not match the hardware 
calculated checksum. 

This bit is cleared by software.
Note: This bit is never set if CCD or CFD bit in LINCR1 is set.

SFEF
Synch Field Error Flag
This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch 
Field).

BDEF
Break Delimiter Error Flag

This bit is set by hardware and indicates that the received Break Delimiter is too short (less than 
one bit time).

IDPEF

Identifier Parity Error Flag

This bit is set by hardware and indicates that a Identifier Parity error occurred.

Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER 
is set.

FEF

Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a framing error 
(invalid stop bit). This error can occur during reception of any data in the response field (Master or 
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF

Buffer Overrun Flag

This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If 
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte 
overwrites the buffer. It can be cleared by software.

NF
Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by 
software.

Table 175. LINESR field descriptions (continued)

Field Description

Figure 175. UART mode control register (UARTCR)

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
TDFL

0
RDFL

0 0 0 0
RXEN TXEN OP PCE WL UART

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 176. UARTCR field descriptions

Field Description

TDFL

Transmitter Data Field length

This field sets the number of bytes to be transmitted in UART mode. It can be programmed 
only when the UART bit is set. TDFL[0:1] = Transmit buffer size – 1.

00 Transmit buffer size = 1.
01 Transmit buffer size = 2.
10 Transmit buffer size = 3.
11 Transmit buffer size = 4.

RDFL

Receiver Data Field length

This field sets the number of bytes to be received in UART mode. It can be programmed only 
when the UART bit is set. RDFL[0:1] = Receive buffer size – 1.

00 Receive buffer size = 1.
01 Receive buffer size = 2.
10 Receive buffer size = 3.
11 Receive buffer size = 4.

RXEN

Receiver Enable

0 Receiver disable.
1 Receiver enable.
This bit can be programmed only when the UART bit is set.

TXEN

Transmitter Enable

0 Transmitter disable.
1 Transmitter enable.
This bit can be programmed only when the UART bit is set.
Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

OP

Odd Parity
0 Sent parity is even.
1 Sent parity is odd.
This bit can be programmed in Initialization mode only when the UART bit is set.

PCE

Parity Control Enable
0 Parity transmit/check disable.
1 Parity transmit/check enable.
This bit can be programmed in Initialization mode only when the UART bit is set.

WL

Word Length in UART mode

0 7-bit data + parity bit.
1 8-bit data (or 9-bit if PCE is set).
This bit can be programmed in Initialization mode only when the UART bit is set.

UART

UART mode enable
0 LIN mode.
1 UART mode.
This bit can be programmed in Initialization mode only.
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Figure 176. UART mode status register (UARTSR)

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 0 DRF DTF NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 177. UARTSR field descriptions

Field Description

SZF
Stuck at Zero Flag

This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by 
software.

OCF

OCF Output Compare Flag
0 No output compare event occurred.
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.
An interrupt is generated if the OCIE bit in LINIER register is set.

PE3

Parity Error Flag Rx3
This bit indicates if there is a parity error in the corresponding received byte (Rx3). See Section , 
Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE2

Parity Error Flag Rx2

This bit indicates if there is a parity error in the corresponding received byte (Rx2). See Section , 
Buffer in UART mode. No interrupt is generated if this error occurs.

0 No parity error.
1 Parity error.

PE1

Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). See Section , 
Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE0

Parity Error Flag Rx0

This bit indicates if there is a parity error in the corresponding received byte (Rx0). See Section , 
Buffer in UART mode. No interrupt is generated if this error occurs.

0 No parity error.
1 Parity error.
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RMB

Release Message Buffer

0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data 

received in the buffer.

This bit is cleared by hardware in Initialization mode.

FEF
Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a framing error 
(invalid stop bit).

BOF

Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. 
If RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new 
byte overwrites buffer. it can be cleared by software.

RPS
LIN Receive Pin State

This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge 
on the LINRX pin in Sleep mode.

This bit must be cleared by software. It is reset by hardware in Initialization mode.

An interrupt i generated if WUIE bit in LINIER is set.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed, that is, the number of 
bytes programmed in RDFL[0:1] in UARTCR have been received.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

An interrupt is generated if DRIE bit in LINIER is set.

Note: In UART mode, this flag is set in case of framing error, parity error or overrun.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed, that is, the number of 
bytes programmed in TDFL[0:1] have been transmitted.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

An interrupt is generated if DTIE bit in LINIER is set.

NF
Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by 
software.

Table 177. UARTSR field descriptions (continued)

Field Description
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LIN timeout control status register (LINTCSR)

         

         

         

Figure 177. LIN timeout control status register (LINTCSR)

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
LTOM IOT TOCE

CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 178. LINTCSR field descriptions

Field Description

LTOM

LIN timeout mode

0 LIN timeout mode (header, response and frame timeout detection).
1 Output compare mode.

This bit can be set/cleared in Initialization mode only.

IOT

Idle on Timeout

0 LIN state machine not reset to Idle on timeout event.
1 LIN state machine reset to Idle on timeout event.

This bit can be set/cleared in Initialization mode only.

TOCE

Timeout counter enable

0 Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
1 Timeout counter enable. OCF bit is set if an output compare event occurs.

TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in 
LIN timeout mode, then hardware takes control of TOCE bit.

CNT
Counter Value
This field indicates the LIN timeout counter value. 
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LIN output compare register (LINOCR)

         

         

LIN timeout control register (LINTOCR)

         

         

Figure 178. LIN output compare register (LINOCR)

Offset: 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OC21 OC11

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. If LINTCSR[LTOM] = 1, this field is read-only. 

Table 179. LINOCR field descriptions

Field Description

OC2
Output compare 2 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

OC1
Output compare 1 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

Figure 179. LIN timeout control register (LINTOCR)

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO

W

Reset 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0
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LIN fractional baud rate register (LINFBRR)

         

         

         

Table 180. LINTOCR field descriptions

Field Description

RTO

Response timeout value

This field contains the response timeout duration (in bit time) for 1 byte.

The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 × TResponse_Nominal 

HTO

Header timeout value

This field contains the header timeout duration (in bit time). This value does not include the 
Break and the Break Delimiter. The reset value is the 0x2C = 44, corresponding to 
THeader_Maximum. Programming LINSR[MME] = 1 changes the HTO value to 0x1C = 28.

This field can be written only in Slave mode.

Figure 180. LIN fractional baud rate register (LINFBRR)

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 181. LINFBRR field descriptions

Field Description

DIV_F

Fraction bits of LFDIV 

The 4 fraction bits define the value of the fraction of the LINFlex divider (LFDIV).

Fraction (LFDIV) = Decimal value of DIV_F / 16.

This field can be written in Initialization mode only.
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LIN integer baud rate register (LINIBRR)

         

         

         

         

Figure 181. LIN integer baud rate register (LINIBRR)

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DIV_M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 182. LINIBRR field descriptions

Field Description

DIV_M
LFDIV mantissa

This field defines the LINFlex divider (LFDIV) mantissa value (see Table 183). This field can be 
written in Initialization mode only.

Table 183. Integer baud rate selection

DIV_M[0:12] Mantissa

0x0000 LIN clock disabled

0x0001 1

... ...

0x1FFE 8190

ox1FFF 8191
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LIN checksum field register (LINCFR)

         

         

         

LIN control register 2 (LINCR2)

         

Figure 182. LIN checksum field register (LINCFR)

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 184. LINCFR field descriptions

Field Description

CF
Checksum bits

When LINCR1[CCD] = 0, this field is read-only. When LINCR1[CCD] = 1, this field is read/write. 
See Table 170.

Figure 183. LIN control register 2 (LINCR2)

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
IOBE IOPE

0 0 0 0 0 0 0 0 0 0 0 0 0

W WURQ DDRQ DTRQ ABRQ HTRQ

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 185. LINCR2 field descriptions

Field Description

IOBE

Idle on Bit Error

0 Bit error does not reset LIN state machine.
1 Bit error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

IOPE

Idle on Identifier Parity Error

0 Identifier Parity error does not reset LIN state machine.
1 Identifier Parity error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

WURQ

Wake-up Generation Request

Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character 
has been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit 
cannot be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit 
error is not checked when transmitting the wake-up request.

DDRQ

Data Discard Request

Set by software to stop data reception if the frame does not concern the node. This bit is reset by 
hardware once LINFlex has moved to idle state. In Slave mode, this bit can be set only when HRF 
bit in LINSR is set and identifier did not match any filter.

DTRQ

Data Transmission Request

Set by software in Slave mode to request the transmission of the LIN Data field stored in the 
Buffer data register. This bit can be set only when HRF bit in LINSR is set.

Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when BIDR[DIR] = 1 and header transmission is 
completed.

ABRQ

Abort Request

Set by software to abort the current transmission. 
Cleared by hardware when the transmission has been aborted. LINFlex aborts the transmission 
at the end of the current bit.
This bit can also abort a wake-up request.

It can also be used in UART mode.

HTRQ

Header Transmission Request

Set by software to request the transmission of the LIN header.

Cleared by hardware when the request has been completed or aborted.

This bit has no effect in UART mode.
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Buffer identifier register (BIDR)

         

         

         

Figure 184. Buffer identifier register (BIDR)

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 186. BIDR field descriptions

Field Description

DFL

Data Field Length

This field defines the number of data bytes in the response part of the frame.

DFL = Number of data bytes – 1.
Normally, LIN uses only DFL[2:0] to manage frames with a maximum of 8 bytes of data. Identifier 
filters are compatible with DFL[2:0] only. DFL[5:3] are provided to manage extended frames.

DIR

Direction

This bit controls the direction of the data field. 
0 LINFlex receives the data and copies them in the BDR registers.
1 LINFlex transmits the data from the BDR registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN 

specification 2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and 

earlier.

In LIN slave mode (MME bit cleared in LINCR1), this bit must be configured before the header 
reception. If the slave has to manage frames with 2 types of checksum, filters must be configured. 

ID
Identifier

Identifier part of the identifier field without the identifier parity.
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Buffer data register LSB (BDRL)

         

         

         

Buffer data register MSB (BDRM)

         

Figure 185. Buffer data register LSB (BDRL)

Offset: 0x0038 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 187. BDRL field descriptions

Field Description

DATA3
Data Byte 3

Data byte 3 of the data field.

DATA2
Data Byte 2

Data byte 2 of the data field.

DATA1
Data Byte 1

Data byte 1 of the data field.

DATA0
Data Byte 0

Data byte 0 of the data field.

Figure 186. Buffer data register MSB (BDRM)

Offset: 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Identifier filter enable register (IFER)

         

         

         

Table 188. BDRM field descriptions

Field Description

DATA7
Data Byte 7

Data byte 7 of the data field.

DATA6
Data Byte 6

Data byte 6 of the data field.

DATA5
Data Byte 5

Data byte 5 of the data field.

DATA4
Data Byte 4

Data byte 4 of the data field.

Figure 187. Identifier filter enable register (IFER)

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
FACT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 189. IFER field descriptions

Field Description

FACT

Filter activation (see Table 190)
0  Filters 2n and 2n + 1 are deactivated.
1  Filters 2n and 2n + 1 are activated.

This field can be set/cleared in Initialization mode only.

Table 190. IFER[FACT] configuration

Bit Value Result

FACT[0]
0 Filters 0 and 1 are deactivated.

1 Filters 0 and 1 are activated.

FACT[1]
0 Filters 2 and 3 are deactivated.

1 Filters 2 and 3 are activated.
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FACT[2]
0 Filters 4 and 5 are deactivated.

1 Filters 4 and 5 are activated.

FACT[3]
0 Filters 6 and 7 are deactivated.

1 Filters 6 and 7 are activated.

FACT[4]
0 Filters 8 and 9 are deactivated.

1 Filters 8 and 9 are activated.

FACT[5]
0 Filters 10 and 11 are deactivated.

1 Filters 10 and 11 are activated.

FACT[6]
0 Filters 12 and 13 are deactivated.

1 Filters 12 and 13 are activated.

FACT[7]
0 Filters 14 and 15 are deactivated.

1 Filters 14 and 15 are activated.

Table 190. IFER[FACT] configuration (continued)

Bit Value Result

Figure 188. Identifier filter match index (IFMI)

Address: Base + 0x0044 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI[0:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 191. IFMI field descriptions

Field Description

0:26 Reserved

IFMI[0:4]
27:31

Filter match index
This register contains the index corresponding to the received identifier. It can be used to directly 
write or read the data in SRAM (see Section , Slave mode for more details).
When no filter matches, IFMI[0:4] = 0. When Filter n is matching, IFMI[0:4] = n + 1.
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Identifier filter mode register (IFMR)

          

         

         

         

Figure 189. Identifier filter mode register (IFMR)

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 192. IFMR field descriptions

Field Description

IFM
Filter mode (see Table 193).

0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).

Table 193. IFMR[IFM] configuration

Bit Value Result

IFM[0]
0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1]
0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2]
0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

IFM[3]
0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4]
0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5]
0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).

IFM[6]
0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).
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Note: This register can be written in Initialization mode only.

         

IFM[7]
0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Table 193. IFMR[IFM] configuration (continued)

Bit Value Result

Figure 190. Identifier filter control register (IFCR2n)

Offsets : 0x004C–0x0084 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 194. IFCR2n field descriptions

Field Description

DFL
Data Field Length
This field defines the number of data bytes in the response part of the frame.

DIR

Direction
This bit controls the direction of the data field.

0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification 

2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and 

earlier.

ID
Identifier
Identifier part of the identifier field without the identifier parity.
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Identifier filter control register (IFCR2n + 1)

          

Note: This register can be written in Initialization mode only.

         

20.8 Functional description

20.8.1 UART mode

The main features in the UART mode are

● Full duplex communication

● 8- or 9-bit data with parity

● 4-byte buffer for reception, 4-byte buffer for transmission

● 8-bit counter for timeout management

Figure 191. Identifier filter control register (IFCR2n + 1)

Offsets: 0x0050–0x0088 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 195. IFCR2n + 1 field descriptions

Field Description

DFL

Data Field Length

This field defines the number of data bytes in the response part of the frame.

DFL = Number of data bytes – 1.

DIR

Direction

This bit controls the direction of the data field. 
0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN 

specification 2.0 and higher.
1 Classic Checksum covering Data field only. This is compatible with LIN specification 1.3 and 

earlier.

ID
Identifier

Identifier part of the identifier field without the identifier parity
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8-bit data frames: The 8th bit can be a data or a parity bit. Even/Odd Parity can be selected 
by the Odd Parity bit in the UARTCR. An even parity is set if the modulo-2 sum of the 7 data 
bits is 1. An odd parity is cleared in this case.

         

Figure 192. UART mode 8-bit data frame

9-bit frames: The 9th bit is a parity bit. Even/Odd Parity can be selected by the Odd Parity 
bit in the UARTCR. An even parity is set if the modulo-2 sum of the 8 data bits is 1. An odd 
parity is cleared in this case.

         

Figure 193. UART mode 9-bit data frame

Buffer in UART mode

The 8-byte buffer is divided into two parts: one for receiver and one for transmitter as shown 
in Table 196.

         

UART transmitter

In order to start transmission in UART mode, you must program the UART bit and the 
transmitter enable (TXEN) bit in the UARTCR to 1. Transmission starts when DATA0 (least 

Start
bit D0 D7

Stop
bit

Byte Field

— Data bit
— Parity bit

D1 D2 D3 D4 D5 D6

Start
bit D0 D7 Stop

bit

Byte Field

— Parity bit

D1 D2 D3 D4 D5 D6 D8

Table 196. Message buffer

Buffer data register LIN mode UART mode

BDRL[0:31]

Transmit/Receive 
buffer

DATA0[0:7]

Transmit buffer

Tx0

DATA1[0:7] Tx1

DATA2[0:7] Tx2

DATA3[0:7] Tx3

BDRM[0:31]

DATA4[0:7]

Receive buffer

Rx0

DATA5[0:7] Rx1

DATA6[0:7] Rx2

DATA7[0:7] Rx3
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significant data byte) is programmed. The number of bytes transmitted is equal to the value 
configured by UARTCR[TDFL] (see Table 176).

The Transmit buffer is 4 bytes, hence a 4-byte maximum transmission can be triggered. 
Once the programmed number of bytes has been transmitted, the UARTSR[DTF] bit is set. 
If UARTCR[TXEN] is reset during a transmission then the current transmission is completed 
and no further transmission can be invoked.

UART receiver

The UART receiver is active as soon as the user exits Initialization mode and programs 
UARTCR[RXEN] = 1. There is a dedicated 4-byte data buffer for received data bytes. Once 
the programmed number (RDFL bits) of bytes has been received, the UARTSR[DRF] bit is 
set. If the RXEN bit is reset during a reception then the current reception is completed and 
no further reception can be invoked until RXEN is set.

If a parity error occurs during reception of any byte, then the corresponding PEx bit in the 
UARTSR is set. No interrupt is generated in this case. If a framing error occurs in any byte 
(UARTSR[FE] = 1) then an interrupt is generated if the LINIER[FEIE] bit is set.

If the last received frame has not been read from the buffer (that is, RMB bit is not reset by 
the user) then upon reception of the next byte an overrun error occurs (UARTSR[BOF] = 1) 
and one message will be lost. Which message is lost depends on the configuration of 
LINCR1[RBLM].

● If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in 
the buffer is overwritten by the new incoming message. In this case the latest message 
is always available to the application.

● If the buffer lock function is enabled (LINCR1[RBLM] = 1) the most recent message is 
discarded and the previous message is available in the buffer.

An interrupt is generated if the LINIER[BOIE] bit is set.

Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In UART mode, the 
LINFlex controller acknowledges a clock gating request once the data transmission and 
data reception are completed, that is, once the Transmit buffer is empty and the Receive 
buffer is full.

20.8.2 LIN mode

LIN mode comprises four submodes:

● Master mode

● Slave mode

● Slave mode with identifier filtering

● Slave mode with automatic resynchronization

These submodes are described in the following pages.

Master mode

In Master mode the application uses the message buffer to handle the LIN messages. 
Master mode is selected when the LINCR1[MME] bit is set.
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LIN header transmission

According to the LIN protocol any communication on the LIN bus is triggered by the Master 
sending a header. The header is transmitted by the Master task while the data is transmitted 
by the Slave task of a node.

To transmit a header with LINFlex the application must set up the identifier, the data field 
length and configure the message (direction and checksum type) in the BIDR before 
requesting the header transmission by setting LINCR2[HTRQ].

Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the 
header, then the slave task of the master has to send the data in the Response part of the 
LIN frame. Therefore, the application must provide the data to LINFlex before requesting the 
header transmission. The application stores the data in the message buffer BDR. According 
to the data field length, LINFlex transmits the data and the checksum. The application uses 
the BDR[CCS] bit to configure the checksum type (classic or enhanced) for each message.

If the response has been sent successfully, the LINSR[DTF] bit is set. In case of error, the 
DTF flag is not set and the corresponding error flag is set in the LINESR (see Section , Error 
handling).

It is possible to handle frames with a Response size larger than 8 bytes of data (extended 
frames). If the data field length in the BIDR is configured with a value higher than 8 data 
bytes, the LINSR[DBEF] bit is set after the first 8 bytes have been transmitted. The 
application has to update the buffer BDR before resetting the DBEF bit. The transmission of 
the next bytes starts when the DBEF bit is reset.

After the last data byte (or the checksum byte) has been sent, the DTF flag is set.

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the application 
sets this bit the response is sent by LINFlex (publisher). Resetting this bit configures the 
message buffer as subscriber.

Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding 
identifier. LINFlex stores the data received from the slave in the message buffer and stores 
the message status in the LINSR.

If the response has been received successfully, the LINSR[DRF] is set. In case of error, the 
DRF flag is not set and the corresponding error flag is set in the LINESR (see Section , Error 
handling).

It is possible to handle frames with a Response size larger than 8 bytes of data (extended 
frames). If the data field length in the BIDR is configured with a value higher than 8 data 
bytes, the LINSR[DBFF] bit is set once the first 8 bytes have been received. The application 
has to read the buffer BDR before resetting the DBFF bit. Once the last data byte (or the 
checksum byte) has been received, the DRF flag is set.

Data discard

To discard data from a slave, the BIDR[DIR] bit must be reset and the LINCR2[DDRQ] bit 
must be set before starting the header transmission.
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Error detection

LINFlex is able to detect and handle LIN communication errors. A code stored in the LIN 
error status register (LINESR) signals the errors to the software.

In Master mode, the following errors are detected:

● Bit error: During transmission, the value read back from the bus differs from the 
transmitted value.

● Framing error: A dominant state has been sampled on the stop bit of the currently 
received character (synch field, identifier field or data field).

● Checksum error: The computed checksum does not match the received one.

● Response and Frame timeout: See Section 20.8.3, 8-bit timeout counter, for more 
details.

Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the 
frame after the corrupted bit. LINFlex returns to idle state and an interrupt is generated if 
LINIER[BEIE] = 1.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex 
returns immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex 
returns to idle state. An interrupt is generated if LINIER[CEIE] = 1.

Slave mode

In Slave mode the application uses the message buffer to handle the LIN messages. Slave 
mode is selected when LINCR1[MME] = 0.

Data transmission (transceiver as publisher)

When LINFlex receives the identifier, the LINSR[HRF] is set and, if LINIER[HRIE] = 1, an 
RX interrupt is generated. The software must read the received identifier in the BIDR, fill the 
BDR registers, specify the data field length using the BIDR[DFL] and trigger the data 
transmission by setting the LINCR2[DTRQ] bit.

One or several identifier filters can be configured for transmission by setting the IFCRx[DIR] 
bit and activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in transmission and activated, and if the 
received identifier matches the filter, a specific TX interrupt (instead of an RX interrupt) is 
generated.

Typically, the application has to copy the data from SRAM locations to the BDAR. To copy 
the data to the right location, the application has to identify the data by means of the 
identifier. To avoid this and to ease the access to the SRAM locations, the LINFlex controller 
provides a Filter Match Index. This index value is the number of the filter that matched the 
received identifier.

The software can use the index in the IFMI register to directly access the pointer that points 
to the right data array in the SRAM area and copy this data to the BDAR (see Figure 195). 

Using a filter avoids the software having to configure the direction, the data field length and 
the checksum type in the BIDR. The software fills the BDAR and triggers the data 
transmission by programming LINCR2[DTRQ] = 1.
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If LINFlex cannot provide enough TX identifier filters to handle all identifiers the software has 
to transmit data for, then a filter can be configured in mask mode (see Section , Slave mode 
with identifier filtering) in order to manage several identifiers with one filter only.

Data reception (transceiver as subscriber)

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an 
RX interrupt is generated. The software must read the received identifier in the BIDR and 
specify the data field length using the BIDR[DFL] field before receiving the stop bit of the 
first byte of data field.

When the checksum reception is completed, an RX interrupt is generated to allow the 
software to read the received data in the BDR registers.

One or several identifier filters can be configured for reception by programming 
IFCRx[DIR] = 0 and activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in reception and activated, and if the received 
identifier matches the filter, an RX interrupt is generated after the checksum reception only.

Typically, the application has to copy the data from the BDAR to SRAM locations. To copy 
the data to the right location, the application has to identify the data by means of the 
identifier. To avoid this and to ease the access to the SRAM locations, the LINFlex controller 
provides a Filter Match Index. This index value is the number of the filter that matched the 
received identifier.

The software can use the index in the IFMI register to directly access the pointer that points 
to the right data array in the SRAM area and copy this data from the BDAR to the SRAM 
(see Figure 195). 

Using a filter avoids the software reading the ID value in the BIDR, and configuring the 
direction, the data field length and the checksum type in the BIDR.

If LINFlex cannot provide enough RX identifier filters to handle all identifiers the software 
has to receive the data for, then a filter can be configured in mask mode (see Section , Slave 
mode with identifier filtering) in order to manage several identifiers with one filter only.

Data discard

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an 
RX interrupt is generated. If the received identifier does not concern the node, you must 
program LINCR2[DDRQ] = 1. LINFlex returns to idle state after bit DDRQ is set.

Error detection

In Slave mode, the following errors are detected:

● Header error: An error occurred during header reception (Break Delimiter error, 
Inconsistent Synch Field, Header Timeout).

● Bit error: During transmission, the value read back from the bus differs from the 
transmitted value. 

● Framing error: A dominant state has been sampled on the stop bit of the currently 
received character (synch field, identifier field or data field).

● Checksum error: The computed checksum does not match the received one.
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Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the 
frame after the corrupted bit. LINFlex returns to idle state and an interrupt is generated if the 
BEIE bit in the LINIER is set.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex 
returns immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex 
returns to idle state. An interrupt is generated if LINIER[CEIE] = 1.

During header reception, a Break Delimiter error, an Inconsistent Synch Field or a Timeout 
error leads LINFlex to discard the header. An interrupt is generated if LINIER[HEIE] = 1. 
LINFlex returns to idle state.

Valid header

A received header is considered as valid when it has been received correctly according to 
the LIN protocol.

If a valid Break Field and Break Delimiter come before the end of the current header or at 
any time during a data field, the current header or data is discarded and the state machine 
synchronizes on this new break.

Valid message

A received or transmitted message is considered as valid when the data has been received 
or transmitted without error according to the LIN protocol.

Overrun

Once the message buffer is full, the next valid message reception leads to an overrun and a 
message is lost. The hardware sets the BOF bit in the LINSR to signal the overrun 
condition. Which message is lost depends on the configuration of the RX message buffer:

● If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in 
the buffer is overwritten by the new incoming message. In this case the latest message 
is always available to the application.

● If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most recent message is 
discarded and the previous message is available in the buffer.

Slave mode with identifier filtering

In the LIN protocol the identifier of a message is not associated with the address of a node 
but related to the content of the message. Consequently a transmitter broadcasts its 
message to all receivers. On header reception a slave node decides—depending on the 
identifier value—whether the software needs to receive or send a response. If the message 
does not target the node, it must be discarded without software intervention.

To fulfill this requirement, the LINFlex controller provides configurable filters in order to 
request software intervention only if needed. This hardware filtering saves CPU resources 
that would otherwise be needed by software for filtering.

Filter mode

Usually each of the eight IFCR registers filters one dedicated identifier, but this limits the 
number of identifiers LINFlex can handle to the number of IFCR registers implemented in 
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the device. Therefore, in order to be able to handle more identifiers, the filters can be 
configured in mask mode. 

In identifier list mode (the default mode), both filter registers are used as identifier 
registers. All bits of the incoming identifier must match the bits specified in the filter register.

In mask mode, the identifier registers are associated with mask registers specifying which 
bits of the identifier are handled as “must match” or as “don’t care”. For the bit mapping and 
registers organization, please see Figure 194.

         

Figure 194. Filter configuration—register organization

Identifier filter mode configuration

The identifier filters are configured in the IFCRx registers. To configure an identifier filter the 
filter must first be deactivated by programming IFER[FACT] = 0.. The identifier list or 
identifier mask mode for the corresponding IFCRx registers is configured by the IFMR[IFM] 
bit. For each filter, the IFCRx register configures the ID (or the mask), the direction (TX or 
RX), the data field length, and the checksum type.

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter 
generate a TX interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter 
generate an RX interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s) 
generate an RX interrupt.

IFCRnIdentifier

IDBit Mapping
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Identifier Filter Mode
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Figure 195. Identifier match index

Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fperiph_set_1_clk tolerance is 
greater than 1.5%. This feature compensates a fperiph_set_1_clk deviation up to 14%, as 
specified in LIN standard.

This mode is similar to Slave mode as described in Section , Slave mode, with the addition 
of automatic resynchronization enabled by the LASE bit. In this mode LINFlex adjusts the 
fractional baud rate generator after each Synch Field reception.

Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN Break, the time duration 
between five falling edges on RDI is sampled on fperiph_set_1_clk and the result of this 
measurement is stored in an internal 19-bit register called SM (not user accessible) (see 
Figure 196). Then the LFDIV value (and its associated registers LINIBRR and LINFBRR) 
are automatically updated at the end of the fifth falling edge. During LIN Synch Field 

Table 197. Filter to interrupt vector correlation

Number of
active filters

Number of active filters 
configured as TX

Number of active filters 
configured as RX

Interrupt vector

0 0 0 RX interrupt on all identifiers

a
(a > 0)

a 0

— TX interrupt on identifiers 
matching the filters,
— RX interrupt on all other 
identifiers if BF bit is set, no RX 
interrupt if BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

— TX interrupt on identifiers 
matching the TX filters,
— RX interrupt on identifiers 
matching the RX filters,
— all other identifiers discarded 
(no interrupt)

b
(b > 0)

0 b

— RX interrupt on identifiers 
matching the filters,
— TX interrupt on all other 
identifiers if BF bit is set, no TX 
interrupt if BF bit is reset

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
pointers

table

SRAM

@

+
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measurement, the LINFlex state machine is stopped and no data is transferred to the data 
register.

         

Figure 196. LIN synch field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 12 bits in the LINIBRR 
and the fraction is coded on 4 bits in the LINFBRR.

If LASE bit = 1 then LFDIV is automatically updated at the end of each LIN Synch Field.

Three internal registers (not user-accessible) manage the auto-update of the LINFlex divider 
(LFDIV):

● LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

● LFDIV_MEAS (results of the Field Synch measurement)

● LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a 
complete frame, hardware reloads LFDIV with LFDIV_NOM.

Deviation error on the Synch Field

The deviation error is checked by comparing the current baud rate (relative to the slave 
oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks 
are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling 
edge of the Synch Field:

● If D1 > 14.84%, LHE is set.

● If D1 < 14.06%, LHE is not set.

● If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing 
between the signal on LINFlex_RX pin the fperiph_set_1_clk clock.

The second check is based on a measurement of time between each falling edge of the 
Synch Field: 

● If D2 > 18.75%, LHE is set.

● If D2 < 15.62%, LHE is not set.

● If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing 
between the signal on LINFlex_RX pin the fperiph_set_1_clk clock.

LIN Break 
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start 
Bit

LIN Synch Field

Measurement = 8.TBR = SM.Tperiph_set_1_clk

LFDIV(n) LFDIV(n+1)

LFDIV = TBR / (16.Tperiph_set_1_clk) = Rounding (SM / 128)

Tperiph_set_1_clk = Clock period 

TBR = baud rate period

TBR

TBR = 16.LFDIV.Tperiph_set_1_clk

SM = Synch Measurement Register (19 bits)

delim.
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Note that the LINFlex does not need to check if the next edge occurs slower than expected. 
This is covered by the check for deviation error on the full synch byte.

Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In LIN mode, the 
LINFlex controller acknowledges a clock gating request once the frame transmission or 
reception is completed.

20.8.3 8-bit timeout counter

LIN timeout mode

Setting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes 
read-only, and OC1 and OC2 output compare values in the LINOCR are automatically 
updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the LINCR1[MME] bit), the 8-bit timeout counter 
will behave differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or 
reception (that is, if the data field length in the BIDR is configured with a value higher than 8 
data bytes).

LIN Master mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values. 
Header timeout value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (see Figure 197).

When LINFlex moves from Break delimiter state to Synch Field state (see Section , LIN 
status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame 
timeout value for an 8-byte frame),

● the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header 
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 
(response timeout value for an 8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check 
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is 
reset.

If there is no response, frame timeout value does not take into account the DFL value, and 
an 8-byte response (DFL = 7) is always assumed.

LIN Slave mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values. 
Header timeout value is fixed to HTO.
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OC1 checks THeader and TResponse and OC2 checks TFrame (see Figure 197).

When LINFlex moves from Break state to Break Delimiter state (see Section , LIN status 
register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame 
timeout value for an 8-byte frame)),

● The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header 
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 
(response timeout value for an 8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check 
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is 
reset.

         

Figure 197. Header and response timeout

Output compare mode

Programming LINTCSR[LTOM] = 0 enables the output compare mode. This mode allows 
the user to fully customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

20.8.4 Interrupts
         

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1

OC2

Response
space

Table 198. LINFlex interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI (1)

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI
Doc ID 16886 Rev 6 404/868



LIN Controller (LINFlex) RM0045
Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt (2) LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

1. In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector is RXI 
or TXI depending on the value of identifier received.

2. For debug and validation purposes

Table 198. LINFlex interrupt control (continued)

Interrupt event Event flag bit Enable control bit Interrupt vector
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21 LIN Controller (LINFlexD)

21.1 Introduction
The LINFlexD (Local Interconnect Network Flexible with DMA support) controller interfaces 
the LIN network and supports the LIN protocol versions 1.3, 2.0, 2.1 and J2602 in both 
Master and Slave modes. LINFlexD includes a LIN mode that provides additional features 
(compared to standard UART) to ease LIN implementation, improve system robustness, 
minimize CPU load and allow slave node resynchronization.

Figure 198 shows the LINFlexD block diagram.

         

Figure 198. LINFlexD block diagram

21.2 Main features
The LINFlexD controller can operate in several modes, each of which has a distinct set of 
features. These distinct features are described in the following sections.

LIN PROTOCOL HANDLER

REGISTER MODEL / APPLICATION INTERFACE
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Interface

LIN Status
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Filter Config.

Message
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LIN Control

CONFIG
CONTROL
STATUS

MESSAGE HANDLER
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MESSAGE HANDLER

ID Filters(1)

1 Filter activation optional
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In addition, the LINFlexD controller has several features common to all modes:

● Fractional baud rate generator

● 3 operating modes for power saving and configuration registers lock

– Initialization

– Normal 

– Sleep

● 2 test modes

– Loop Back 

– Self Test

● Maskable interrupts

21.2.1 LIN mode features

● Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

● Master mode with autonomous message handling

● Classic and enhanced checksum calculation and check

● Single 8-byte buffer for transmission/reception

● Extended frame mode for In-application Programming purposes

● Wake-up event on dominant bit detection

● True LIN field state machine

● Advanced LIN error detection

● Header, response and frame timeout

● Slave mode

– Autonomous header handling

– Autonomous transmit/receive data handling

● LIN automatic resynchronization, allowing operation with FIRC as clock source

● Identifier filters for autonomous message handling in Slave mode

21.2.2 UART mode features

● Full-duplex communication

● Selectable frame size:

– 8-bit frame

– 9-bit frame

– 16-bit frame

– 17-bit frame

● Selectable parity:

– Even

– Odd

– 0

– 1

● 4-byte buffer for reception, 4-byte buffer for transmission

● 12-bit counter for timeout management
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21.3 The LIN protocol
The LIN (Local Interconnect Network) is a serial communication protocol. The topology of a 
LIN network is shown in Figure 199. A LIN network consists of:

● One master node

● Several slave nodes

● The LIN bus

A master node contains the master task as well as a slave task, all other nodes contain a 
slave task only. The master node decides when and which frame shall be transferred on the 
bus. The slave task provides the data to be transported by the frame.

         

Figure 199. LIN network topology

21.3.1 Dominant and recessive logic levels

The LIN bus defines two logic levels, “dominant” and “recessive”, as follows:

● Dominant: logical low level (0)

● Recessive: logical high level (1)

21.3.2 LIN frames

A frame consists of a header provided by the master task and a response provided by the 
slave task, as shown in Figure 200.
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Doc ID 16886 Rev 6 408/868



LIN Controller (LINFlexD) RM0045
         

Figure 200. LIN frame structure

21.3.3 LIN header

The header consists of:

● A break field (described in Section , Break field)

● A sync byte field (described in Section , Sync byte field)

● An identifier (described in Section , Identifier)

The slave task associated with the identifier provides the response. 

Break field

The break field, shown in Figure 201, is used to signal the beginning of a new frame. It is 
always generated by the master and consists of:

● At least 13 dominant bits including the start bit

● At least one recessive bit that functions as break delimiter

         

Figure 201. Break field

Sync byte field

The sync pattern is a byte consisting of alternating dominant and recessive bits as shown in 
Figure 202. It forms a data value of 0x55.
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Figure 202. Sync pattern

21.3.4 Response

The response consists of:

● A data field (described in Section , Data field)

● A checksum (described in Section , Checksum)

The slave task interested in the data associated with the identifier receives the response 
and verifies the checksum.

Data field

The structure of the data field transmitted on the LIN bus is shown in Figure 203. The LSB of 
the data is sent first and the MSB last. The start bit is encoded as a dominant bit and the 
stop bit is encoded as a recessive bit.

         

Figure 203. Structure of the data field

Identifier

The identifier, shown in Figure 204, consists of two sub-fields:

● The identifier value (in bits 0–5)

● The identifier parity (in bits 6–7)

The parity bits P0 and P1 are defined as follows:

● P0 = ID0 xor ID1 xor ID2 xor ID4

● P1 = not(ID1 xor ID3 xor ID4 xor ID5)

         

Figure 204. Identifier
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Checksum

The checksum contains the inverted 8-bit sum (with carry) over one of two possible groups:

● The classic checksum sums all data bytes, and is used for communication with LIN 1.3 
slaves.

● The enhanced checksum sums all data bytes and the identifier, and is used for 
communication with LIN 2.0 (or later) slaves.

21.4 LINFlexD and software intervention
The increasing number of communication peripherals embedded on microcontrollers (for 
example, CAN, LIN, SPI) requires more and more CPU resources for the communication 
management. Even a 32-bit microcontroller is overloaded if its peripherals do not provide 
high level features to autonomously handle the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still 
generates a non-negligible load on the CPU if the LIN is implemented on a standard UART, 
as is usually the case.

To minimize the CPU load in Master mode, LINFlexD handles the LIN messages 
autonomously.

In Master mode, once the software has triggered the header transmission, LINFlexD does 
not request any software (that is, application) intervention until the next header transmission 
request in transmission mode or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlexD requires software intervention only to:

● Trigger transmission or reception or data discard depending on the identifier

● Write data into the buffer (transmission mode) or read data from the buffer (reception 
mode) after checksum reception

If filter mode is activated for Slave mode, LINFlexD requires software intervention only to 
write data into the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

● Configure LIN parameters (for example, baud rate or mode)

● Request transmissions

● Handle receptions

● Manage interrupts

● Configure LIN error and timeout detection

● Process diagnostic information

The message buffer stores transmitted or received LIN frames.

         

21.5 Summary of operating modes
The LINFlexD controller has three operating modes:

● Normal

● Initialization

● Sleep
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After a hardware reset, the LINFlexD controller is in Sleep mode to reduce power 
consumption.

The transitions between these modes are shown in Figure 205. The software instructs 
LINFlexD to enter Initialization mode or Sleep mode by setting LINCR1[INIT] or 
LINCR1[SLEEP], respectively.

         

Figure 205. LINFlexD controller operating modes

In addition to these controller-level operating modes, the LINFlexD controller also supports 
several protocol-level modes:

● LIN mode:

– Master mode

– Slave mode

– Slave mode with identifier filtering

– Slave mode with automatic resynchronization

● UART mode

● Test modes:

– Loop Back mode

– Self Test mode

These modes are discussed in detail in subsequent sections.

21.6 Controller-level operating modes

21.6.1 Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter 
or exit this mode, the software sets or clears LINCR1[INIT], respectively.

In Initialization mode, all message transfers to and from the LIN bus are stopped and the LIN 
bus output (LINTX) is recessive.

Entering Initialization mode does not change any of the configuration registers.
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To initialize the LINFlexD controller, the software must:

● Select the desired mode (Master, Slave or UART)

● Set up the baud rate register

● If LIN Slave mode with filter activation is selected, initialize the identifier list

21.6.2 Normal mode

After initialization is complete, the software must clear LINCR1[INIT] to put the LINFlexD 
controller into Normal mode.

21.6.3 Sleep (low-power) mode

To reduce power consumption, LINFlexD has a low-power mode called Sleep mode. In this 
mode, the LINFlexD clock is stopped. Consequently, the LINFlexD will not update the status 
bits, but software can still access the LINFlexD registers.

To enter this mode, the software must set LINCR1[SLEEP].

LINFlexD can be awakened (exit Sleep mode) in one of two ways:

● The software clears LINCR1[SLEEP]

● Automatic wake-up is enabled (LINCR1[AWUM] is set) and LINFlexD detects LIN bus 
activity (that is, if a wakeup pulse of 150 s is detected on the LIN bus)

On LIN bus activity detection, hardware automatically performs the wake-up sequence by 
clearing LINCR1[SLEEP] if LINCR1[AWUM] is set. To exit from Sleep mode if 
LINCR1[AWUM] is cleared, the software must clear LINCR1[SLEEP] when a wake-up event 
occurs.

21.7 LIN modes

21.7.1 Master mode

In Master mode, the software uses the message buffer to handle the LIN messages. 

Master mode is selected when LINCR1[MME] is set.

LIN header transmission

According to the LIN protocol, any communication on the LIN bus is triggered by the master 
sending a header. The header is transmitted by the master task while the data is transmitted 
by the slave task of a node.

To transmit a header with LINFlexD the application must set up the identifier, the data field 
length and configure the message (direction and checksum type) in the BIDR register before 
requesting the header transmission by setting LINCR2[HTRQ].

Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the 
header, then the slave task of the master has to send the data in the Response part of the 
LIN frame. Therefore, the software must provide the data to LINFlexD before requesting the 
header transmission. The software stores the data in the message buffer BDR. According to 
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the data field length LINFlexD transmits the data and the checksum. The software uses the 
BIDR[CCS] bit to configure the checksum type (classic or enhanced) for each message.

If the response has been sent successfully, LINSR[DTF] is set. In case of error, the DTF flag 
is not set and the corresponding error flag is set in the LINESR (refer to Error handling). It is 
possible to handle frames with a Response size larger than 8 bytes of data (extended 
frames). If the data field length in the BIDR is configured with a value higher than 8 data 
bytes, LINSR[DBEF] is set once the first 8 bytes have been transmitted. The application has 
to update the buffer BDR before resetting the DBEF bit. The transmission of the next bytes 
starts when the DBEF bit is reset. Once the last data byte (or the checksum byte) has been 
sent, the DTF flag is set. 

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the software 
sets this bit the response is sent by LINFlexD (publisher). Clearing this bit configures the 
message buffer as subscriber.

Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding 
identifier. LINFlexD stores the data received from the slave in the message buffer and stores 
the message status in the LINSR. If the response has been received successfully, the 
LINSR(DRF) bit is set. In case of error, the DRF flag is not set and the corresponding error 
flag is set in the LINESR (refer to Error handling). It is possible to handle frames with a 
Response size larger than 8 bytes of data (extended frames). If the data field length in the 
BIDR is configured with a value higher than 8 data bytes, the LINSR(DBFF) bit is set once 
the first 8 bytes have been received. The application has to read the buffer BDR before 
resetting the DBFF bit. Once the last data byte (or the checksum byte) has been received, 
the DRF flag is set.

Data discard

To discard data from a slave, the DIR bit in the BIDR must be reset and the DDRQ bit in 
LINCR2 must be set before starting the header transmission.

Error detection and handling

LINFlexD is able to detect and handle LIN communication errors. A code stored in the LIN 
error status register (LINESR) signals the errors to the software.

Table 199 lists the errors detected in Master mode and the LINFlexD controller’s response to 
these errors.
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21.7.2 Slave mode

In Slave mode the software uses the message buffer to handle the LIN messages. 

Slave mode is selected when the LINCR1[MME] is cleared.

Data transmission (transceiver as publisher)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

● Read the received ID in the BIDR register

● Fill the BDR registers

● Specify the data field length using the BIDR[DFL] field

● Trigger the data transmission by setting LINCR2[DTRQ]

One or several identifier filters can be configured for transmission by setting the DIR bits in 
the corresponding IFCR registers and activated by setting one or several bits in the IFER 
register.

When at least one identifier filter is configured in transmission and activated, and if the 
received ID matches the filter, a specific TX interrupt is generated. 

Typically, the software has to copy the data from RAM locations to the BDRL and BDRM 
registers. To copy the data to the right location, the software has to identify the data by 
means of the identifier. To avoid this and to ease the access to the RAM locations, the 
LINFlexD controller provides a Filter Match Index. This index value is the number of the filter 
which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which 
points to the right data array in the RAM area and copy this data to the BDRL and BDRM 
registers (see Figure 207). 

Table 199. Errors in Master mode

Error Description LINFlexD response to error

Bit error
During transmission, the value read back 
from the bus differs from the transmitted 
value

– Stops the transmission of the frame after 
the corrupted bit

– Generates an interrupt if LINIER[BEIE] is 
set

– Returns to idle state

Framing error
A dominant state has been sampled on the 
stop bit of the currently received character 
(sync field, identifier, or data field)

If encountered during reception:
– Discards the current frame

– Generates an interrupt if LINIER[FEIE] is 
set

– Returns immediately to idle state

Checksum error
The computed checksum does not match the 
received checksum

If encountered during reception:

– Discards the current frame

– Generates an interrupt if LINIER[CEIE] is 
set

– Returns to idle state

Response and frame 
timeout

Refer to Section 21.12.1, 8-bit timeout counter, for more details
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Using a filter avoids the software having to configure the direction, the data field length and 
the checksum type in the BDIR register. The software fills the BDRL and BDRM registers 
and triggers the data transmission by setting LINCR2[DTRQ].

If LINFlexD cannot provide enough TX identifier filters to handle all identifiers the software 
has to transmit data for, then a filter can be configured in mask mode (refer to 
Section 21.7.3, Slave mode with identifier filtering) in order to manage several identifiers 
with one filter only.

Data reception (transceiver as subscriber)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

● Read the received ID in the BIDR register

● Specify the data field length using the BIDR[DFL] field before the reception of the stop 
bit of the first byte of data field

When the checksum reception is completed, an RX interrupt is generated to allow the 
software to read the received data in the BDR registers.

One or several identifier filters can be configured for reception by clearing the DIR bit in the 
corresponding IFCR registers and activated by clearing one or several bits in the IFER 
register.

When at least one identifier filter is configured in reception and activated, and if the received 
ID matches the filter, an RX interrupt is generated after the checksum reception only.

Typically, the software has to copy the data from the BDRL and BDRM registers to RAM 
locations. To copy the data to the right location, the software has to identify the data by 
means of the identifier. To avoid this and to ease the access to the RAM locations, the 
LINFlexD controller provides a Filter Match Index. This index value is the number of the filter 
which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which 
points to the right data array in the RAM area and copy this data from the BDRL and BDRM 
registers to the RAM (see Figure 207). 

Using a filter avoids the software reading the ID value in the BIDR register, and configuring 
the direction, the data field length and the checksum type in the BIDR register.

If LINFlexD cannot provide enough RX identifier filters to handle all identifiers the software 
has to receive the data for, then a filter can be configured in mask mode (refer to 
Section 21.7.3, Slave mode with identifier filtering) in order to manage several identifiers 
with one filter only.

Data discard

When LINFlexD receives the identifier, the LINSR(HRF) bit is set and, if the LINIER(HRIE) 
bit is set, an RX interrupt is generated. If the received identifier does not concern the node, 
the software must set LINCR2[DDRQ]. LINFlexD returns to idle state after bit DDRQ is set.

Error detection and handling

Table 200 lists the errors detected in Slave mode and the LINFlexD controller’s response to 
these errors.
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Valid header

A received header is considered as valid when it has been received correctly according to 
the LIN protocol.

If a valid break field and break delimiter come before the end of the current header, or at any 
time during a data field, the current header or data is discarded and the state machine 
synchronizes on this new break.

Valid message

A received or transmitted message is considered as valid when the data has been received 
or transmitted without error according to the LIN protocol.

Overrun

After the message buffer is full, the next valid message reception causes an overrun and a 
message is lost. The LINFlexD controller sets LINSR[BOF] to signal the overrun condition. 
Which message is lost depends on the configuration of the RX message buffer:

● If the buffer lock function is disabled (LINCR1[RBLM] cleared), the last message stored 
in the buffer is overwritten by the new incoming message. In this case, the latest 
message is always available to the software.

● If the buffer lock function is enabled (LINCR1[RBLM] set), the most recent message is 
discarded and the previous message is available in the buffer.

Table 200. Errors in Slave mode

Error Description LINFlexD response to error

Bit error
During transmission, the value read back 
from the bus differs from the transmitted 
value

– Stops the transmission of the frame after 
the corrupted bit

– Generates an interrupt if LINIER[BEIE] is 
set

– Returns to idle state

Framing error
A dominant state has been sampled on the 
stop bit of the currently received character 
(sync field, identifier, or data field)

If encountered during reception:
– Discards the current frame

– Generates an interrupt if LINIER[FEIE] is 
set

– Returns immediately to idle state

Checksum error
The computed checksum does not match the 
received checksum

If encountered during reception:

– Discards the received frame

– Generates an interrupt if LINIER[CEIE] is 
set

– Returns to idle state

Header error
An error occurred during header reception 
(break delimiter error, inconsistent sync field, 
header timeout)

If encountered during header reception, a 
break field error, an inconsistent sync field, or 
a timeout:
– Discards the header

– Generates an interrupt if LINIER[HEIE] is 
set

– Returns to idle state
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21.7.3 Slave mode with identifier filtering

In the LIN protocol, the identifier of a message is not associated with the address of a node 
but related to the content of the message. Consequently a transmitter broadcasts its 
message to all receivers. When a slave node receives a header, it decides - depending on 
the identifier value - whether the software needs to receive or send a response. If the 
message does not target the node, it must be discarded without software intervention.

To fulfill this requirement, the LINFlexD controller provides configurable filters in order to 
request software intervention only if needed. This hardware filtering saves CPU resources 
which would otherwise be needed by software for filtering.

The filtering is accomplished through the use of IFCR registers. These registers have the 
names IFCR0 through IFCR15. This section also uses the nomenclature IFCR2n and 
IFCR2n+1; in this nomenclature, n is an integer, and the corresponding IFCR register is 
calculated using the formula in the subscript.

Filter submodes

Usually each of the 16 IFCRs is used to filter one dedicated identifier, but this means that 
the LINFlexD controller could filter a maximum of 16 identifiers. In order to be able to handle 
more identifiers, the filters can be configured to operate as masks.

Table 201 describes the two available filter submodes.

         

The bit mapping and register organization in these two submodes is shown in Figure 206.

Table 201. Filter submodes

Submode Description

Identifier list
Both filter registers are used as identifier registers. All bits of the 
incoming identifier must match the bits specified in the filter register. 
This is the default submode for the LINFlexD controller.

Mask
The identifier registers are associated with mask registers specifying 
which bits of the identifier are handled as “must match” or as “don’t 
care”.
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Figure 206. Filter configuration - register organization

Identifier filter submode configuration

The identifier filters are configured in the IFCR registers. To configure an identifier filter the 
filter must first be deactivated by clearing the corresponding bit in the IFER[FACT] field. The 
submode (identifier list or mask) for the corresponding IFCR register is configured by the 
IFMR[IFM] field. For each filter, the IFCR register is used to configure:

● The ID or mask

● The direction (TX or RX)

● The data field length

● The checksum type

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter 
generate a TX interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter 
generate an RX interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s) 
generate an RX interrupt.

Further details are provided in Table 202 and Figure 207.

IFCRxIdentifier

IDBit Mapping

Identifier filter register organization

CCSDIR

Identifier filter configuration

IFCR2nIdentifier
Identifier IFCR2n+1

IFM = 0

Identifier filter submode

IFCR2nIdentifier
Mask IFCR2n+1

IFM = 1

Identifier list submode

Mask submode

DFL
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Figure 207. Identifier match index

21.7.4 Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fipg_clock_lin tolerance is 
greater than 1.5%. This feature compensates a fperiph_set_1_clk deviation up to 14%, as 
specified in the LIN standard.

This mode is similar to Slave mode as described in Section 21.7.2, Slave mode, with the 
addition of automatic resynchronization enabled by the LINCR1[LASE] bit. In this mode 
LINFlexD adjusts the fractional baud rate generator after each synch field reception.

Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN break, the time duration 
between five falling edges on RDI is sampled on fperiph_set_1_clk as shown in Figure 208. 
Then the LFDIV value (and its associated LINIBRR and LINFBRR registers) are 

Table 202. Filter to interrupt vector correlation

Number of active 
filters

Number of active 
filters configured as 

TX

Number of active 
filters configured as 

RX
Interrupt vector

0 0 0 - RX interrupt on all IDs

a
(a > 0)

a 0

- TX interrupt on IDs matching 
the filters,
- RX interrupt on all other IDs if 
BF bit is set, no RX interrupt if 
BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

- TX interrupt on IDs matching 
the TX filters,
- RX interrupt on IDs matching 
the RX filters,
- all other IDs discarded (no 
interrupt)

b
(b > 0)

0 b

- RX interrupt on IDs matching 
the filters,
- TX interrupt on all other IDs if 
BF bit is set, no TX interrupt if 
BF bit is reset

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
Pointers
Table

RAM

@

+
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automatically updated at the end of the fifth falling edge. During LIN sync field 
measurement, the LINFlexD state machine is stopped and no data is transferred to the data 
register.

         

Figure 208. LIN sync field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 20 bits in the LINIBRR 
register and the fraction is coded on 4 bits in the LINFBRR register.

If LINCR1[LASE] is set, LFDIV is automatically updated at the end of each LIN sync field.

Three registers are used internally to manage the auto-update of the LINFlexD divider 
(LFDIV):

● LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

● LFDIV_MEAS (results of the Field Synch measurement)

● LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a 
complete frame, hardware reloads LFDIV with LFDIV_NOM.

Deviation error on the sync field

The deviation error is checked by comparing the current baud rate (relative to the slave 
oscillator) with the received LIN sync field (relative to the master oscillator). Two checks are 
performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling 
edge of the sync field:

● If D1 > 14.84%, LHE is set.

● If D1 < 14.06%, LHE is not set.

● If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing 
between the signal on LINFlexD_RX pin the fipg_clock_lin clock.

LIN Break 
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start 
Bit

LIN sync field

LFDIV(n) LFDIV(n+1)

TBR = Baud rate period

TBR

delim.

Tperiph_set_1_clk = Clock period

SM = Synch Measurement Register (19 bits)

TBR = 16.LFDIV.Tperiph_set_1_clk

Measurement = 8.TBR = SM.Tperiph_set_1_clk

LFDIV = TBR/(16.Tperiph_set_1_clk) = Rounding (SM / 128)
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The second check is based on a measurement of time between each falling edge of the 
sync field:

● If D2 > 18.75%, LHE is set. 

● If D2 < 15.62%, LHE is not set.

● If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing 
between the signal on LINFlexD_RX pin the fipg_clock_lin clock.

Note that the LINFlexD does not need to check if the next edge occurs slower than 
expected. This is covered by the check for deviation error on the full synch byte.

Clock gating

The LINFlexD clock can be gated from the Mode Entry module (refer to Operating Modes 
chapter). In LIN mode, the LINFlexD controller acknowledges a clock gating request once 
the frame transmission or reception is completed.

21.8 Test modes
The LINFlexD controller includes two test modes, Loop Back mode and Self Test mode. 
They can be selected by the LBKM and SFTM bits in the LINCR1 register. These bits must 
be configured while LINFlexD is in Initialization mode. After one of the two test modes has 
been selected, LINFlexD must be started in Normal mode.

21.8.1 Loop Back mode

LINFlexD can be put in Loop Back mode by setting LINCR1[LBKM]. In Loop Back mode, the 
LINFlexD treats its own transmitted messages as received messages. This is illustrated in 
Figure 209.

         

Figure 209. LINFlexD in Loop Back mode

This mode is provided for self-test functions. To be independent of external events, the LIN 
core ignores the LINRX signal. In this mode, the LINFlexD performs an internal feedback 
from its Tx output to its Rx input. The actual value of the LINRX input pin is disregarded by 
the LINFlexD. The transmitted messages can be monitored on the LINTX pin.

21.8.2 Self Test mode

LINFlexD can be put in Self Test mode by setting LINCR1[LBKM] and LINCR1[SFTM]. This 
mode can be used for a “Hot Self Test”, meaning the LINFlexD can be tested as in Loop 
Back mode but without affecting a running LIN system connected to the LINTX and LINRX 

LINTX LINRX

LINFlexD

Tx Rx
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pins. In this mode, the LINRX pin is disconnected from the LINFlexD and the LINTX pin is 
held recessive. This is illustrated in Figure 210.

         

Figure 210. LINFlexD in Self Test mode

21.9 UART mode
The main features of UART mode are presented in Section 21.2.2, UART mode features.

21.9.1 Data frame structure

8-bit data frame

The 8-bit UART data frame is shown in Figure 211. The 8th bit can be a data or a parity bit. 
Parity (even, odd, 0, or 1) can be selected by the UARTCR[PC] field. An even parity is set if 
the modulo-2 sum of the 7 data bits is 1. An odd parity is cleared in this case.

         

Figure 211. UART mode 8-bit data frame

9-bit data frame

The 9-bit UART data frame is shown in Figure 212. The 9th bit is a parity bit. Parity (even, 
odd, 0, or 1) can be selected by the by the UARTCR[PC] field. An even parity is set if the 
modulo-2 sum of the 8 data bits is 1. An odd parity is cleared in this case. Parity 0 forces a 
zero logical value. Parity 1 forces a high logical value.

LINFlexD

LINTX LINRX

Tx Rx

=1

Start
bit D0 D7

Stop
bit

Byte Field
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- Parity bit
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Figure 212. UART mode 9-bit data frame

16-bit data frame

The 16-bit UART data frame is shown in Figure 213. The 16th bit can be a data or a parity 
bit. Parity (even, odd, 0, or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a 
zero logical value. Parity 1 forces a high logical value.

         

Figure 213. UART mode 16-bit data frame

17-bit data frame

The 17-bit UART data frame is shown in Figure 214. The 17th bit is the parity bit. Parity 
(even, odd, 0, or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a zero logical 
value. Parity 1 forces a high logical value.

         

Figure 214. UART mode 17-bit data frame

21.9.2 Buffer

The 8-byte buffer is divided into two parts — one for receiver and one for transmitter — as 
shown in Table 203.
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For 16-bit frames, the lower 8 bits will be written in BDR0 and the upper 8 bits will be written 
in BDR1.

21.9.3 UART transmitter

In order to start transmission in UART mode, the UARTCR[UART] and UARTCR[TXEN] bits 
must be set. Transmission starts when BDR0 (least significant data byte) is programmed. 
The number of bytes transmitted is equal to the value configured by the UARTCR[TDFLTFC] 
field (see Table 216).

The Transmit buffer size is as follows:

● 4 bytes when UARTCR[WL1] = 0

● 2 half-words when UARTCR[WL1] = 1

Therefore, the maximum transmission that can be triggered is 4 bytes (2 half-words). After 
the programmed number of bytes has been transmitted, the UARTSR[DTFTFF] flag is set. If 
the UARTCR[TXEN] field is cleared during a transmission, the current transmission is 
completed, but no further transmission can be invoked. The buffer can be configured in 
FIFO mode (mandatory when DMA Tx is enabled) by setting UARTCR[TFBM].

The access to the BDRL register is shown in Table 204.

         

Table 203. UART buffer structure

BDR UART mode

0 Tx0

1 Tx1

2 Tx2

3 Tx3

4 Rx0

5 Rx1

6 Rx2

7 Rx3

Table 204. BDRL access in UART mode

Access Mode(1) Word length(2) IPS operation result

Write Byte0 FIFO Byte OK

Write Byte1-2-3 FIFO Byte IPS transfer error

Write Half-word0-1 FIFO Byte IPS transfer error

Write Word FIFO Byte IPS transfer error

Write Byte0-1-2-3 FIFO Half-word IPS transfer error

Write Half-word0 FIFO Half-word OK

Write Half-word1 FIFO Half-word IPS transfer error

Write Word FIFO Half-word IPS transfer error

Read Byte0-1-2-3 FIFO Byte/Half-word IPS transfer error
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21.9.4 UART receiver

Reception of a data byte is started as soon as the software completes the following tasks in 
order:

1. Exits Initialization mode

2. Sets the UARTCR[RXEN] field

3. Detects the start bit

There is a dedicated data buffer for received data bytes. Its size is as follows:

● 4 bytes when UARTCR[WL1] = 0

● 2 half-words when UARTCR[WL1] = 1

After the programmed number (RDFL bits) of bytes has been received, the 
UARTSR[DRFRFE] field is set. If the UARTCR[RXEN] field is cleared during a reception, the 
current reception is completed, but no further reception can be invoked until 
UARTCR[RXEN] is set again.

The buffer can be configured in FIFO mode (required when DMA Rx is enabled) by setting 
UARTCR[RFBM].

The access to the BDRM register is shown in Table 205.

         

Read Half-word0-1 FIFO Byte/Half-word IPS transfer error

Read Word FIFO Byte/Half-word IPS transfer error

Write Byte0-1-2-3 BUFFER Byte/Half-word OK

Write Half-word0-1 BUFFER Byte/Half-word OK

Write Word BUFFER Byte/Half-word OK

Read Byte0-1-2-3 BUFFER Byte/Half-word OK

Read Half-word0-1 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

1. As specified by UARTCR[TFBM]

2. As specified by the WL1 and WL0 bits of the UARTCR register. In UART FIFO mode (UARTCR[TFBM] = 1),any read 
operation causes an IPS transfer error.

Table 204. BDRL access in UART mode (continued)

Access Mode(1) Word length(2) IPS operation result

Table 205. BDRM access in UART mode

Access Mode(1) Word length(2) IPS operation result

Read Byte4 FIFO Byte OK

Read Byte5-6-7 FIFO Byte IPS transfer error

Read Half-word2-3 FIFO Byte IPS transfer error

Read Word FIFO Byte IPS transfer error

Read Byte4-5-6-7 FIFO Half-word IPS transfer error

Read Half-word2 FIFO Half-word OK

Read Half-word3 FIFO Half-word IPS transfer error
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Table 206 lists some common scenarios, controller responses, and suggestions when the 
LINFlexD controller is acting as a UART receiver.

         

Read Word FIFO Half-word IPS transfer error

Write Byte4-5-6-7 FIFO Byte/Half-word IPS transfer error

Write Half-word2-3 FIFO Byte/Half-word IPS transfer error

Write Word FIFO Byte/Half-word IPS transfer error

Read Byte4-5-6-7 BUFFER Byte/Half-word OK

Read Half-word2-3 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

Write Byte4-5-6-7 BUFFER Byte/Half-word IPS transfer error

Write Half-word2-3 BUFFER Byte/Half-word IPS transfer error

Write Word BUFFER Byte/Half-word IPS transfer error

1. As specified by UARTCR[RFBM]

2. As specified by the WL1 and WL0 bits of the UARTCR register

Table 205. BDRM access in UART mode (continued)

Access Mode(1) Word length(2) IPS operation result

Table 206. UART receiver scenarios

Scenario Responses and suggestions

The software does not know (in advance) how many 
bytes will be received.

Do not program UARTCR[RDFLRFC] in advance. When 
this field is zero (as it is after reset), reception occurs on 
a byte-by-byte basis. Therefore, the state machine will 
move to IDLE state after each byte is received.

UARTCR[RDFLRFC] is programmed for a certain 
number of bytes received, but the actual number of bytes 
received is smaller.

The reception will hang. In this case, the software must 
monitor the UARTSR[TO] field, and move to IDLE state 
by setting LINCR1[SLEEP].

A STOP request arrives before the reception is 
completed.

The request is acknowledged only after the programmed 
number of data bytes are received. In other words, the 
STOP request is not serviced immediately. In this case, 
the software must monitor the UARTSR[TO] field and 
move the state machine to IDLE state as appropriate. 
The stop request will be serviced only after this is 
complete.

A parity error occurs during the reception of a byte.
The corresponding UARTSR[PEn] field is set. No 
interrupt is generated.
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21.10 Memory map and register description
The memory maps for the LINFlexD modules on this microcontroller differ by module:

● The memory map for LINFlexD_0 is shown in Table 207.

● The memory map for LINFlexD_1 is shown in Table 208.

See the microcontroller memory map for the base addresses.

         

A framing error occurs during the reception of a byte.

– UARTSR[FE] is set.

– If LINIER[FEIE] = 1, an interrupt is generated. This 
interrupt is helpful in identifying which byte has the 
framing error, since there is only one register bit for 
framing errors.

A new byte has been received, but the last received 
frame has not been read from the buffer (UARTSR[RMB] 
has not yet been cleared by the software)

– An overrun error will occur (UARTSR[BOF] will be set).

– One message will be lost (depending on the setting of 
LINCR[RBLM]).

– An interrupt is generated if LINIER[BOIE] is set.

Table 206. UART receiver scenarios (continued)

Scenario Responses and suggestions

Table 207. LINFlexD_0 memory map 

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 21-430

0x04 LIN interrupt enable register (LINIER) on page 21-433

0x08 LIN status register (LINSR) on page 21-435

0x0C LIN error status register (LINESR) on page 21-438

0x10 UART mode control register (UARTCR) on page 21-439

0x14 UART mode status register (UARTSR) on page 21-442

0x18 LIN timeout control status register (LINTCSR) on page 21-444

0x1C LIN output compare register (LINOCR) on page 21-445

0x20 LIN timeout control register (LINTOCR) on page 21-446

0x24 LIN fractional baud rate register (LINFBRR) on page 21-447

0x28 LIN integer baud rate register (LINIBRR) on page 21-447

0x2C LIN checksum field register (LINCFR) on page 21-448

0x30 LIN control register 2 (LINCR2) on page 21-449

0x34 Buffer identifier register (BIDR) on page 21-450

0x38 Buffer data register least significant (BDRL) on page 21-451

0x3C Buffer data register most significant (BDRM) on page 21-452

0x40 Identifier filter enable register (IFER) on page 21-453

0x44 Identifier filter match index (IFMI) on page 21-454

0x48 Identifier filter mode register (IFMR) on page 21-455
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0x4C–0x88 Identifier filter control registers 0–15 (IFCR0–IFCR15) on page 21-456

0x8C Global control register (GCR) on page 21-457

0x90 UART preset timeout register (UARTPTO) on page 21-458

0x94 UART current timeout register (UARTCTO) on page 21-459

0x98 DMA Tx enable register (DMATXE) on page 21-460

0x9C DMA Rx enable register (DMARXE) on page 21-461

Table 208. LINFlexD_1 memory map

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 21-430

0x04 LIN interrupt enable register (LINIER) on page 21-433

0x08 LIN status register (LINSR) on page 21-435

0x0C LIN error status register (LINESR) on page 21-438

0x10 UART mode control register (UARTCR) on page 21-439

0x14 UART mode status register (UARTSR) on page 21-442

0x18 LIN timeout control status register (LINTCSR) on page 21-444

0x1C LIN output compare register (LINOCR) on page 21-445

0x20 LIN timeout control register (LINTOCR) on page 21-446

0x24 LIN fractional baud rate register (LINFBRR) on page 21-447

0x28 LIN integer baud rate register (LINIBRR) on page 21-447

0x2C LIN checksum field register (LINCFR) on page 21-448

0x30 LIN control register 2 (LINCR2) on page 21-449

0x34 Buffer identifier register (BIDR) on page 21-450

0x38 Buffer data register least significant (BDRL) on page 21-451

0x3C Buffer data register most significant (BDRM) on page 21-452

0x40 Identifier filter enable register (IFER) on page 21-453

0x44 Identifier filter match index (IFMI) on page 21-454

0x48 Identifier filter mode register (IFMR) on page 21-455

0x4C Global control register (GCR) on page 21-457

0x50 UART preset timeout register (UARTPTO) on page 21-458

0x54 UART current timeout register (UARTCTO) on page 21-459

0x58 DMA Tx enable register (DMATXE) on page 21-460

0x5C DMA Rx enable register (DMARXE) on page 21-461

Table 207. LINFlexD_0 memory map  (continued)

Address offset Register description Location
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21.10.1 LIN control register 1 (LINCR1)
         

         

         

Figure 215. LIN control register 1 (LINCR1)

Offset:0x00 Access: User read/write
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1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

2. Resets to 0 in Slave mode and to 1 in Master mode

Table 209. LINCR1 field descriptions

Field Description

CCD

Checksum Calculation disable
This bit is used to disable the checksum calculation (see Table 210).
0: Checksum calculation is done by hardware. When this bit is reset the LINCFR register is read-only.
1: Checksum calculation is disabled. When this bit is set the LINCFR register is read/write. User can 
program this register to send a software calculated CRC (provided CFD is reset).

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD

Checksum field disable

This bit is used to disable the checksum field transmission (see Table 210).
0: Checksum field is sent after the required number of data bytes is sent.
1: No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE

LIN Slave Automatic Resynchronization Enable

0: Automatic resynchronization disable
1: Automatic resynchronization enable

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM

Automatic Wake-Up Mode

This bit controls the behavior of the LINFlexD hardware during Sleep mode.
0: The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR register.
1: The Sleep mode is exited automatically by hardware on RX dominant state detection. The SLEEP 
bit of the LINCR register is cleared by hardware whenever WUF bit in LINSR is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.
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MBL

LIN Master Break Length

These bits indicate the Break length in Master mode (see Table 211).
Note: These bits can be written in Initialization mode only. They are read-only in Normal or Sleep 
mode.

BF

Bypass filter

0: No interrupt if ID does not match any filter
1: An RX interrupt is generated on ID not matching any filter

Notes:
– If no filter is activated, this bit is reserved and always reads 1.

– This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM

Self Test Mode

This bit controls the Self Test mode. For more details please refer to Section 21.8.2, Self Test mode.
0: Self Test mode disable
1: Self Test mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM

Loop Back Mode
This bit controls the Loop Back mode. For more details please refer to Section 21.8.1, Loop Back 
mode.
0: Loop Back mode disable
1: Loop Back mode enable

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode

MME

Master Mode Enable

0: Master and Slave mode enable

1: Master mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT

Slave Mode Break Detection Threshold
0: 11-bit break
1: 10-bit break
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM

Receive Buffer Locked Mode
0: Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming 
message overwrites the previous one.
1: Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming message 
is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP

Sleep Mode Request
This bit is set by software to request LINFlexD to enter Sleep mode.
This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and the 
WUF bit in LINSR are set (see Table 212).

INIT
Initialization Request

The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset, 
LINFlexD enters Normal mode when clearing the INIT bit (see Table 212).

Table 209. LINCR1 field descriptions (continued)

Field Description
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Table 210. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 211. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 212. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal
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21.10.2 LIN interrupt enable register (LINIER)
         

         

         

         

Figure 216. LIN interrupt enable register (LINIER)

Offset: 0x04 Access: User read/write
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Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 213. LINIER field descriptions

Field Description

SZIE
Stuck at Zero Interrupt Enable

0: No interrupt when SZF bit in LINESR or UARTSR is set
1: Interrupt generated when SZF bit in LINESR or UARTSR is set

OCIE
Output Compare Interrupt Enable

0: No interrupt when OCF bit in LINESR or UARTSR is set
1: Interrupt generated when OCF bit in LINESR or UARTSR is set

BEIE
Bit Error Interrupt Enable
0: No interrupt when BEF bit in LINESR is set
1: Interrupt generated when BEF bit in LINESR is set

CEIE
Checksum Error Interrupt Enable

0: No interrupt on Checksum error
1: Interrupt generated when checksum error flag (CEF) is set in LINESR

HEIE
Header Error Interrupt Enable
0: No interrupt on Break Delimiter error, Synch Field error, ID field error
1: Interrupt generated on Break Delimiter error, Synch Field error, ID field error

FEIE

Framing Error Interrupt Enable

0: No interrupt on Framing error
1: Interrupt generated on Framing error

BOIE
Buffer Overrun Interrupt Enable
0: No interrupt on Buffer overrun
1: Interrupt generated on Buffer overrun
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LSIE

LIN State Interrupt Enable

0: No interrupt on LIN state change
1: Interrupt generated on LIN state change
This interrupt can be used for debugging purposes. It has no status flag but is reset when writing 
‘1111’ into the LIN state bits in the LINSR register.

WUIE
Wake-up Interrupt Enable

0: No interrupt when WUF bit in LINSR or UARTSR is set
1: Interrupt generated when WUF bit in LINSR or UARTSR is set

DBFIE
Data Buffer Full Interrupt Enable

0: No interrupt when buffer data register is full
1: Interrupt generated when data buffer register is full

DBEIETOIE

Data Buffer Empty Interrupt Enable / Timeout Interrupt Enable
0: No interrupt when buffer data register is empty
1: Interrupt generated when data buffer register is empty
Note: An interrupt is generated if this bit is set and one of the following is true:

LINFlexD is in LIN mode and LINSR[DBEF] is set
LINFlexD is in UART mode and UARTSR[TO] is set

DRIE
Data Reception Complete Interrupt Enable

0: No interrupt when data reception is completed
1: Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set

DTIE
Data Transmitted Interrupt Enable
0: No interrupt when data transmission is completed
1: Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR register

HRIE

Header Received Interrupt Enable

0: No interrupt when a valid LIN header has been received
1: Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR register 
is set

Table 213. LINIER field descriptions (continued)

Field Description
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21.10.3 LIN status register (LINSR)
         

Figure 217. LIN status register (LINSR)

Offset: 0x08 Access: User read/write
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Table 214. LINSR field descriptions

Field Description

LINS

LIN state

LIN mode states description

0000: Sleep mode
LINFlexD is in Sleep mode to save power consumption.

0001: Initialization mode
LINFlexD is in Initialization mode.
0010: Idle
This state is entered on several events:

– SLEEP bit and INIT in LINCR1 register have been cleared by software,
– A falling edge has been received on RX pin and AWUM bit is set,

– The previous frame reception or transmission has been completed or aborted.

0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.

Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on last bit 
state. If last bit is dominant new LIN state is Break, otherwise Idle.

In Master mode, Break transmission ongoing.

0100: Break Delimiter
In Slave mode, a valid Break has been detected. Refer to LINCR1 register for break length 
configuration (10-bit or 11-bit). Waiting for a rising edge.
In Master mode, Break transmission has been completed. Break Delimiter transmission is ongoing.

0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit time). 
Receiving Synch Field.

In Master mode, Synch Field transmission is ongoing.
0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving ID Field.

In Master mode, identifier transmission is ongoing.
0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR register.

In Master mode, header transmission is completed.
1000: Data reception/transmission
Response reception/transmission is ongoing.

1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.
In UART mode, only the following states are flagged by the LIN state bits:

– Init

– Sleep
– Idle

– Data transmission/reception

RMB

Release Message Buffer

0: Buffer is free
1: Buffer ready to be read by software. This bit must be cleared by software after reading data 
received in the buffer.
This bit is cleared by hardware in Initialization mode.
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RBSY

Receiver Busy Flag

0: Receiver is Idle
1: Reception ongoing

Note: In Slave mode, after header reception, if DIR bit in BIDR is reset and reception starts then this 
bit is set. In this case, user cannot set DTRQ bit in LINCR2.

RPS
LIN receive pin state

This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on 
the LINRX pin when

– slave is in Sleep mode,

– master is in Sleep mode or idle state.
This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is 
generated if WUIE bit in LINIER is set.

DBFF

Data Buffer Full Flag

This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended 
frames (DFL > 7).
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

DBEF

Data Buffer Empty Flag

This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting extended 
frames (DFL > 7).
This bit must be cleared by software, once buffer has been filled again, in order to start transmission.
This bit is reset by hardware in Initialization mode.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error or framing error.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error if IOBE bit is reset.

HRF

Header Reception Flag

This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.
This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.

Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is to 
say:

– all filters are inactive and BF bit in LINCR1 is set

– no match in any filter and BF bit in LINCR1 is set
– TX filter match

Table 214. LINSR field descriptions (continued)

Field Description
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21.10.4 LIN error status register (LINESR)
         

         

Figure 218. LIN error status register (LINESR)

Offset: 0x0C Access: User read/write
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Table 215. LINESR field descriptions

Field Description

SZF
Stuck at zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by 
software. 

OCF

Output Compare Flag

0: No output compare event occurred
1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit 
is set and IOT bit in LINTCSR is set, LINFlexD moves to Idle state.
If LTOM bit in LINTCSR register is set then OCF is reset by hardware in Initialization mode. If LTOM 
bit is reset, then OCF maintains its status whatever the mode is.

BEF

Bit Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a bit error. This 
error can occur during response field transmission (Slave and Master modes) or during header 
transmission (in Master mode).
This bit is cleared by software.

CEF

Checksum error Flag
This bit is set by hardware and indicates that the received checksum does not match the hardware 
calculated checksum. 
This bit is cleared by software.

Note: This bit is never set if CCD or CFD bit in LINCR1 register is set.

SFEF
Synch Field Error Flag

This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch Field).

BDEF
Break Delimiter Error Flag

This bit is set by hardware and indicates that the received Break Delimiter is too short (less than one 
bit time).
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21.10.5 UART mode control register (UARTCR)
         

IDPEF

Identifier Parity Error Flag

This bit is set by hardware and indicates that a Identifier Parity error occurred.
Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER is 
set.

FEF

Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error 
(invalid stop bit). This error can occur during reception of any data in the response field (Master or 
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF

Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If 
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte 
overwrites the buffer. It can be cleared by software.

NF
Noise Flag

This bit is set by hardware when noise is detected on a received character. This bit is cleared by 
software.

Figure 219. UART mode control register (UARTCR)

Offset: 0x10 Access: User read/write
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1. These fields are read/write in UART buffer mode and read-only in other modes.

2. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Table 215. LINESR field descriptions (continued)

Field Description
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Table 216. UARTCR field descriptions

Field Description

TDFLTFC

Transmitter data field length / Tx FIFO counter

This field has one of two functions depending on the mode of operation as follows:

– When LINFlexD is in UART buffer mode (TFBM = 0), TDFLTFC defines the number of bytes to be 
transmitted. The field is read/write in this configuration. The first bit is reserved and not 
implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values 
for TDFLTFC are 0b001 and 0b011.

– When LINFlexD is in UART FIFO mode (TFBM = 1), TDFLTFC contains the number of entries 
(bytes) of the Tx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RDFLRFC

Receiver data field length / Rx FIFO counter

This field has one of two functions depending on the mode of operation as follows:
– When LINFlexD is in UART buffer mode (RFBM = 0), RDFLRFC defines the number of bytes to be 

received. The field is read/write in this configuration. The first bit is reserved and not implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values 
for RDFLRFC are 0b001 and 0b011.

– When LINFlexD is in UART FIFO mode (RFBM = 1), RDFLRFC contains the number of entries 
(bytes) of the Rx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RFBM

Rx FIFO/buffer mode
0 Rx buffer mode enabled
1 Rx FIFO mode enabled (mandatory in DMA Rx mode)

This field can be programmed in initialization mode only when the UART bit is set.
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TFBM

Tx FIFO/buffer mode

0 Tx buffer mode enabled
1 Tx FIFO mode enabled (mandatory in DMA Tx mode)

This field can be programmed in initialization mode only when the UART bit is set.

RXEN

Receiver Enable
0: Receiver disabled
1: Receiver enabled

This field can be programmed only when the UART bit is set.

TXEN

Transmitter Enable

0: Transmitter disabled
1: Transmitter enabled

This field can be programmed only when the UART bit is set.

Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

PC

Parity control

00 Parity sent is even
01 Parity sent is odd
10 A logical 0 is always transmitted/checked as parity bit
11 A logical 1 is always transmitted/checked as parity bit

This field can be programmed in initialization mode only when the UART bit is set.

PCE

Parity Control Enable

0: Parity transmit/check disabled
1: Parity transmit/check enabled

This field can be programmed in Initialization mode only when the UART bit is set.

WL

Word length in UART mode

00 7 bits data + parity
01 8 bits data when PCE = 0 or 8 bits data + parity when PCE = 1
10 15 bits data + parity
11 16 bits data when PCE = 0 or 16 bits data + parity when PCE = 1

This field can be programmed in Initialization mode only when the UART bit is set.

UART

UART mode enable
0: LIN mode
1: UART mode

This field can be programmed in Initialization mode only.

Table 216. UARTCR field descriptions (continued)

Field Description
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Figure 220. UART mode status register (UARTSR)

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 TO

D
R

F
R

F
E

D
T

F
T

F
F

NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 217. UARTSR field descriptions

Field Description

SZF
Stuck at zero Flag

This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by 
software.

OCF

OCF Output Compare Flag
0: No output compare event occurred

1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.

An interrupt is generated if the OCIE bit in LINIER register is set.

PE3

Parity Error Flag Rx3

This bit indicates if there is a parity error in the corresponding received byte (Rx3). No interrupt is 
generated if this error occurs.

0: No parity error
1: Parity error

PE2

Parity Error Flag Rx2

This bit indicates if there is a parity error in the corresponding received byte (Rx2). No interrupt is 
generated if this error occurs.

0: No parity error
1: Parity error

PE1

Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). No interrupt is 
generated if this error occurs.
0: No parity error

1: Parity error
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PE0

Parity Error Flag Rx0

This bit indicates if there is a parity error in the corresponding received byte (Rx0). No interrupt is 
generated if this error occurs.

0: No parity error
1: Parity error

RMB

Release Message Buffer
0: Buffer is free

1: Buffer ready to be read by software. This bit must be cleared by software after reading data 
received in the buffer.

This bit is cleared by hardware in Initialization mode.

FEF
Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error 
(invalid stop bit).

BOF

FIFO/buffer overrun flag
This bit is set by hardware when a new data byte is received and the RMB bit is not cleared in UART 
buffer mode. In UART FIFO mode, this bit is set when there is a new byte and the Rx FIFO is full. In 
UART FIFO mode, once Rx FIFO is full, the new received message is discarded regardless of the 
value of LINCR1[RBLM]. 

If LINCR1[RBLM] = 1, the new byte received is discarded.

If LINCR1[RBLM] = 0, the new byte overwrites buffer.
This field can be cleared by writing a 1 to it. An interrupt is generated if LINIER[BOIE] is set.

RPS
LIN Receive Pin State
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on 
the LINRX pin in Sleep mode.
This bit must be cleared by software. It is reset by hardware in Initialization mode.

An interrupt i generated if WUIE bit in LINIER is set.

TO

Timeout

The LINFlexD controller sets this field when a UART timeout occurs — that is, when the value of 
UARTCTO becomes equal to the preset value of the timeout (UARTPTO register setting). This field 
should be cleared by software. The GCR[SR] field should be used to reset the receiver FSM to idle 
state in case of UART timeout for UART reception depending on the application both in buffer and 
FIFO mode.
An interrupt is generated when LINIER[DBEIETOIE] is set on the Error interrupt line in UART mode.

DRFRFE

Data reception completed flag / Rx FIFO empty flag
The LINFlexD controller sets this field as follows:

– In UART buffer mode (RFBM = 0), it indicates that the num ber of bytes programmed in RDFL has 
been received. This field should be cleared by software. An interrupt is generated if LINIER[DRIE] 
is set. This field is set in case of framing error, parity error, or overrun. This field reflects the same 
value as in LINESR when in Initialization mode and UART bit is set.

– In UART FIFO mode (RFBM = 1), it indicates that the Rx FIFO is empty. This field is a read-only 
field used internally by the DMA Rx interface.

Table 217. UARTSR field descriptions (continued)

Field Description
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21.10.7 LIN timeout control status register (LINTCSR)
         

         

         

DTFTFF

Data transmission completed flag / Tx FIFO full flag

The LINFlexD controller sets this field as follows:
– In UART buffer mode (TFBM = 0), it indicates that the data transmission is completed. This field 

should be cleared by software. An interrupt is generated if LINIER[DTIE] is set. This field reflects 
the same value as in LINESR when in Initialization mode and UART bit is set.

– In UART FIFO mode (TFBM = 1), it indicates that the Tx FIFO is full. This field is a read-only field 
used internally by the DMA Tx interface.

NF
Noise Flag

This bit is set by hardware when noise is detected on a received character. This bit is cleared by 
software.

Figure 221. LIN timeout control status register (LINTCSR)

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

LT
O

M

IOT

TO
C

E CNT

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Table 218. LINTCSR field descriptions

Name Description

LTOM

LIN timeout mode

0: LIN timeout mode (header, response and frame timeout detection)

1: Output compare mode
This bit can be set/cleared in Initialization mode only.

IOT

Idle on Timeout
0: LIN state machine not reset to Idle on timeout event

1: LIN state machine reset to Idle on timeout event

This bit can be set/cleared in Initialization mode only.

Table 217. UARTSR field descriptions (continued)

Field Description
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TOCE

Timeout counter enable

0: Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
1: Timeout counter enable. OCF bit is set if an output compare event occurs.

TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in LIN 
timeout mode, then hardware takes control of TOCE bit.

CNT
Counter Value
These bits indicate the LIN Timeout counter value. 

Figure 222. LIN output compare register (LINOCR)

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OC21 OC1(1)

W w1c(1) w1c(1)

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. If LINTCSR[LTOM] = 1, these fields are read-only.

Table 219. LINOCR field descriptions

Field Description

OC2
Output compare 2 value

These bits contain the value to be compared to the value of LINTCSR[CNT].

OC1
Output compare 1 value
These bits contain the value to be compared to the value of LINTCSR[CNT].

Table 218. LINTCSR field descriptions (continued)

Name Description
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Figure 223. LIN timeout control register (LINTOCR)

Offset: 0x20 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO(1)

1. HTO field can only be written in slave mode, LINCR1[MME] = 0

W

Reset 0 0 0 0 1 1 1 0 0 0 0/1(2)

2. Resets to 1 in Slave mode and to 0 in Master mode

0/1(3)

3. Resets to 0 in Slave mode and to 1 in Master mode

1 1 0 0

Table 220. LINTOCR field descriptions

Field Description

RTO

Response timeout value

This register contains the response timeout duration (in bit time) for 1 byte.

The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 x TResponse_Nominal 

HTO

Header timeout value

This register contains the header timeout duration (in bit time). This value does not include the first 11 
dominant bits of the Break. The reset value depends on which mode LINFlexD is in.

HTO can be written only for Slave mode.
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21.10.11 LIN integer baud rate register (LINIBRR)
         

         

Figure 224. LIN timeout control register (LINTOCR)

Offset: 0x24 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This field is writable only in Initialization mode, LINCR1[INIT] = 1.

Table 221. LINFBRR field descriptions

Field Description

DIV_F

Fraction bits of LFDIV 
The 4 fraction bits define the value of the fraction of the LINFlexD divider (LFDIV).

Fraction (LFDIV) = Decimal value of DIV_F /  16.

This register can be written in Initialization mode only, LINCR1[INIT] = 1.

Figure 225. LIN integer baud rate register (LINIBRR)

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_M1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).
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21.10.12 LIN checksum field register (LINCFR)
         

         

         

Table 222. LINIBRR field descriptions

Field Description

DIV_M

LFDIV mantissa

These bits define the LINFlexD divider (LFDIV) mantissa value (see Table 223).

This register can be written in Initialization mode only.

Table 223. Integer baud rate selection

DIV_M Mantissa

0x0 LIN clock disabled

0x1 1

... ...

0xFFFFE 1048574

0xFFFFF 1048575

Figure 226. LIN checksum field register (LINCFR)

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 224. LINCFR field descriptions

Field Description

CF
Checksum bits
When LINCR1[CCD] is cleared, these bits are read-only. When LINCR1[CCD] is set, these bits are 
read/write. See Table 210.
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Figure 227. LIN control register 2 (LINCR2)

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

IO
B

E
1

IO
P

E
(1

)

W
U

R
Q

D
D

R
Q

D
T

R
Q

A
B

R
Q

H
T

R
Q

0 0 0 0 0 0 0 0

W w1c w1c w1c w1c w1c

Reset 0 1 0/12 0 0 0 0 0 0 0 0 0 0 0 0 0

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1.

2. Resets to 1 in Slave mode and to 0 in Master mode

Table 225. LINCR2 field descriptions

Field Description

IOBE

Idle on Bit Error
0: Bit error does not reset LIN state machine

1: Bit error reset LIN state machine

This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

IOPE

Idle on Identifier Parity Error

0: Identifier Parity error does not reset LIN state machine.
1: Identifier Parity error reset LIN state machine.

This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

WURQ

Wake-up Generation Request

Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character has 
been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit cannot 
be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit error is not 
checked when transmitting the wake-up request.

DDRQ

Data Discard Request
Set by software to stop data reception if the frame does not concern the node. This bit is reset by 
hardware once LINFlexD has moved to idle state. In Slave mode, this bit can be set only when HRF 
bit in LINSR is set and identifier did not match any filter.
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21.10.14 Buffer identifier register (BIDR)

This register contains the fields that identify a transaction and provide other information 
related to it.

All the fields in this register must be updated when an ID filter (enabled) in slave mode (Tx or 
Rx) matches the ID received.

         

         

DTRQ

Data Transmission Request

Set by software in Slave mode to request the transmission of the LIN Data field stored in the Buffer 
data register. This bit can be set only when HRF bit in LINSR is set.

Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when DIR bit in BIDR is set and header transmission is 
completed.

ABRQ

Abort Request

Set by software to abort the current transmission. 
Cleared by hardware when the transmission has been aborted. LINFlexD aborts the transmission at 
the end of the current bit.
This bit can also abort a wake-up request.

It can also be used in UART mode.

HTRQ

Header Transmission Request

Set by software to request the transmission of the LIN header.

Cleared by hardware when the request has been completed or aborted.
This bit has no effect in UART mode.

Table 225. LINCR2 field descriptions (continued)

Field Description

Figure 228. Buffer identifier register (BIDR)

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0

ID
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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21.10.15 Buffer data register least significant (BDRL)
         

         

         

Table 226. BIDR field descriptions

Field Description

DFL

Data Field Length

These bits define the number of data bytes in the response part of the frame.

DFL = Number of data bytes - 1.
Normally, LIN uses only DFL[0:2] to manage frames with a maximum of 8 bytes of data. Identifier 
filters are compatible with DFL[0:2] and DFL[0:5] . DFL[3:5] are provided to manage extended frames.

DIR

Direction

This bit controls the direction of the data field. 
0: LINFlexD receives the data and copy them in the BDR registers.

1: LINFlexD transmits the data from the BDR registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.

0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification 
2.0 and higher.

1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and 
below.

ID
Identifier

Identifier part of the identifier field without the identifier parity.

Figure 229. Buffer data register least significant (BDRL)

Offset: 0x38 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 227. BDRL field descriptions

Field Description

DATA3
Data Byte 3
Data byte 3 of the data field

DATA2 
Data Byte 2
Data byte 2 of the data field
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DATA1
Data Byte 1

Data byte 1 of the data field

DATA0
Data Byte 0

Data byte 0 of the data field

Figure 230. Buffer data register most significant (BDRM)

Offset: 0x3C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 228. BDRM field descriptions

Field Description

DATA7
Data Byte 7

Data byte 7 of the data field

DATA6
Data Byte 6

Data byte 6 of the data field

DATA5
Data Byte 5

Data byte 5 of the data field

DATA4
Data Byte 4

Data byte 4 of the data field

Table 227. BDRL field descriptions (continued)

Field Description
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Figure 231. Identifier filter enable register (IFER)

Offset: 0x40 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
FACT(1)

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 229. IFER field descriptions

Field Description

FACT

Filter activation (see Table 230)

The software sets the bit FACT[x] to activate the filters x in identifier list mode.
In identifier mask mode bits FACT(2n + 1) have no effect on the corresponding filters as they act as 
masks for the Identifiers 2n.
0 Filters 2n and 2n + 1 are deactivated.
1 Filters 2n and 2n + 1 are activated.

Table 230. IFER[FACT] configuration

Bit Value Result

FACT[0]
0 Filters 0 and 1 are deactivated.

1 Filters 0 and 1 are activated.

FACT[1]
0 Filters 2 and 3 are deactivated.

1 Filters 2 and 3 are activated.

FACT[2]
0 Filters 4 and 5 are deactivated.

1 Filters 4 and 5 are activated.

FACT[3]
0 Filters 6 and 7 are deactivated.

1 Filters 6 and 7 are activated.

FACT[4]
0 Filters 8 and 9 are deactivated.

1 Filters 8 and 9 are activated.
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FACT[5]
0 Filters 10 and 11 are deactivated.

1 Filters 10 and 11 are activated.

FACT[6]
0 Filters 12 and 13 are deactivated.

1 Filters 12 and 13 are activated.

FACT[7]
0 Filters 14 and 15 are deactivated.

1 Filters 14 and 15 are activated.

Figure 232. Identifier filter match index (IFMI)

Offset: 0x44 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 231. IFMI field descriptions

Field Description

IFMI

Filter match index

This register contains the index corresponding to the received ID. It can be used to directly write or 
read the data in RAM (refer to Section 21.7.2, Slave mode, for more details).

When no filter matches, IFMI = 0. When Filter n is matching, IFMI = n + 1.

Table 230. IFER[FACT] configuration (continued)

Bit Value Result
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Figure 233. Identifier filter mode register (IFMR)

Offset:0x48 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 232. IFMR field descriptions

Field Description

IFM

Filter mode
0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).
(See Table 233.)

Table 233. IFMR[IFM] configuration

Bit Value Result

IFM[0]
0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1]
0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2]
0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

IFM[3]
0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4]
0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5]
0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).
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21.10.20 Identifier filter control registers (IFCR0–IFCR15)

The function of these registers is different depending on which mode the LINFlexD controller 
is in, as described in Table 234.

         

Note: These registers are available on LINFlexD_0 only.

         

IFM[6]
0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).

IFM[7]
0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Table 233. IFMR[IFM] configuration (continued)

Bit Value Result

Table 234. IFCR functionality based on mode

Mode IFCR functionality

Identifier list Each IFCR register acts as a filter.

Identifier mask
If a = (number of filters) / 2, and n = 0 to (a - 1),

then IFCR[2n] acts as a filter and IFCR[2n+1] acts as the mask for IFCR[2n].

Figure 234. Identifier filter control registers (IFCR0–IFCR15)

Offsets: 0x4C–0x88 (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL(1)

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

D
IR

(1
)

C
C

S
(1

)

0 0
ID(1)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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21.10.21 Global control register (GCR)

This register can be programmed only in Initialization mode. The configuration specified in 
this register applies in both LIN and UART modes.

         

         

Table 235. IFCR field descriptions

Field Description

DFL
Data Field Length

This field defines the number of data bytes in the response part of the frame.

DIR

Direction

This bit controls the direction of the data field.

0: LINFlexD receives the data and copy them in the BDRL and BDRM registers.
1: LINFlexD transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum
This bit controls the type of checksum applied on the current message.

0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification 
2.0 and higher.

1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and 
below.

ID
Identifier
Identifier part of the identifier field without the identifier parity.

Figure 235. Global control register (GCR)

Offset: 0x8C (for LINFlexD_0 only), 0x4C (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

T
D

F
B

M
(1

)

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).
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Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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21.10.22 UART preset timeout register (UARTPTO)

This register contains the preset timeout value in UART mode, and is used to monitor the 
IDLE state of the reception line. The timeout detection uses this register and the UARTCTO 
register described in Section 21.10.23, UART current timeout register (UARTCTO).

Table 236. GCR field descriptions

Field Description

TDFBM

Transmit data first bit MSB

This field controls the first bit of transmitted data (payload only) as MSB/LSB in both UART and LIN 
modes.

0 The first bit of transmitted data is LSB – that is, the first bit transmitted is mapped on the LSB bit 
(BDR(0), BDR(8), BDR(16), BDR(24)).

1 The first bit of transmitted data is MSB – that is, the first bit transmitted is mapped on the MSB bit 
(BDR(7), BDR(15), BDR(23), BDR(31)).

RDFBM

Received data first bit MSB

This field controls the first bit of received data (payload only) as MSB/LSB in both UART and LIN 
modes.

0 The first bit of received data is LSB – that is, the first bit received is mapped on the LSB bit (BDR(0), 
BDR(8), BDR(16), BDR(24)).

1 The first bit of received data is MSB – that is, the first bit received is mapped on the MSB bit (BDR(7), 
BDR(15), BDR(23), BDR(31)).

TDLIS

Transmit data level inversion selection

This field controls the data inversion of transmitted data (payload only) in both UART and LIN modes.

0 Transmitted data is not inverted.
1 Transmitted data is inverted.

RDLIS

Received data level inversion selection

This field controls the data inversion of received data (payload only) in both UART and LIN modes.

0 Received data is not inverted.
1 Received data is inverted.

STOP

Stop bit configuration

This field controls the number of stop bits in transmitted data in both UART and LIN modes. The stop 
bit is configured for all the fields (delimiter, sync, ID, checksum, and payload).

0 One stop bit
1 Two stop bits

SR

Soft reset
If the software writes a “1” to this field, the LINFlexD controller executes a soft reset in which the 
FSMs, FIFO pointers, counters, timers, status registers, and error registers are reset but the 
configuration registers are unaffected.

This field always reads “0”.
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21.10.23 UART current timeout register (UARTCTO)

This register contains the current timeout value in UART mode, and is used in conjunction 
with the UARTPTO register (see Section 21.10.22, UART preset timeout register 
(UARTPTO)) to monitor the IDLE state of the reception line. UART timeout works in both 
CPU and DMA modes.

The timeout counter:

● Starts at zero and counts upward

● Is clocked with the baud rate clock prescaled by a hard-wired scaling factor of 16

● Is automatically enabled when UARTCR[RXEN] = 1

Figure 236. UART preset timeout register (UARTPTO)

Offset: 0x90 (for LINFlexD_0 only), 0x50 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PTO

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 237. UARTPTO field descriptions

Field Description

PTO
Preset value of the timeout counter
Do not set PTO = 0 (otherwise, UARTSR[TO] would immediately be set).
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21.10.24 DMA Tx enable register (DMATXE)

This register enables the DMA Tx interface.

Figure 237. UART current timeout register (UARTCTO)

Offset: 0x94 (for LINFlexD_0 only), 0x54 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 CTO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 238. UARTCTO field descriptions

Field Description

CTO

Current value of the timeout counter
This field is reset whenever one of the following occurs:

– A new value is written to the UARTPTO register
– The value of this field matches the value of UARTPTO[PTO]

– A hard or soft reset occurs

– New incoming data is received

When CTO matches the value of UARTPTO[PTO], UARTSR[TO] is set.
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21.10.25 DMA Rx enable register (DMARXE)

This register enables the DMA Rx interface.

         

Figure 238. DMA Tx enable register (DMATXE)

Offset: 0x98 (for LINFlexD_0 only), 0x58 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 239. DMATXE field descriptions

Field Description

DTEn

DMA Tx channel n enable
0 DMA Tx channel n disabled
1 DMA Tx channel n enabled
Note: When DMATXE = 0x0, the DMA Tx interface FSM is forced (soft reset) into the IDLE state.

Figure 239. DMA Rx enable register (DMARXE)

Offset: 0x9C (for LINFlexD_0 only), 0x5C (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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21.11 DMA interface
The LINFlexD DMA interface offers a parametric and programmable solution with the 
following features:

● LIN Master node, TX mode: single DMA channel

● LIN Master node, RX mode: single DMA channel

● LIN Slave node, TX mode: 1 to N DMA channels where N = max number of ID filters

● LIN Slave node, RX mode: 1 to N DMA channels where N = max number of ID filters

● UART node, TX mode: single DMA channel

● UART node, RX mode: single DMA channel + timeout

The LINFlexD controller interacts with an enhanced direct memory access (eDMA) 
controller; see the description of that controller for details on its operation and the transfer 
control descriptors (TCDs) referenced in this section.

21.11.1 Master node, TX mode

On a master node in TX mode, the DMA interface requires a single TX channel. Each TCD 
controls a single frame, except for the extended frames (multiple TCDs). The memory map 
associated with the TCD chain (RAM area and LINFlexD registers) is shown in Figure 240.

Table 240. DMARXE field descriptions

Field Description

DREn

DMA Rx channel n enable

0 DMA Rx channel n disabled
1 DMA Rx channel n enabled

Note: When DMARXE = 0x0, the DMA Rx interface FSM is forced (soft reset) into the IDLE state.
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Figure 240. TCD chain memory map (master node, TX mode)

The TCD chain of the DMA Tx channel on a master node supports:

● Master to Slave: transmission of the entire frame (header + data)

● Slave to Master: transmission of the header. The data reception is controlled by the Rx 
channel on the master node.

● Slave to Slave: transmission of the header.

The register settings for the LINCR2 and BIDR registers for each class of LIN frame are 
shown in Table 241.

         

The concept FSM to control the DMA TX interface is shown in Figure 241. The DMA TX 
FSM will move to IDLE state immediately at next clock edge if DMATXE[0] = 0.

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM 

DMA transfer

(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

RAM area

TCD (n+2)

TCD (n+3)

Linked    chain

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM 
(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

LINFlex2 registers

Frame (n+1)
Slave –> Master

or
Slave –> Slave 

Extended
Frame (n+2)

Master –> Slave

Extended
Frame (n+3)

Master –> Slave

Frame (n)
Master –> Slave

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Table 241. Register settings (master node, TX mode)

LIN frame LINCR2 BIDR 

Master to Slave
DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 1 (TX)

Slave to Master
DDRQ=0
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)

Slave to Slave
DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)
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Figure 241. FSM to control the DMA TX interface (master node)

The TCD settings (word transfer) are shown in Table 242. All other TCD fields are equal to 
0. TCD settings based on half-word or byte transfers are allowed.

Enables DMA TX
channel request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (LIN idle |

DBEF) & DMA_TEN &
!Token_DMA_RX

?

True

DMA TX transfer (Req/Ack
minor/major loop) from

RAM area to LINFlex registers

DMA TX
transfer is completed

?

True

DBEF
?

False

Set HTRQ to transmit the
LIN frame (header + [data])

!DIR & !DDRQ
?

False (TX mode)

True (RX mode)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False

False

False

False

DTF
?

DBEF
?

Set Token_DMA_RX to enable
the DMA RX interface

Clear DTF

True (end of frame)

True
(extended frame,
size > 8 bytes)
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21.11.2 Master node, RX mode

On a master node in RX mode, the DMA interface requires a single RX channel. Each TCD 
controls a single frame, except for the extended frames (multiple TCDs). The memory map 
associated to the TCD chain (RAM area and LINFlexD registers) is shown in Figure 242.

         

Figure 242. TCD chain memory map (master node, RX mode)

The TCD chain of the DMA Rx channel on a master node supports Slave-to-Master 
reception of the data field.

Table 242. TCD settings (master node, TX mode)

TCD field Value Description 

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4 + 4] + 0/4/8 = N
Data buffer is stuffed with dummy bytes if the length is 
not word aligned.

LINCR2 + BIDR + BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] LINCR2 address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM 
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked    chain

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA RX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM 
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)
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The BIDR register is optionally copied into the RAM area. This BIDR field (part of FIFO 
data) contains the ID of each message to allow the CPU to figure out which ID was received 
by the LINFlexD DMA if only the “one DMA channel” setup is used.

The concept FSM to control the DMA RX interface is shown in Figure 243. The DMA RX 
FSM will move to IDLE state immediately at next clock edge if DMARXE[0]=0.

         

Figure 243. FSM to control the DMA RX interface (master node)

The TCD settings (word transfer) are shown in Table 243. All other TCD fields are equal to 
0. TCD settings based on half-word or byte transfer are allowed.

Enables DMA RX
channel request

(DMAERQH, DMAERQL)

(DRF |
(DBFF & RMB))

& Token_DMA_RX &
DMA_REN

?

True

DMA RX transfer (Req/Ack
minor/major loop) from

LINFlex registers to RAM area

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

Clear Token_DMA_RX

True True
(extended frame,

Clear DRF

Clear DBFF, RMB
(for extended frame)

size > 8 bytes)
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21.11.3 Slave node, TX mode

On a slave node in TX mode, the DMA interface requires a DMA TX channel for each ID 
filter programmed in TX mode. In case a single DMA TX channel is available, a single ID 
field filter must be programmed in TX mode. Each TCD controls a single frame, except for 
the extended frames (multiple TCDs). The memory map associated to the TCD chain (RAM 
area and LINFlexD registers) is shown in Figure 244.

         

Figure 244. TCD chain memory map (slave node, TX mode)

Table 243. TCD settings (master node, RX mode)

TCD field Value Description 

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N
Data buffer is stuffed with dummy bytes if the length is not 

word aligned.

BIDR + BDRL + BDRM

SADDR[31:0] BIDR address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

DMA transfer

RAM area

TCD (n+2)

Linked    chain

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA TX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BDRL + BDRM 
(4/8 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

Slave –> Slave

BDRL + BDRM 
(4/8 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)
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The TCD chain of the DMA Tx channel on a slave node supports:

● Slave to Master: transmission of the data field

● Slave to Slave: transmission of the data field

The register settings of the LINCR2, IFER, IFMR, and IFCR registers are shown in 
Table 244.

         

The concept FSM to control the DMA Tx interface is shown in Figure 245. DMA TX FSM will 
move to idle state if DMATXE[x] = 0, where x = IFMI – 1.

Table 244. Register settings (slave node, TX mode)

LIN frame LINCR2 IFER IFMR IFCR

Slave to Master 
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter 
(Tx mode) for each 
DMA TX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 1(TX)
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Figure 245. FSM to control the DMA TX interface (slave node)

The TCD settings (word transfer) are shown in Table 245. All other TCD fields are equal to 
0. TCD settings based on half-word or byte transfer are allowed.

Enables DMA TX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (DBEF |

HRF) & (IFMI != 0) &
DMA_TEN

?

True

DMA TX transfer (Req/Ack) from
RAM area to LINFlex registers

(channel/filter mapping)

DMA TX
transfer done

?

True

DBEF
?

False

Set DTRQ to transmit the
LIN frame (data)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False False

False

False

DTF
?

DBEF
?

Clear DTF

True True
(extended frame,
size > 8 bytes)
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21.11.4 Slave node, RX mode

On a slave node in RX mode, the DMA interface requires a DMA RX channel for each ID 
filter programmed in RX mode. In case a single DMA RX channel is available, a single ID 
field filter must be programmed in RX mode. Each TCD controls a single frame, except for 
the extended frames (multiple TCDs). The memory map associated to the TCD chain (RAM 
area and LINFlexD registers) is shown in Figure 246.

         

Figure 246. TCD chain memory map (slave node, RX mode)

Table 245. TCD settings (slave node, TX mode)

TCD field Value Description 

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] 4/8 = N
Data buffer is stuffed with dummy bytes if the length is not 
word aligned.

BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] BDRL address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM 
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked    chain

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Master –> Slave

1 DMA RX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM 
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM 
(8 bytes)

BDRL + BDRM 
(4/8 bytes)

Slave –> Slave
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The TCD chain of the DMA RX channel on a slave node supports:

● Master to Slave: reception of the data field.

● Slave to Slave: reception of the data field.

The register setting of the LINCR2, IFER, IFMR, and IFCR registers are given in Table 246.

         

The concept FSM to control the DMA Rx interface is shown in Figure 247. DMA RX FSM will 
move to idle state if DMARXE[x] = 0 where x = IFMI - 1.

Table 246. Register settings (slave node, RX mode)

LIN frame LINCR2 IFER IFMR IFCR

Master to Slave 
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter 
(Rx mode) for each 
DMA RX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)
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Figure 247. FSM to control the DMA RX interface (slave node)

The TCD settings (word transfer) are shown in Table 247. All other TCD fields = 0. TCD 
settings based on half-word or byte transfer are allowed.

         

Enables DMA RX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
(DRF | (DBFF &

RMB)) & (IFMI != 0) &
DMA_REN

?

True

DMA RX transfer (Req/Ack) from
LINFlex registers to RAM area

(channel/filter mapping)

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

True True
(extended frame,

Clear DRF
Clear DBFF, RMB

(for extended frame)

size > 8 bytes)

Table 247. TCD settings (slave node, RX mode)

TCD Field Value Description 

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N
Data buffer is stuffed with dummy bytes if the 
length is not word aligned.
BIDR + BDRL + BDRM

SADDR[31:0] BDRL address
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21.11.5 UART node, TX mode

In UART TX mode, the DMA interface requires a DMA TX channel. A single TCD can control 
the transmission of an entire Tx buffer. The memory map associated with the TCD chain 
(RAM area and LINFlexD registers) is shown in Figure 248.

         

Figure 248. TCD chain memory map (UART node, TX mode)

The UART TX buffer must be configured in FIFO mode in order to:

● Allow the transfer of large data buffer by a single TCD

● Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data 
from the RAM to the FIFO

● Use low priority DMA channels

● Support the UART baud rate (2 Mb/s) without underrun events

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Table 247. TCD settings (slave node, RX mode) (continued)

TCD Field Value Description 

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M bytes)

BDRL
(M bytes)

DMA transfer (8/16-bits data format)

RAM area LINFlex2 registers

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Buffer (n+1)

BDRL
(4 bytes FIFO mode)

BDRL
(4 bytes FIFO mode)

Buffer (n)
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The Tx FIFO size is:

● 4 bytes in 8-bit data format

● 2 half-words in 16-bit data format

A DMA request is triggered by FIFO not full (TX) status signals.

The concept FSM to control the DMA TX interface is shown in Figure 249. DMA TX FSM will 
move to idle state if DMATXE[0] = 0.

         

Figure 249. FSM to control the DMA TX interface (UART node)

The TCD settings (typical case) are shown in Table 248. All other TCD fields = 0. The minor 
loop transfers a single byte/half-word as soon a free entry is available in the Tx FIFO.
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21.11.6 UART node, RX mode

In UART RX mode, the DMA interface requires a DMA RX channel. A single TCD can 
control the reception of an entire Rx buffer. The memory map associated with the TCD chain 
(RAM area and LINFlexD registers) is shown in Figure 250.

         

Figure 250. TCD chain memory map (UART node, RX mode)

Table 248. TCD settings (UART node, TX mode)

TCD Field 
Value 

Description 
8-bit data 16-bit data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] RAM address

SOFF[15:0] 1 2 Byte/Half-word increment

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] -M -M * 2

DADDR[31:0] BDRL address
DADDR = BDRL + 0x3 for byte transfer
DADDR = BDRL + 0x2 for half-word 
transfer

DOFF[15:0] 0 No increment (FIFO)

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] 0 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Buffer (n+1)

Buffer (n)

DMA transfer (8/16-bits data format)

RAM areaLINFlex2 registers

1 DMA RX channel (TCD single and/or linked chain)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

TCD (n+1)

TCD (n)

BDRM
(M bytes)

BDRM
(M half-words)

BDRM
(M bytes)

BDRM
(M half-words)
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The UART RX buffer must be configured in FIFO mode in order to:

● Allow the transfer of large data buffer by a single TCD

● Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data 
from the FIFO to the RAM

● Use low priority DMA channels

● Support high UART baud rate (at least 2 Mb/s) without overrun events

The Rx FIFO size is:

● 4 bytes in 8-bit data format

● 2 half-words in 16-bit data format

This is sufficient because just one byte allows a reaction time of about 3.8 s (at 2 Mbit/s), 
corresponding to about 450 clock cycles at 120 MHz, before the transmission is affected. A 
DMA request is triggered by FIFO not empty (RX) status signals.

The concept FSM to control the DMA Rx interface is shown in Figure 251. DMA Rx FSM will 
move to idle state if DMARXE[0] = 0.
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Figure 251. FSM to control the DMA RX interface (UART node)

The TCD settings (typical case) are shown in Table 249. All other TCD fields = 0. The minor 
loop transfers a single byte/half-word as soon an entry is available in the Rx FIFO. A new 
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software reset bit is required that allows the LINFlexD FSMs to be reset in case this timeout 
state is reached or in any other case. Timeout counter can be re-written by software at any 
time to extend timeout period.

         

21.11.7 Use cases and limitations

● In LIN slave mode, the DMA capability can be used only if the ID filtering mode is 
activated. The number of ID filters enabled must be equal to the number of DMA 
channels enabled. The correspondence between channel # and ID filter is based on 
IFMI (identifier filter match index).

● In LIN master mode both the DMA channels (TX and RX) must be enabled in case the 
DMA capability is required.

● In UART mode the DMA capability can be used only if the UART Tx/Rx buffers are 
configured as FIFOs.

● DMA and CPU operating modes are mutually exclusive for the data/frame transfer on a 
UART or LIN node. Once a DMA transfer is finished the CPU can handle subsequent 
accesses.

● Error management must be always executed via CPU enabling the related error 
interrupt sources. The DMA capability does not provide support for the error 
management. Error management means checking status bits, handling IRQs and 
potentially canceling DMA transfers.

● The DMA programming model must be coherent with the TCD setting defined in this 
document.

Table 249. TCD settings (UART node, RX mode)

TCD Field 
Value 

Description 
8 bits data 16 bits data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] BDRM address
SADDR = BDRM + 0x3 for byte transfer

SADDR = BDRM + 0x2 for half-word 
transfer

SOFF[15:0] 0 No increment (FIFO)

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] 0

DADDR[31:0] RAM address

DOFF[15:0] 1 2 Byte/Half-word increment 

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] -M -M * 2 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request
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21.12 Functional description

21.12.1 8-bit timeout counter

LIN timeout mode

Setting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes 
read-only, and OC1 and OC2 output compare values in the LINOCR are automatically 
updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the MME bit in LINCR1), the 8-bit timeout counter 
will behave differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or 
reception (that is, if the data field length in the BIDR is configured with a value higher than 8 
data bytes).

LIN Master mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values. 
Header timeout value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (refer to Figure 252).

When LINFlexD moves from Break delimiter state to Synch Field state (refer to 
Section 21.10.3, LIN status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame 
timeout value for an 8-byte frame),

● the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header 
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 
(response timeout value for an 8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check 
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is 
reset.

If there is no response, frame timeout value does not take into account the DFL value, and 
an 8-byte response (DFL = 7) is always assumed.

LIN Slave mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values. 
Header timeout value is fixed to HTO.

OC1 checks THeader and TResponse and OC2 checks TFrame (refer to Figure 252).
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When LINFlexD moves from Break state to Break Delimiter state (refer to Section 21.10.3, 
LIN status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame 
timeout value for an 8-byte frame)),

● The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header 
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9 
(response timeout value for an 8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check 
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is 
reset.

         

Figure 252. Header and response timeout

Output compare mode

Resetting the LTOM bit in the LINTCSR enables the output compare mode. This mode 
allows the user to fully customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

21.12.2 Interrupts
         

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1 

OC2

Response
space

Table 250. LINFlexD interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI (1)

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI
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Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt (2) LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

1. In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector is RXI 
or TXI depending on the value of identifier received.

2. For debug and validation purposes.

Table 250. LINFlexD interrupt control (continued)

Interrupt event Event flag bit Enable control bit Interrupt vector
481/868 Doc ID 16886 Rev 6



RM0045 LIN Controller (LINFlexD)
         

Figure 253. Interrupt diagram

21.12.3 Fractional baud rate generation

The baud rates for the receiver and transmitter are both set to the same value as 
programmed in the Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

         

LFDIV is an unsigned fixed point number. The 20-bit mantissa is coded in the LINIBRR 
register and the fraction is coded in the LINFBRR register.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register 
values:

LSIE
States

WUIE
WUF

DBFF

DRF

HRIE

Tx

DTIE
DTF

HRIE
HRF

Rx
DBFIE

DRIE

BOIE
BOF

FEIE
FEF

CEF

BEIE
BEF

CEIE

HRF

HEIE
SFEF,SDEF,IDPEF

OCIE
OCF

SZIE
SZF

Error

DBEIE
DBEF 

TOIE
TO

Tx/Rx baud =
fipg_clock_lin

(16 * LFDIV)
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Example 6

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 7

To program LFDIV = 25.62d, 

LINFBRR = 16 * 0.62 = 9.92, nearest real number 10d = Ah

LINIBRR = mantissa(25.620d) = 25d = 19h

Note: The Baud Counters are updated with the new value of the Baud Registers after a write to 
LINIBRR. Hence the Baud Register value must not be changed during a transaction. The 
LINFBRR (containing the Fraction bits) must be programmed before LINIBRR.

Note: LFDIV must be greater than or equal to 1.5d, for example, LINIBRR = 1 and LINFBRR = 8. 
Therefore, the maximum possible baudrate is fperiph_set_1_clk / 24.

         

21.13 Programming considerations
This section describes the various configurations in which the LINFlexD can be used.

Table 251. Error calculation for programmed baud rates

Baud rate

fperiph_set1_clk = 48 MHz fperiph_set1_clk = 16 MHz

Actual

Value programmed in 
the baud rate register

% Error = 
(Calculated - 

Desired) 
Baud rate
/ Desired 
baud rate

Actual

Value programmed in 
the baud rate register

% Error = 
(Calculated - 

Desired) 
Baud rate
/ Desired 
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

2400 2400.00 1250 0 0.000 2399.88 416 11 -0.005

9600 9600.00 312 8 0.000 9598.08 104 3 -0.02

10417 10416.67 287 16 -0.003 10416.7 95 16 -0.003

19200 19200.00 156 4 0.000 19207.7 52 1 0.04

57600 57623.05 52 1 0.040 57554 17 6 -0.08

115200 115107.91 26 1 -0.080 115108 8 11 -0.08

230400 230769.23 13 0 0.160 231884 4 5 0.644

460800 461538.46 6 8 0.160 457143 2 3 -0.794

921600 923076.92 3 4 0.160 941176 1 1 2.124
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21.13.1 Master node
         

Figure 254. Programming consideration: master node, transmitter

         

Figure 255. Programming consideration: master node, receiver

         

Figure 256. Programming consideration: master node, transmitter, bit error

         

Figure 257. Programming consideration: master node, receiver, checksum error
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21.13.2 Slave node
         

Figure 258. Programming consideration: slave node, transmitter, no filters

         

Figure 259. Programming consideration: slave node, receiver, no filters

         

Figure 260. Programming consideration: slave node, transmitter, no filters, bit error

         

Figure 261. Programming consideration: slave node, receiver, no filters, checksum error
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Figure 262. Programming consideration: slave node, at least one TX filter, BF is reset, ID matches 
filter

         

Figure 263. Programming consideration: slave node, at least one RX filter, BF is reset, ID matches 
filter

         

Figure 264. Programming consideration: slave node, RX only, TX only, RX and TX filters, ID not 
matching filter, BF is reset
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Figure 265. Programming consideration: slave node, TX filter, BF is set

         

Figure 266. Programming consideration: slave node, RX filter, BF is set
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Figure 267. Programming consideration: slave node, TX filter, RX filter, BF is set

21.13.3 Extended frames
         

Figure 268. Programming consideration: extended frames
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21.13.4 Timeout
         

Figure 269. Programming consideration: response timeout

         

Figure 270. Programming consideration: frame timeout

         

Figure 271. Programming consideration: header timeout

21.13.5 UART mode
         

Figure 272. Programming consideration: UART mode
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22 FlexCAN

22.1 Information specific to this device
This section presents device-specific parameterization and customization information not 
specifically referenced in the remainder of this chapter.

22.1.1 Device-specific features

The device has one FlexCAN block.

● 32 Message Buffers (MB)

● DMA support is not provided.

● It is possible to operate the bxcan bit timing logic with either system clock or 4–16 MHz 
fast external crystal oscillator clock (FXOSC).

● In the case of safe mode entry, the pad associated with CANTX can optionally be put 
into a high-impedance state (not recessive state)

● Modes of operation:

– 4 functional modes: Normal (User and Supervisor), Freeze, Listen-Only and Loop-
Back

– 1 low-power mode (Disable mode)

● 528 bytes (32 MBs) of RAM used for MB storage

● The filters per message buffer feature is not implemented.

● Hardware cancellation on Tx message buffers

● Module Configuration Register (MCR): Bits 5, 9, 12 and 13 are ‘Reserved’

● Error and Status Register (ESR): Bit 31 is ‘Reserved’

22.2 Introduction
The FlexCAN module is a communication controller implementing the CAN protocol 
according to the CAN 2.0B protocol specification [Ref. 1]. A general block diagram is shown 
in Figure 273, which describes the main sub-blocks implemented in the FlexCAN module, 
including two embedded memories, one for storing Message Buffers (MB) and another one 
for storing Rx Individual Mask Registers. Support for up to 64 Message Buffers is provided. 
The functions of the sub-modules are described in subsequent sections.
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Figure 273. FlexCAN block diagram

22.2.1 Overview

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data 
bus, meeting the specific requirements of this field: real-time processing, reliable operation 
in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The 
FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B 
[Ref. 1], which supports both standard and extended message frames. A flexible number of 
Message Buffers (16, 32 or 64) is also supported. The Message Buffers are stored in an 
embedded RAM dedicated to the FlexCAN module. 

The CAN Protocol Interface (CPI) sub-module manages the serial communication on the 
CAN bus, requesting RAM access for receiving and transmitting message frames, validating 
received messages and performing error handling. The Message Buffer Management 
(MBM) sub-module handles Message Buffer selection for reception and transmission, taking 
care of arbitration and ID matching algorithms. The Bus Interface Unit (BIU) sub-module 
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controls the access to and from the internal interface bus, in order to establish connection to 
the CPU and to other blocks. Clocks, address and data buses, interrupt outputs and test 
signals are accessed through the Bus Interface Unit.

22.2.2 FlexCAN module features

The FlexCAN module includes these distinctive features:

● Full Implementation of the CAN protocol specification, Version 2.0B

– Standard data and remote frames

– Extended data and remote frames

– Zero to eight bytes data length

– Programmable bit rate up to 1 Mbit/s

– Content-related addressing

● Flexible Message Buffers (up to 64) of zero to eight bytes data length

● Each MB configurable as Rx or Tx, all supporting standard and extended messages

● Individual Rx Mask Registers per Message Buffer

● Includes either 1056 bytes (64 MBs), 544 bytes (32 MBs) or 288 bytes (16 MBs) of 
RAM used for MB storage

● Includes either 256 bytes (64 MBs), 128 bytes (32 MBs) or 64 bytes (16 MBs) of RAM 
used for individual Rx Mask Registers

● Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

● Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 8 
extended, 16 standard or 32 partial (8 bits) IDs, with individual masking capability

● Selectable backwards compatibility with previous FlexCAN version

● Programmable clock source to the CAN Protocol Interface, either bus clock or crystal 
oscillator

● Unused MB and Rx Mask Register space can be used as general purpose RAM space

● Listen only mode capability

● Programmable loop-back mode supporting self-test operation

● Programmable transmission priority scheme: lowest ID, lowest buffer number or highest 
priority

● Time Stamp based on 16-bit free-running timer

● Global network time, synchronized by a specific message

● Maskable interrupts

● Independent of the transmission medium (an external transceiver is assumed)

● Short latency time due to an arbitration scheme for high-priority messages

● Low power modes, with programmable wake up on bus activity

Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs. 
Please consult the specific MCU documentation to find out if this feature is supported.
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22.2.3 Modes of operation

The FlexCAN module has four functional modes: Normal mode (User and Supervisor), 
Freeze mode, Listen-Only mode and Loop-Back mode. There is also a low-power mode 
(Disable mode).

● Normal mode (User or Supervisor):

In Normal Mode, the module operates receiving and/or transmitting message frames, 
errors are handled normally and all the CAN Protocol functions are enabled. User and 
Supervisor Modes differ in the access to some restricted control registers.

● Freeze mode:

It is enabled when the FRZ bit in the MCR Register is asserted. If enabled, Freeze 
Mode is entered when the HALT bit in MCR is set or when Debug Mode is requested at 
MCU level. In this mode, no transmission or reception of frames is done and 
synchronicity to the CAN bus is lost. See Section , Freeze mode, for more information.

● Listen-Only mode:

The module enters this mode when the LOM bit in the Control Register is asserted. In 
this mode, transmission is disabled, all error counters are frozen and the module 
operates in a CAN Error Passive mode [Ref. 1]. Only messages acknowledged by 
another CAN station will be received. If FlexCAN detects a message that has not been 
acknowledged, it will flag a BIT0 error (without changing the REC), as if it was trying to 
acknowledge the message.

● Loop-Back mode:

The module enters this mode when the LPB bit in the Control Register is asserted. In 
this mode, FlexCAN performs an internal loop back that can be used for self test 
operation. The bit stream output of the transmitter is internally fed back to the receiver 
input. The Rx CAN input pin is ignored and the Tx CAN output goes to the recessive 
state (logic ‘1’). FlexCAN behaves as it normally does when transmitting and treats its 
own transmitted message as a message received from a remote node. In this mode, 
FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field 
to ensure proper reception of its own message. Both transmit and receive interrupts are 
generated.

● Module Disable mode:

This low power mode is entered when the MCR[MDIS] bit is asserted by the CPU. 
When disabled, the module requests to disable the clocks to the CAN Protocol 
Interface and Message Buffer Management sub-modules. Exit from this mode is done 
by negating the MDIS bit in the MCR Register. See Section , Module Disable mode, for 
more information.

22.3 External signal description

22.3.1 Overview

The FlexCAN module has two I/O signals connected to the external MCU pins. These 
signals are summarized in Table 252 and described in more detail in the next subsections.
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22.3.2 Signal descriptions

CAN Rx

This pin is the receive pin from the CAN bus transceiver. Dominant state is represented by 
logic level ‘0’. Recessive state is represented by logic level ‘1’.

CAN Tx

This pin is the transmit pin to the CAN bus transceiver. Dominant state is represented by 
logic level ‘0’. Recessive state is represented by logic level ‘1’.

22.4 Memory map/register definition
This section describes the registers and data structures in the FlexCAN module. The base 
address of the module depends on the particular memory map of the MCU. The addresses 
presented here are relative to the base address.

The address space occupied by FlexCAN has 96 bytes for registers starting at the module 
base address, followed by MB storage space in embedded RAM starting at address 0x0060, 
and an extra ID Mask storage space in a separate embedded RAM starting at address 
0x0880.

22.4.1 FlexCAN memory mapping

The complete memory map for a FlexCAN module with 64 MBs capability is shown in 
Table 253. 

All registers except for the MCR can be configured to have either supervisor or unrestricted 
access by programming the MCR[SUPV] bit. 

The IFLAG2 and IMASK2 registers are considered reserved space when FlexCAN is 
configured with 16 or 32 MBs. The Rx Global Mask (RXGMASK), Rx Buffer 14 Mask 
(RX14MASK) and the Rx Buffer 15 Mask (RX15MASK) registers are provided for backwards 
compatibility, and are not used when the BCC bit in MCR is asserted.

The address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate 
embedded memories. These two ranges are completely occupied by RAM (1056 and 256 
bytes, respectively) only when FlexCAN is configured with 64 MBs. When it is configured 
with 16 MBs, the memory sizes are 288 and 64 bytes, so the address ranges 0x0180–
0x047F and 0x08C0–0x097F are considered reserved space. When it is configured with 32 
MBs, the memory sizes are 544 and 128 bytes, so the address ranges 0x0280–0x047F and 
0x0900–0x097F are considered reserved space. Furthermore, if the BCC bit in MCR is 
negated, then the whole Rx Individual Mask Registers address range (0x0880–0x097F) is 
considered reserved space.

Table 252. FlexCAN Signals

Signal Name(1)

1. The actual MCU pins may have different names. 

Direction Description

CAN Rx Input CAN Receive Pin

CAN Tx Output CAN Transmit Pin
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Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs. 
Please consult the specific MCU documentation to find out if this feature is supported. If not 
supported, the address range 0x0880-0x097F is considered reserved space, independent 
of the value of the BCC bit.

         

The FlexCAN module stores CAN messages for transmission and reception using a 
Message Buffer structure. Each individual MB is formed by 16 bytes mapped on memory as 
described in Table 254. Table 254 shows a Standard/Extended Message Buffer (MB0) 
memory map, using 16 bytes total (0x80–0x8F space).

         

Table 253. FlexCAN memory map

Base address: 0xFFFC_0000

Address offset Register Location

0x0000 Module Configuration (MCR) on page 22-500

0x0004 Control Register (CTRL) on page 22-505

0x0008 Free Running Timer (TIMER) on page 22-508

0x000C Reserved

0x0010 Rx Global Mask (RXGMASK) on page 22-509

0x0014 Rx Buffer 14 Mask (RX14MASK) on page 22-511

0x0018 Rx Buffer 15 Mask (RX15MASK) on page 22-511

0x001C Error Counter Register (ECR) on page 22-511

0x0020 Error and Status Register (ESR) on page 22-513

0x0024 Interrupt Masks 2 (IMASK2) on page 22-516

0x0028 Interrupt Masks 1 (IMASK1) on page 22-517

0x002C Interrupt Flags 2 (IFLAG2) on page 22-518

0x0030 Interrupt Flags 1 (IFLAG1) on page 22-519

0x0034–0x007F Reserved

0x0080–0x017F Message Buffers MB0–MB15 —

0x0180–0x027F Message Buffers MB16–MB31 —

0x0280–0x047F Message Buffers MB32–MB63 —

Table 254. Message Buffer MB0 memory mapping

Address Offset MB Field

0x80 Control and Status (C/S)

0x84 Identifier Field

0x88–0x8F Data Field 0 – Data Field 7 (1 byte each)
495/868 Doc ID 16886 Rev 6



RM0045 FlexCAN
22.4.2 Message Buffer Structure

The Message Buffer structure used by the FlexCAN module is represented in Figure 274. 
Both Extended and Standard Frames (29-bit Identifier and 11-bit Identifier, respectively) 
used in the CAN specification (Version 2.0 Part B) are represented.

         

         

Figure 274. Message Buffer Structure
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Table 255. Message Buffer Structure field description

Field Description

CODE

Message Buffer Code
This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module itself, as 
part of the message buffer matching and arbitration process. The encoding is shown in Table 256 
and Table 257. See Section 22.5, Functional description, for additional information.

SRR

Substitute Remote Request
Fixed recessive bit, used only in extended format. It must be set to ‘1’ by the user for transmission 
(Tx Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It can 
be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is 
interpreted as arbitration loss.
1 = Recessive value is compulsory for transmission in Extended Format frames
0 = Dominant is not a valid value for transmission in Extended Format frames

IDE

 ID Extended Bit
This bit identifies whether the frame format is standard or extended.
1 = Frame format is extended
0 = Frame format is standard

RTR

Remote Transmission Request
This bit is used for requesting transmissions of a data frame. If FlexCAN transmits this bit as ‘1’ 
(recessive) and receives it as ‘0’ (dominant), it is interpreted as arbitration loss. If this bit is 
transmitted as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the FlexCAN module treats it as 
bit error. If the value received matches the value transmitted, it is considered as a successful bit 
transmission.

1 = Indicates the current MB has a Remote Frame to be transmitted
0 = Indicates the current MB has a Data Frame to be transmitted

LENGTH

 Length of Data in Bytes
This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset 0x8 through 0xF 
of the MB space (see Figure 274). In reception, this field is written by the FlexCAN module, copied 
from the DLC (Data Length Code) field of the received frame. In transmission, this field is written by 
the CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR=1, the 
Frame to be transmitted is a Remote Frame and does not include the data field, regardless of the 
Length field.
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TIME STAMP
Free-Running Counter Time Stamp
This 16-bit field is a copy of the Free-Running Timer, captured for Tx and Rx frames at the time 
when the beginning of the Identifier field appears on the CAN bus.

PRIO

Local priority
This 3-bit field is only used when LPRIO_EN bit is set in MCR and it only makes sense for Tx 
buffers. These bits are not transmitted. They are appended to the regular ID to define the 
transmission priority. See Section 22.5.4, Arbitration process.

ID

Frame Identifier
In Standard Frame format, only the 11 most significant bits (3 to 13) are used for frame identification 
in both receive and transmit cases. The 18 least significant bits are ignored. In Extended Frame 
format, all bits are used for frame identification in both receive and transmit cases.

DATA

Data Field
Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received 
from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the 
frame.

Table 256. Message Buffer Code for Rx buffers

Rx Code 
BEFORE

Rx New Frame
Description

Rx Code 
AFTER

Rx New Frame
Comment

0000 INACTIVE: MB is not active. —
MB does not participate in the matching 
process.

0100
EMPTY: MB is active and 
empty.

0010
MB participates in the matching process. When 
a frame is received successfully, the code is 
automatically updated to FULL.

0010 FULL: MB is full.

0010

The act of reading the C/S word followed by 
unlocking the MB does not make the code 
return to EMPTY. It remains FULL. If a new 
frame is written to the MB after the C/S word 
was read and the MB was unlocked, the code 
still remains FULL.

0110

If the MB is FULL and a new frame is 
overwritten to this MB before the CPU had time 
to read it, the code is automatically updated to 
OVERRUN. See Section 22.5.6, Matching 
process, for details about overrun behavior.

0110
OVERRUN: a frame was 
overwritten into a full buffer.

0010

If the code indicates OVERRUN but the CPU 
reads the C/S word and then unlocks the MB, 
when a new frame is written to the MB the code 
returns to FULL.

0110

If the code already indicates OVERRUN, and 
yet another new frame must be written, the MB 
will be overwritten again, and the code will 
remain OVERRUN. See Section 22.5.6, 
Matching process, for details about overrun 
behavior.

Table 255. Message Buffer Structure field description (continued)

Field Description
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22.4.3 Rx FIFO structure

When the FEN bit is set in the MCR, the memory area from 0x80 to 0xFC (which is normally 
occupied by MBs 0 to 7) is used by the reception FIFO engine. Figure 275 shows the Rx 
FIFO data structure. The region 0x80-0x8C contains an MB structure which is the port 
through which the CPU reads data from the FIFO (the oldest frame received and not read 
yet). The region 0x90–0xDC is reserved for internal use of the FIFO engine. The region 
0xE0-0xFC contains an 8-entry ID table that specifies filtering criteria for accepting frames 
into the FIFO. Figure 276 shows the three different formats that the elements of the ID table 
can assume, depending on the IDAM field of the MCR. Note that all elements of the table 

0XY1(1)
BUSY: Flexcan is updating the 
contents of the MB. The CPU 
must not access the MB.

0010
An EMPTY buffer was written with a new frame 
(XY was 01).

0110
A FULL/OVERRUN buffer was overwritten (XY 
was 11).

1. Note that for Tx MBs (see Table 257), the BUSY bit should be ignored upon read, except when AEN bit is set in the MCR 
register.

Table 257. Message Buffer Code for Tx buffers

RTR
Initial Tx 

code

Code after 
successful 

transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 —
ABORT: MB was configured as Tx and CPU aborted the 
transmission. This code is only valid when AEN bit in MCR is 
asserted. MB does not participate in the arbitration process.

0 1100 1000
Transmit data frame unconditionally once. After transmission, the 
MB automatically returns to the INACTIVE state.

1 1100 0100
Transmit remote frame unconditionally once. After transmission, 
the MB automatically becomes an Rx MB with the same ID.

0 1010 1010

Transmit a data frame whenever a remote request frame with the 
same ID is received. This MB participates simultaneously in both 
the matching and arbitration processes. The matching process 
compares the ID of the incoming remote request frame with the ID 
of the MB. If a match occurs this MB is allowed to participate in the 
current arbitration process and the Code field is automatically 
updated to ‘1110’ to allow the MB to participate in future arbitration 
runs. When the frame is eventually transmitted successfully, the 
Code automatically returns to ‘1010’ to restart the process again.

0 1110 1010

This is an intermediate code that is automatically written to the MB 
by the MBM as a result of match to a remote request frame. The 
data frame will be transmitted unconditionally once and then the 
code will automatically return to ‘1010’. The CPU can also write 
this code with the same effect.

Table 256. Message Buffer Code for Rx buffers

Rx Code 
BEFORE

Rx New Frame
Description

Rx Code 
AFTER

Rx New Frame
Comment
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must have the same format. See Section 22.5.8, Rx FIFO, for more information.

         

         

Figure 275. Rx FIFO structure
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Figure 276. ID Table 0–7
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22.4.4 Register descriptions

The FlexCAN registers are described in this section in ascending address order.

Module Configuration Register (MCR)

This register defines global system configurations, such as the module operation mode 
(e.g., low power) and maximum message buffer configuration. This register can be 
accessed at any time, however some fields must be changed only during Freeze Mode. Find 
more information in the fields descriptions ahead.

Table 258. Rx FIFO Structure field description

Field Description

REM

Remote Frame
This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.

1 = Remote Frames can be accepted and data frames are rejected
0 = Remote Frames are rejected and data frames can be accepted

EXT

Extended Frame
Specifies whether extended or standard frames are accepted into the FIFO if they match the target ID.

1 = Extended frames can be accepted and standard frames are rejected
0 = Extended frames are rejected and standard frames can be accepted

RXIDA

Rx Frame Identifier (Format A)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, only the 
11 most significant bits (3 to 13) are used for frame identification. In the extended frame format, all bits 
are used.

RXIDB_0, 
RXIDB_1

Rx Frame Identifier (Format B)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, the 11 
most significant bits (a full standard ID) (3 to 13) are used for frame identification. In the extended 
frame format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0, 
RXIDC_1, 
RXIDC_2, 
RXIDC_3

Rx Frame Identifier (Format C)
Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and extended frame 
formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.
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Figure 277. Module Configuration Register (MCR)
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Table 259. MCR field descriptions

Field Description

MDIS

Module Disable
This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the 
clocks to the CAN Protocol Interface and Message Buffer Management sub-modules. This is the 
only bit in MCR not affected by soft reset. See Section , Module Disable mode, for more 
information.

1 = Disable the FlexCAN module

0 = Enable the FlexCAN module

FRZ

Freeze Enable

The FRZ bit specifies the FlexCAN behavior when the HALT bit in the MCR Register is set or when 
Debug Mode is requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter 
Freeze Mode. Negation of this bit field causes FlexCAN to exit from Freeze Mode.

1 = Enabled to enter Freeze Mode

0 = Not enabled to enter Freeze Mode

FEN

FIFO Enable

This bit controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot 
be used for normal reception and transmission because the corresponding memory region (0x80-
0xFF) is used by the FIFO engine. See Section 22.4.3, Rx FIFO structure, and Section 22.5.8, Rx 
FIFO, for more information. This bit must be written in Freeze mode only.

1 = FIFO enabled
0 = FIFO not enabled
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HALT

Halt FlexCAN

Assertion of this bit puts the FlexCAN module into Freeze Mode. The CPU should clear it after 
initializing the Message Buffers and Control Register. No reception or transmission is performed by 
FlexCAN before this bit is cleared. While in Freeze Mode, the CPU has write access to the Error 
Counter Register, that is otherwise read-only. Freeze Mode can not be entered while FlexCAN is in 
any of the low power modes. See Section , Freeze mode, for more information.

1 = Enters Freeze Mode if the FRZ bit is asserted.
0 = No Freeze Mode request.

NOT_RDY

FlexCAN Not Ready
This read-only bit indicates that FlexCAN is in Disable Mode or Freeze Mode. It is negated once 
FlexCAN has exited these modes.
1 = FlexCAN module is in Disable Mode or Freeze Mode

0 = FlexCAN module is in Normal Mode, Listen-Only Mode or Loop-Back Mode

WAK_MSK

 Wake Up Interrupt Mask

This bit enables the Wake Up Interrupt generation.

1 = Wake Up Interrupt is enabled
0 = Wake Up Interrupt is disabled

SOFT_RST

 Soft Reset
When this bit is asserted, FlexCAN resets its internal state machines and some of the memory 
mapped registers. The following registers are reset: MCR (except the MDIS bit), TIMER, ECR, 
ESR, IMASK1, IMASK2, IFLAG1, IFLAG2. Configuration registers that control the interface to the 
CAN bus are not affected by soft reset. The following registers are unaffected: 

CTRL 

RXIMR0–RXIMR63
RXGMASK, RX14MASK, RX15MASK

all Message Buffers

The SOFT_RST bit can be asserted directly by the CPU when it writes to the MCR Register, but it 
is also asserted when global soft reset is requested at MCU level. Since soft reset is synchronous 
and has to follow a request/acknowledge procedure across clock domains, it may take some time 
to fully propagate its effect. The SOFT_RST bit remains asserted while reset is pending, and is 
automatically negated when reset completes. Therefore, software can poll this bit to know when the 
soft reset has completed. 

Soft reset cannot be applied while clocks are shut down in any of the low power modes. The 
module should be first removed from low power mode, and then soft reset can be applied.

1 = Resets the registers marked as “affected by soft reset” in Table 253

0 = No reset request

FRZ_ACK

Freeze Mode Acknowledge

This read-only bit indicates that FlexCAN is in Freeze Mode and its prescaler is stopped. The 
Freeze Mode request cannot be granted until current transmission or reception processes have 
finished. Therefore the software can poll the FRZ_ACK bit to know when FlexCAN has actually 
entered Freeze Mode. If Freeze Mode request is negated, then this bit is negated once the 
FlexCAN prescaler is running again. If Freeze Mode is requested while FlexCAN is in any of the low 
power modes, then the FRZ_ACK bit will only be set when the low power mode is exited. See 
Section , Freeze mode, for more information.

1 = FlexCAN in Freeze Mode, prescaler stopped
0 = FlexCAN not in Freeze Mode, prescaler running

Table 259. MCR field descriptions (continued)

Field Description
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SUPV

Supervisor Mode

This bit configures some of the FlexCAN registers to be either in Supervisor or Unrestricted 
memory space. The registers affected by this bit are marked as S/U in the Access Type column of 
Table 253. Reset value of this bit is ‘1’, so the affected registers start with Supervisor access 
restrictions. This bit should be written in Freeze mode only.
1 = Affected registers are in Supervisor memory space. Any access without supervisor permission 
behaves as though the access was done to an unimplemented register location
0 = Affected registers are in Unrestricted memory space

WRN_EN

Warning Interrupt Enable
When asserted, this bit enables the generation of the TWRN_INT and RWRN_INT flags in the 
Error and Status Register. If WRN_EN is negated, the TWRN_INT and RWRN_INT flags will 
always be zero, independent of the values of the error counters, and no warning interrupt will ever 
be generated. This bit must be written in Freeze mode only.

1 = TWRN_INT and RWRN_INT bits are set when the respective error counter transition from <96 
to  96.

0 = TWRN_INT and RWRN_INT bits are zero, independent of the values in the error counters.

LPM_ACK

Low Power Mode Acknowledge

This read-only bit indicates that FlexCAN is in Disable Mode. This mode cannot be entered until all 
current transmission or reception processes have finished, so the CPU can poll the LPM_ACK bit 
to know when FlexCAN has actually entered low power mode. See Section , Module Disable mode, 
for more information.

1 = FlexCAN is in Disable Mode
0 = FlexCAN not in any low-power mode

WAK_SRC

Wake Up Source
This bit defines whether the integrated low-pass filter is applied to protect the Rx CAN input from 
spurious wake up. See Section 25.5.10.3, Stop mode and Section 25.5.10.3, Stop mode for more 
information. This bit should be written in Freeze mode only.

1 = FlexCAN uses the filtered Rx input to detect recessive to dominant edges on the CAN bus
0 = FlexCAN uses the unfiltered Rx input to detect recessive to dominant edges on the CAN bus.

Note: The integrated low-pass filter may not be available in all MCUs. In case it is not available, 
the unfiltered input is always used for wake up purposes, and this bit has no effect on the 
FlexCAN operation.

SRX_DIS

Self Reception Disable

This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is 
asserted, frames transmitted by the module will not be stored in any MB, regardless if the MB is 
programmed with an ID that matches the transmitted frame, and no interrupt flag or interrupt signal 
will be generated due to the frame reception. This bit must be written in Freeze mode only.
1 = Self reception disabled

0 = Self reception enabled

Table 259. MCR field descriptions (continued)

Field Description
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BCC

 Backwards Compatibility Configuration

This bit is provided to support Backwards Compatibility with previous FlexCAN versions. When this 
bit is negated, the following configuration is applied:

For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID 
masking per MB, FlexCAN uses its previous masking scheme with RXGMASK, RX14MASK and 
RX15MASK.

The reception queue feature is disabled. Upon receiving a message, if the first MB with a matching 
ID that is found is still occupied by a previous unread message, FlexCAN will not look for another 
matching MB. It will override this MB with the new message and set the CODE field to ‘0110’ 
(overrun).

Upon reset this bit is negated, allowing legacy software to work without modification. This bit must 
be written in Freeze mode only.

1 = Individual Rx masking and queue feature are enabled.
0 = Individual Rx masking and queue feature are disabled.

LPRIO_EN

Local Priority Enable
This bit is provided for backwards compatibility reasons. It controls whether the local priority feature 
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended 
ID concept, the arbitration process is done based on the full 32-bit word, but the actual transmitted 
ID still has 11-bit for standard frames and 29-bit for extended frames. This bit must be written in 
Freeze mode only.
1 = Local Priority enabled

0 = Local Priority disabled

AEN

Abort Enable

This bit is supplied for backwards compatibility reasons. When asserted, it enables the Tx abort 
feature. This feature guarantees a safe procedure for aborting a pending transmission, so that no 
frame is sent in the CAN bus without notification. This bit must be written in Freeze mode only.
1 = Abort enabled

0 = Abort disabled

IDAM

ID Acceptance Mode

This 2-bit field identifies the format of the elements of the Rx FIFO filter table, as shown in 
Table 260. Note that all elements of the table are configured at the same time by this field (they are 
all the same format). See Section 22.4.3, Rx FIFO structure. This bit must be written in Freeze 
mode only.

MAXMB

Maximum Number of Message Buffers

This 6-bit field defines the maximum number of message buffers that will take part in the matching 
and arbitration processes. The reset value (0x0F) is equivalent to 16 MB configuration. This field 
must be changed only while the module is in Freeze Mode.

Maximum MBs in use = MAXMB + 1.

Note: MAXMB must be programmed with a value smaller or equal to the number of available 
Message Buffers, otherwise FlexCAN can transmit and receive wrong messages.

Table 259. MCR field descriptions (continued)

Field Description
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Control Register (CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such 
as bit-rate, programmable sampling point within an Rx bit, Loop Back Mode, Listen Only 
Mode, Bus Off recovery behavior and interrupt enabling (Bus-Off, Error, Warning). It also 
determines the Division Factor for the clock prescaler. Most of the fields in this register 
should only be changed while the module is in Disable Mode or in Freeze Mode. Exceptions 
are the BOFF_MSK, ERR_MSK, TWRN_MSK, RWRN_MSK and BOFF_REC bits, that can 
be accessed at any time.

         

Table 260. IDAM coding

IDAM Format Explanation

0b00 A One full ID (standard or extended) per filter element.

0b01 B Two full standard IDs or two partial 14-bit extended IDs per filter element.

0b10 C Four partial 8-bit IDs (standard or extended) per filter element.

0b11 D All frames rejected.

Figure 278. Control Register (CTRL)
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Table 261. CTRL field descriptions

Field Description

PRESDIV

Prescaler Division Factor

This 8-bit field defines the ratio between the CPI clock frequency and the Serial Clock (Sclock) 
frequency. The Sclock period defines the time quantum of the CAN protocol. For the reset value, the 
Sclock frequency is equal to the CPI clock frequency. The Maximum value of this register is 0xFF, 
that gives a minimum Sclock frequency equal to the CPI clock frequency divided by 256. For more 
information refer to Section , Protocol Timing. This bit must be written in Freeze mode only.

Sclock frequency = CPI clock frequency / (PRESDIV + 1)

RJW

Resync Jump Width

This 2-bit field defines the maximum number of time quanta(1) that a bit time can be changed by one 
re-synchronization. The valid programmable values are 0–3. This bit must be written in Freeze mode 
only.
Resync Jump Width = RJW + 1.

PSEG1

Phase Segment 1
This 3-bit field defines the length of Phase Buffer Segment 1 in the bit time. The valid programmable 
values are 0–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 1 = (PSEG1 + 1) x Time-Quanta.

PSEG2

Phase Segment 2
This 3-bit field defines the length of Phase Buffer Segment 2 in the bit time. The valid programmable 
values are 1–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 2 = (PSEG2 + 1) x Time-Quanta.

BOFF_MSK

Bus Off Mask
This bit provides a mask for the Bus Off Interrupt.

1 = Bus Off interrupt enabled

0 = Bus Off interrupt disabled

ERR_MSK

Error Mask

This bit provides a mask for the Error Interrupt.
1 = Error interrupt enabled

0 = Error interrupt disabled

CLK_SRC

CAN Engine Clock Source

This bit selects the clock source to the CAN Protocol Interface (CPI) to be either the peripheral clock 
(driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the prescaler to 
generate the Serial Clock (Sclock). In order to guarantee reliable operation, this bit must only be 
changed while the module is in Disable Mode. See Section , Protocol Timing, for more information.

1 = The CAN engine clock source is the bus clock

0 = The CAN engine clock source is the oscillator clock

Note: This clock selection feature may not be available in all MCUs. A particular MCU may not have 
a PLL, in which case it would have only the oscillator clock, or it may use only the PLL clock 
feeding the FlexCAN module. In these cases, this bit has no effect on the module operation. 
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TWRN_MSK

Tx Warning Interrupt Mask

This bit provides a mask for the Tx Warning Interrupt associated with the TWRN_INT flag in the Error 
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as 
zero when WRN_EN is negated.

1 = Tx Warning Interrupt enabled

0 = Tx Warning Interrupt disabled

RWRN_MSK

Rx Warning Interrupt Mask

This bit provides a mask for the Rx Warning Interrupt associated with the RWRN_INT flag in the Error 
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as 
zero when WRN_EN is negated.

1 = Rx Warning Interrupt enabled

0 = Rx Warning Interrupt disabled

LPB

Loop Back

This bit configures FlexCAN to operate in Loop-Back Mode. In this mode, FlexCAN performs an 
internal loop back that can be used for self test operation. The bit stream output of the transmitter is 
fed back internally to the receiver input. The Rx CAN input pin is ignored and the Tx CAN output goes 
to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when transmitting, and treats 
its own transmitted message as a message received from a remote node. In this mode, FlexCAN 
ignores the bit sent during the ACK slot in the CAN frame acknowledge field, generating an internal 
acknowledge bit to ensure proper reception of its own message. Both transmit and receive interrupts 
are generated. This bit must be written in Freeze mode only.

1 = Loop Back enabled
0 = Loop Back disabled

SMP

Sampling Mode
This bit defines the sampling mode of CAN bits at the Rx input. This bit must be written in Freeze 
mode only.
1 = Three samples are used to determine the value of the received bit: the regular one (sample point) 
and 2 preceding samples, a majority rule is used
0 = Just one sample is used to determine the bit value

BOFF_REC

Bus Off Recovery Mode
This bit defines how FlexCAN recovers from Bus Off state. If this bit is negated, automatic recovering 
from Bus Off state occurs according to the CAN Specification 2.0B. If the bit is asserted, automatic 
recovering from Bus Off is disabled and the module remains in Bus Off state until the bit is negated 
by the user. If the negation occurs before 128 sequences of 11 recessive bits are detected on the 
CAN bus, then Bus Off recovery happens as if the BOFF_REC bit had never been asserted. If the 
negation occurs after 128 sequences of 11 recessive bits occurred, then FlexCAN will re-synchronize 
to the bus by waiting for 11 recessive bits before joining the bus. After negation, the BOFF_REC bit 
can be re-asserted again during Bus Off, but it will only be effective the next time the module enters 
Bus Off. If BOFF_REC was negated when the module entered Bus Off, asserting it during Bus Off 
will not be effective for the current Bus Off recovery.
1 = Automatic recovering from Bus Off state disabled

0 = Automatic recovering from Bus Off state enabled, according to CAN Spec 2.0 part B

Table 261. CTRL field descriptions (continued)

Field Description
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Free Running Timer (TIMER)

This register represents a 16-bit free running counter that can be read and written by the 
CPU. 

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus). 
During a message transmission/reception, it increments by one for each bit that is received 
or transmitted. When there is no message on the bus, it counts using the previously 
programmed baud rate. During Freeze Mode, the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN 
bus. This captured value is written into the Time Stamp entry in a message buffer after a 
successful reception or transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register 
and then an internal request/acknowledge procedure across clock domains is executed. All 
this is transparent to the user, except for the fact that the data will take some time to be 
actually written to the register. If desired, software can poll the register to discover when the 
data was actually written.

TSYN

Timer Sync Mode

This bit enables a mechanism that resets the free-running timer each time a message is received in 
Message Buffer 0. This feature provides means to synchronize multiple FlexCAN stations with a 
special “SYNC” message (i.e., global network time). If the FEN bit in MCR is set (FIFO enabled), 
MB8 is used for timer synchronization instead of MB0. This bit must be written in Freeze mode only.
1 = Timer Sync feature enabled

0 = Timer Sync feature disabled

LBUF

Lowest Buffer Transmitted First 

This bit defines the ordering mechanism for Message Buffer transmission. When asserted, the 
LPRIO_EN bit does not affect the priority arbitration. This bit must be written in Freeze mode only.

1 = Lowest number buffer is transmitted first

0 = Buffer with highest priority is transmitted first

LOM

Listen-Only Mode

This bit configures FlexCAN to operate in Listen Only Mode. In this mode, transmission is disabled, 
all error counters are frozen and the module operates in a CAN Error Passive mode [Ref. 1]. Only 
messages acknowledged by another CAN station will be received. If FlexCAN detects a message 
that has not been acknowledged, it will flag a BIT0 error (without changing the REC), as if it was 
trying to acknowledge the message. This bit must be written in Freeze mode only.

1 = FlexCAN module operates in Listen Only Mode
0 = Listen Only Mode is deactivated

PROPSEG

Propagation Segment
This 3-bit field defines the length of the Propagation Segment in the bit time. The valid programmable 
values are 0–7. This bit must be written in Freeze mode only.
Propagation Segment Time = (PROPSEG + 1) * Time-Quanta.

Time-Quantum = one Sclock period.

1. One time quantum is equal to the Sclock period.

Table 261. CTRL field descriptions (continued)

Field Description
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Rx Global Mask (RXGMASK)

This register is provided for legacy support and for low cost MCUs that do not have the 
individual masking per Message Buffer feature. For MCUs supporting individual masks per 
MB, setting the BCC bit in MCR causes the RXGMASK Register to have no effect on the 
module operation. For MCUs not supporting individual masks per MB, this register is always 
effective.

RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have 
individual mask registers. When the FEN bit in MCR is set (FIFO enabled), the RXGMASK 
also applies to all elements of the ID filter table, except elements 6–7, which have individual 
masks.

See Section 22.5.8, Rx FIFO, for important details on usage of RXGMASK on filtering 
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and 
must not be modified when the module is transmitting or receiving frames.

During CAN messages reception by FlexCAN, the RXGMASK (Rx Global Mask) is used as 
acceptance mask for most of the Rx Message Buffers (MB). When the FIFO Enable bit in 
the FlexCAN Module Configuration Register (CANx_MCR[FEN], bit 2) is set, the RXGMASK 
also applies to most of the elements of the ID filter table. However there is a misalignment 
between the position of the ID field in the Rx MB and in RXIDA, RXIDB and RXIDC fields of 
the ID Tables. In fact RXIDA filter in the ID Tables is shifted one bit to the left from Rx MBs ID 
position as shown below:

● Rx MB ID = bits 3–31 of ID word corresponding to message ID bits 0–28

● RXIDA = bits 2–30 of ID Table corresponding to message ID bits 0–28

Figure 279. Free Running Timer (TIMER)

Offset: 0x0008 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 262. TIMER field descriptions

Field Description

TIMER
Free-running timer counter. The timer starts from 0x0000 after reset, counts linearly to 0xFFFF, and 
wraps around.
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The mask bits one-to-one correspondence occurs with the filters bits, not with the incoming 
message ID bits. This leads the RXGMASK to affect Rx MB and Rx FIFO filtering in different 
ways.

For example, if the user intends to mask out the bit 24 of the ID filter of Message Buffers 
then the RXGMASK will be configured as 0xffff_ffef. As result, bit 24 of the ID field of the 
incoming message will be ignored during filtering process for Message Buffers. This very 
same configuration of RXGMASK would lead bit 24 of RXIDA to be "don`t care" and thus bit 
25 of the ID field of the incoming message would be ignored during filtering process for Rx 
FIFO.

Similarly, both RXIDB and RXIDC filters have multiple misalignments with regards to 
position of ID field in Rx MBs, which can lead to erroneous masking during filtering process 
for either Rx FIFO or MBs.

RX14MASK (Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as the 
RXGMASK. This includes the misalignment problem between the position of the ID field in 
the Rx MBs and in RXIDA, RXIDB and RXIDC fields of the ID Tables. 

Therefore it is recommended that one of the following actions be taken to avoid problems:

● Do not enable the RxFIFO. If CANx_MCR[FEN]=0 then the Rx FIFO is disabled and 
thus the masks RXGMASK, RX14MASK and RX15MASK do not affect it.

● Enable Rx Individual Mask Registers. If the Backwards Compatibility Configuration bit 
in the FlexCAN Module Configuration Register (CANx_MCR[BCC], bit 15) is set then 
the Rx Individual Mask Registers (RXIMR0–63) are enabled and thus the masks 
RXGMASK, RX14MASK and RX15MASK are not used.

● Do not use masks RXGMASK, RX14MASK and RX15MASK (i.e., let them in reset 
value which is 0xffff_ffff) when CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this 
case, filtering processes for both Rx MBs and Rx FIFO are not affected by those 
masks.

● Do not configure any MB as Rx (i.e., let all MBs as either Tx or inactive) when 
CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, the masks RXGMASK, 
RX14MASK and RX15MASK can be used to affect ID Tables without affecting filtering 
process for Rx MBs.

         

Figure 280. Rx Global Mask Register (RXGMASK)

Offset: 0x0010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Rx 14 Mask (RX14MASK)

This register is provided for legacy support and for low cost MCUs that do not have the 
individual masking per Message Buffer feature. For MCUs supporting individual masks per 
MB, setting the BCC bit in MCR causes the RX14MASK Register to have no effect on the 
module operation.

RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the 
FEN bit in MCR is set (FIFO enabled), the RXG14MASK also applies to element 6 of the ID 
filter table. This register has the same structure as the Rx Global Mask Register.

See Section 22.5.8, Rx FIFO, for important details on usage of RX14MASK on filtering 
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and 
must not be modified when the module is transmitting or receiving frames.

● Address Offset: 0x14

● Reset Value: 0xFFFF_FFFF

Rx 15 Mask (RX15MASK)

This register is provided for legacy support and for low cost MCUs that do not have the 
individual masking per Message Buffer feature. For MCUs supporting individual masks per 
MB, setting the BCC bit in MCR causes the RX15MASK Register to have no effect on the 
module operation.

When the BCC bit is negated, RX15MASK is used as acceptance mask for the Identifier in 
Message Buffer 15. When the FEN bit in MCR is set (FIFO enabled), the RXG15MASK also 
applies to element 7 of the ID filter table. This register has the same structure as the Rx 
Global Mask Register.

Refer to Section 22.5.8, Rx FIFO, for important details on usage of RX15MASK on filtering 
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and 
must not be modified when the module is transmitting or receiving frames.

● Address Offset: 0x18

● Reset Value: 0xFFFF_FFFF

Error Counter Register (ECR)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: Transmit 
Error Counter (TX_ERR_COUNTER field) and Receive Error Counter 
(RX_ERR_COUNTER field). The rules for increasing and decreasing these counters are 

Table 263. RXGMASK field descriptions

Field Description

MIn

Mask Bits

For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx 
FIFO, the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).

1 = The corresponding bit in the filter is checked against the one received

0 = The corresponding bit in the filter is “don’t care”
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described in the CAN protocol and are completely implemented in the FlexCAN module. 
Both counters are read only except in Freeze Mode, where they can be written by the CPU.

Writing to the Error Counter Register while in Freeze Mode is an indirect operation. The data 
is first written to an auxiliary register and then an internal request/acknowledge procedure 
across clock domains is executed. All this is transparent to the user, except for the fact that 
the data will take some time to be actually written to the register. If desired, software can poll 
the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol, e.g., transmit ‘Error Active’ 
or ‘Error Passive’ flag, delay its transmission start time (‘Error Passive’) and avoid any 
influence on the bus when in ‘Bus Off’ state. The following are the basic rules for FlexCAN 
bus state transitions.

● If the value of TX_ERR_COUNTER or RX_ERR_COUNTER increases to be greater 
than or equal to 128, the FLT_CONF field in the Error and Status Register is updated to 
reflect ‘Error Passive’ state. 

● If the FlexCAN state is ‘Error Passive’, and either TX_ERR_COUNTER or 
RX_ERR_COUNTER decrements to a value less than or equal to 127 while the other 
already satisfies this condition, the FLT_CONF field in the Error and Status Register is 
updated to reflect ‘Error Active’ state.

● If the value of TX_ERR_COUNTER increases to be greater than 255, the FLT_CONF 
field in the Error and Status Register is updated to reflect ‘Bus Off’ state, and an 
interrupt may be issued. The value of TX_ERR_COUNTER is then reset to zero.

● If FlexCAN is in ‘Bus Off’ state, then Tx_Err_Counter is cascaded together with another 
internal counter to count the 128th occurrences of 11 consecutive recessive bits on the 
bus. Hence, TX_ERR_COUNTER is reset to zero and counts in a manner where the 
internal counter counts 11 such bits and then wraps around while incrementing the 
TX_ERR_COUNTER. When TX_ERR_COUNTER reaches the value of 128, the 
FLT_CONF field in the Error and Status Register is updated to be ‘Error Active’ and 
both error counters are reset to zero. At any instance of dominant bit following a stream 
of less than 11 consecutive recessive bits, the internal counter resets itself to zero 
without affecting the TX_ERR_COUNTER value.

● If during system start-up, only one node is operating, then its TX_ERR_COUNTER 
increases in each message it is trying to transmit, as a result of acknowledge errors 
(indicated by the ACK_ERR bit in the Error and Status Register). After the transition to 
‘Error Passive’ state, the TX_ERR_COUNTER does not increment anymore by 
acknowledge errors. Therefore the device never goes to the ‘Bus Off’ state.

● If the RX_ERR_COUNTER increases to a value greater than 127, it is not incremented 
further, even if more errors are detected while being a receiver. At the next successful 
message reception, the counter is set to a value between 119 and 127 to resume to 
‘Error Active’ state.
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Error and Status Register (ESR)

This register reflects various error conditions, some general status of the device and it is the 
source of four interrupts to the CPU. The reported error conditions (bits 16–21) are those 
that occurred since the last time the CPU read this register. The CPU read action clears bits 
16–23. Bits 22–28 are status bits.

Most bits in this register are read only, except TWRN_INT, RWRN_INT, BOFF_INT, and 
ERR_INT, that are interrupt flags that can be cleared by writing ‘1’ to them (writing ‘0’ has no 
effect). See Section 22.5.11, Interrupts, for more details.

Figure 281. Error Counter Register (ECR)

Offset: 0x001C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RX_ERR_COUNTER TX_ERR_COUNTER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 264. ECR field descriptions

Field Description

RX_ERROR_
COUNTER

Receive Error Counter. See the text of this section for a detailed description of this field and 
how it interacts with TX_ERROR_COUNTER.

TX_ERROR_
COUNTER

Transmit Error Counter. See the text of this section for a detailed description of this field and 
how it interacts with RX_ERROR_COUNTER.
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Figure 282. Error and Status Register (ESR)

Offset: 0x0020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 265. ESR field descriptions

Field Description

TWRN_INT

TWRN_INT — Tx Warning Interrupt Flag

If the WRN_EN bit in MCR is asserted, the TWRN_INT bit is set when the TX_WRN flag transition 
from ‘0’ to ‘1’, meaning that the Tx error counter reached 96. If the corresponding mask bit in the 
Control Register (TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by 
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Tx error counter transition from < 96 to  96
0 = No such occurrence

RWRN_INT

RWRN_INT — Rx Warning Interrupt Flag

If the WRN_EN bit in MCR is asserted, the RWRN_INT bit is set when the RX_WRN flag transition 
from ‘0’ to ‘1’, meaning that the Rx error counters reached 96. If the corresponding mask bit in the 
Control Register (RWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by 
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Rx error counter transition from < 96 to  96
0 = No such occurrence

BIT1_ERR

BIT1_ERR — Bit1 Error

This bit indicates when an inconsistency occurs between the transmitted and the received bit in a 
message. 

1 = At least one bit sent as recessive is received as dominant
0 = No such occurrence

Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node 
sending a passive error flag that detects dominant bits.
Doc ID 16886 Rev 6 514/868



FlexCAN RM0045
BIT0_ERR

BIT0_ERR — Bit0 Error

This bit indicates when an inconsistency occurs between the transmitted and the received bit in a 
message.

1 = At least one bit sent as dominant is received as recessive
0 = No such occurrence

ACK_ERR

ACK_ERR — Acknowledge Error

This bit indicates that an Acknowledge Error has been detected by the transmitter node, i.e., a 
dominant bit has not been detected during the ACK SLOT.

1 = An ACK error occurred since last read of this register
0 = No such occurrence

CRC_ERR

CRC_ERR — Cyclic Redundancy Check Error
This bit indicates that a CRC Error has been detected by the receiver node, i.e., the calculated CRC 
is different from the received.
1 = A CRC error occurred since last read of this register.
0 = No such occurrence

FRM_ERR

FRM_ERR — Form Error

This bit indicates that a Form Error has been detected by the receiver node, i.e., a fixed-form bit 
field contains at least one illegal bit.

1 = A Form Error occurred since last read of this register
0 = No such occurrence

STF_ERR

STF_ERR — Stuffing Error

This bit indicates that a Stuffing Error has been detected.

1 = A Stuffing Error occurred since last read of this register.
0 = No such occurrence.

TX_WRN

TX Error Warning

This bit indicates when repetitive errors are occurring during message transmission. 

1 = TX_Err_Counter  96
0 = No such occurrence

RX_WRN

Rx Error Counter
This bit indicates when repetitive errors are occurring during message reception. 

1 = Rx_Err_Counter 96

0 = No such occurrence

IDLE

CAN bus IDLE state

This bit indicates when CAN bus is in IDLE state.

1 = CAN bus is now IDLE
0 = No such occurrence

TXRX

Current FlexCAN status (transmitting/receiving)

This bit indicates if FlexCAN is transmitting or receiving a message when the CAN bus is not in 
IDLE state. This bit has no meaning when IDLE is asserted.

1 = FlexCAN is transmitting a message (IDLE=0)
0 = FlexCAN is receiving a message (IDLE=0)

Table 265. ESR field descriptions (continued)

Field Description
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Interrupt Masks 2 Register (IMASK2)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or 
disabled. It contains one interrupt mask bit per buffer, enabling the CPU to determine which 
buffer generates an interrupt after a successful transmission or reception (i.e., when the 
corresponding IFLAG2 bit is set).

FLT_CONF

Fault Confinement State

This 2-bit field indicates the Confinement State of the FlexCAN module, as shown in Table 266. If 
the LOM bit in the Control Register is asserted, the FLT_CONF field will indicate “Error Passive”. 
Since the Control Register is not affected by soft reset, the FLT_CONF field will not be affected by 
soft reset if the LOM bit is asserted.

BOFF_INT

‘Bus Off’ Interrupt

This bit is set when FlexCAN enters ‘Bus Off’ state. If the corresponding mask bit in the Control 
Register (BOFF_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to 
‘1’. Writing ‘0’ has no effect.

1 = FlexCAN module entered ‘Bus Off’ state
0 = No such occurrence

ERR_INT

Error Interrupt
This bit indicates that at least one of the Error Bits (bits 16-21) is set. If the corresponding mask bit 
in the Control Register (ERR_MSK) is set, an interrupt is generated to the CPU. This bit is cleared 
by writing it to ‘1’.Writing ‘0’ has no effect.

1 = Indicates setting of any Error Bit in the Error and Status Register
0 = No such occurrence

Table 266. Fault confinement state

Value Meaning

00 Error Active

01 Error Passive

1X Bus Off

Table 265. ESR field descriptions (continued)

Field Description
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Interrupt Masks 1 Register (IMASK1)

This register allows to enable or disable any number of a range of 32 Message Buffer 
Interrupts. It contains one interrupt mask bit per buffer, enabling the CPU to determine which 
buffer generates an interrupt after a successful transmission or reception (i.e., when the 
corresponding IFLAG1 bit is set).

Figure 283. Interrupt Masks 2 Register (IMASK2)

Offset: 0x0024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 267. MASK2 field descriptions

Field Description

BUFnM

Buffer MBn Mask

Each bit enables or disables the respective FlexCAN Message Buffer (MB32 to MB63) 
Interrupt.

1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK2 Register can assert or negate an interrupt 
request, if the corresponding IFLAG2 bit is set.
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Interrupt Flags 2 Register (IFLAG2)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag 
bit per buffer. Each successful transmission or reception sets the corresponding IFLAG2 bit. 
If the corresponding IMASK2 bit is set, an interrupt will be generated. The interrupt flag must 
be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in the MCR is set (Abort enabled), while the IFLAG2 bit is set for a MB 
configured as Tx, the writing access done by CPU into the corresponding MB will be 
blocked.

Figure 284. Interrupt Masks 1 Register (IMASK1)
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Table 268. IMASK1 field descriptions

Field Description

BUFnM

Buffer MBn Mask

Each bit enables or disables the respective FlexCAN Message Buffer (MB0 to MB31) 
Interrupt.

1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK1 Register can assert or negate an interrupt 
request, if the corresponding IFLAG1 bit is set.
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Interrupt Flags 1 Register (IFLAG1)

This register defines the flags for 32 Message Buffer interrupts and FIFO interrupts. It 
contains one interrupt flag bit per buffer. Each successful transmission or reception sets the 
corresponding IFLAG1 bit. If the corresponding IMASK1 bit is set, an interrupt will be 
generated. The Interrupt flag must be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the MCR[AEN] bit is set (Abort enabled), while the IFLAG1 bit is set for a MB 
configured as Tx, the writing access done by CPU into the corresponding MB will be 
blocked.

When the MCR[FEN] bit is set (FIFO enabled), the function of the 8 least significant interrupt 
flags (BUF7I - BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I 
indicate operating conditions of the FIFO, while BUF4I to BUF0I are not used.

Figure 285. Interrupt Flags 2 Register (IFLAG2)
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Table 269. IFLAG2 field descriptions

Field Description

BUFnI

Buffer MBn Interrupt

Each bit flags the respective FlexCAN Message Buffer (MB32 to MB63) interrupt.
1 = The corresponding buffer has successfully completed transmission or reception
0 = No such occurrence
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Figure 286. Interrupt Flags 1 Register (IFLAG1)
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Table 270. IFLAG1 field descriptions

Field Description

BUF31I–BUF8I

Buffer MBn Interrupt

Each bit flags the respective FlexCAN Message Buffer (MB8 to MB31) interrupt.
1 = The corresponding MB has successfully completed transmission or reception
0 = No such occurrence

BUF7I

Buffer MB7 Interrupt or “FIFO Overflow”

If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this 
flag indicates an overflow condition in the FIFO (frame lost because FIFO is full).

1 = MB7 completed transmission/reception or FIFO overflow
0 = No such occurrence

BUF6I

Buffer MB6 Interrupt or “FIFO Warning”

If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this 
flag indicates that 5 out of 6 buffers of the FIFO are already occupied (FIFO almost full).

1 = MB6 completed transmission/reception or FIFO almost full
0 = No such occurrence

BUF5I

Buffer MB5 Interrupt or “Frames available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this 
flag indicates that at least one frame is available to be read from the FIFO.

1 = MB5 completed transmission/reception or frames available in the FIFO
0 = No such occurrence

BUF4I–BUF0I

Buffer MBi Interrupt or “reserved”

If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is 
enabled, these flags are not used and must be considered as reserved locations.

1 = Corresponding MB completed transmission/reception
0 = No such occurrence
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22.5 Functional description

22.5.1 Overview

The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for 
transmitting and receiving CAN frames. The mailbox system is composed by a set of up to 
64 Message Buffers (MB) that store configuration and control data, time stamp, message ID 
and data (see Section 22.4.2, Message Buffer Structure). The memory corresponding to the 
first 8 MBs can be configured to support a FIFO reception scheme with a powerful ID 
filtering mechanism, capable of checking incoming frames against a table of IDs (up to 8 
extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its own individual mask 
register. Simultaneous reception through FIFO and mailbox is supported. For mailbox 
reception, a matching algorithm makes it possible to store received frames only into MBs 
that have the same ID programmed on its ID field. A masking scheme makes it possible to 
match the ID programmed on the MB with a range of IDs on received CAN frames. For 
transmission, an arbitration algorithm decides the prioritization of MBs to be transmitted 
based on the message ID (optionally augmented by 3 local priority bits) or the MB ordering.

Before proceeding with the functional description, an important concept must be explained. 
A Message Buffer is said to be “active” at a given time if it can participate in the matching 
and arbitration algorithms that are happening at that time. An Rx MB with a ‘0000’ code is 
inactive (refer to Table 256). Similarly, a Tx MB with a ‘1000’ or ‘1001’ code is also inactive 
(refer to Table 257). An MB not programmed with ‘0000’, ‘1000’ or ‘1001’ will be temporarily 
deactivated (will not participate in the current arbitration or matching run) when the CPU 
writes to the C/S field of that MB (see Section , Message Buffer Deactivation).

22.5.2 Local Priority Transmission

The term local priority refers to the priority of transmit messages of the host node. This 
allows increased control over the priority mechanism for transmitting messages. Figure 274 
shows the placement of PRIO in the ID part of the message buffer.

An additional 3-bit field (PRIO) in the long-word ID part of the message buffer structure has 
been added for local priority determination. They are prefixed to the regular ID to define the 
transmission priority. These bits are not transmitted and are intended only for Tx buffers.

Perform the following to use the local priority feature:

1. Set the LPRIO_EN bit in the CANx_MCR.

2. Write the additional PRIO bits in the ID long-word of Tx message buffers when 
configuring the Tx buffers.

With this extended ID concept, the arbitration process is based on the full 32-bit word. 
However, the actual transmitted ID continues to have 11 bits for standard frames and 29 bits 
for extended frames.

22.5.3 Transmit process

In order to transmit a CAN frame, the CPU must prepare a Message Buffer for transmission 
by executing the following procedure:

1. If the MB is active (transmission pending), write an ABORT code (‘1001’) to the Code 
field of the Control and Status word to request an abortion of the transmission, then 
read back the Code field and the IFLAG register to check if the transmission was 
aborted (see Section , Transmission Abort Mechanism). If backwards compatibility is 
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desired (AEN in MCR negated), just write ‘1000’ to the Code field to inactivate the MB 
but then the pending frame may be transmitted without notification (see Section , 
Message Buffer Deactivation).

2. Write the ID word.

3. Write the data bytes.

4. Write the Length, Control and Code fields of the Control and Status word to activate the 
MB.

Once the MB is activated in the fourth step, it will participate into the arbitration process and 
eventually be transmitted according to its priority. At the end of the successful transmission, 
the value of the Free Running Timer is written into the Time Stamp field, the Code field in 
the Control and Status word is updated, a status flag is set in the Interrupt Flag Register and 
an interrupt is generated if allowed by the corresponding Interrupt Mask Register bit. The 
new Code field after transmission depends on the code that was used to activate the MB in 
step four (see Table 256 and Table 257 in Section 22.4.2, Message Buffer Structure). When 
the Abort feature is enabled (AEN in MCR is asserted), after the Interrupt Flag is asserted 
for a MB configured as transmit buffer, the MB is blocked, therefore the CPU is not able to 
update it until the Interrupt Flag be negated by CPU. It means that the CPU must clear the 
corresponding IFLAG before starting to prepare this MB for a new transmission or reception.

22.5.4 Arbitration process

The arbitration process is an algorithm executed by the MBM that scans the whole MB 
memory looking for the highest priority message to be transmitted. All MBs programmed as 
transmit buffers will be scanned to find the lowest ID(q) or the lowest MB number or the 
highest priority, depending on the LBUF and LPRIO_EN bits on the Control Register. The 
arbitration process is triggered in the following events:

● During the CRC field of the CAN frame

● During the error delimiter field of the CAN frame

● During Intermission, if the winner MB defined in a previous arbitration was deactivated, 
or if there was no MB to transmit, but the CPU wrote to the C/S word of any MB after 
the previous arbitration finished

● When MBM is in Idle or Bus Off state and the CPU writes to the C/S word of any MB

● Upon leaving Freeze Mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is 
transmitted first. When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is 
transmitted first but. If LBUF is negated and LPRIO_EN is asserted, the PRIO bits augment 
the ID used during the arbitration process. With this extended ID concept, arbitration is done 
based on the full 32-bit ID and the PRIO bits define which MB should be transmitted first, 
therefore MBs with PRIO = 000 have higher priority. If two or more MBs have the same 
priority, the regular ID will determine the priority of transmission. If two or more MBs have 
the same priority (3 extra bits) and the same regular ID, the lowest MB will be transmitted 
first.

Once the highest priority MB is selected, it is transferred to a temporary storage space 
called Serial Message Buffer (SMB), which has the same structure as a normal MB but is 
not user accessible. This operation is called “move-out” and after it is done, write access to 

q. Actually, if LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed 
inside the ID at the same positions they are transmitted in the CAN frame.
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the corresponding MB is blocked (if the AEN bit in MCR is asserted). The write access is 
released in the following events:

● After the MB is transmitted

● FlexCAN enters in HALT or BUS OFF

● FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted 
according to the CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the 
DLC (Data Length Code) value is bigger.

22.5.5 Receive process

To be able to receive CAN frames into the mailbox MBs, the CPU must prepare one or more 
Message Buffers for reception by executing the following steps:

1. If the MB has a pending transmission, write an ABORT code (‘1001’) to the Code field 
of the Control and Status word to request an abortion of the transmission, then read 
back the Code field and the IFLAG register to check if the transmission was aborted 
(see Section , Transmission Abort Mechanism). If backwards compatibility is desired 
(AEN in MCR negated), just write ‘1000’ to the Code field to inactivate the MB, but then 
the pending frame may be transmitted without notification (see Section , Message 
Buffer Deactivation). If the MB already programmed as a receiver, just write ‘0000’ to 
the Code field of the Control and Status word to keep the MB inactive.

2. Write the ID word

3. Write ‘0100’ to the Code field of the Control and Status word to activate the MB

Once the MB is activated in the third step, it will be able to receive frames that match the 
programmed ID. At the end of a successful reception, the MB is updated by the MBM as 
follows:

● The value of the Free Running Timer is written into the Time Stamp field

● The received ID, Data (8 bytes at most) and Length fields are stored

● The Code field in the Control and Status word is updated (see Table 256 and Table 257 
in Section 22.4.2, Message Buffer Structure)

● A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed 
by the corresponding Interrupt Mask Register bit

Upon receiving the MB interrupt, the CPU should service the received frame using the 
following procedure:

1. Read the Control and Status word (mandatory – activates an internal lock for this 
buffer)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the 
CPU should defer the access to the MB until this bit is negated. Reading the Free Running 
Timer is not mandatory. If not executed the MB remains locked, unless the CPU reads the 
C/S word of another MB. Note that only a single MB is locked at a time. The only mandatory 
CPU read operation is the one on the Control and Status word to assure data coherency 
(see Section 22.5.7, Data coherence).
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The CPU should synchronize to frame reception by the status flag bit for the specific MB in 
one of the IFLAG Registers and not by the Code field of that MB. Polling the Code field does 
not work because once a frame was received and the CPU services the MB (by reading the 
C/S word followed by unlocking the MB), the Code field will not return to EMPTY. It will 
remain FULL, as explained in Table 256. If the CPU tries to workaround this behavior by 
writing to the C/S word to force an EMPTY code after reading the MB, the MB is actually 
deactivated from any currently ongoing matching process. As a result, a newly received 
frame matching the ID of that MB may be lost. In summary: never do polling by reading 
directly the C/S word of the MBs. Instead, read the IFLAG registers.

Note that the received ID field is always stored in the matching MB, thus the contents of the 
ID field in an MB may change if the match was due to masking. Note also that FlexCAN 
does receive frames transmitted by itself if there exists an Rx matching MB, provided the 
SRX_DIS bit in the MCR is not asserted. If SRX_DIS is asserted, FlexCAN will not store 
frames transmitted by itself in any MB, even if it contains a matching MB, and no interrupt 
flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the 
FIFO during Freeze Mode (see Section 22.5.8, Rx FIFO). Upon receiving the frames 
available interrupt from FIFO, the CPU should service the received frame using the following 
procedure:

1. Read the Control and Status word (optional – needed only if a mask was used for IDE 
and RTR bits)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Clear the frames available interrupt (mandatory – release the buffer and allow the CPU 
to read the next FIFO entry)

22.5.6 Matching process

The matching process is an algorithm executed by the MBM that scans the MB memory 
looking for Rx MBs programmed with the same ID as the one received from the CAN bus. If 
the FIFO is enabled, the 8-entry ID table from FIFO is scanned first and then, if a match is 
not found within the FIFO table, the other MBs are scanned. In the event that the FIFO is full, 
the matching algorithm will always look for a matching MB outside the FIFO region.

When the frame is received, it is temporarily stored in a hidden auxiliary MB called Serial 
Message Buffer (SMB). The matching process takes place during the CRC field of the 
received frame. If a matching ID is found in the FIFO table or in one of the regular MBs, the 
contents of the SMB will be transferred to the FIFO or to the matched MB during the 6th bit 
of the End-Of-Frame field of the CAN protocol. This operation is called “move-in”. If any 
protocol error (CRC, ACK, etc.) is detected, than the move-in operation does not happen.

For the regular mailbox MBs, an MB is said to be “free to receive” a new frame if the 
following conditions are satisfied:

● The MB is not locked (see Section , Message Buffer Lock Mechanism)

● The Code field is either EMPTY or else it is FULL or OVERRUN but the CPU has 
already serviced the MB (read the C/S word and then unlocked the MB)

If the first MB with a matching ID is not “free to receive” the new frame, then the matching 
algorithm keeps looking for another free MB until it finds one. If it can not find one that is 
free, then it will overwrite the last matching MB (unless it is locked) and set the Code field to 
OVERRUN (refer to Table 256 and Table 257). If the last matching MB is locked, then the 
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new message remains in the SMB, waiting for the MB to be unlocked (see Section , 
Message Buffer Lock Mechanism).

Suppose, for example, that the FIFO is disabled and there are two MBs with the same ID, 
and FlexCAN starts receiving messages with that ID. Let us say that these MBs are the 
second and the fifth in the array. When the first message arrives, the matching algorithm will 
find the first match in MB number 2. The code of this MB is EMPTY, so the message is 
stored there. When the second message arrives, the matching algorithm will find MB 
number 2 again, but it is not “free to receive”, so it will keep looking and find MB number 5 
and store the message there. If yet another message with the same ID arrives, the matching 
algorithm finds out that there are no matching MBs that are “free to receive”, so it decides to 
overwrite the last matched MB, which is number 5. In doing so, it sets the Code field of the 
MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a 
reception queue (in addition to the full featured FIFO) to allow more time for the CPU to 
service the MBs. By programming more than one MB with the same ID, received messages 
will be queued into the MBs. The CPU can examine the Time Stamp field of the MBs to 
determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in 
previous versions of the FlexCAN module. When the BCC bit in MCR is negated, the 
matching algorithm stops at the first MB with a matching ID that it founds, whether this MB is 
free or not. As a result, the message queueing feature does not work if the BCC bit is 
negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports 
individual masking per MB.  During the matching algorithm, if a mask bit is asserted, then 
the corresponding ID bit is compared. If the mask bit is negated, the corresponding ID bit is 
“don’t care”. Please note that the Individual Mask Registers are implemented in RAM, so 
they are not initialized out of reset. Also, they can only be programmed if the BCC bit is 
asserted and while the module is in Freeze Mode.

FlexCAN also supports an alternate masking scheme with only three mask registers 
(RGXMASK, RX14MASK and RX15MASK) for backwards compatibility. This alternate 
masking scheme is enabled when the BCC bit in the MCR Register is negated.

Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs. 
Please consult the specific MCU documentation to find out if this feature is supported. If not 
supported, the RXGMASK, RX14MASK and RX15MASK registers are available, regardless 
of the value of the BCC bit.

22.5.7 Data coherence

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the 
rules described in Section 22.5.3, Transmit process and Section 22.5.5, Receive process. 
Any form of CPU accessing an MB structure within FlexCAN other than those specified may 
cause FlexCAN to behave in an unpredictable way.

Transmission Abort Mechanism

The abort mechanism provides a safe way to request the abortion of a pending 
transmission. A feedback mechanism is provided to inform the CPU if the transmission was 
aborted or if the frame could not be aborted and was transmitted instead. In order to 
maintain backwards compatibility, the abort mechanism must be explicitly enabled by 
asserting the AEN bit in the MCR.
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In order to abort a transmission, the CPU must write a specific abort code (1001) to the 
Code field of the Control and Status word. When the abort mechanism is enabled, the active 
MBs configured as trasmission must be aborted first and then they may be updated. If the 
abort code is written to an MB that is currently being transmitted, or to an MB that was 
already loaded into the SMB for transmission, the write operation is blocked and the MB is 
not deactivated, but the abort request is captured and kept pending until one of the following 
conditions are satisfied:

● The module loses the bus arbitration 

● There is an error during the transmission

● The module is put into Freeze Mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is 
set in the IFLAG register and an interrupt to the CPU is generated (if enabled). The abort 
request is automatically cleared when the interrupt flag is set. In the other hand, if one of the 
above conditions is reached, the frame is not transmitted, therefore the abort code is written 
into the Code field, the interrupt flag is set in the IFLAG and an interrupt is (optionally) 
generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write 
operation is not blocked, therefore the MB is updated and no interrupt flag is set. In this way 
the CPU just needs to read the abort code to make sure the active MB was deactivated. 
Although the AEN bit is asserted and the CPU wrote the abort code, in this case the MB is 
deactivated and not aborted, because the transmission did not start yet. One MB is only 
aborted when the abort request is captured and kept pending until one of the previous 
conditions are satisfied.

The abort procedure can be summarized as follows:

● CPU writes 1001 into the code field of the C/S word

● CPU reads the CODE field and compares it to the value that was written

● If the CODE field that was read is different from the value that was written, the CPU 
must read the corresponding IFLAG to check if the frame was transmitted or it is being 
currently transmitted. If the corresponding IFLAG is set, the frame was transmitted. If 
the corresponding IFLAG is reset, the CPU must wait for it to be set, and then the CPU 
must read the CODE field to check if the MB was aborted (CODE=1001) or it was 
transmitted (CODE=1000).

Message Buffer Deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the 
Control and Status word of active MBs out of Freeze Mode. Any CPU write access to the 
Control and Status word of an MB causes that MB to be excluded from the transmit or 
receive processes during the current matching or arbitration round. The deactivation is 
temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the 
MBs to decide which MB to transmit or receive. If the CPU updates the MB in the middle of 
a match or arbitration process, the data of that MB may no longer be coherent, therefore 
deactivation of that MB is done.
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Even with the coherence mechanism described above, writing to the Control and Status 
word of active MBs when not in Freeze Mode may produce undesirable results. Examples 
are:

● Matching and arbitration are one-pass processes. If MBs are deactivated after they are 
scanned, no re-evaluation is done to determine a new match/winner. If an Rx MB with a 
matching ID is deactivated during the matching process after it was scanned, then this 
MB is marked as invalid to receive the frame, and FlexCAN will keep looking for another 
matching MB within the ones it has not scanned yet. If it can not find one, then the 
message will be lost. Suppose, for example, that two MBs have a matching ID to a 
received frame, and the user deactivated the first matching MB after FlexCAN has 
scanned the second. The received frame will be lost even if the second matching MB 
was “free to receive”.

● If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then 
FlexCAN will look for another winner within the MBs that it has not scanned yet. 
Therefore, it may transmit an MB with ID that may not be the lowest at the time because 
a lower ID might be present in one of the MBs that it had already scanned before the 
deactivation.

● There is a point in time until which the deactivation of a Tx MB causes it not to be 
transmitted (end of move-out). After this point, it is transmitted but no interrupt is issued 
and the Code field is not updated. In order to avoid this situation, the abort procedures 
described in Section , Transmission Abort Mechanism should be used.

Message Buffer Lock Mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive 
process. When the CPU reads the Control and Status word of an “active not empty” Rx MB, 
FlexCAN assumes that the CPU wants to read the whole MB in an atomic operation, and 
thus it sets an internal lock flag for that MB. The lock is released when the CPU reads the 
Free Running Timer (global unlock operation), or when it reads the Control and Status word 
of another MB. The MB locking is done to prevent a new frame to be written into the MB 
while the CPU is reading it.

Note: The locking mechanism only applies to Rx MBs which have a code different than INACTIVE 
(‘0000’) or EMPTY(r) (‘0100’). Also, Tx MBs can not be locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the 
array are programmed with the same ID, and FlexCAN has already received and stored 
messages into these two MBs. Suppose now that the CPU decides to read MB number 5 
and at the same time another message with the same ID is arriving. When the CPU reads 
the Control and Status word of MB number 5, this MB is locked. The new message arrives 
and the matching algorithm finds out that there are no “free to receive” MBs, so it decides to 
override MB number 5. However, this MB is locked, so the new message can not be written 
there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be 
written to the MB. If the MB is not unlocked in time and yet another new message with the 
same ID arrives, then the new message overwrites the one on the SMB and there will be no 
indication of lost messages either in the Code field of the MB or in the Error and Status 
Register.

r. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior will be honored 
when the BCC bit is negated.
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While the message is being moved-in from the SMB to the MB, the BUSY bit on the Code 
field is asserted. If the CPU reads the Control and Status word and finds out that the BUSY 
bit is set, it should defer accessing the MB until the BUSY bit is negated.

Note: If the BUSY bit is asserted or if the MB is empty, then reading the Control and Status word 
does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its 
lock status is negated and the MB is marked as invalid for the current matching round. Any 
pending message on the SMB will not be transferred anymore to the MB.

22.5.8 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the MCR. The reset value of 
this bit is zero to maintain software backwards compatibility with previous versions of the 
module that did not have the FIFO feature. When the FIFO is enabled, the memory region 
normally occupied by the first 8 MBs (0x80-0xFF) is now reserved for use of the FIFO 
engine (see Section 22.4.3, Rx FIFO structure). Management of read and write pointers is 
done internally by the FIFO engine. The CPU can read the received frames sequentially, in 
the order they were received, by repeatedly accessing a Message Buffer structure at the 
beginning of the memory.

The FIFO can store up to 6 frames pending service by the CPU. An interrupt is sent to the 
CPU when new frames are available in the FIFO. Upon receiving the interrupt, the CPU 
must read the frame (accessing an MB in the 0x80 address) and then clear the interrupt. 
The act of clearing the interrupt triggers the FIFO engine to replace the MB in 0x80 with the 
next frame in the queue, and then issue another interrupt to the CPU. If the FIFO is full and 
more frames continue to be received, an OVERFLOW interrupt is issued to the CPU and 
subsequent frames are not accepted until the CPU creates space in the FIFO by reading 
one or more frames. A warning interrupt is also generated when five frames are 
accumulated in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target 
application, thus reducing the interrupt servicing work load. The filtering criteria is specified 
by programming a table of eight 32-bit registers that can be configured to one of the 
following formats (see also Section 22.4.3, Rx FIFO structure):

● Format A: 8 extended or standard IDs (including IDE and RTR)

● Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

● Format C: 32 standard or extended 8-bit ID slices

Note: A chosen format is applied to all eight registers of the filter table. It is not possible to mix 
formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual 
Mask Registers (RXIMR0 - RXIMR7), allowing very powerful filtering criteria to be defined. 
The rest of the RXIMR, starting from RXIM8, continue to affect the regular MBs, starting 
from MB8. If the BCC bit is negated (or if the RXIMR are not available for the particular 
MCU), then the FIFO filter table is affected by the legacy mask registers as follows: element 
6 is affected by RX14MASK, element 7 is affected by RX15MASK and the other elements (0 
to 5) are affected by RXGMASK.
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22.5.9 CAN Protocol Related Features

Remote Frames

Remote frame is a special kind of frame. The user can program a MB to be a Request 
Remote Frame by writing the MB as Transmit with the RTR bit set to ‘1’. After the Remote 
Request frame is transmitted successfully, the MB becomes a Receive Message Buffer, with 
the same ID as before.

When a Remote Request frame is received by FlexCAN, its ID is compared to the IDs of the 
transmit message buffers with the Code field ‘1010’. If there is a matching ID, then this MB 
frame will be transmitted. Note that if the matching MB has the RTR bit set, then FlexCAN 
will transmit a Remote Frame as a response.

A received Remote Request Frame is not stored in a receive buffer. It is only used to trigger 
a transmission of a frame in response. The mask registers are not used in remote frame 
matching, and all ID bits (except RTR) of the incoming received frame should match.

In the case that a Remote Request Frame was received and matched an MB, this message 
buffer immediately enters the internal arbitration process, but is considered as normal Tx 
MB, with no higher priority. The data length of this frame is independent of the DLC field in 
the remote frame that initiated its transmission.

If the Rx FIFO is enabled (bit FEN set in MCR), FlexCAN will not generate an automatic 
response for Remote Request Frames that match the FIFO filtering criteria. If the remote 
frame matches one of the target IDs, it will be stored in the FIFO and presented to the CPU. 
Note that for filtering formats A and B, it is possible to select whether remote frames are 
accepted or not. For format C, remote frames are always accepted (if they match the ID).

Overload Frames

FlexCAN does transmit overload frames due to detection of following conditions on CAN 
bus:

● Detection of a dominant bit in the first/second bit of Intermission

● Detection of a dominant bit at the 7th bit (last) of End of Frame field (Rx frames)

● Detection of a dominant bit at the 8th bit (last) of Error Frame Delimiter or Overload 
Frame Delimiter

Time Stamp

The value of the Free Running Timer is sampled at the beginning of the Identifier field on the 
CAN bus, and is stored at the end of “move-in” in the TIME STAMP field, providing network 
behavior with respect to time.

Note that the Free Running Timer can be reset upon a specific frame reception, enabling 
network time synchronization. Refer to TSYN description in Section , Control Register 
(CTRL).

Protocol Timing

Figure 287 shows the structure of the clock generation circuitry that feeds the CAN Protocol 
Interface (CPI) sub-module. The clock source bit (CLK_SRC) in the CTRL Register defines 
whether the internal clock is connected to the output of a crystal oscillator (Oscillator Clock) 
or to the Peripheral Clock (generally from a PLL). In order to guarantee reliable operation, 
the clock source should be selected while the module is in Disable Mode (bit MDIS set in the 
Module Configuration Register).
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Figure 287. CAN Engine Clocking Scheme

The crystal oscillator clock should be selected whenever a tight tolerance (up to 0.1%) is 
required in the CAN bus timing. The crystal oscillator clock has better jitter performance 
than PLL generated clocks.

Note: This clock selection feature may not be available in all MCUs. A particular MCU may not 
have a PLL, in which case it would have only the oscillator clock, or it may use only the PLL 
clock feeding the FlexCAN module. In these cases, the CLK_SRC bit in the CTRL Register 
has no effect on the module operation.

The FlexCAN module supports a variety of means to setup bit timing parameters that are 
required by the CAN protocol. The Control Register has various fields used to control bit 
timing parameters: PRESDIV, PROPSEG, PSEG1, PSEG2 and RJW. See Section , Control 
Register (CTRL).

The PRESDIV field controls a prescaler that generates the Serial Clock (Sclock), whose 
period defines the ‘time quantum’ used to compose the CAN waveform. A time quantum is 
the atomic unit of time handled by the CAN engine.

A bit time is subdivided into three segments(s) (reference Figure 288 and Table 271):

● SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are 
expected to happen within this section

● Time Segment 1: This segment includes the Propagation Segment and the Phase 
Segment 1 of the CAN standard. It can be programmed by setting the PROPSEG and 

Peripheral Clock (PLL)

Oscillator Clock (Xtal)
CLK_SRC

Prescaler
(1 .. 256)

SclockCPI Clock

s. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference 
also the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler ValueÞ 

--------------------------------------------------------=
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the PSEG1 fields of the CTRL Register so that their sum (plus 2) is in the range of 4 to 
16 time quanta

● Time Segment 2: This segment represents the Phase Segment 2 of the CAN standard. 
It can be programmed by setting the PSEG2 field of the CTRL Register (plus 1) to be 2 
to 8 time quanta long

Figure 288. Segments within the Bit Time

         

Table 272 gives an overview of the CAN compliant segment settings and the related 
parameter values.

         

Bit Rate
fTq

number of Time QuantaÞ Þ Þ 
-----------------------------------------------------------------------------------------=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8 

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point 
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2)  (PSEG2 + 1)

Transmit Point 

Table 271. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point
A node samples the bus at this point. If the three samples per bit option is 
selected, then this point marks the position of the third sample.

Table 272. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization 

Jump Width

5–10 2 1–2

4–11 3 1–3
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Note: It is the user’s responsibility to ensure the bit time settings are in compliance with the CAN 
standard. For bit time calculations, use an IPT (Information Processing Time) of 2, which is 
the value implemented in the FlexCAN module.

Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, matching, move-in and 
move-out processes are executed during certain time windows inside the CAN frame, as 
shown in Figure 289.

Figure 289. Arbitration, Match and Move Time Windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer 
memory during the available time slot. In order to have sufficient time to do that, the 
following requirements must be observed:

● A valid CAN bit timing must be programmed, as indicated in Table 272

● The peripheral clock frequency can not be smaller than the oscillator clock frequency, 
i.e., the PLL can not be programmed to divide down the oscillator clock

● There must be a minimum ratio between the peripheral clock frequency and the CAN 
bit rate, as specified in Table 273

5–12 4 1–4

6–13 5 1–4

7–14 6 1–4

8–15 7 1–4

9–16 8 1–4

Table 272. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization 

Jump Width

CRC (15) EOF (7) Interm

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

Table 273. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate

Number of Message Buffers Minimum Ratio

16 8

32 8

64 16
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A direct consequence of the first requirement is that the minimum number of time quanta per 
CAN bit must be 8, so the oscillator clock frequency should be at least 8 times the CAN bit 
rate. The minimum frequency ratio specified in Table 273 can be achieved by choosing a 
high enough peripheral clock frequency when compared to the oscillator clock frequency, or 
by adjusting one or more of the bit timing parameters (PRESDIV, PROPSEG, PSEG1, 
PSEG2). As an example, taking the case of 64 MBs, if the oscillator and peripheral clock 
frequencies are equal and the CAN bit timing is programmed to have 8 time quanta per bit, 
then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to 
one and CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator 
clock frequencies should be at least 2.

22.5.10 Modes of operation details

Freeze mode

This mode is entered by asserting the HALT bit in the MCR Register or when the MCU is put 
into Debug Mode. In both cases it is also necessary that the FRZ bit is asserted in the MCR 
Register and the module is not in a low-power mode (Disable mode). When Freeze Mode is 
requested during transmission or reception, FlexCAN does the following:

● Waits to be in either Intermission, Passive Error, Bus Off or Idle state

● Waits for all internal activities like arbitration, matching, move-in and move-out to finish

● Ignores the Rx input pin and drives the Tx pin as recessive

● Stops the prescaler, thus halting all CAN protocol activities

● Grants write access to the Error Counters Register, which is read-only in other modes

● Sets the NOT_RDY and FRZ_ACK bits in MCR

After requesting Freeze Mode, the user must wait for the FRZ_ACK bit to be asserted in 
MCR before executing any other action, otherwise FlexCAN may operate in an 
unpredictable way. In Freeze mode, all memory mapped registers are accessible.

Exiting Freeze Mode is done in one of the following ways:

● CPU negates the FRZ bit in the MCR Register

● The MCU is removed from Debug Mode and/or the HALT bit is negated

Once out of Freeze Mode, FlexCAN tries to resynchronize to the CAN bus by waiting for 11 
consecutive recessive bits.

Module Disable mode

This low power mode is entered when the MCR[MDIS] bit is asserted. If the module is 
disabled during Freeze Mode, it requests to disable the clocks to the CAN Protocol Interface 
(CPI) and Message Buffer Management (MBM) sub-modules, sets the LPM_ACK bit and 
negates the FRZ_ACK bit. If the module is disabled during transmission or reception, 
FlexCAN does the following:

● Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission 
and then checks it to be recessive

● Waits for all internal activities like arbitration, matching, move-in and move-out to finish

● Ignores its Rx input pin and drives its Tx pin as recessive

● Shuts down the clocks to the CPI and MBM sub-modules

● Sets the NOT_RDY and LPM_ACK bits in MCR
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The Bus Interface Unit continues to operate, enabling the CPU to access memory mapped 
registers, except the Free Running Timer, the Error Counter Register and the Message 
Buffers, which cannot be accessed when the module is in Disable Mode. Exiting from this 
mode is done by negating the MDIS bit, which will resume the clocks and negate the 
LPM_ACK bit.

22.5.11 Interrupts

The module can generate up to 70 interrupt sources (64 interrupts due to message buffers 
and 6 interrupts due to Ored interrupts from MBs, Bus Off, Error, Tx Warning, Rx Warning 
and Wake Up). The number of actual sources depends on the configured number of 
Message Buffers.

Each one of the message buffers can be an interrupt source, if its corresponding IMASK bit 
is set. There is no distinction between Tx and Rx interrupts for a particular buffer, under the 
assumption that the buffer is initialized for either transmission or reception. Each of the 
buffers has assigned a flag bit in the IFLAG Registers. The bit is set when the corresponding 
buffer completes a successful transmission/reception and is cleared when the CPU writes it 
to ‘1’ (unless another interrupt is generated at the same time).

Note: It must be guaranteed that the CPU only clears the bit causing the current interrupt. For this 
reason, bit manipulation instructions (BSET) must not be used to clear interrupt flags. These 
instructions may cause accidental clearing of interrupt flags which are set after entering the 
current interrupt service routine.

If the Rx FIFO is enabled (bit FEN on MCR set), the interrupts corresponding to MBs 0 to 7 
have a different behavior. Bit 7 of the IFLAG1 becomes the “FIFO Overflow” flag; bit 6 
becomes the FIFO Warning flag, bit 5 becomes the “Frames Available in FIFO flag” and bits 
4-0 are unused. See Section , Interrupt Flags 1 Register (IFLAG1) for more information.

A combined interrupt for all MBs is also generated by an Or of all the interrupt sources from 
MBs. This interrupt gets generated when any of the MBs generates an interrupt. In this case 
the CPU must read the IFLAG Registers to determine which MB caused the interrupt.

The other 5 interrupt sources (Bus Off, Error, Tx Warning, Rx Warning and Wake Up) 
generate interrupts like the MB ones, and can be read from the Error and Status Register. 
The Bus Off, Error, Tx Warning and Rx Warning interrupt mask bits are located in the 
Control Register, and the Wake-Up interrupt mask bit is located in the MCR.

22.5.12 Bus interface

The CPU access to FlexCAN registers are subject to the following rules:

● Read and write access to supervisor registers in User Mode results in access error.

● Read and write access to unimplemented or reserved address space also results in 
access error. Any access to unimplemented MB or Rx Individual Mask Register 
locations results in access error. Any access to the Rx Individual Mask Register space 
when the BCC bit in MCR is negated results in access error.

● If MAXMB is programmed with a value smaller than the available number of MBs, then 
the unused memory space can be used as general purpose RAM space. Note that the 
Rx Individual Mask Registers can only be accessed in Freeze Mode, and this is still 
true for unused space within this memory. Note also that reserved words within RAM 
cannot be used. As an example, suppose FlexCAN is configured with 64 MBs and 
MAXMB is programmed with zero. The maximum number of MBs in this case becomes 
one. The MB memory starts at 0x0060, but the space from 0x0060 to 0x007F is 
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reserved (for SMB usage), and the space from 0x0080 to 0x008F is used by the one 
MB. This leaves us with the available space from 0x0090 to 0x047F. The available 
memory in the Mask Registers space would be from 0x0884 to 0x097F.

Note: Unused MB space must not be used as general purpose RAM while FlexCAN is transmitting 
and receiving CAN frames.

22.6 Initialization/application information
This section provide instructions for initializing the FlexCAN module.

22.6.1 FlexCAN initialization sequence

The FlexCAN module may be reset in three ways:

● MCU level hard reset, which resets all memory mapped registers asynchronously

● MCU level soft reset, which resets some of the memory mapped registers 
synchronously (refer to Table 253 to see what registers are affected by soft reset)

● SOFT_RST bit in MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure 
across clock domains. Therefore, it may take some time to fully propagate its effects. The 
SOFT_RST bit remains asserted while soft reset is pending, so software can poll this bit to 
know when the reset has completed. Also, soft reset can not be applied while clocks are 
shut down in any of the low power modes. The low power mode should be exited and the 
clocks resumed before applying soft reset.

The clock source (CLK_SRC bit) should be selected while the module is in Disable Mode. 
After the clock source is selected and the module is enabled (MDIS bit negated), FlexCAN 
automatically goes to Freeze Mode. In Freeze Mode, FlexCAN is un-synchronized to the 
CAN bus, the HALT and FRZ bits in MCR Register are set, the internal state machines are 
disabled and the FRZ_ACK and NOT_RDY bits in the MCR Register are set. The Tx pin is in 
recessive state and FlexCAN does not initiate any transmission or reception of CAN frames. 
Note that the Message Buffers and the Rx Individual Mask Registers are not affected by 
reset, so they are not automatically initialized.
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For any configuration change/initialization it is required that FlexCAN is put into Freeze 
Mode (see Section , Freeze mode). The following is a generic initialization sequence 
applicable to the FlexCAN module:

● Initialize the Module Configuration Register

– Enable the individual filtering per MB and reception queue features by setting the 
BCC bit

– Enable the warning interrupts by setting the WRN_EN bit

– If required, disable frame self reception by setting the SRX_DIS bit

– Enable the FIFO by setting the FEN bit

– Enable the abort mechanism by setting the AEN bit

– Enable the local priority feature by setting the LPRIO_EN bit

● Initialize the Control Register

– Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW

– Determine the bit rate by programming the PRESDIV field

– Determine the internal arbitration mode (LBUF bit)

● Initialize the Message Buffers

– The Control and Status word of all Message Buffers must be initialized

– If FIFO was enabled, the 8-entry ID table must be initialized

– Other entries in each Message Buffer should be initialized as required

● Initialize the Rx Individual Mask Registers

● Set required interrupt mask bits in the IMASK Registers (for all MB interrupts), in CTRL 
Register (for Bus Off and Error interrupts) and in MCR Register for Wake-Up interrupt

● Negate the HALT bit in MCR

Starting with the last event, FlexCAN attempts to synchronize to the CAN bus.

22.6.2 FlexCAN Addressing and RAM size configurations

There are three RAM configurations that can be implemented within the FlexCAN module. 
The possible configurations are:

● For 16 MBs: 288 bytes for MB memory and 64 bytes for Individual Mask Registers

● For 32 MBs: 544 bytes for MB memory and 128 bytes for Individual Mask Registers

● For 64 MBs: 1056 bytes for MB memory and 256 bytes for Individual Mask Registers

In each configuration the user can program the maximum number of MBs that will take part 
in the matching and arbitration processes using the MAXMB field in the MCR Register. For 
16 MB configuration, MAXMB can be any number between 0–15. For 32 MB configuration, 
MAXMB can be any number between 0–31. For 64 MB configuration, MAXMB can be any 
number between 0–63.
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23 Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction
This chapter describes the Deserial Serial Peripheral Interface (DSPI), which provides a 
synchronous serial bus for communication between the MCU and an external peripheral 
device.

The SPC560D30/40 has two identical DSPI modules (DSPI_0 and DSPI_1). The “x” 
appended to signal names signifies the module to which the signal applies. Thus CS0_x 
specifies that the CS0 signal applies to DSPI module 0 and 1.

A block diagram of the DSPI is shown in Figure 290.

         

         

Figure 290. DSPI block diagram

The register content is transmitted using an SPI protocol. 
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For queued operations the SPI queues reside in internal SRAM which is external to the 
DSPI. Data transfers between the queues and the DSPI FIFOs are accomplished through 
the use of the eDMA controller or through host software.

Figure 291 shows a DSPI with external queues in internal SRAM.

         

Figure 291. DSPI with queues and eDMA

23.2 Features
The DSPI supports these SPI features:

● Full-duplex, three-wire synchronous transfers

● Master and slave mode

● Buffered transmit and receive operation using the TX and RX FIFOs, with depths of four 
entries

● Visibility into TX and RX FIFOs for ease of debugging

● FIFO bypass mode for low-latency updates to SPI queues

● Programmable transfer attributes on a per-frame basis

– 6 clock and transfer attribute registers

– Serial clock with programmable polarity and phase

– Programmable delays

CS to SCK delay

SCK to CS delay

Delay between frames

– Programmable serial frame size of 4 to 16 bits, expandable with software control

– Continuously held chip select capability

Internal SRAM

TX queue

RX queue

Address/control

TX FIFO

DSPI

RX FIFO

RX data

TX data

TX data RX data

Shift register

eDMA controller Address/control
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Doc ID 16886 Rev 6 538/868



Deserial Serial Peripheral Interface (DSPI) RM0045
● Up to 6 peripheral chip selects, expandable to 64 with external demultiplexer

● Deglitching support for up to 32 peripheral chip selects with external demultiplexer 

● Two DMA conditions for SPI queues residing in RAM or flash

– TX FIFO is not full (TFFF)

– RX FIFO is not empty (RFDF)

● 6 interrupt conditions:

End of queue reached (EOQF)

TX FIFO is not full (TFFF)

Transfer of current frame complete (TCF)

RX FIFO is not empty (RFDF)

FIFO overrun (attempt to transmit with an empty TX FIFO or serial frame received 
while RX FIFO is full) (RFOF) or (TFUF)

● Modified SPI transfer formats for communication with slower peripheral devices

● Continuous serial communications clock (SCK)

23.3 Modes of operation
The DSPI has five modes of operation. These modes can be divided into two categories:

● Module-specific: Master, Slave, and Module Disable modes

● MCU-specific: External Stop and Debug modes

The module-specific modes are entered by host software writing to a register. The MCU-
specific modes are controlled by signals external to the DSPI. An MCU-specific mode is a 
mode that the entire device may enter, in parallel to the DSPI being in one of its module-
specific modes.

23.3.1 Master mode

Master mode allows the DSPI to initiate and control serial communication. In this mode the 
SCK, CSn and SOUT signals are controlled by the DSPI and configured as outputs.

For more information, see Section , Master mode.

23.3.2 Slave mode

Slave mode allows the DSPI to communicate with SPI bus masters. In this mode the DSPI 
responds to externally controlled serial transfers. The DSPI cannot initiate serial transfers in 
slave mode. In slave mode, the SCK signal and the CS0_x signal are configured as inputs 
and provided by a bus master. CS0_x must be configured as input and pulled high. If the 
internal pullup is being used then the appropriate bits in the relevant SIU_PCR must be set 
(SIU_PCR [WPE = 1], [WPS = 1]).

For more information, see Section , Slave mode.

23.3.3 Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-
memory mapped logic in the DSPI is stopped while in module disable mode. The DSPI 
enters the module disable mode when the MDIS bit in DSPIx_MCR is set.
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For more information, see Section , Module Disable mode.

23.3.4 External Stop mode

23.3.5 Debug mode

Debug mode is used for system development and debugging. If the device enters debug 
mode while the FRZ bit in the DSPIx_MCR is set, the DSPI halts operation on the next 
frame boundary. If the device enters debug mode while the FRZ bit is cleared, the DSPI 
behavior is unaffected and remains dictated by the module-specific mode and configuration 
of the DSPI.

For more information, see Section , Debug mode.

23.4 External signal description

23.4.1 Signal overview

Table 274 lists off-chip DSPI signals.

         

23.4.2 Signal names and descriptions

Peripheral Chip Select / Slave Select (CS0_x)

In master mode, the CS0_x signal is a peripheral chip select output that selects the slave 
device to which the current transmission is intended.

In slave mode, the CS0_x signal is a slave select input signal that allows an SPI master to 
select the DSPI as the target for transmission. CS0_x must be configured as input and 
pulled high. If the internal pullup is being used then the appropriate bits in the relevant 
SIU_PCR must be set (SIU_PCR [WPE = 1], [WPS = 1]).

Set the IBE and OBE bits in the SIU_PCR for all CS0_x pins when the DSPI chip select or 
slave select primary function is selected for that pin. When the pin is used for DSPI master 

Table 274. Signal properties

Name I/O type
Function

Master mode Slave mode

CS0_x Output / input Peripheral chip select 0 Slave select

CS1:3_x Output Peripheral chip select 1–3 Unused(1)

1. The SIUL allows you to select alternate pin functions for the device.

CS4_x Output Peripheral chip select 4 Master trigger

CS5_x Output
Peripheral chip select 5 / 
Peripheral chip select strobe

Unused(1)

SIN_x Input Serial data in Serial data in

SOUT_x Output Serial data out Serial data out

SCK_x Output / input Serial clock (output) Serial clock (input)
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mode as a chip select output, set the OBE bit. When the pin is used in DSPI slave mode as 
a slave select input, set the IBE bit.

Peripheral Chip Selects 1–3 (CS1:3_x)

CS1:3_x are peripheral chip select output signals in master mode. In slave mode these 
signals are not used.

Peripheral Chip Select 4 (CS4_x)

CS4_x is a peripheral chip select output signal in master mode. 

Peripheral Chip Select 5 / Peripheral Chip Select Strobe
(CS5_x)

CS5_x is a peripheral chip select output signal. When the DSPI is in master mode and 
PCSSE bit in the DSPIx_MCR is cleared, the CS5_x signal is used to select the slave 
device that receives the current transfer.

CS5_x is a strobe signal used by external logic for deglitching of the CS signals. When the 
DSPI is in master mode and the PCSSE bit in the DSPIx_MCR is set, the CS5_x signal 
indicates the timing to decode CS0:4_x signals, which prevents glitches from occurring.

CS5_x is not used in slave mode.

Serial Input (SIN_x)

SIN_x is a serial data input signal.

Serial Output (SOUT_x)

SOUT_x is a serial data output signal.

Serial Clock (SCK_x)

SCK_x is a serial communication clock signal. In master mode, the DSPI generates the 
SCK. In slave mode, SCK_x is an input from an external bus master.

23.5 Memory map and register description

23.5.1 Memory map

Table 275 shows the DSPI memory map.

         

Table 275. DSPI memory map

Base addresses:

0xFFF9_0000 (DSPI_0)

0xFFF9_4000 (DSPI_1)

Address offset Register Location

0x00 DSPI Module Configuration Register (DSPIx_MCR) on page 23-542

0x04 Reserved

0x08 DSPI Transfer Count Register (DSPIx_TCR) on page 23-545
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23.5.2 DSPI Module Configuration Register (DSPIx_MCR)

The DSPIx_MCR contains bits which configure attributes of the DSPI operation. The values 
of the HALT and MDIS bits can be changed at any time, but their effect begins on the next 
frame boundary. The HALT and MDIS bits in the DSPIx_MCR are the only bit values 
software can change while the DSPI is running.

         

0x0C DSPI Clock and Transfer Attributes Register 0 (DSPIx_CTAR0) on page 23-546

0x10 DSPI Clock and Transfer Attributes Register 1 (DSPIx_CTAR1) on page 23-546

0x14–0x28 Reserved

0x2C DSPI Status Register (DSPIx_SR) on page 23-554

0x30
DSPI DMA / Interrupt Request Select and Enable Register 
(DSPIx_RSER)

on page 23-556

0x34 DSPI Push TX FIFO Register (DSPIx_PUSHR) on page 23-558

0x38 DSPI Pop RX FIFO Register (DSPIx_POPR) on page 23-560

0x3C DSPI Transmit FIFO Register 0 (DSPIx_TXFR0) on page 23-561

0x40 DSPI Transmit FIFO Register 1 (DSPIx_TXFR1) on page 23-561

0x44 DSPI Transmit FIFO Register 2 (DSPIx_TXFR2) on page 23-561

0x48 DSPI Transmit FIFO Register 3 (DSPIx_TXFR3) on page 23-561

0x4C–0x78 Reserved

0x7C DSPI Receive FIFO Register 0 (DSPIx_RXFR0) on page 23-561

0x80 DSPI Receive FIFO Register 1 (DSPIx_RXFR1) on page 23-561

0x84 DSPI Receive FIFO Register 2 (DSPIx_RXFR2) on page 23-561

0x88 DSPI Receive FIFO Register 3 (DSPIx_RXFR3) on page 23-561

Table 275. DSPI memory map (continued)

Base addresses:

0xFFF9_0000 (DSPI_0)

0xFFF9_4000 (DSPI_1)

Address offset Register Location
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Figure 292. DSPI Module Configuration Register (DSPIx_MCR)

Offset: 0x00 Access: Read/write
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Table 276. DSPIx_MCR field descriptions

Field Description

MSTR

Master/slave mode select
Configures the DSPI for master mode or slave mode.

0 DSPI is in slave mode
1 DSPI is in master mode

CONT_SCK
E

Continuous SCK enable

Enables the serial communication clock (SCK) to run continuously. See Section 23.6.6, Continuous 
serial communications clock, for details.

0 Continuous SCK disabled
Note: 1Continuous SCK enabled

DCONF

DSPI configuration

The following table lists the DCONF values for the various configurations.

         

         

DCONF Configuration

00 SPI

01 Invalid value

10 Invalid value

11 Invalid value
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FRZ

Freeze

Enables the DSPI transfers to be stopped on the next frame boundary when the device enters 
debug mode.

0 Do not halt serial transfers
1 Halt serial transfers

MTFE

Modified timing format enable

Enables a modified transfer format to be used. See Section , Modified SPI transfer format (MTFE = 
1, CPHA = 1), for more information.

0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

PCSSE

Peripheral chip select strobe enable

Enables the CS5_x to operate as a CS strobe output signal. 
See Section , Peripheral chip select strobe enable (CS5_x), for more information.

0 CS5_x is used as the Peripheral chip select 5 signal
1 CS5_x as an active-low CS strobe signal

ROOE

Receive FIFO overflow overwrite enable

Enables an RX FIFO overflow condition to ignore the incoming serial data or to overwrite existing 
data. If the RX FIFO is full and new data is received, the data from the transfer that generated the 
overflow is ignored or put in the shift register. 

If the ROOE bit is set, the incoming data is put in the shift register. If the ROOE bit is cleared, the 
incoming data is ignored. See Section , Receive FIFO Overflow Interrupt Request (RFOF), for more 
information.

0 Incoming data is ignored
1 Incoming data is put in the shift register

PCSISn

Peripheral chip select inactive state
Determines the inactive state of the CS0_x signal. CS0_x must be configured as inactive high for 
slave mode operation.

0 The inactive state of CS0_x is low
1 The inactive state of CS0_x is high

MDIS

Module disable

Allows the clock to stop to the non-memory mapped logic in the DSPI, effectively putting the DSPI in 
a software controlled power-saving state. See Section 23.6.8, Power saving features for more 
information. 

0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

Table 276. DSPIx_MCR field descriptions (continued)

Field Description
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23.5.3 DSPI Transfer Count Register (DSPIx_TCR)

The DSPIx_TCR contains a counter that indicates the number of SPI transfers made. The 
transfer counter is intended to assist in queue management. The user must not write to the 
DSPIx_TCR while the DSPI is running.

DIS_TXF

Disable transmit FIFO

Enables and disables the TX FIFO. When the TX FIFO is disabled, the transmit part of the DSPI 
operates as a simplified double-buffered SPI. See Section , FIFO disable operation for details.

0TX FIFO is enabled

1TX FIFO is disabled

DIS_RXF

Disable receive FIFO

Enables and disables the RX FIFO. When the RX FIFO is disabled, the receive part of the DSPI 
operates as a simplified double-buffered SPI. See Section , FIFO disable operation for details.

0 RX FIFO is enabled
1 RX FIFO is disabled

CLR_TXF

Clear TX FIFO. CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX 
FIFO Counter. The CLR_TXF bit is always read as zero.

0 Do not clear the TX FIFO Counter
1 Clear the TX FIFO Counter

CLR_RXF

Clear RX FIFO. CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the RX 
Counter. The CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter
1 Clear the RX FIFO Counter

SMPL_PT

Sample point

Allows the host software to select when the DSPI master samples SIN in modified transfer format. 
Figure 307 shows where the master can sample the SIN pin. The following table lists the delayed 
sample points.

         

HALT

Halt

Provides a mechanism for software to start and stop DSPI transfers. See Section 23.6.2, Start and 
stop of DSPI transfers, for details on the operation of this bit.

0 Start transfers
1 Stop transfers

Table 276. DSPIx_MCR field descriptions (continued)

Field Description

         

SMPL_PT
Number of system clock cycles between 

odd-numbered edge of SCK_x and sampling of SIN_x

00 0

01 1

10 2

11 Reserved
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23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

The DSPI modules each contain six clock and transfer attribute registers (DSPIx_CTARn) 
which are used to define different transfer attribute configurations. Each DSPIx_CTAR 
controls:

● Frame size

● Baud rate and transfer delay values

● Clock phase

● Clock polarity

● MSB or LSB first

DSPIx_CTARs support compatibility with the QSPI module in the SPC560D30/40 family of 
MCUs. At the initiation of an SPI transfer, control logic selects the DSPIx_CTAR that 
contains the transfer’s attributes. Do not write to the DSPIx_CTARs while the DSPI is 
running.

In master mode, the DSPIx_CTARn registers define combinations of transfer attributes such 
as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In 
slave mode, a subset of the bit fields in the DSPIx_CTAR0 and DSPIx_CTAR1 registers are 
used to set the slave transfer attributes. See the individual bit descriptions for details on 
which bits are used in slave modes.

When the DSPI is configured as an SPI master, the CTAS field in the command portion of 
the TX FIFO entry selects which of the DSPIx_CTAR registers is used on a per-frame basis. 
When the DSPI is configured as an SPI bus slave, the DSPIx_CTAR0 register is used.

Figure 293. DSPI Transfer Count Register (DSPIx_TCR)

Offset: 0x08 Access: Read/write
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Table 277. DSPIx_TCR field descriptions

Field Description

SPI_TCN
T

SPI transfer counter

Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field is incremented every time 
the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that 
value. SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the 
executing SPI command. The transfer counter ‘wraps around,’ incrementing the counter past 65535 
resets the counter to zero.
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Figure 294. DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

Offsets: 0x0C–0x20 (6 registers) Access: Read/write
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Table 278. DSPIx_CTARn field descriptions

Field Descriptions

DBR

Double Baud Rate

The DBR bit doubles the effective baud rate of the Serial Communications Clock (SCK). This field is 
only used in Master Mode. It effectively halves the Baud Rate division ratio supporting faster 
frequencies and odd division ratios for the Serial Communications Clock (SCK). When the DBR bit is 
set, the duty cycle of the Serial Communications Clock (SCK) depends on the value in the Baud Rate 
Prescaler and the Clock Phase bit as listed in Table 285. See the BR[0:3] field description for details on 
how to compute the baud rate. If the overall baud rate is divide by two or divide by three of the system 
clock then neither the Continuous SCK Enable or the Modified Timing Format Enable bits should be 
set.

0 The baud rate is computed normally with a 50/50 duty cycle
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler

FMSZ
Frame Size
The FMSZ field selects the number of bits transferred per frame. The FMSZ field is used in Master 
Mode and Slave Mode. Table 286 lists the frame size encodings. 

CPOL

Clock Polarity

The CPOL bit selects the inactive state of the Serial Communications Clock (SCK). This bit is used in 
both Master and Slave Mode. For successful communication between serial devices, the devices must 
have identical clock polarities. When the Continuous Selection Format is selected, switching between 
clock polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device 
interpreting the switch of clock polarity as a valid clock edge.

0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

CPHA

Clock Phase
The CPHA bit selects which edge of SCK causes data to change and which edge causes data to be 

captured. This bit is used in both Master and Slave Mode. For successful communication between 
serial devices, the devices must have identical clock phase settings. Continuous SCK is only 
supported for CPHA = 1.

0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge
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LSBFE

LSB First

The LSBFE bit selects if the LSB or MSB of the frame is transferred first. This bit is only used in Master 
Mode.

0 Data is transferred MSB first
1 Data is transferred LSB first

PCSSCK

PCS to SCK Delay Prescaler

The PCSSCK field selects the prescaler value for the delay between assertion of PCS and the first 
edge of the SCK. This field is only used in Master Mode. The table below lists the prescaler values. See 
the CSSCK field description for details on how to compute the PCS to SCK delay.

         

PASC

After SCK Delay Prescaler

The PASC field selects the prescaler value for the delay between the last edge of SCK and the negation 
of PCS. This field is only used in Master Mode. The table below lists the prescaler values. See the 
ASC[0:3] field description for details on how to compute the After SCK delay.

         

PDT

Delay after Transfer Prescaler

The PDT field selects the prescaler value for the delay between the negation of the PCS signal at the 
end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field is only used 
in Master Mode. The table below lists the prescaler values. See the DT[0:3] field description for details 
on how to compute the delay after transfer.

         

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PCSSCK PCS to SCK delay prescaler value

00  1

01  3

10  5

11 7

PASC After SCK delay prescaler value

00  1

01  3

10  5

11 7

PDT Delay after transfer prescaler value

00 1

01 3

10 5

11 7
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PBR

Baud Rate Prescaler

The PBR field selects the prescaler value for the baud rate. This field is only used in Master Mode. The 
Baud Rate is the frequency of the Serial Communications Clock (SCK). The system clock is divided by 
the prescaler value before the baud rate selection takes place. The Baud Rate Prescaler values are 
listed in the table below. See the BR[0:3] field description for details on how to compute the baud rate.

         

CSSCK

PCS to SCK Delay Scaler
The CSSCK field selects the scaler value for the PCS to SCK delay. This field is only used in Master 
Mode. The PCS to SCK Delay is the delay between the assertion of PCS and the first edge of the SCK. 
Table 287 list the scaler values.The PCS to SCK Delay is a multiple of the system clock period and it is 
computed according to the following equation:

Equation 3

See Section , CS to SCK delay (tCSC),” for more details.

ASC

After SCK Delay Scaler

The ASC field selects the scaler value for the After SCK Delay. This field is only used in Master Mode. 
The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. Table 288 
lists the scaler values.The After SCK Delay is a multiple of the system clock period, and it is computed 
according to the following equation:

Equation 4

See Section , After SCK delay (tASC) for more details.

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PBR Baud rate prescaler value

00 2

01 3

10 5

11 7

tCSC
1

fSYS
----------- PCSSCK CSSCK=

tASC
1

fSYS
----------- PASC ASC=
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DT

Delay after Transfer Scaler

The DT field selects the Delay after Transfer Scaler. This field is only used in Master Mode. The Delay 
after Transfer is the time between the negation of the PCS signal at the end of a frame and the 
assertion of PCS at the beginning of the next frame. Table 289 lists the scaler values. In the Continuous 
Serial Communications Clock operation the DT value is fixed to one TSCK. The Delay after Transfer is 
a multiple of the system clock period and it is computed according to the following equation:

Equation 5

See Section , Delay after transfer (tDT) for more details.

BR

Baud Rate Scaler
The BR field selects the scaler value for the baud rate. This field is only used in Master Mode. The 
prescaled system clock is divided by the Baud Rate Scaler to generate the frequency of the SCK. 
Table 290 lists the Baud Rate Scaler values.The baud rate is computed according to the following 
equation:

Equation 6

See Section , CS to SCK delay (tCSC) for more details.

Table 279. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 280. DSPI transfer frame size 

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

tDT
1

fSYS
----------- PDT DT=

SCK baud rate
fSYS

PBR
-------------

1 DBR+
BR

-----------------------=
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0110 7 1110 15

0111 8 1111 16

Table 281. DSPI PCS to SCK delay scaler 

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 282. DSPI After SCK delay scaler 

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 283. DSPI delay after transfer scaler

DT
Delay after transfer scaler 

value
DT

Delay after transfer scaler 
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

Table 280. DSPI transfer frame size  (continued)

FMSZ Frame size FMSZ Frame size
551/868 Doc ID 16886 Rev 6



RM0045 Deserial Serial Peripheral Interface (DSPI)
         

         

         

         

         

         

0110 128 1110 32768

0111 256 1111 65536

Table 284. DSPI baud rate scaler 

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 285. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 286. DSPI transfer frame size 

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

Table 283. DSPI delay after transfer scaler (continued)

DT
Delay after transfer scaler 

value
DT

Delay after transfer scaler 
value
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0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Table 287. DSPI PCS to SCK delay scaler 

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 288. DSPI After SCK delay scaler 

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 289. DSPI delay after transfer scaler  

DT
Delay after transfer scaler 

value
DT

Delay after transfer scaler 
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

Table 286. DSPI transfer frame size  (continued)

FMSZ Frame size FMSZ Frame size
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23.5.5 DSPI Status Register (DSPIx_SR)

The DSPIx_SR contains status and flag bits. The bits are set by the hardware and reflect the 
status of the DSPI and indicate the occurrence of events that can generate interrupt or DMA 
requests. Software can clear flag bits in the DSPIx_SR by writing a ‘1’ to clear it (w1c). 
Writing a ‘0’ to a flag bit has no effect. This register may not be writable in Module Disable 
mode due to the use of power saving mechanisms.

         

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 290. DSPI baud rate scaler 

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 289. DSPI delay after transfer scaler (continued)  (continued)

DT
Delay after transfer scaler 

value
DT

Delay after transfer scaler 
value

Figure 295. DSPI Status Register (DSPIx_SR)

Offset: 0x2C Access: R/W
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Table 291. DSPIx_SR field descriptions

Field Description

TCF

Transfer complete flag

Indicates that all bits in a frame have been shifted out. The TCF bit is set after the last incoming 
databit is sampled, but before the tASC delay starts. See Section , Classic SPI transfer format (CPHA 
= 0) for details.

0 Transfer not complete
1 Transfer complete

TXRXS

TX and RX status
Reflects the status of the DSPI. See Section 23.6.2, Start and stop of DSPI transfers for information 
on what clears and sets this bit.

0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

EOQF

End of queue flag
Indicates that transmission in progress is the last entry in a queue. The EOQF bit is set when TX 
FIFO entry has the EOQ bit set in the command halfword and the end of the transfer is reached. See 
Section , Classic SPI transfer format (CPHA = 0) for details. 

When the EOQF bit is set, the TXRXS bit is automatically cleared.

0 EOQ is not set in the executing command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode. 

TFUF

Transmit FIFO underflow flag
Indicates that an underflow condition in the TX FIFO has occurred. The transmit underflow condition 
is detected only for DSPI modules operating in slave mode and SPI configuration. The TFUF bit is 
set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and a transfer is initiated by 
an external SPI master.

0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

TFFF

Transmit FIFO fill flag

Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request more entries to 
be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be 
cleared by writing ‘1’ to it, or an by acknowledgement from the Edam controller when the TX FIFO is 
full.

0 TX FIFO is full
1 TX FIFO is not full

RFOF

Receive FIFO overflow flag

Indicates that an overflow condition in the RX FIFO has occurred. The bit is set when the RX FIFO 
and shift register are full and a transfer is initiated.

0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred
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23.5.6 DSPI DMA / Interrupt Request Select and Enable Register 
(DSPIx_RSER)

The DSPIx_RSER serves two purposes:

● It enables flag bits in the DSPIx_SR to generate DMA requests or interrupt requests.

● It selects the type of request to generate.

See the bit descriptions for the type of requests that are supported.

Do not write to the DSPIx_RSER while the DSPI is running.

RFDF

Receive FIFO drain flag

Indicates that the RX FIFO can be drained. Provides a method for the DSPI to request that entries 
be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be 
cleared by writing ‘1’ to it, or by acknowledgement from the Edam controller when the RX FIFO is 
empty.

0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPIx_POPR register is 

read. 

TXCTR

TX FIFO counter

Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the 
DSPI _PUSHR is written. The TXCTR is decremented every time an SPI command is executed and 
the SPI data is transferred to the shift register.

TXNXTPTR

Transmit next pointer
Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is 
updated every time SPI data is transferred from the TX FIFO to the shift register. See Section , 
Transmit First In First Out (TX FIFO) buffering mechanism for more details.

RXCTR

RX FIFO counter

Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the DSPI 
_POPR is read. The RXCTR is incremented after the last incoming databit is sampled, but before 
the tASC delay starts. See Section , Classic SPI transfer format (CPHA = 0) for details.

POPNXTPT
R

Pop next pointer

Contains a pointer to the RX FIFO entry that is returned when the DSPIx_POPR is read. The 
POPNXTPTR is updated when the DSPIx_POPR is read. See Section , Receive First In First Out 
(RX FIFO) buffering mechanism for more details.

Table 291. DSPIx_SR field descriptions (continued)

Field Description
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Figure 296. DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER)

Offset:0x30 Access: Read/write
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Table 292. DSPIx_RSER field descriptions

Field Description

TCF_RE

Transmission complete request enable

Enables TCF flag in the DSPIx_SR to generate an interrupt request.

0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

EOQF_RE

DSPI finished request enable
Enables the EOQF flag in the DSPIx_SR to generate an interrupt request.

0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

TFUF_RE

Transmit FIFO underflow request enable

The TFUF_RE bit enables the TFUF flag in the DSPIx_SR to generate an interrupt request.

0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

TFFF_RE

Transmit FIFO fill request enable

Enables the TFFF flag in the DSPIx_SR to generate a request. The TFFF_DIRS bit selects between 
generating an interrupt request or a DMA requests.

0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

TFFF_DIRS

Transmit FIFO fill DMA or interrupt request select

Selects between generating a DMA request or an interrupt request. When the TFFF flag bit in the 
DSPIx_SR is set, and the TFFF_RE bit in the DSPIx_RSER is set, this bit selects between 
generating an interrupt request or a DMA request.

0 Interrupt request is selected
1 DMA request is selected
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23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

The DSPIx_PUSHR provides a means to write to the TX FIFO. Data written to this register 
is transferred to the TX FIFO. See Section , Transmit First In First Out (TX FIFO) buffering 
mechanism, for more information. Write accesses of 8 or 16 bits to the DSPIx_PUSHR 
transfers 32 bits to the TX FIFO.

Note: TXDATA is used in master and slave modes.

         

RFOF_RE

Receive FIFO overflow request enable

Enables the RFOF flag in the DSPIx_SR to generate an interrupt requests.

0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

RFDF_RE

Receive FIFO drain request enable
Enables the RFDF flag in the DSPIx_SR to generate a request. The RFDF_DIRS bit selects between 
generating an interrupt request or a DMA request.

0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

RFDF_DIRS

Receive FIFO drain DMA or interrupt request select
Selects between generating a DMA request or an interrupt request. When the RFDF flag bit in the 
DSPIx_SR is set, and the RFDF_RE bit in the DSPIx_RSER is set, the RFDF_DIRS bit selects 
between generating an interrupt request or a DMA request.

0 Interrupt request is selected
1 DMA request is selected

Table 292. DSPIx_RSER field descriptions (continued)

Field Description

Figure 297. DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

Offset:0x34 Access: Read/write
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Table 293. DSPIx_PUSHR field descriptions

Field Description

CONT

Continuous peripheral chip select enable

Selects a continuous selection format. The bit is used in SPI master mode. The bit enables the selected 
CS signals to remain asserted between transfers. See Section , Continuous selection format, for more 
information.

0 Return peripheral chip select signals to their inactive state between transfers
1 Keep peripheral chip select signals asserted between transfers

CTAS

Clock and transfer attributes select
Selects which of the DSPIx_CTARs is used to set the transfer attributes for the SPI frame. In SPI slave 
mode, DSPIx_CTAR0 is used. The following table shows how the CTAS values map to the 
DSPIx_CTARs. There are eight DSPIx_CTARs in the device DSPI implementation.

Note: Use in SPI master mode only. 

         

EOQ

End of queue

Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a 
queue. At the end of the transfer the EOQF bit in the DSPIx_SR is set. 

0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer
Note: Use in SPI master mode only.

CTCNT

Clear SPI_TCNT

Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the 
SPI_TCNT field in the DSPIx_TCR. The SPI_TCNT field is cleared before transmission of the current 
SPI frame begins. 

0 Do not clear SPI_TCNT field in the DSPIx_TCR
1 Clear SPI_TCNT field in the DSPIx_TCR
Note: Use in SPI master mode only.

         

CTAS
Use clock and transfer 

attributes from

000 DSPIx_CTAR0

001 DSPIx_CTAR1

010 DSPIx_CTAR2

011 DSPIx_CTAR3

100 DSPIx_CTAR4

101 DSPIx_CTAR5

110 Reserved

111 Reserved
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23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR)

The DSPIx_POPR allows you to read the RX FIFO. See Section , Receive First In First Out 
(RX FIFO) buffering mechanism for a description of the RX FIFO operations. Eight or 16-bit 
read accesses to the DSPIx_POPR fetch the RX FIFO data, and update the counter and 
pointer.

Note: Reading the RX FIFO field fetches data from the RX FIFO. Once the RX FIFO is read, the 
read data pointer is moved to the next entry in the RX FIFO. Therefore, read DSPIx_POPR 
only when you need the data. For compatibility, configure the TLB entry for DSPIx_POPR as 
guarded.

         

         

PCSx

Peripheral chip select x

Selects which CSx signals are asserted for the transfer. 

0 Negate the CSx signal
1 Assert the CSx signal
Note: Use in SPI master mode only.

TXDATA

Transmit data
Holds SPI data for transfer according to the associated SPI command.

Note: Use TXDATA in master and slave modes.

Table 293. DSPIx_PUSHR field descriptions (continued)

Field Description

Figure 298. DSPI POP RX FIFO Register (DSPIx_POPR)

Offset:0x38 Access: Read
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R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 294. DSPIx_POPR field descriptions

Field Description

RXDATA
Received data
The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the pop next data pointer 
(POPNXTPTR).
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23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn)

The DSPIx_TXFRn registers provide visibility into the TX FIFO for debugging purposes. 
Each register is an entry in the TX FIFO. The registers are read-only and cannot be 
modified. Reading the DSPIx_TXFRn registers does not alter the state of the TX FIFO. The 
MCU uses four registers to implement the TX FIFO, that is DSPIx_TXFR0–DSPIx_TXFR3 
are used.

         

         

DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

The DSPIx_RXFRn registers provide visibility into the RX FIFO for debugging purposes. 
Each register is an entry in the RX FIFO. The DSPIx_RXFR registers are read-only. 
Reading the DSPIx_RXFRn registers does not alter the state of the RX FIFO. The device 
uses four registers to implement the RX FIFO, that is DSPIx_RXFR0–DSPIx_RXFR3 are 
used.

Figure 299. DSPI Transmit FIFO Register 0–3 (DSPIx_TXFRn)

Offsets: 0x3C–0x48 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD
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16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 295. DSPIx_TXFRn field descriptions

Field Description

TXCMD
Transmit command

Contains the command that sets the transfer attributes for the SPI data. See Section 23.5.7, DSPI 
PUSH TX FIFO Register (DSPIx_PUSHR), for details on the command field.

TXDATA
Transmit data
Contains the SPI data to be shifted out.
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23.6 Functional description
The DSPI supports full-duplex, synchronous serial communications between the MCU and 
peripheral devices. All communications are through an SPI-like protocol.

The DSPI has one configuration, namely serial peripheral interface (SPI), in which the DSPI 
operates as a basic SPI or a queued SPI.

The DCONF field in the DSPIx_MCR register determines the DSPI configuration. See 
Table 276 for the DSPI configuration values.

The DSPIx_CTAR0–DSPIx_CTAR5 registers hold clock and transfer attributes.The SPI 
configuration can select which CTAR to use on a frame by frame basis by setting the CTAS 
field in the DSPIx_PUSHR. 

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by 
the SOUT_x and SIN_x signals to form a distributed 32-bit register. When a data transfer 
operation is performed, data is serially shifted a pre-determined number of bit positions. 
Because the registers are linked, data is exchanged between the master and the slave; the 
data that was in the master’s shift register is now in the shift register of the slave, and vice 
versa. At the end of a transfer, the TCF bit in the DSPIx_SR is set to indicate a completed 
transfer. Figure 301 illustrates how master and slave data is exchanged.

Figure 300. DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

Offsets: 0x7C–0x88 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 296. DSPIx_RXFRn field description

Field Description

RXDATA
Receive data
Contains the received SPI data.
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Figure 301. SPI serial protocol overview

The DSPI has six peripheral chip select (CSx) signals that are be used to select which of the 
slaves to communicate with.

Transfer protocols and timing properties are shared by the three DSPI configurations; these 
properties are described independently of the configuration in Section 23.6.5, Transfer 
formats. The transfer rate and delay settings are described in Section 23.6.4, DSPI baud 
rate and clock delay generation.

See Section 23.6.8, Power saving features, for information on the power-saving features of 
the DSPI.

23.6.1 Modes of operation

The DSPI modules have the following available distinct modes:

● Master mode

● Slave mode

● Module Disable mode

● External Stop mode

● Debug mode

Master, slave, and module disable modes are module-specific modes whereas debug mode 
and external stop mode are device-specific.

The module-specific modes are determined by bits in the DSPIx_MCR. Debug mode is a 
mode that the entire device can enter in parallel with the DSPI being configured in one of its 
module-specific modes.

Master mode

In master mode the DSPI can initiate communications with peripheral devices. The DSPI 
operates as bus master when the MSTR bit in the DSPIx_MCR is set. The serial 
communications clock (SCK) is controlled by the master DSPI. All three DSPI configurations 
are valid in master mode.

In SPI configuration, master mode transfer attributes are controlled by the SPI command in 
the current TX FIFO entry. The CTAS field in the SPI command selects which of the eight 
DSPIx_CTARs are used to set the transfer attributes. Transfer attribute control is on a frame 
by frame basis.

DSPI Master

Shift register

Baud rate generator

DSPI Slave

Shift register
SOUT_xSIN_x

SOUT_x SIN_x

SCK_x SCK_x

CS_x CS0_x
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See Section 23.6.3, Serial peripheral interface (SPI) configuration for more details.

Slave mode

In slave mode the DSPI responds to transfers initiated by an SPI master. The DSPI operates 
as bus slave when the MSTR bit in the DSPIx_MCR is negated. The DSPI slave is selected 
by a bus master by having the slave’s CS0_x asserted. In slave mode the SCK is provided 
by the bus master. All transfer attributes are controlled by the bus master, except the clock 
polarity, clock phase and the number of bits to transfer which must be configured in the DSPI 
slave to communicate correctly.

Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-
memory mapped logic in the DSPI is stopped while in module disable mode. The DSPI 
enters the module disable mode when the MDIS bit in DSPIx_MCR is set.

See Section 23.6.8, Power saving features for more details on the module disable mode.

External Stop mode

For low-power modes, the DSPI supports Stop Mode mechanism. The DSPI does not 
acknowledge the request to enter External Stop Mode until it has reached a frame 
boundary. When the DSPI has reached a frame boundary it halts all operations and 
indicates that it is ready to have its clocks shut off. The DSPI exits External Stop Mode and 
resumes normal operation once the clocks are turned on. Serial communications or register 
accesses made while in External Stop Mode are ignored even if the clocks have not been 
shut off yet. See Section 23.6.8, Power saving features for more details on the External Stop 
Mode.

Debug mode

The debug mode is used for system development and debugging. If the MCU enters debug 
mode while the FRZ bit in the DSPIx_MCR is set, the DSPI stops all serial transfers and 
enters a stopped state. If the MCU enters debug mode while the FRZ bit is cleared, the 
DSPI behavior is unaffected and remains dictated by the module-specific mode and 
configuration of the DSPI. The DSPI enters debug mode when a debug request is asserted 
by an external controller.

See Figure 302 for a state diagram.

23.6.2 Start and stop of DSPI transfers

The DSPI has two operating states: STOPPED and RUNNING. The states are independent 
of DSPI configuration. The default state of the DSPI is STOPPED. In the STOPPED state no 
serial transfers are initiated in master mode and no transfers are responded to in slave 
mode. The STOPPED state is also a safe state for writing the various configuration registers 
of the DSPI without causing undetermined results. The TXRXS bit in the DSPIx_SR is 
cleared in this state. In the RUNNING state, serial transfers take place. The TXRXS bit in the 
DSPIx_SR is set in the RUNNING state.

Figure 302 shows a state diagram of the start and stop mechanism.
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Figure 302. DSPI start and stop state diagram

The transitions are described in Table 297.

         

State transitions from RUNNING to STOPPED occur on the next frame boundary if a 
transfer is in progress, or on the next system clock cycle if no transfers are in progress.

23.6.3 Serial peripheral interface (SPI) configuration

The SPI configuration transfers data serially using a shift register and a selection of 
programmable transfer attributes. The DSPI is in SPI configuration when the DCONF field in 
the DSPIx_MCR is 0b00. The SPI frames can be from 4 to 16 bits long. The data to be 
transmitted can come from queues stored in SRAM external to the DSPI. Host software or 
an eDMA controller can transfer the SPI data from the queues to a first-in first-out (FIFO) 
buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer. Host 
software or an eDMA controller transfers the received data from the RX FIFO to memory 
external to the DSPI.

RUNNING
TXRXS = 1

STOPPED
TXRXS = 0

RESET

Power-on-Reset 0

1

2

Table 297. State transitions for start and stop of DSPI transfers

Transition 
No.

Current state Next state Description

0 RESET STOPPED Generic power-on-reset transition

1 STOPPED RUNNING

The DSPI starts (transitions from STOPPED to RUNNING) when 
all of the following conditions are true:

– EOQF bit is clear

– Debug mode is unselected or the FRZ bit is clear
– HALT bit is clear

2 RUNNING STOPPED

The DSPI stops (transitions from RUNNING to STOPPED) after 
the current frame for any one of the following conditions:

– EOQF bit is set

– Debug mode is selected and the FRZ bit is set

– HALT bit is set
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The FIFO buffer operations are described in Section , Transmit First In First Out (TX FIFO) 
buffering mechanism, and Section , Receive First In First Out (RX FIFO) buffering 
mechanism. 

The interrupt and DMA request conditions are described in Section 23.6.7, Interrupt/DMA 
requests.

The SPI configuration supports two module-specific modes; master mode and slave mode. 
The FIFO operations are similar for the master mode and slave mode. The main difference 
is that in master mode the DSPI initiates and controls the transfer according to the fields in 
the SPI command field of the TX FIFO entry. In slave mode the DSPI only responds to 
transfers initiated by a bus master external to the DSPI and the SPI command field of the TX 
FIFO entry is ignored.

SPI Master mode

In SPI master mode the DSPI initiates the serial transfers by controlling the serial 
communications clock (SCK_x) and the peripheral chip select (CSx) signals. The SPI 
command field in the executing TX FIFO entry determines which CTARs are used to set the 
transfer attributes and which CSx signal to assert. The command field also contains various 
bits that help with queue management and transfer protocol. The data field in the executing 
TX FIFO entry is loaded into the shift register and shifted out on the serial out (SOUT_x) pin. 
In SPI master mode, each SPI frame to be transmitted has a command associated with it 
allowing for transfer attribute control on a frame by frame basis.

See Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR), for details on the SPI 
command fields.

SPI Slave mode

In SPI slave mode the DSPI responds to transfers initiated by an SPI bus master. The DSPI 
does not initiate transfers. Certain transfer attributes such as clock polarity, clock phase and 
frame size must be set for successful communication with an SPI master. The SPI slave 
mode transfer attributes are set in the DSPIx_CTAR0.

FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO. 
The DSPI operates as a double-buffered simplified SPI when the FIFOs are disabled. The 
TX and RX FIFOs are disabled separately. The TX FIFO is disabled by writing a ‘1’ to the 
DIS_TXF bit in the DSPIx_MCR. The RX FIFO is disabled by writing a ‘1’ to the DIS_RXF bit 
in the DSPIx_MCR.

The FIFO disable mechanisms are transparent to the user and to host software; transmit 
data and commands are written to the DSPIx_PUSHR and received data is read from the 
DSPIx_POPR. When the TX FIFO is disabled, the TFFF, TFUF, and TXCTR fields in 
DSPIx_SR behave as if there is a one-entry FIFO but the contents of the DSPIx_TXFRs and 
TXNXTPTR are undefined. When the RX FIFO is disabled, the RFDF, RFOF, and RXCTR 
fields in the DSPIx_SR behave as if there is a one-entry FIFO but the contents of the 
DSPIx_RXFRs and POPNXTPTR are undefined.

Disable the TX and RX FIFOs only if the FIFO must be disabled as a requirement of the 
application's operating mode. A FIFO must be disabled before it is accessed. Failure to 
disable a FIFO prior to a first FIFO access is not supported, and can result in incorrect 
results.
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Transmit First In First Out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX 
FIFO holds four entries, each consisting of a command field and a data field. SPI commands 
and data are added to the TX FIFO by writing to the DSPI push TX FIFO register 
(DSPIx_PUSHR). TX FIFO entries can only be removed from the TX FIFO by being shifted 
out or by flushing the TX FIFO. For more information on DSPIx_PUSHR, see 
Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR).

The TX FIFO counter field (TXCTR) in the DSPI status register (DSPIx_SR) indicates the 
number of valid entries in the TX FIFO. The TXCTR is updated every time the DSPI 
_PUSHR is written or SPI data is transferred into the shift register from the TX FIFO.

See Section 23.5.5, DSPI Status Register (DSPIx_SR) for more information on DSPIx_SR.

The TXNXTPTR field indicates which TX FIFO entry is transmitted during the next transfer. 
The TXNXTPTR contains the positive offset from DSPIx_TXFR0 in number of 32-bit 
registers. For example, TXNXTPTR equal to two means that the DSPIx_TXFR2 contains the 
SPI data and command for the next transfer. The TXNXTPTR field is incremented every 
time SPI data is transferred from the TX FIFO to the shift register. 

Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the 
DSPIx_PUSHR. When the TX FIFO is not full, the TX FIFO fill flag (TFFF) in the DSPIx_SR 
is set. The TFFF bit is cleared when the TX FIFO is full and the eDMA controller indicates 
that a write to DSPIx_PUSHR is complete or alternatively by host software writing a ‘1’ to 
the TFFF in the DSPIx_SR. The TFFF can generate a DMA request or an interrupt request.

See Section , Transmit FIFO Fill Interrupt or DMA Request (TFFF), for details.

The DSPI ignores attempts to push data to a full TX FIFO; that is, the state of the TX FIFO is 
unchanged. No error condition is indicated.

Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift 
register. Entries are transferred from the TX FIFO to the shift register and shifted out as long 
as there are valid entries in the TX FIFO. Every time an entry is transferred from the TX 
FIFO to the shift register, the TX FIFO counter is decremented by one. At the end of a 
transfer, the TCF bit in the DSPIx_SR is set to indicate the completion of a transfer. The TX 
FIFO is flushed by writing a ‘1’ to the CLR_TXF bit in DSPIx_MCR.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX 
FIFO is empty, the transmit FIFO underflow flag (TFUF) in the slave’s DSPIx_SR is set.

See Section , Transmit FIFO Underflow Interrupt Request (TFUF), for details.

Receive First In First Out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four 
received SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer 
when the received data in the shift register is transferred into the RX FIFO. SPI data is 
removed (popped) from the RX FIFO by reading the DSPIx_POPR register. RX FIFO entries 
can only be removed from the RX FIFO by reading the DSPIx_POPR or by flushing the RX 
FIFO.
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See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on 
the DSPIx_POPR.

The RX FIFO counter field (RXCTR) in the DSPI status register (DSPIx_SR) indicates the 
number of valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR 
is read or SPI data is copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPIx_SR points to the RX FIFO entry that is returned when 
the DSPIx_POPR is read. The POPNXTPTR contains the positive, 32-bit word offset from 
DSPIx_RXFR0. For example, POPNXTPTR equal to two means that the DSPIx_RXFR2 
contains the received SPI data that is returned when DSPIx_POPR is read. The 
POPNXTPTR field is incremented every time the DSPIx_POPR is read. POPNXTPTR rolls 
over every four frames on the MCU. 

Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is 
not full, SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI 
frame is transferred to the RX FIFO the RX FIFO counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the 
DSPIx_SR is set indicating an overflow condition. Depending on the state of the ROOE bit in 
the DSPIx_MCR, the data from the transfer that generated the overflow is ignored or put in 
the shift register. If the ROOE bit is set, the incoming data is put in the shift register. If the 
ROOE bit is cleared, the incoming data is ignored.

Draining the RX FIFO

Host software or the eDMA can remove (pop) entries from the RX FIFO by reading the 
DSPIx_POPR. A read of the DSPIx_POPR decrements the RX FIFO counter by one. 
Attempts to pop data from an empty RX FIFO are ignored, the RX FIFO counter remains 
unchanged. The data returned from reading an empty RX FIFO is undetermined.

See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on 
DSPIx_POPR.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPIx_SR is set. The 
RFDF bit is cleared when the RX_FIFO is empty and the eDMA controller indicates that a 
read from DSPIx_POPR is complete; alternatively the RFDF bit can be cleared by the host 
writing a ‘1’ to it.

23.6.4 DSPI baud rate and clock delay generation

The SCK_x frequency and the delay values for serial transfer are generated by dividing the 
system clock frequency by a prescaler and a scaler with the option of doubling the baud 
rate.
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Figure 303 shows conceptually how the SCK signal is generated.

         

Figure 303. Communications clock prescalers and scalers

Baud rate generator

The baud rate is the frequency of the serial communication clock (SCK_x). The system 
clock is divided by a baud rate prescaler (defined by DSPIx_CTAR[PBR]) and baud rate 
scaler (defined by DSPIx_CTAR[BR]) to produce SCK_x with the possibility of doubling the 
baud rate. The DBR, PBR, and BR fields in the DSPIx_CTARs select the frequency of 
SCK_x using the following formula:

         

         

         

Table 298 shows an example of a computed baud rate.

         

CS to SCK delay (tCSC)

The CS_x to SCK_x delay is the length of time from assertion of the CS_x signal to the first 
SCK_x edge. See Figure 305 for an illustration of the CS_x to SCK_x delay. The PCSSCK 
and CSSCK fields in the DSPIx_CTARn registers select the CS_x to SCK_x delay, and the 
relationship is expressed by the following formula:

         

Table 299 shows an example of the computed CS to SCK_x delay.

         

Prescaler
1

Scaler
1 + DBR

System Clock SCK_x

SCK baud rate
fSYS

PBRPrescalerValue
----------------------------------------------------------

1 DBR+
BRScalerValue
--------------------------------------------¥=

Table 298. Baud rate computation example

fSYS PBR Prescaler value BR Scaler value DBR value Baud rate

48 MHz 0b00 2 0b0000 2 0 12 Mbit/s

20 MHz 0b00 2 0b0000 2 1 10 Mbit/s

tCSC       = 
fSYS 

CSSCK PCSSCK1 

Table 299. CS to SCK delay computation example

PCSSCK Prescaler value CSSCK Scaler value fSYS CS to SCK delay

0b01 3 0b0100 32 48 MHz 2 µs
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After SCK delay (tASC)

The after SCK_x delay is the length of time between the last edge of SCK_x and the 
negation of CS_x. See Figure 305 and Figure 306 for illustrations of the after SCK_x delay. 
The PASC and ASC fields in the DSPIx_CTARn registers select the after SCK delay. The 
relationship between these variables is given in the following formula:

         

Table 300 shows an example of the computed after SCK delay.

         

Delay after transfer (tDT)

The delay after transfer is the length of time between negation of the CSx signal for a frame 
and the assertion of the CSx signal for the next frame. The PDT and DT fields in the 
DSPIx_CTARn registers select the delay after transfer.

See Figure 305 for an illustration of the delay after transfer.

The following formula expresses the PDT/DT/delay after transfer relationship:

         

Table 301 shows an example of the computed delay after transfer.

         

Peripheral chip select strobe enable (CS5_x)

The CS5_x signal provides a delay to allow the CSx signals to settle after transitioning 
thereby avoiding glitches. When the DSPI is in master mode and PCSSE bit is set in the 
DSPIx_MCR, CS5_x provides a signal for an external demultiplexer to decode the CS4_x 
signals into as many as 32 glitch-free CSx signals.

tASC = 
fSYS 

ASC PASC1 

Table 300. After SCK delay computation example

PASC Prescaler value ASC Scaler value fSYS After SCK delay

0b01 3 0b0100 32 48 MHz 2 µs

 tDT = 
 fSYS 

DT PDT
1



Table 301. Delay after transfer computation example

PDT Prescaler value DT Scaler value fSYS Delay after transfer

0b01 3 0b1110 32768 48 MHz 2.05 ms
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Figure 304 shows the timing of the CS5_x signal relative to CS signals.

         

Figure 304. Peripheral chip select strobe timing

The delay between the assertion of the CSx signals and the assertion of CS5_x is selected 
by the PCSSCK field in the DSPIx_CTAR based on the following formula:

         

At the end of the transfer the delay between CS5_x negation and CSx negation is selected 
by the PASC field in the DSPIx_CTAR based on the following formula:

         

Table 302 shows an example of the computed tPCSSCK delay.

         

Table 303 shows an example of the computed the tPASC delay.

         

23.6.5 Transfer formats

The SPI serial communication is controlled by the serial communications clock (SCK_x) 
signal and the CSx signals. The SCK_x signal provided by the master device synchronizes 
shifting and sampling of the data by the SIN_x and SOUT_x pins. The CSx signals serve as 
enable signals for the slave devices.

CS5_x

CSx

tPCSSCK tPASC

  tPCSSCK  = PCSSCK
fSYS 

1

  tPASC = PASC
fSYS 

1

Table 302. Peripheral chip select strobe assert computation example

PCSSCK Prescaler fSYS Delay before transfer

0b11 7 48 MHz 145.8 ns

Table 303. Peripheral chip select strobe negate computation example

PASC Prescaler fSYS Delay after transfer

0b11 7 48 MHz 145.8 ns
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When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer 
attributes registers (DSPIx_CTARn) select the polarity and phase of the serial clock, SCK_x. 
The polarity bit selects the idle state of the SCK_x. The clock phase bit selects if the data on 
SOUT_x is valid before or on the first SCK_x edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPIx_CTAR0 (SPI slave 
mode) select the polarity and phase of the serial clock. Even though the bus slave does not 
control the SCK signal, clock polarity, clock phase and number of bits to transfer must be 
identical for the master device and the slave device to ensure proper transmission.

The DSPI supports four different transfer formats:

● Classic SPI with CPHA = 0

● Classic SPI with CPHA = 1

● Modified transfer format with CPHA = 0

● Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with 
peripherals that require longer setup times. The DSPI can sample the incoming data later 
than halfway through the cycle to give the peripheral more setup time. The MTFE bit in the 
DSPIx_MCR selects between classic SPI format and modified transfer format. The classic 
SPI formats are described in Section , Classic SPI transfer format (CPHA = 0) and Section , 
Classic SPI transfer format (CPHA = 1). The modified transfer formats are described in 
Section , Modified SPI transfer format (MTFE = 1, CPHA = 0) and Section , Modified SPI 
transfer format (MTFE = 1, CPHA = 1).

In the SPI configuration, the DSPI provides the option of keeping the CS signals asserted 
between frames. See Section , Continuous selection format for details.
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Classic SPI transfer format (CPHA = 0)

The transfer format shown in Figure 305 is used to communicate with peripheral SPI slave 
devices where the first data bit is available on the first clock edge. In this format, the master 
and slave sample their SIN_x pins on the odd-numbered SCK_x edges and change the data 
on their SOUT_x pins on the even-numbered SCK_x edges.

         

Figure 305. DSPI transfer timing diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUT_x pin and asserting 
the appropriate peripheral chip select signals to the slave device. The slave responds by 
placing its first data bit on its SOUT_x pin. After the tCSC delay has elapsed, the master 
outputs the first edge of SCK_x. This is the edge used by the master and slave devices to 
sample the first input data bit on their serial data input signals. At the second edge of the 
SCK_x the master and slave devices place their second data bit on their serial data output 
signals. For the rest of the frame the master and the slave sample their SIN_x pins on the 
odd-numbered clock edges and changes the data on their SOUT_x pins on the even-
numbered clock edges. After the last clock edge occurs a delay of tASC is inserted before the 
master negates the CS signals. A delay of tDT is inserted before a new frame transfer can be 
initiated by the master.

For the CPHA = 0 condition of the master, TCF and EOQF are set and the RXCTR counter 
is updated at the next to last serial clock edge of the frame (edge 15) of Figure 305.

For the CPHA = 0 condition of the slave, TCF is set and the RXCTR counter is updated at 
the last serial clock edge of the frame (edge 16) of Figure 305.

SCK
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sample

Master SOUT /
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Slave SOUT

Bit 6
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Bit 4
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Bit 1
Bit 6
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MSB
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tDT
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MSB first (LSBFE = 0):
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tCSC = CSCS to SCK delay. 
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at 
last SCK edge of frame (edge 16)
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Classic SPI transfer format (CPHA = 1)

This transfer format shown in Figure 306 is used to communicate with peripheral SPI slave 
devices that require the first SCK_x edge before the first data bit becomes available on the 
slave SOUT_x pin. In this format the master and slave devices change the data on their 
SOUT_x pins on the odd-numbered SCK_x edges and sample the data on their SIN_x pins 
on the even-numbered SCK_x edges.

         

Figure 306. DSPI transfer timing diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the CSx signal to the slave. After the tCSC 
delay has elapsed, the master generates the first SCK_x edge and at the same time places 
valid data on the master SOUT_x pin. The slave responds to the first SCK_x edge by 
placing its first data bit on its slave SOUT_x pin.

At the second edge of the SCK_x the master and slave sample their SIN_x pins. For the rest 
of the frame the master and the slave change the data on their SOUT_x pins on the odd-
numbered clock edges and sample their SIN_x pins on the even-numbered clock edges. 
After the last clock edge occurs a delay of tASC is inserted before the master negates the 
CSx signal. A delay of tDT is inserted before a new frame transfer can be initiated by the 
master.

For CPHA = 1 the master EOQF and TCF and slave TCF are set at the last serial clock edge 
(edge 16) of Figure 306. For CPHA = 1 the master and slave RXCTR counters are updated 
on the same clock edge.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)
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is updated at last SCK edge of frame (edge 16)
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Modified SPI transfer format (MTFE = 1, CPHA = 0)

In this modified transfer format both the master and the slave sample later in the SCK period 
than in classic SPI mode to allow for delays in device pads and board traces. These delays 
become a more significant fraction of the SCK period as the SCK period decreases with 
increasing baud rates.

Note: For the modified transfer format to operate correctly, you must thoroughly analyze the SPI 
link timing budget.

The master and the slave place data on the SOUT_x pins at the assertion of the CSx signal. 
After the CSx to SCK_x delay has elapsed the first SCK_x edge is generated. The slave 
samples the master SOUT_x signal on every odd numbered SCK_x edge. The slave also 
places new data on the slave SOUT_x on every odd numbered clock edge.

The master places its second data bit on the SOUT_x line one system clock after odd 
numbered SCK_x edge. The point where the master samples the slave SOUT_x is selected 
by writing to the SMPL_PT field in the DSPIx_MCR. Table 304 lists the number of system 
clock cycles between the active edge of SCK_x and the master sample point for different 
values of the SMPL_PT bit field. The master sample point can be delayed by one or two 
system clock cycles.

         

Table 304. Delayed master sample point

SMPL_PT
Number of system clock cycles between odd-numbered edge of SCK and 

sampling of SIN

00 0

01 1

10 2

11 Invalid value
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Figure 307 shows the modified transfer format for CPHA = 0. Only the condition where 
CPOL = 0 is illustrated. The delayed master sample points are indicated with a lighter 
shaded arrow.

         

Figure 307. DSPI modified transfer format (MTFE = 1, CPHA = 0, fSCK = fSYS / 4)

Modified SPI transfer format (MTFE = 1, CPHA = 1)

At the start of a transfer the DSPI asserts the CS signal to the slave device. After the CS to 
SCK delay has elapsed the master and the slave put data on their SOUT pins at the first 
edge of SCK. The slave samples the master SOUT signal on the even numbered edges of 
SCK. The master samples the slave SOUT signal on the odd numbered SCK edges starting 
with the third SCK edge. The slave samples the last bit on the last edge of the SCK. The 
master samples the last slave SOUT bit one half SCK cycle after the last edge of SCK. No 
clock edge is visible on the master SCK pin during the sampling of the last bit. The SCK to 
CS delay must be greater or equal to half of the SCK period.

Note: For the modified transfer format to operate correctly, you must thoroughly analyze the SPI 
link timing budget.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6
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Figure 308 shows the modified transfer format for CPHA = 1. Only the condition where 
CPOL = 0 is described.

         

Figure 308. DSPI modified transfer format (MTFE = 1, CPHA = 1, fSCK = fSYS / 4)

Continuous selection format

Some peripherals must be deselected between every transfer. Other peripherals must 
remain selected between several sequential serial transfers. The continuous selection 
format provides the flexibility to handle both cases. The continuous selection format is 
enabled for the SPI configuration by setting the CONT bit in the SPI command.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states 
in between frames. The idle states of the chip select signals are selected by the PCSIS field 
in the DSPIx_MCR.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock
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Figure 309 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT =  
0.

         

Figure 309. Example of non-continuous format (CPHA = 1, CONT = 0)

When the CONT = 1 and the CS signal for the next transfer is the same as for the current 
transfer, the CS signal remains asserted for the duration of the two transfers. The delay 
between transfers (tDT) is not inserted between the transfers.

Figure 310 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 1.

         

Figure 310. Example of continuous transfer (CPHA = 1, CONT = 1)

In Figure 310, the period length at the start of the next transfer is the sum of tASC and tCSC; 
that is, it does not include a half-clock period. The default settings for these provide a total of 
four system clocks. In many situations, tASC and tCSC must be increased if a full half-clock 
period is required.

SCK
(CPOL = 0)

CSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

CS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.

Master SIN
Doc ID 16886 Rev 6 578/868



Deserial Serial Peripheral Interface (DSPI) RM0045
Switching CTARs between frames while using continuous selection can cause errors in the 
transfer. The CS signal must be negated before CTAR is switched.

When the CONT bit = 1 and the CS signals for the next transfer are different from the 
present transfer, the CS signals behave as if the CONT bit was not set.

Note: You must fill the TXFIFO with the number of entries that will be concatenated together under 
one PCS assertion for both master and slave before the TXFIFO becomes empty. For 
example; while transmitting in master mode, ensure that the last entry in the TXFIFO, after 
which TXFIFO becomes empty, has CONT = 0 in the command frame. 

When operating in slave mode, ensure that when the last-entry in the TXFIFO is completely 
transmitted (i.e. the corresponding TCF flag is asserted and TXFIFO is empty) the slave is 
deselected for any further serial communication; otherwise, an underflow error occurs.

Clock polarity switching between DSPI transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated 
by the change in the idle state of the clock occurs one system clock before the assertion of 
the chip select for the next frame.

See Section 23.5.4, DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn).

In Figure 311, time ‘A’ shows the one clock interval. Time ‘B’ is user programmable from a 
minimum of two system clocks.

         

Figure 311. Polarity switching between frames

23.6.6 Continuous serial communications clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals 
that require a continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPIx_MCR. Continuous 
SCK is valid in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 is ignored if the 
CONT_SCKE bit is set. Continuous SCK is supported for modified transfer format.

CS

System clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B
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Clock and transfer attributes for the continuous SCK mode are set according to the following 
rules:

● The TX FIFO must be cleared before initiating any SPI configuration transfer.

● When the DSPI is in SPI configuration, CTAR0 is used initially. At the start of each SPI 
frame transfer, the CTAR specified by the CTAS for the frame should be CTAR0.

● In all configurations, the currently selected CTAR remains in use until the start of a 
frame with a different CTAR specified, or the continuous SCK mode is terminated.

The device is designed to use the same baud rate for all transfers made while using the 
continuous SCK. Switching clock polarity between frames while using continuous SCK can 
cause errors in the transfer. Continuous SCK operation is not guaranteed if the DSPI is put 
into module disable mode.

Enabling continuous SCK disables the CS to SCK delay and the After SCK delay. The delay 
after transfer is fixed at one SCK cycle. Figure 312 shows timing diagram for continuous 
SCK format with continuous selection disabled.

Note: When in Continuous SCK mode, always use CTAR0 for the SPI transfer, and clear the 
TXFIFO using the MCR[CLR_TXF] field before initiating transfer.

         

Figure 312. Continuous SCK timing diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set, CS remains asserted between the transfers 
when the CS signal for the next transfer is the same as for the current transfer. Figure 313 
shows timing diagram for continuous SCK format with continuous selection enabled.
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Figure 313. Continuous SCK timing diagram (CONT=1)
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23.6.7 Interrupt/DMA requests

The DSPI has five conditions that can generate interrupt requests only, and two conditions 
that can generate interrupt or DMA requests.

Table 305 lists the seven conditions.

         

Each condition has a flag bit and a request enable bit. The flag bits are described in the 
Section 23.5.5, DSPI Status Register (DSPIx_SR) and the request enable bits are 
described in the Section 23.5.6, DSPI DMA / Interrupt Request Select and Enable Register 
(DSPIx_RSER). The TX FIFO fill flag (TFFF) and RX FIFO drain flag (RFDF) generate 
interrupt requests or DMA requests depending on the TFFF_DIRS and RFDF_DIRS bits in 
the DSPIx_RSER.

End of Queue Interrupt Request (EOQF)

The end of queue request indicates that the end of a transmit queue is reached. The end of 
queue request is generated when the EOQ bit in the executing SPI command is asserted 
and the EOQF_RE bit in the DSPIx_RSER is set. See the EOQ bit description in 
Section 23.5.5, DSPI Status Register (DSPIx_SR). See Figure 305 and Figure 306 that 
illustrate when EOQF is set.

Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill 
request is generated when the number of entries in the TX FIFO is less than the maximum 
number of possible entries, and the TFFF_RE bit in the DSPIx_RSER is set. The 
TFFF_DIRS bit in the DSPIx_RSER selects whether a DMA request or an interrupt request 
is generated.

Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The 
transfer complete request is generated at the end of each frame transfer when the TCF_RE 
bit is set in the DSPIx_RSER. See the TCF bit description in Section 23.5.5, DSPI Status 
Register (DSPIx_SR). See Figure 305 and Figure 306 that illustrate when TCF is set.

Table 305. Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of transfer queue has been reached (EOQ) EOQF X

TX FIFO is not full TFFF X X

Current frame transfer is complete TCF X

TX FIFO underflow has occurred TFUF X

RX FIFO is not empty RFDF X X

RX FIFO overflow occurred RFOF X

A FIFO overrun occurred(1)

1. The FIFO overrun condition is created by ORing the TFUF and RFOF flags together.

TFUF ORed with RFOF X
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Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO 
has occurred. The transmit underflow condition is detected only for DSPI modules operating 
in slave mode and SPI configuration. The TFUF bit is set when the TX FIFO of a DSPI 
operating in slave mode and SPI configuration is empty, and a transfer is initiated from an 
external SPI master. If the TFUF bit is set while the TFUF_RE bit in the DSPIx_RSER is set, 
an interrupt request is generated.

Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO 
drain request is generated when the number of entries in the RX FIFO is not zero, and the 
RFDF_RE bit in the DSPIx_RSER is set. The RFDF_DIRS bit in the DSPIx_RSER selects 
whether a DMA request or an interrupt request is generatedt.

Receive FIFO Overflow Interrupt Request (RFOF)

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has 
occurred. A receive FIFO overflow request is generated when RX FIFO and shift register are 
full and a transfer is initiated. The RFOF_RE bit in the DSPIx_RSER must be set for the 
interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPIx_MCR, the data from the transfer that 
generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is 
set, the incoming data is shifted in to the shift register. If the ROOE bit is negated, the 
incoming data is ignored.

FIFO Overrun Request (TFUF) or (RFOF)

The FIFO overrun request indicates that at least one of the FIFOs in the DSPI has exceeded 
its capacity. The FIFO overrun request is generated by logically OR’ing together the RX 
FIFO overflow and TX FIFO underflow signals.

23.6.8 Power saving features

The DSPI supports the following power-saving strategies:

● External Stop mode 

● Module disable mode—clock gating of non-memory mapped logic

● Clock gating of slave interface signals and clock to memory-mapped logic

The External Stop Mode requires a block external to the DSPI to implement the SoC power 
management and clock gating control. All power saving features require logic external to the 
DSPI.

External Stop mode

When a request is made to enter External Stop Mode, the DSPI block acknowledges the 
request by negating ipg_stop_ack. When the DSPI is ready to have its clocks shut off the 
ipg_stop_ack signal is asserted. If a serial transfer is in progress, the DSPI waits until it 
reaches the frame boundary before it asserts ipg_stop_ack. While the clocks are shut off, 
the DSPI memory-mapped logic is not accessible. The states of the interrupt and DMA 
request signals cannot be changed while in External Stop Mode.
583/868 Doc ID 16886 Rev 6



RM0045 Deserial Serial Peripheral Interface (DSPI)
Module Disable mode

Module disable mode is a module-specific mode that the DSPI can enter to save power. 
Host software can initiate the module disable mode by writing a ‘1’ to the MDIS bit in the 
DSPIx_MCR. In module disable mode, the DSPI is in a dormant state, but the memory 
mapped registers are still accessible. Certain read or write operations have a different affect 
when the DSPI is in the module disable mode. Reading the RX FIFO pop register does not 
change the state of the RX FIFO. Likewise, writing to the TX FIFO push register does not 
change the state of the TX FIFO. Clearing either of the FIFOs does not have any effect in 
the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPIx_MCR 
does not have any affect in the module disable mode. In the module disable mode, all status 
bits and register flags in the DSPI return the correct values when read, but writing to them 
has no affect. Writing to the DSPIx_TCR during module disable mode does not have an 
effect. Interrupt and DMA request signals cannot be cleared while in the module disable 
mode.

Slave interface signal gating

The DSPI module enable signal is used to gate slave interface signals such as address, 
byte enable, read/write and data. This prevents toggling slave interface signals from 
consuming power unless the DSPI is accessed.

23.7 Initialization and application information

23.7.1 How to change queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of 
queue management. Queues are primarily supported in SPI configuration. This section 
presents an example of how to change queues for the DSPI.
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1. The last command word from a queue is executed. The EOQ bit in the command word 
is set to indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is 
sampled, the EOQ flag (EOQF) in the DSPIx_SR is set.

3. The setting of the EOQF flag disables both serial transmission, and serial reception of 
data, putting the DSPI in the STOPPED state. The TXRXS bit is negated to indicate the 
STOPPED state.

4. The eDMA continues to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel 
assigned to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA 
enable request bits in the eDMA controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by 
reading the RXCNT in DSPIx_SR or by checking RFDF in the DSPIx_SR after each 
read operation of the DSPIx_POPR.

7. Modify DMA descriptor of TX and RX channels for “new” queues.

8. Flush TX FIFO by writing a ‘1’ to the CLR_TXF bit in the DSPIx_MCR register and flush 
the RX FIFO by writing a ‘1’ to the CLR_RXF bit in the DSPIx_MCR register.

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry 
in the new queue or via CPU writing directly to SPI_TCNT field in the DSPIx_TCR.

10. Enable DMA channel by enabling the DMA enable request for the DMA channel 
assigned to the DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set 
enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

23.7.2 Baud rate settings

Table 306 shows the baud rate that is generated based on the combination of the baud rate 
prescaler PBR and the baud rate scaler BR in the DSPIx_CTARs. The values are calculated 
at a 48 MHz system frequency.
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Table 306. Baud rate values

Baud rate divider prescaler values

(DSPI_CTAR[PBR])

2 3 5 7
B

au
d

 r
at

e 
sc

al
er

 v
al

u
es

 (
D

S
P

I_
C

TA
R

[B
R

])

2 12 MHz 8 MHz 4.80 MHz 3.43 MHz

4 6 MHz 4 MHz 2.40 MHz 1.71 MHz

6 4 MHz 2.67 MHz 1.60 MHz 1.14 MHz

8 3 MHz 2 MHz 1.20 MHz 0.86 MHz

16 1.50MHz 1 MHz 600 kHz 428.57 kHz

32 750 kHz 500 kHz 300 kHz 214.29 kHz

64 375 kHz 250 kHz 150 kHz 107.14 kHz

128 187.50 kHz 125 kHz 75 kHz 53.57 kHz

256 93.75 kHz 62.50 kHz 37.50 kHz 26.79 kHz

512 46.88 kHz 31.25 kHz 18.75 kHz 13.39 kHz

1024 23.44 kHz 15.63 kHz 9.38 kHz 6.70 kHz

2048 11.72 kHz 7.81 kHz 4.69 kHz 3.35 kHz

4096 5.86 kHz 3.91 kHz 2.34 kHz 1.67 kHz

8192 2.93 kHz 1.95 kHz 1.17 kHz 837 Hz

16384 1.46 kHz 976.56 Hz 585.94 Hz 418.53 Hz

32768 732.42 Hz 488.28 Hz 292.97 Hz 209.26 Hz
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23.7.3 Delay settings

Table 307 shows the values for the delay after transfer (tDT) that can be generated based on 
the prescaler values and the scaler values set in the DSPIx_CTARs. The values calculated 
assume a 48 MHz system frequency.

         

23.7.4 Calculation of FIFO pointer addresses

The user has complete visibility of the TX and RX FIFO contents through the FIFO registers, 
and valid entries can be identified through a memory mapped pointer and a memory 
mapped counter for each FIFO. The pointer to the first-in entry in each FIFO is memory 
mapped. For the TX FIFO the first-in pointer is the transmit next pointer (TXNXTPTR). For 
the RX FIFO the first-in pointer is the pop next pointer (POPNXTPTR). 

See Section , Transmit First In First Out (TX FIFO) buffering mechanism, and Section , 
Receive First In First Out (RX FIFO) buffering mechanism, for details on the FIFO operation. 
The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO.

Figure 314 illustrates the concept of first-in and last-in FIFO entries along with the FIFO 
counter.

Table 307. Delay values

Delay prescaler values (DSPI_CTAR[PDT])

1 3 5 7

D
el

ay
 s

ca
le

r 
va

lu
es

 (
D

S
P

I_
C

TA
R

[D
T

])

2 41.67 ns 125 ns 208.33 ns 291.67 ns

4 83.33 ns 250 ns 416.67 ns 583.33 ns

8 166.67 ns 500 ns 833.33 ns 1.17 µs

16 333.33 ns 1 µs 1.67 µs 2.33 µs

32 666.67 ns 2 µs 3.33 µs 4.67 µs

64 1.33 µs 4 µs 6.67 µs 9.33 µs

128 2.67 µs 8 µs 13.33 µs 18.67 µs

256 5.33 µs 16 µs 26.67 µs 37.33 µs

512 10.67 µs 32 µs 53.33 µs 74.67 µs

1024 21.33 µs 64 µs 106.67 µs 149.33 µs

2048 42.67 µs 128 µs 213.33 µs 298.67 µs

4096 85.33 µs 256 µs 426.67 µs 597.33 µs

8192 170.67 µs 512 µs 853.33 µs 1.19 ms

16384 341.33 µs 1.02 ms 1.71 ms 2.39 ms

32768 682.67 µs 2.05 ms 3.41 ms 4.78 ms

65536 1.37 ms 4.10 ms 6.83 ms 9.56 ms
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Figure 314. TX FIFO pointers and counter

Address calculation for the first-in entry and last-in 
entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following 
equation:

First-in entry address = TXFIFO base + 4 (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following 
equation:

Last-in entry address = TXFIFO base + 4 x [(TXCTR + TXNXTPTR - 1) 
modulo TXFIFO depth] 

where:
TXFIFO base = base address of transmit FIFO

TXCTR = transmit FIFO counter

TXNXTPTR = transmit next pointer

TX FIFO depth = transmit FIFO depth, implementation specific

Address calculation for the first-in entry and last-in 
entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following 
equation:

First-in entry address = RXFIFO base + 4 x (POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following 
equation:

Last-in entry address = RXFIFO base + 4 x [(RXCTR + POPNXTPTR - 1) 
modulo RXFIFO depth]

Entry C

Entry A (first in)

– 1

Entry B

Entry D (last in)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)
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where:
RXFIFO base = base address of receive FIFO

RXCTR = receive FIFO counter

POPNXTPTR = pop next pointer

RX FIFO depth = receive FIFO depth, implementation specific
589/868 Doc ID 16886 Rev 6



RM0045 Timers
24 Timers

24.1 Introduction
This chapter describes the timer modules implemented on the microcontroller:

● System Timer Module (STM)

● Enhanced Modular IO Subsystem (eMIOS)

● Periodic Interrupt Timer (PIT)

The microcontroller also has a Real Time Clock / Autonomous Periodic Interrupt (RTC/API) 
module. The main purpose of this is to provide a periodic device wakeup source.

24.2 Technical overview
This section gives a technical overview of each of the timers as well as detailing the pins 
that can be used to access the timer peripherals if applicable. 

Figure 315 details the interaction between the timers and the eDMA, INTC, CTU, and ADC.
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Figure 315. Interaction between timers and relevant peripherals
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24.2.1 Overview of the STM

The STM is a 32-bit free running up-counter clocked by the system clock with a configurable 
8-bit clock pre-scaler (divide by 1 to 256). The counter is disabled out of reset and must 
therefore be enabled by software prior to use. The counter value can be read at any time. 

The STM has four 32-bit compare channels. Each channel can generate a unique interrupt 
on an exact match event with the free running counter. 

The STM is often used to analyse code execution times. By starting the STM and reading 
the timer before and after a task or function, you can make an accurate measurement of the 
time taken in clock cycles to perform the task. 

The STM can be configured to stop (freeze) or continue to run in debug mode and is 
available for use in all operating mode where the system clock is present (not STANDBY or 
certain STOP mode configurations)

There are no external pins associated with the STM.

24.2.2 Overview of the eMIOS

Each eMIOS offers a combination of PWM, Output Capture and Input Compare functions.  
There are different types of channel implemented and not every channel supports every 
eMIOS function. The channel functionality also differs between each eMIOS module. See 
Section 24.4, Enhanced Modular IO Subsystem (eMIOS), for more details.

Each channel has its own independent 16-bit counter. To allow synchronization between 
channels, there are a number of shared counter busses that can be used as a common 
timing reference. These counter buses can be used in combination with the individual 
channel counters to provide advanced features such as centre aligned PWM with dead time 
insertion. 

Once configured, the eMIOS needs very little CPU intervention. Interrupts, eDMA requests 
and CTU trigger requests can be raised based on eMIOS flag and timeout events.

The eMIOS is clocked from the system clock via peripheral clock group 3 (with a maximum 
permitted clock frequency of 64 MHz). The eMIOS can be used in all modes where the 
system clock is available (which excludes STANDBY mode and STOP mode when the 
system clock is turned off). The eMIOS has an option to allow the eMIOS counters to freeze 
or to continue running in debug mode. 

The CTU allows an eMIOS event to trigger a single ADC conversion via the CTU without any 
CPU intervention. Without the CTU, the eMIOS would have to trigger an interrupt request. 
The respective ISR would then perform a software triggered ADC conversion. This not only 
uses CPU resource, but also increases the latency between the eMIOS event and the ADC 
trigger.

The eMIOS "Output Pulse Width Modulation with Trigger" mode (see Section , ) allows a 
customisable trigger point to be defined at any point in the waveform period. This is 
extremely useful for LED lighting applications where the trigger can be set to a point where 
the PWM output is high but after the initial inrush current to the LED has occurred. The 
PWM trigger can then cause the CTU to perform a single ADC conversion which in turn 
measures the operating conditions of the LED to ensure it is working within specification. A 
watchdog feature on the ADC allows channels to be monitored and if the results fall outwith 
a specific range an interrupt is triggered. This means that all of the measurement is without 
CPU intervention if the results are within range.
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To make it easier to plan which pins to use for the eMIOS, Table 308 show the eMIOS 
channel numbers that are available on each pin. The color shading matches the channel 
configuration diagram in the eMIOS section.

         

         

24.2.3 Overview of the PIT

The PIT module consists of 4 Periodic Interrupt Timers (PITs) clocked from the system 
clock.

Out of reset, the PITis disabled. There is a global disable control bit for all of the PIT timers. 
Before using the timers, software must clear the appropriate disabled bit. Each of the PIT 
timers are effectively standalone entities and each have their own timer and control 
registers. 

The PIT timers are 32-bit count down timers. To use them, you must first program an initial 
value into the LDVAL register. The timer will then start to count down and can be read at any 
time. Once the timer reaches 0x0000_0000, a flag is set and the previous value is 
automatically re-loaded into the LDVAL register and the countdown starts again. The flag 
event can be routed to a dedicated INTC interrupt if desired. 

The PIT is also used to trigger other events:

● 2 of the PIT channels can be used as an eDMA trigger

● 1 PIT channels can be used to trigger a CTU ADC conversion (single)

● 1 PIT channel can be used to directly trigger injected conversions on the ADC

The timers can be configured to stop (freeze) or to continue to run in debug mode. The PITis 
available in all modes where a system clock is generated.  

There are no external pins associated with the PIT.

Table 308. eMIOS_0 channel to pin mapping

Channel
Pin function

Channel
Pin function

ALT1 ALT2 ALT3 ALT1 ALT2 ALT3

UC[0] PA[0] PA[14] UC[16] PE[0]

UC[1] PA[1] PA[15] UC[17] PE[1]

UC[2] PA[2] UC[18] PE[2]

UC[3] PA[3], PB[11] PC[8] UC[19] PE[3]

UC[4] PA[4], PB[12] UC[20] PE[4]

UC[5] PA[5], PB[13] UC[21] PE[5]

UC[6] PA[6], PB[14] UC[22] PE[6] PE[8]

UC[7] PA[7], PB[15] PC[9] UC[23] PE[7] PE[9]

UC[8] PA[8] UC[24] PE[11] PD[12]

UC[9] PA[9] UC[25] PD[13]

UC[10] PA[10] UC[26] PD[14]

UC[11] PA[11] UC[27] PD[15]

UC[12] PC[12]

UC[13] PC[13] PA[0]

UC[14] PC[14] PA[8]

UC[15] PC[15]
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24.3 System Timer Module (STM)

24.3.1 Introduction 

Overview

The System Timer Module (STM) is a 32-bit timer designed to support commonly required 
system and application software timing functions. The STM includes a 32-bit up counter and 
four 32-bit compare channels with a separate interrupt source for each channel. The counter 
is driven by the system clock divided by an 8-bit prescale value (1 to 256).

Features

The STM has the following features:

● One 32-bit up counter with 8-bit prescaler 

● Four 32-bit compare channels

● Independent interrupt source for each channel 

● Counter can be stopped in debug mode

Modes of operation

The STM supports two device modes of operation: normal and debug. When the STM is 
enabled in normal mode, its counter runs continuously. In debug mode, operation of the 
counter is controlled by the FRZ bit in the STM_CR register. If the FRZ bit is set, the counter 
is stopped in debug mode, otherwise it continues to run. 

24.3.2 External signal description

The STM does not have any external interface signals.

24.3.3 Memory map and register definition

The STM programming model has fourteen 32-bit registers. The STM registers can only be 
accessed using 32-bit (word) accesses. Attempted references using a different size or to a 
reserved address generates a bus error termination.

Memory map

The STM memory map is shown in Table 309.

         

Table 309. STM memory map

Base address: 0xFFF3_C000

Address offset Register Location

0x0000 STM Control Register (STM_CR) on page 24-595

0x0004 STM Counter Value (STM_CNT) on page 24-596

0x0008–0x000C Reserved 

0x0010 STM Channel 0 Control Register (STM_CCR0) on page 24-596

0x0014 STM Channel 0 Interrupt Register (STM_CIR0) on page 24-597

0x0018 STM Channel 0 Compare Register (STM_CMP0) on page 24-598
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Register descriptions

The following sections detail the individual registers within the STM programming model.

STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control and timer 
enable bits.

         

0x001C Reserved 

0x0020 STM Channel 1 Control Register (STM_CCR1) on page 24-596

0x0024 STM Channel 1 Interrupt Register (STM_CIR1) on page 24-597

0x0028 STM Channel 1 Compare Register (STM_CMP1) on page 24-598

0x002C Reserved 

0x0030 STM Channel 2 Control Register (STM_CCR2) on page 24-596

0x0034 STM Channel 2 Interrupt Register (STM_CIR2) on page 24-597

0x0038 STM Channel 2 Compare Register (STM_CMP2) on page 24-598

0x003C Reserved 

0x0040 STM Channel 3 Control Register (STM_CCR3) on page 24-596

0x0044 STM Channel 3 Interrupt Register (STM_CIR3) on page 24-597

0x0048 STM Channel 3 Compare Register (STM_CMP3) on page 24-598

0x004C–0x3FFF Reserved

Table 309. STM memory map (continued)

Base address: 0xFFF3_C000

Address offset Register Location

Figure 316. STM Control Register (STM_CR)

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

         

         

STM Channel Control Register (STM_CCRn)

The STM Channel Control Register (STM_CCRn) has the enable bit for channel n of the 
timer. 

Table 310. STM_CR field descriptions

Field Description

CPS

Counter Prescaler. Selects the clock divide value for the prescaler (1 - 256). 

0x00 = Divide system clock by 1

0x01 = Divide system clock by 2
...

0xFF = Divide system clock by 256

FRZ
Freeze. Allows the timer counter to be stopped when the device enters debug mode. 

0 = STM counter continues to run in debug mode.
1 = STM counter is stopped in debug mode.

TEN
Timer Counter Enabled.
0 = Counter is disabled.
1 = Counter is enabled.

Figure 317. STM Count Register (STM_CNT)

Offset: 0x004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 311. STM_CNT field descriptions

Field Description

CNT
Timer count value used as the time base for all channels. When enabled, the counter increments at the 
rate of the system clock divided by the prescale value. 
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STM Channel Interrupt Register (STM_CIRn)

The STM Channel Interrupt Register (STM_CIRn) has the interrupt flag for channel n of the 
timer.

         

         

Figure 318. STM Channel Control Register (STM_CCRn)

Offset: 0x10+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 312. STM_CCRn field descriptions

Field Description

CEN
Channel Enable.
0 = The channel is disabled.
1 = The channel is enabled. 

Figure 319. STM Channel Interrupt Register (STM_CIRn)

Offset: 0x14+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 313. STM_CIRn field descriptions

Field Description

CIF
Channel Interrupt Flag 
0 = No interrupt request.
1 = Interrupt request due to a match on the channel. 
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STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

         

         

24.3.4 Functional description

The System Timer Module (STM) is a 32-bit timer designed to support commonly required 
system and application software timing functions. The STM includes a 32-bit up counter and 
four 32-bit compare channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all 
channels. When enabled, the counter increments at the system clock frequency divided by a 
prescale value. The STM_CR[CPS] field sets the divider to any value in the range from 1 to 
256. The counter is enabled with the STM_CR[TEN] bit. When enabled in normal mode the 
counter continuously increments. When enabled in debug mode the counter operation is 
controlled by the STM_CR[FRZ] bit. When the STM_CR[FRZ] bit is set, the counter is 
stopped in debug mode, otherwise it continues to run in debug mode. The counter rolls over 
at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control 
register (STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare 
register (STM_CMPn). The channel is enabled by setting the STM_CCRn[CEN] bit. When 
enabled, the channel will set the STM_CIR[CIF] bit and generate an interrupt request when 
the channel compare register matches the timer counter. The interrupt request is cleared by 
writing a 1 to the STM_CIRn[CIF] bit. A write of 0 to the STM_CIRn[CIF] bit has no effect. 

Note: STM counter does not advance when the system clock is stopped.

24.4 Enhanced Modular IO Subsystem (eMIOS)

24.4.1 Introduction

Overview of the eMIOS module

The eMIOS provides functionality to generate or measure time events. Each channel 
provides a subset of the functionality available in the unified channel, at a resolution of 16 
bits, and provides a user interface that is consistent with previous eMIOS implementations.

Figure 320. STM Channel Compare Register (STM_CMPn)

Offset: 0x18+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 314. STM_CMPn field descriptions

Field Description

CMP
Compare value for channel n. If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches 
the STM_CNT register, a channel interrupt request is generated and the STM_CIRn[CIF] bit is set. 
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Features of the eMIOS module

● 1 eMIOS block with 28 channel

– All 28 channels with OPWMT, which can be connected to the CTU

● 1 global prescaler

● 16-bit data registers

● 10 x 16-bit wide counter buses

– Counter buses B, C, D, and E can be driven by Unified Channel 0, 8, 16, and 24, 
respectively

– Counter bus A is driven by the Unified Channel #23

– Several channels have their own time base, alternative to the counter buses

– Shared timebases through the counter buses

– Synchronization among timebases

● Control and Status bits grouped in a single register

● Shadow FLAG register

● State of the UC can be frozen for debug purposes

● Motor control capability

Modes of operation

The Unified Channels can be configured to operate in the following modes:

● General purpose input/output

● Single Action Input Capture

● Single Action Output Compare

● Input Pulse Width Measurement

● Input Period Measurement

● Double Action Output Compare

● Modulus Counter

● Modulus Counter Buffered

● Output Pulse Width and Frequency Modulation Buffered

● Output Pulse Width Modulation Buffered

● Output Pulse Width Modulation with Trigger

● Center Aligned Output Pulse Width Modulation Buffered

These modes are described in Section , UC modes of operation.

Each channel can have a specific set of modes implemented, according to device 
requirements.

If an unimplemented mode (reserved) is selected, the results are unpredictable such as 
writing a reserved value to MODE[0:6] in Section , eMIOS UC Control Register 
(EMIOSC[n]).

Channel implementation

Figure 321 shows the channel configuration of the eMIOS blocks.
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Figure 321. Channel configuration
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Channel mode selection

Channel modes are selected using the mode selection bits MODE[0:6] in the eMIOS UC 
Control Register (EMIOSC[n]). Table 327 provides the specific mode selection settings for 
the eMIOS implementation on this device.

24.4.2 External signal description

For information on eMIOS external signals on this device, please refer to the signal 
description chapter of the reference manual.

24.4.3 Memory map and register description

Memory maps

The overall address map organization is shown in Table 315.

Unified Channel memory map

         

Table 315. eMIOS memory map

Base address: 0xC3FA_0000

Address offset Description Location

0x000–0x003 eMIOS Module Configuration Register (EMIOSMCR)
on page 24-

602

0x004–0x007 eMIOS Global FLAG (EMIOSGFLAG) Register
on page 24-

604

0x008–0x00B eMIOS Output Update Disable (EMIOSOUDIS) Register
on page 24-

604

0x00C–0x00F eMIOS Disable Channel (EMIOSUCDIS) Register
on page 24-

605

0x010–0x01F Reserved —

0x020–0x11F
Channel [0]

to

Channel [7]

—

0x120–0x21F

Channel [8]

to

Channel [15]

—

0x220–0x31F

Channel [16]

to

Channel [23]

—

0x320–0x39F

Channel [24]

to
Channel [27]

—

0x3A0–0xFFF Reserved —
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Addresses of Unified Channel registers are specified as offsets from the channel’s base 
address; otherwise the eMIOS base address is used as reference.

Table 316 describes the Unified Channel memory map.

         

Register description

All control registers are 32 bits wide. Data registers and counter registers are 16 bits wide.

eMIOS Module Configuration Register (EMIOSMCR)

The EMIOSMCR contains global control bits for the eMIOS block.

         

Table 316. Unified Channel memory map

UC base address Description Location

0x00 eMIOS UC A Register (EMIOSA[n]) on page 24-606

0x04 eMIOS UC B Register (EMIOSB[n]) on page 24-606

0x08 eMIOS UC Counter Register (EMIOSCNT[n]) on page 24-607

0x0C eMIOS UC Control Register (EMIOSC[n]) on page 24-608

0x10 eMIOS UC Status Register (EMIOSS[n]) on page 24-612

0x14 eMIOS UC Alternate A Register (EMIOSALTA[n]) on page 24-613

0x18–0x1F Reserved —

Figure 322. eMIOS Module Configuration Register (EMIOSMCR)

Address: eMIOS base address +0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MDIS FRZ

G
T

B
E 0

G
P

R
E

N 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table 317. EMIOSMCR field descriptions

Field Description

MDIS

Module Disable

Puts the eMIOS in low power mode. The MDIS bit is used to stop the clock of the block, except the 
access to registers EMIOSMCR, EMIOSOUDIS and EMIOSUCDIS.

1 = Enter low power mode
0 = Clock is running

FRZ

Freeze
Enables the eMIOS to freeze the registers of the Unified Channels when Debug Mode is requested 
at MCU level. Each Unified Channel should have FREN bit set in order to enter freeze state. While 
in Freeze state, the eMIOS continues to operate to allow the MCU access to the Unified Channels 
registers. The Unified Channel will remain frozen until the FRZ bit is written to ‘0’ or the MCU exits 
Debug mode or the Unified Channel FREN bit is cleared.
1 = Stops Unified Channels operation when in Debug mode and the FREN bit is set in the 
EMIOSC[n] register
0 = Exit freeze state

GTBE

Global Time Base Enable
The GTBE bit is used to export a Global Time Base Enable from the module and provide a method 
to start time bases of several blocks simultaneously.
1 = Global Time Base Enable Out signal asserted

0 = Global Time Base Enable Out signal negated

Note:  The Global Time Base Enable input pin controls the internal counters. When asserted, 
Internal counters are enabled. When negated, Internal counters disabled. 

GPREN

Global Prescaler Enable

The GPREN bit enables the prescaler counter.

1 = Prescaler enabled
0 = Prescaler disabled (no clock) and prescaler counter is cleared

GPRE
Global Prescaler
The GPRE bits select the clock divider value for the global prescaler, as shown in Table 318.

Table 318. Global prescaler clock divider

GPRE Divide ratio 

00000000 1

00000001 2

00000010 3

00000011 4

.

.

.

.

.

.

.

.

11111110 255

11111111 256
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eMIOS Global FLAG (EMIOSGFLAG) Register

The EMIOSGFLAG is a read-only register that groups the flag bits (F[27:0]) from all 
channels. This organization improves interrupt handling on simpler devices. Each bit relates 
to one channel.

For Unified Channels these bits are mirrors of the FLAG bits in the EMIOSS[n] register.

         

eMIOS Output Update Disable (EMIOSOUDIS) Register

         

Figure 323. eMIOS Global FLAG (EMIOSGFLAG) Register

Address: eMIOS base address +0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 319. EMIOSGFLAG field descriptions

Field Description

Fn Channel [n] Flag bit

Figure 324. eMIOS Output Update Disable (EMIOSOUDIS) Register

Address: eMIOS base address +0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

O
U

27

O
U

26

O
U

25

O
U

24

O
U

23

O
U

22

O
U

21

O
U

20

O
U

19

O
U

18

O
U

17

O
U

16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
U

15

O
U

14

O
U

13

O
U

12

O
U

11

O
U

10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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eMIOS Disable Channel (EMIOSUCDIS) Register

         

         

         

Table 320. EMIOSOUDIS field descriptions

Field Description

OUn

Channel [n] Output Update Disable bit

When running MC, MCB or an output mode, values are written to registers A2 and B2. OU[n] bits 
are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit controls one channel.

1 = Transfers disabled
0 = Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the 
next period. Unless stated otherwise, transfer occurs immediately.

Figure 325. eMIOS Enable Channel (EMIOSUCDIS) Register

Address: eMIOS base address +0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

C
H

D
IS

27

C
H

D
IS

26

C
H

D
IS

25

C
H

D
IS

24

C
H

D
IS

23

C
H

D
IS

22

C
H

D
IS

21

C
H

D
IS

20

C
H

D
IS

19

C
H

D
IS

18

C
H

D
IS

17

C
H

D
IS

16

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

D
IS

15

C
H

D
IS

14

C
H

D
IS

13

C
H

D
IS

12

C
H

D
IS

11

C
H

D
IS

10

C
H

D
IS

9

C
H

D
IS

8

C
H

D
IS

7

C
H

D
IS

6

C
H

D
IS

5

C
H

D
IS

4

C
H

D
IS

3

C
H

D
IS

2

C
H

D
IS

1

C
H

D
IS

0

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Table 321. EMIOSUCDIS field descriptions

Field Description

CHDISn

Enable Channel [n] bit
The CHDIS[n] bit is used to disable each of the channels by stopping its respective clock. 

1 = Channel [n] disabled

0 = Channel [n] enabled
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eMIOS UC A Register (EMIOSA[n])

         

Depending on the mode of operation, internal registers A1 or A2, used for matches and 
captures, can be assigned to address EMIOSA[n]. Both A1 and A2 are cleared by reset. 
Figure 322 summarizes the EMIOSA[n] writing and reading accesses for all operation 
modes. For more information see Section , UC modes of operation.

eMIOS UC B Register (EMIOSB[n])

         

Depending on the mode of operation, internal registers B1 or B2 can be assigned to 
address EMIOSB[n]. Both B1 and B2 are cleared by reset. Table 322 summarizes the 
EMIOSB[n] writing and reading accesses for all operation modes. For more information see 
Section , UC modes of operation.

Depending on the channel configuration, it may have EMIOSB register or not. This means 
that, if at least one mode that requires the register is implemented, then the register is 
present; otherwise it is absent.

Figure 326. eMIOS UC A Register (EMIOSA[n]) 

Address: UC[n] base address + 0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 327. eMIOS UC B Register (EMIOSB[n])

Address: UC[n] base address + 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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eMIOS UC Counter Register (EMIOSCNT[n])

         

The EMIOSCNT[n] register contains the value of the internal counter. When GPIO mode is 
selected or the channel is frozen, the EMIOSCNT[n] register is read/write. For all others 
modes, the EMIOSCNT[n] is a read-only register. When entering some operation modes, 
this register is automatically cleared (refer to Section , UC modes of operation for details).

Depending on the channel configuration it may have an internal counter or not. It means that 
if at least one mode that requires the counter is implemented, then the counter is present; 
otherwise it is absent.

Table 322. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment

Operation mode
Register access

write read write read alt write alt read

GPIO A1, A2 A1 B1,B2 B1 A2 A2

SAIC(1)

1. In these modes, the register EMIOSB[n] is not used, but B2 can be accessed.

— A2 B2 B2 — —

SAOC(1) A2 A1 B2 B2 — —

IPWM — A2 — B1 — —

IPM — A2 — B1 — —

DAOC A2 A1 B2 B1 — —

MC(1) A2 A1 B2 B2 — —

OPWMT A1 A1 B2 B1 A2 A2

MCB(1) A2 A1 B2 B2 — —

OPWFMB A2 A1 B2 B1 — —

OPWMCB A2 A1 B2 B1 — —

OPWMB A2 A1 B2 B1 — —

Figure 328. eMIOS UC Counter Register (EMIOSCNT[n])

Address: UC[n] base address + 0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W(1)

1. In GPIO mode or Freeze action, this register is writable.

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W(1)

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Channels of type X and G have the internal counter enabled, so their timebase can be 
selected by channel's BSL[1:0]=11:eMIOS_A - channels 0 to 8, 16, 23 and 24, eMIOS_B = 
channels 0, 8, 16, 23 and 24. Other channels from the above list don't have internal 
counters.

eMIOS UC Control Register (EMIOSC[n])

The Control register gathers bits reflecting the status of the UC input/output signals and the 
overflow condition of the internal counter, as well as several read/write control bits.

         

         

Figure 329. eMIOS UC Control Register (EMIOSC[n])

Address: UC[n] base address + 0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
R

E
N 0 0 0

UCPRE

U
C

P
R

E
N

DMA
0

IF FCK FEN
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

BSL

E
D

S
E

L

E
D

P
O

L

MODE
W

F
O

R
C

M
A

F
O

R
C

M
B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 323. EMIOSC[n] field descriptions

Field Description

FREN

Freeze Enable bit

The FREN bit, if set and validated by FRZ bit in EMIOSMCR register allows the channel to enter 
freeze state, freezing all registers values when in debug mode and allowing the MCU to perform 
debug functions.
1 = Freeze UC registers values

0 = Normal operation

UCPRE
Prescaler bits 
The UCPRE bits select the clock divider value for the internal prescaler of Unified Channel, as 
shown in Table 324.

UCPREN

Prescaler Enable bit

The UCPREN bit enables the prescaler counter.
1 = Prescaler enabled

0 = Prescaler disabled (no clock)
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DMA

Direct Memory Access bit

The DMA bit selects if the FLAG generation will be used as an interrupt request, as a DMA request 
or as a CTU trigger. The choice between a DMA request or a CTU trigger is determined by the 
value of bit TM in the register CTU_EVTCFGRx (refer to the CTU chapter of the reference manual).

1 = Flag/overrun assigned to DMA request or CTU trigger

0 = Flag/overrun assigned to interrupt request

IF
Input Filter

The IF field controls the programmable input filter, selecting the minimum input pulse width that can 
pass through the filter, as shown in Table 325. For output modes, these bits have no meaning.

FCK

Filter Clock select bit 

The FCK bit selects the clock source for the programmable input filter.

1 = Main clock
0 = Prescaled clock

FEN

FLAG Enable bit 
The FEN bit allows the Unified Channel FLAG bit to generate an interrupt signal or a DMA request 
signal or a CTU trigger signal (The type of signal to be generated is defined by the DMA bit).
1 = Enable (FLAG will generate an interrupt request or DMA request or a CTU trigger)

0 = Disable (FLAG does not generate an interrupt request or DMA request or a CTU trigger)

FORCMA

Force Match A bit

For output modes, the FORCMA bit is equivalent to a successful comparison on comparator A 
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit 
is valid for every output operation mode which uses comparator A, otherwise it has no effect.
1 = Force a match at comparator A

0 = Has no effect

Note: For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB

Force Match B bit

For output modes, the FORCMB bit is equivalent to a successful comparison on comparator B 
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit 
is valid for every output operation mode which uses comparator B, otherwise it has no effect.

1 = Force a match at comparator B

0 = Has not effect
Note: For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL
Bus Select

The BSL field is used to select either one of the counter buses or the internal counter to be used by 
the Unified Channel. Refer to Table 326 for details.

Table 323. EMIOSC[n] field descriptions (continued)

Field Description
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EDSEL

Edge Selection bit 

For input modes, the EDSEL bit selects whether the internal counter is triggered by both edges of a 
pulse or just by a single edge as defined by the EDPOL bit. When not shown in the mode of 
operation description, this bit has no effect.

1 = Both edges triggering
0 = Single edge triggering defined by the EDPOL bit

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.

1 = No FLAG is generated
0 = A FLAG is generated as defined by the EDPOL bit

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.

1 = The output flip-flop is toggled
0 = The EDPOL value is transferred to the output flip-flop 

EDPOL

Edge Polarity bit
For input modes, the EDPOL bit asserts which edge triggers either the internal counter or an input 
capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
1 = Trigger on a rising edge
0 = Trigger on a falling edge

For output modes, the EDPOL bit is used to select the logic level on the output pin. 
1 = A match on comparator A sets the output flip-flop, while a match on comparator B clears it
0 = A match on comparator A clears the output flip-flop, while a match on comparator B sets it 

MODE

Mode selection

The MODE field selects the mode of operation of the Unified Channel, as shown in Table 327.
Note: If a reserved value is written to mode the results are unpredictable.

Table 324.  UC internalprescaler clock divider

UCPRE Divide ratio

00 1

01 2

10 3

11 4

Table 325. UC input filter bits

IF(1) Minimum input pulse width [FLT_CLK periods]

0000 Bypassed(2)

0001 02

0010 04

0100 08

Table 323. EMIOSC[n] field descriptions (continued)

Field Description
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1000 16

all others Reserved

1. Filter latency is 3 clock edges.

2. The input signal is synchronized before arriving to the digital filter.

Table 326. UC BSL bits

BSL Selected bus

00 All channels: counter bus[A]

01

Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]

Channels 24 to 27: counter bus[E]

10 Reserved

11 All channels: internal counter

Table 327. Channel mode selection

MODE(1) Mode of operation

0000000 General purpose Input/Output mode (input)

0000001 General purpose Input/Output mode (output)

0000010 Single Action Input Capture

0000011 Single Action Output Compare

0000100 Input Pulse Width Measurement

0000101 Input Period Measurement

0000110 Double Action Output Compare (with FLAG set on B match)

0000111 Double Action Output Compare (with FLAG set on both match)

0001000 – 0001111 Reserved

001000b Modulus Counter (Up counter with clear on match start)

001001b Modulus Counter (Up counter with clear on match end)

00101bb Modulus Counter (Up/Down counter)

0011000 – 0100101 Reserved

0100110 Output Pulse Width Modulation with Trigger

0100111 – 1001111 Reserved

101000b Modulus Counter Buffered (Up counter)

101001b Reserved

10101bb Modulus Counter Buffered (Up/Down counter)

10110b0 Output Pulse Width and Frequency Modulation Buffered

Table 325. UC input filter bits

IF(1) Minimum input pulse width [FLT_CLK periods]
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eMIOS UC Status Register (EMIOSS[n])

         

         

10110b1 Reserved

10111b0 Center Aligned Output Pulse Width Modulation Buffered (with trail edge dead-time)

10111b1 Center Aligned Output Pulse Width Modulation Buffered (with lead edge dead-time)

11000b0 Output Pulse Width Modulation Buffered

1100001 – 1111111 Reserved

1. b = adjust parameters for the mode of operation. Refer to Section , UC modes of operation for details.

Table 327. Channel mode selection (continued)

MODE(1) Mode of operation

Figure 330. eMIOS UC Status Register (EMIOSS[n])

Address: UC[n] base address + 0x10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
V

F
L

0 0 0 0 0 0 0 0 0 0 0 0 UCIN

U
C

O
U

T

F
LA

G

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 328. EMIOSS[n] field descriptions

Field Description

OVR

Overrun bit
The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set.

1 = Overrun has occurred

0 = Overrun has not occurred 

OVFL

Overflow bit

The OVFL bit indicates that an overflow has occurred in the internal counter. OVFL must be cleared 
by software writing a 1 to the OVFLC bit.

1 = An overflow had occurred
0 = No overflow

UCIN
Unified Channel Input pin bit
The UCIN bit reflects the input pin state after being filtered and synchronized.
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eMIOS UC Alternate A Register (EMIOSALTA[n])

         

The EMIOSALTA[n] register provides an alternate address to access A2 channel registers in 
restricted modes (GPIO, OPWMT) only. If EMIOSA[n] register is used along with 
EMIOSALTA[n], both A1 and A2 registers can be accessed in these modes. Figure 322 
summarizes the EMIOSALTA[n] writing and reading accesses for all operation modes. 
Please, see Section , General purpose Input/Output (GPIO) mode, Section ,  for a more 
detailed description of the use of EMIOSALTA[n] register.

24.4.4 Functional description

The four types of channels of the eMIOS (types X, Y, G and H) can operate in the modes as 
listed in Figure 321. The eMIOS provides independently operating unified channels (UC) 
that can be configured and accessed by a host MCU. Up to three time bases(t) can be 

UCOUT
UCOUT — Unified Channel Output pin bit

The UCOUT bit reflects the output pin state.

FLAG

FLAG bit

The FLAG bit is set when an input capture or a match event in the comparators occurred.
1 = FLAG set event has occurred

0 = FLAG cleared

Note: When DMA bit is set, the FLAG bit can be cleared by the DMA controller or the CTU.

Table 328. EMIOSS[n] field descriptions (continued)

Field Description

Figure 331. eMIOS UC Alternate A register (EMIOSALTA[n])

Address: UC[n] base address + 0x14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t. Time bases can be supplied by:

a) channel 23 to all unified channels

b) channel 0 to channels 0 to 7, by channel 8 to channels 8 to 15, by channel 16 to channels 16 to 23, by channel 
24 to channels 24 to 31

c) channel's internal counter when available.
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shared by the channels through five counter buses(u) and each unified channel can 
generate its own time base(v). The eMIOS block is reset at positive edge of the clock 
(synchronous reset). All registers are cleared on reset.

Unified Channel (UC)

Each Unified Channel consists of:

● Counter bus selector, which selects the time base to be used by the channel for all 
timing functions

● A programmable clock prescaler 

● Two double buffered data registers A and B that allow up to two input capture and/or 
output compare events to occur before software intervention is needed.

● Two comparators (equal only) A and B, which compares the selected counter bus with 
the value in the data registers 

● Internal counter, which can be used as a local time base or to count input events

● Programmable input filter, which ensures that only valid pin transitions are received by 
channel

● Programmable input edge detector, which detects the rising, falling or either edges

● An output flip-flop, which holds the logic level to be applied to the output pin

● eMIOS Status and Control register

UC modes of operation

The mode of operation of the Unified Channel is determined by the mode select bits 
MODE[0:6] in the eMIOS UC Control Register (EMIOSC[n]) (see Figure 329 for details).

As the internal counter EMIOSCNT[n] continues to run in all modes (except for GPIO 
mode), it is possible to use this as a time base if the resource is not used in the current 
mode.

In order to provide smooth waveform generation even if A and B registers are changed on 
the fly, it is available the MCB, OPWFMB, OPWMB and OPWMCB modes. In these modes 
A and B registers are double buffered.

General purpose Input/Output (GPIO) mode

In GPIO mode, all input capture and output compare functions of the UC are disabled, the 
internal counter (EMIOSCNT[n] register) is cleared and disabled. All control bits remain 
accessible. In order to prepare the UC for a new operation mode, writing to registers 
EMIOSA[n] or EMIOSB[n] stores the same value in registers A1/A2 or B1/B2, respectively. 
Writing to register EMIOSALTA[n] stores a value only in register A2. 

MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes. 

It is required that when changing MODE[0:6], the application software goes to GPIO mode 
first in order to reset the UC’s internal functions properly. Failure to do this could lead to 
invalid and unexpected output compare or input capture results or the FLAGs being set 
incorrectly. 

u. Internal eMIOS architecture have one global counter bus A and four local counter buses B, C, D, and E, that 
distribute the time bases described in Note 1 (a) and (b).

v. Channels of type X and G have the internal counter enabled, so their timebase can be selected by channel's 
BSL[1:0]=11: eMIOS_A - channels 0 to 8, 16, 23 and 24 eMIOS_B = channels 0, 8, 16, 23 and 24.
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In GPIO input mode (MODE[0:6] = 0000000), the FLAG generation is determined according 
to EDPOL and EDSEL bits and the input pin status can be determined by reading the UCIN 
bit.

In GPIO output mode (MODE[0:6] = 0000001), the Unified Channel is used as a single 
output port pin and the value of the EDPOL bit is permanently transferred to the output flip-
flop. 

Single Action Input Capture (SAIC) mode

In SAIC mode (MODE[0:6] = 0000010), when a triggering event occurs on the input pin, the 
value on the selected time base is captured into register A2. The FLAG bit is set along with 
the capture event to indicate that an input capture has occurred. Register EMIOSA[n] 
returns the value of register A2. As soon as the SAIC mode is entered coming out from 
GPIO mode the channel is ready to capture events. The events are captured as soon as 
they occur thus reading register A always returns the value of the latest captured event. 
Subsequent captures are enabled with no need of further reads from EMIOSA[n] register. 
The FLAG is set at any time a new event is captured. 

The input capture is triggered by a rising, falling or either edges in the input pin, as 
configured by EDPOL and EDSEL bits in EMIOSC[n] register. 

Figure 332 and Figure 333 show how the Unified Channel can be used for input capture.

         

Figure 332. Single action input capture with rising edge triggering example

         

Figure 333. Single action input capture with both edges triggering example

         

Single Action Output Compare (SAOC) mode

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

FLAG pin/register

A2 (captured) value2 0xxxxxxx 0x001000 0x001250 0x0016A0

input signal1

Edge detect Edge detect Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

EDSEL = 0
EDPOL = 1

selected counter bus 0x001000 0x001102

FLAG set event

A2 (captured) value2 0xxxxxxx 0x001000

input signal1

Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

0x001103 0x0011080x001104 0x001105 0x001106 0x0011070x001001

FLAG pin/register

Edge detect

FLAG clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x
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In SAOC mode (MODE[0:6] = 0000011) a match value is loaded in register A2 and then 
immediately transferred to register A1 to be compared with the selected time base. When a 
match occurs, the EDSEL bit selects whether the output flip-flop is toggled or the value in 
EDPOL is transferred to it. Along with the match the FLAG bit is set to indicate that the 
output compare match has occurred. Writing to register EMIOSA[n] stores the value in 
register A2 and reading to register EMIOSA[n] returns the value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in 
EMIOSC[n] register. In this case, the FLAG bit is not set.

When SAOC mode is entered coming out from GPIO mode the output flip-flop is set to the 
complement of the EDPOL bit in the EMIOSC[n] register.

Counter bus can be either internal or external and is selected through bits BSL[0:1].

Figure 334 and Figure 335 show how the Unified Channel can be used to perform a single 
output compare with EDPOL value being transferred to the output flip-flop and toggling the 
output flip-flop at each match, respectively. Note that once in SAOC mode the matches are 
enabled thus the desired match value on register A1 must be written before the mode is 
entered. A1 register can be updated at any time thus modifying the match value which will 
reflect in the output signal generated by the channel. Subsequent matches are enabled with 
no need of further writes to EMIOSA[n] register. The FLAG is set at the same time a match 
occurs (see Figure 336).

Note: The channel internal counter in SAOC mode is free-running. It starts counting as soon as 
the SAOC mode is entered.

         

Figure 334. SAOC example with EDPOL value being transferred to the output flip-flop

         

Figure 335. SAOC example toggling the output flip-flop

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

output flip-flop

Update to A1 

A1 value1 0xxxxxxx 0x001000

FLAG pin/register

0x001000 0x001000 0x001000

A1 match A1 match A1 match

Notes: 1. EMIOSA[n] = A2

EDSEL = 0
EDPOL = 1

A2 = A1 according to OU[n] bit 

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

A1 value1 0xxxxxxx 0x001000

output flip-flop

Update to A1 

FLAG pin/register

A1 match A1 match A1 match

0x001000 0x001000 0x001000

Notes: 1. EMIOSA[n] = A2

EDSEL = 1
EDPOL = x

A2 = A1 according to OU[n] bit 
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Figure 336. SAOC example with flag behavior

         

Input Pulse Width Measurement (IPWM) Mode

The IPWM mode (MODE[0:6] = 0000100) allows the measurement of the width of a positive 
or negative pulse by capturing the leading edge on register B1 and the trailing edge on 
register A2. Successive captures are done on consecutive edges of opposite polarity. The 
leading edge sensitivity (that is, pulse polarity) is selected by EDPOL bit in the EMIOSC[n] 
register. Registers EMIOSA[n] and EMIOSB[n] return the values in register A2 and B1, 
respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the 
first input capture on register B2. When this leading edge is detected, the count value of the 
selected time base is latched into register B2; the FLAG bit is not set. When the trailing edge 
is detected, the count value of the selected time base is latched into register A2 and, at the 
same time, the FLAG bit is set and the content of register B2 is transferred to register B1 
and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers 
A2, B1 and A1 will be updated with the latest captured values and the FLAG will remain set. 
Registers EMIOSA[n] and EMIOSB[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOSA[n] forces B1 be updated with the 
content of register A1. At the same time transfers between B2 and B1 are disabled until the 
next read of EMIOSB[n] register. Reading EMIOSB[n] register forces B1 be updated with A1 
register content and re-enables transfers from B2 to B1, to take effect at the next trailing 
edge capture. Transfers from B2 to A1 are not blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 337 shows how the Unified Channel can be used for input pulse width measurement.

selected counter bus 0x0 0x2

FLAG set event

A2 value1 0x1

output flip-flop

Note: 1. EMIOSA[n] <= A2

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

A1 match

EDPOL = x
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Figure 337. Input pulse width measurement example

Figure 338 shows the A1 and B1 updates when EMIOSA[n] and EMIOSB[n] register reads 
occur. Note that A1 register has always coherent data related to A2 register. Note also that 
when EMIOSA[n] read is performed B1 register is loaded with A1 register content. This 
guarantee that the data in register B1 has always the coherent data related to the last 
EMIOSA[n] read. The B1 register updates remains locked until EMIOSB[n] read occurs. If 
EMIOSA[n] read is performed B1 is updated with A1 register content even if B1 update is 
locked by a previous EMIOSA[n] read operation.

         

Figure 338. B1 and A1 updates at EMIOSA[n] and EMIOSB[n] reads

Reading EMIOSA[n] followed by EMIOSB[n] always provides coherent data. If not coherent 
data is required for any reason, the sequence of reads should be inverted, therefore 
EMIOSB[n] should be read prior to EMIOSA[n] register. Note that even in this case B1 
register updates will be blocked after EMIOSA[n] read, thus a second EMIOSB[n] is required 
in order to release B1 register updates.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000 0x001250

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

0x001000 0x001250

Read EMIOSA[n] Read EMIOSB[n]

3. EMIOSB[n] = B1
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Input Period Measurement (IPM) mode 

The IPM mode (MODE[0:6] = 0000101) allows the measurement of the period of an input 
signal by capturing two consecutive rising edges or two consecutive falling edges. 
Successive input captures are done on consecutive edges of the same polarity. The edge 
polarity is defined by the EDPOL bit in the EMIOSC[n] register.

When the first edge of selected polarity is detected, the selected time base is latched into 
the registers A2 and B2, and the data previously held in register B2 is transferred to register 
B1. On this first capture the FLAG line is not set, and the values in registers B1 is 
meaningless. On the second and subsequent captures, the FLAG line is set and data in 
register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched 
into registers A2 and B2, the data previously held in register B2 is transferred to data 
register B1 and to register A1. The FLAG bit is set to indicate the start and end points of a 
complete period have been captured. This sequence of events is repeated for each 
subsequent capture. Registers EMIOSA[n] and EMIOSB[n] return the values in register A2 
and B1, respectively.

In order to allow coherent data, reading EMIOSA[n] forces A1 content be transferred to B1 
register and disables transfers between B2 and B1. These transfers are disabled until the 
next read of the EMIOSB[n] register. Reading EMIOSB[n] register forces A1 content to be 
transferred to B1 and re-enables transfers from B2 to B1, to take effect at the next edge 
capture.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 339 shows how the Unified Channel can be used for input period measurement.

         

Figure 339. Input period measurement example

Figure 340 describes the A1 and B1 register updates when EMIOSA[n] and EMIOSB[n] 
read operations are performed. When EMIOSA[n] read occurs the content of A1 is 
transferred to B1 thus providing coherent data in A2 and B1 registers. Transfers from B2 to 
B1 are then blocked until EMIOSB[n] is read. After EMIOSB[n] is read, register A1 content is 
transferred to register B1 and the transfers from B2 to B1 are re-enabled to occur at the 
transfer edges, which is the leading edge in the Figure 340 example.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

A1 value

B2 (captured) value

0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000 0x001250 0x0016A0

Input signal1

EDPOL = 1

FLAG pin register

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

A A A

B1 value3 0xxxxxxx 0x001000 0x001250
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Figure 340. A1 and B1 updates at EMIOSA[n] and EMIOSB[n] reads

Double Action Output Compare (DAOC) mode

In the DAOC mode the leading and trailing edges of the variable pulse width output are 
generated by matches occurring on comparators A and B. There is no restriction concerning 
the order in which A and B matches occur.

When the DAOC mode is entered, coming out from GPIO mode both comparators are 
disabled and the output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n] 
register.

Data written to A2 and B2 are transferred to A1 and B1, respectively, on the next system 
clock cycle if bit OU[n] of the EMIOSOUDIS register is cleared (see Figure 343). The 
transfer is blocked if bit OU[n] is set. Comparator A is enabled only after the transfer to A1 
register occurs and is disabled on the next A match. Comparator B is enabled only after the 
transfer to B1 register occurs and is disabled on the next B match. Comparators A and B are 
enabled and disabled independently.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and 
to the complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches (MODE[0:6] = 0000111) or just on the 
B match (MODE[0:6] = 0000110). FLAG bit assertion depends on comparator enabling.

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue 
to be generated, regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop 
to the level corresponding to a comparison event in comparator A or B, respectively. Note 
that the FLAG bit is not affected by these forced operations.

Note: If both registers (A1 and B1) are loaded with the same value, the B match prevails 
concerning the output pin state (output flip-flop is set to the complement of EDPOL), the 
FLAG bit is set and both comparators are disabled.

Figure 341 and Figure 342 show how the Unified Channel can be used to generate a single 
output pulse with FLAG bit being set on the second match or on both matches, respectively.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000

0xxxxxxx 0x001000

Input signal1

A A A

FLAG pin/register

EDPOL = 1

A1 value 0xxxxxxx 0x001000

0x001000

0x001250

0x001250

Read EMIOSA[n] Read EMIOSB[n]

0x001250

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

0x0016A0
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Figure 341. Double action output compare with FLAG set on the second match

         

Figure 342. Double action output compare with FLAG set on both matches

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to 
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit 
B2 = B1according to OU[n] bit 

MODE[6] = 0

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to 
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit 
B2 = B1according to OU[n] bit 

MODE[6] = 1
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Figure 343. DAOC with transfer disabling example

Modulus Counter (MC) mode

The MC mode can be used to provide a time base for a counter bus or as a general purpose 
timer.

Bit MODE[6] selects internal or external clock source when cleared or set, respectively. 
When external clock is selected, the input signal pin is used as the source and the triggering 
polarity edge is selected by the EDPOL and EDSEL in the EMIOSC[n] register.

The internal counter counts up from the current value until it matches the value in register 
A1. Register B1 is cleared and is not accessible to the MCU. Bit MODE[4] selects up mode 
or up/down mode, when cleared or set, respectively.

When in up count mode, a match between the internal counter and register A1 sets the 
FLAG and clears the internal counter. The timing of those events varies according to the MC 
mode setup as follows:

● Internal counter clearing on match start (MODE[0:6] = 001000b)

– External clock is selected if MODE[6] is set. In this case the internal counter clears 
as soon as the match signal occurs. The channel FLAG is set at the same time the 
match occurs. Note that by having the internal counter cleared as soon as the 
match occurs and incremented at the next input event a shorter zero count is 
generated. See Figure 366 and Figure 367.

– Internal clock source is selected if MODE[6] is cleared. In this case the counter 
clears as soon as the match signal occurs. The channel FLAG is set at the same 
time the match occurs. At the next prescaler tick after the match the internal 
counter remains at zero and only resumes counting on the following tick. See 

selected counter bus 0x0 0x2

FLAG set event

A1 value2 0xx

output flip-flop

2. EMIOSA[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

enabled A1 match

EDPOL = x

B2 value5 0x2

B1 value4 0xx

A2 value3 0x1

OU1

enabled B1 match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2
write to A2

write to B2
write to A2

write to B2

MODE[0]=1

3. EMIOSA[n] = A2 (when writing)
4. EMIOSB[n] = B1 (when reading)
5. EMIOSB[n] = B2 (when writing)

Note: 1. OU[n] bit of EMIOSOUDIS register
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Figure 366 and Figure 368.

● Internal counter clearing on match end (MODE[0:6] = 001001b)

– External clock is selected if MODE[6] is set. In this case the internal counter clears 
when the match signal is asserted and the input event occurs. The channel FLAG 
is set at the same time the counter is cleared. See Figure 366 and Figure 369.

– Internal clock source is selected if MODE[6] is cleared. In this case the internal 
counter clears when the match signal is asserted and the prescaler tick occurs. 
The channel FLAG is set at the same time the counter is cleared. See Figure 366 
and Figure 369.

Note: If the internal clock source is selected and the prescaler of the internal counter is set to ‘1’, 
the MC mode behaves the same way even in Clear on Match Start or Clear on Match End 
submodes.

When in up/down count mode (MODE[0:6] = 00101bb), a match between the internal 
counter and register A1 sets the FLAG and changes the counter direction from increment to 
decrement. A match between register B1 and the internal counter changes the counter 
direction from decrement to increment and sets the FLAG only if MODE[5] bit is set.

Only values different than 0x0 must be written at A register. Loading 0x0 leads to 
unpredictable results.

Updates on A register or counter in MC mode may cause loss of match in the current cycle 
if the transfer occurs near the match. In this case, the counter may rollover and resume 
operation in the next cycle.

Register B2 has no effect in MC mode. Nevertheless, register B2 can be accessed for reads 
and writes by addressing EMIOSB.

Figure 344 and Figure 345 show how the Unified Channel can be used as modulus counter 
in up mode and up/down mode, respectively.

         

Figure 344. Modulus Counter Up mode example

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2  Match A1  write to A2

0x000200

 Match A1  Match A1

0xxxxxxx

 FLAG pin/register

Notes: 1. EMIOSA[n] = A1

0x000303 0x000200

A2 = A1according to OU[n] bit 

MODE[4] = 0
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Figure 345. Modulus Counter Up/Down mode example

Modulus Counter Buffered (MCB) mode

The MCB mode provides a time base which can be shared with other channels through the 
internal counter buses. Register A1 is double buffered thus allowing smooth transitions 
between cycles when changing A2 register value on the fly. A1 register is updated at the 
cycle boundary, which is defined as when the internal counter transitions to 0x1.

The internal counter values operates within a range from 0x1 up to register A1 value. If 
when entering MCB mode coming out from GPIO mode the internal counter value is not 
within that range then the A match will not occur causing the channel internal counter to 
wrap at the maximum counter value which is 0xFFFF for a 16-bit counter. After the counter 
wrap occurs it returns to 0x1 and resume normal MCB mode operation. Thus in order to 
avoid the counter wrap condition make sure its value is within the 0x1 to A1 register value 
range when the MCB mode is entered.

Bit MODE[6] selects internal clock source if cleared or external if set. When external clock is 
selected the input channel pin is used as the channel clock source. The active edge of this 
clock is defined by EDPOL and EDSEL bits in the EMIOSC[n] channel register.

When entering in MCB mode, if up counter is selected by MODE[4] = 0 
(MODE[0:6] = 101000b), the internal counter starts counting from its current value to up 
direction until A1 match occurs. The internal counter is set to 0x1 when its value matches A1 
value and a clock tick occurs (either prescaled clock or input pin event).

If up/down counter is selected by setting MODE[4] = 1, the counter changes direction at A1 
match and counts down until it reaches the value 0x1. After it has reached 0x1 it is set to 
count in up direction again. B1 register is used to generate a match in order to set the 
internal counter in up-count direction if up/down mode is selected. Register B1 cannot be 
changed while this mode is selected.

Note that differently from the MC mode, the MCB mode counts between 0x1 and A1 register 
value. Only values greater than 0x1 must be written at A1 register. Loading values other 
than those leads to unpredictable results. The counter cycle period is equal to A1 value in 
up counter mode. If in up/down counter mode the period is defined by the expression: 
(2*A1)-2.

Figure 346 describes the counter cycle for several A1 values. Register A1 is loaded with A2 
register value at the cycle boundary. Thus any value written to A2 register within cycle n will 
be updated to A1 at the next cycle boundary and therefore will be used on cycle n+1. The 

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2  Match B1(=0)  write to A2

0x000200

 Match A1  Match B1(=0)

0xxxxxxx

Notes: 1. EMIOSA[n] = A1

0x0002000x000200
 FLAG pin/register

A2 = A1according to OU[n] bit 

MODE[6] = 1
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cycle boundary between cycle n and cycle n+1 is defined as when the internal counter 
transitions from A1 value in cycle n to 0x1 in cycle n+1. Note that the FLAG is generated at 
the cycle boundary and has a synchronous operation, meaning that it is asserted one 
system clock cycle after the FLAG set event.

         

Figure 346. Modulus Counter Buffered (MCB) Up Count mode

Figure 347 describes the MCB in up/down counter mode (MODE[0:6] = 10101bb). A1 
register is updated at the cycle boundary. If A2 is written in cycle n, this new value will be 
used in cycle n+1 for A1 match. Flags are generated only at A1 match start if MODE[5] is 0. 
If MODE[5] is set to 1 flags are also generated at the cycle boundary.

         

Figure 347. Modulus Counter Buffered (MCB) Up/Down mode

Figure 348 describes in more detail the A1 register update process in up counter mode. The 
A1 load signal is generated at the last system clock period of a counter cycle. Thus, A1 is 
updated with A2 value at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1. 

EMIOSCNT[n]

TIME

write to A2 match A1 match A1 match A1write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007 0x000007
0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n cycle n+1 cycle n+2

FLAG clear

EMIOSCNT[n]

TIME

write to A2
match A1

match A1 write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n+1 cycle n+2cycle n

FLAG clear
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The load signal pulse has the duration of one system clock period. If A2 is written within 
cycle n its value is available at A1 at the first clock of cycle n+1 and the new value is used for 
match at cycle n+1. The update disable bits OU[n] of EMIOSOUDIS register can be used to 
control the update of this register, thus allowing to delay the A1 register update for 
synchronization purposes. 

         

Figure 348. MCB Mode A1 Register Update in Up Counter mode

Figure 349 describes the A1 register update in up/down counter mode. Note that A2 can be 
written at any time within cycle n in order to be used in cycle n+1. Thus A1 receives this new 
value at the next cycle boundary. Note that the update disable bits OU[n] of EMIOSOUDIS 
register can be used to disable the update of A1 register.

         

Figure 349. MCB Mode A1 Register Update in Up/Down Counter mode

Output Pulse Width and Frequency Modulation Buffered (OPWFMB) mode

This mode (MODE[0:6] = 10110b0) provides waveforms with variable duty cycle and 
frequency. The internal channel counter is automatically selected as the time base when this 
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internal counter

0x000004

0x000006

A2 value 0x000008 0x000004 0x000006
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Counter = 2

EMIOSCNT[n]

TIME
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write to A2

0x000001
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mode is selected. A1 register indicates the duty cycle and B1 register the frequency. Both 
A1 and B1 registers are double buffered to allow smooth signal generation when changing 
the registers values on the fly. 0% and 100% duty cycles are supported. 

At OPWFMB mode entry the output flip-flop is set to the value of the EDPOL bit in the 
EMIOSC[n] register.

If when entering OPWFMB mode coming out from GPIO mode the internal counter value is 
not within that range then the B match will not occur causing the channel internal counter to 
wrap at the maximum counter value which is 0xFFFF for a 16-bit counter. After the counter 
wrap occurs it returns to 0x1 and resume normal OPWFMB mode operation. Thus in order 
to avoid the counter wrap condition make sure its value is within the 0x1 to B1 register value 
range when the OPWFMB mode is entered.

When a match on comparator A occurs the output register is set to the value of EDPOL. 
When a match on comparator B occurs the output register is set to the complement of 
EDPOL. B1 match also causes the internal counter to transition to 0x1, thus restarting the 
counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other 
than those leads to unpredictable results. If you want to configure the module for OPWFMB 
mode, ensure that the B1 register is modified before the mode is set.

Figure 350 describes the operation of the OPWFMB mode regarding output pin transitions 
and A1/B1 registers match events. Note that the output pin transition occurs when the A1 or 
B1 match signal is deasserted which is indicated by the A1 match negedge detection signal. 
If register A1 is set to 0x4 the output pin transitions 4 counter periods after the cycle had 
started, plus one system clock cycle. Note that in the example shown in Figure 350 the 
internal counter prescaler has a ratio of two.

         

Figure 350. OPWFMB A1 and B1 match to Output Register Delay

Figure 351 describes the generated output signal if A1 is set to 0x0. Since the counter does 
not reach zero in this mode, the channel internal logic infers a match as if A1 = 0x1 with the 
difference that in this case, the posedge of the match signal is used to trigger the output pin 
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transition instead of the negedge used when A1 = 0x1. Note that A1 posedge match signal 
from cycle n+1 occurs at the same time as B1 negedge match signal from cycle n. This 
allows to use the A1 posedge match to mask the B1 negedge match when they occur at the 
same time. The result is that no transition occurs on the output flip-flop and a 0% duty cycle 
is generated. 

         

Figure 351. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 352 describes the timing for the A1 and B1 registers load. The A1 and B1 load use 
the same signal which is generated at the last system clock period of a counter cycle. Thus, 
A1 and B1 are updated respectively with A2 and B2 values at the same time that the counter 
(EMIOSCNT[n]) is loaded with 0x1. This event is defined as the cycle boundary. The load 
signal pulse has the duration of one system clock period. If A2 and B2 are written within 
cycle n their values are available at A1 and B1, respectively, at the first clock of cycle n+1 
and the new values are used for matches at cycle n+1. The update disable bits OU[n] of 
EMIOSOUDIS register can be used to control the update of these registers, thus allowing to 
delay the A1 and B1 registers update for synchronization purposes.

In Figure 352 it is assumed that both the channel and global prescalers are set to 0x1 (each 
divide ratio is two), meaning that the channel internal counter transitions at every four 
system clock cycles. FLAGs can be generated only on B1 matches when MODE[5] is 
cleared, or on both A1 and B1 matches when MODE[5] is set. Since B1 flag occurs at the 
cycle boundary, this flag can be used to indicate that A2 or B2 data written on cycle n were 
loaded to A1 or B1, respectively, thus generating matches in cycle n+1. Note that the FLAG 
has a synchronous operation, meaning that it is asserted one system clock cycle after the 
FLAG set event.
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Figure 352. OPWFMB A1 and B1 registers update and flags

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level 
corresponding to a match on comparators A or B respectively. Similarly to a B1 match 
FORCMB sets the internal counter to 0x1. The FLAG bit is not set by the FORCMA or 
FORCMB bits being asserted.

Figure 353 describes the generation of 100% and 0% duty cycle signals. It is assumed 
EDPOL = 0 and the resultant prescaler value is 1. Initially A1 = 0x8 and B1 = 0x8. In this 
case, B1 match has precedence over A1 match, thus the output flip-flop is set to the 
complement of EDPOL bit. This cycle corresponds to a 100% duty cycle signal. The same 
output signal can be generated for any A1 value greater or equal to B1.

         

Figure 353. OPWFMB mode from 100% to 0% duty cycle

A 0% duty cycle signal is generated if A1 = 0x0 as shown in Figure 353 cycle 9. In this case 
B1 = 0x8 match from cycle 8 occurs at the same time as the A1 = 0x0 match from cycle 9. 
Please, refer to Figure 351 for a description of the A1 and B1 match generation. In this case 
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A1 match has precedence over B1 match and the output signal transitions to EDPOL.

Center Aligned Output PWM Buffered with Dead-Time (OPWMCB) mode

This operation mode generates a center aligned PWM with dead time insertion to the 
leading (MODE[0:6] = 10111b1) or trailing edge (MODE[0:6] = 10111b0). A1 and B1 
registers are double buffered to allow smooth output signal generation when changing A2 or 
B2 registers values on the fly.

Bits BSL[0:1] select the time base. The time base selected for a channel configured to 
OPWMCB mode should be a channel configured to MCB Up/Down mode, as shown in 
Figure 347. It is recommended to start the MCB channel time base after the OPWMCB 
mode is entered in order to avoid missing A matches at the very first duty cycle.

Register A1 contains the ideal duty cycle for the PWM signal and is compared with the 
selected time base. 

Register B1 contains the dead time value and is compared against the internal counter. For 
a leading edge dead time insertion, the output PWM duty cycle is equal to the difference 
between register A1 and register B1, and for a trailing edge dead time insertion, the output 
PWM duty cycle is equal to the sum of register A1 and register B1. Bit Mode[6] selects 
between trailing and leading dead time insertion, respectively.

Note: The internal counter runs in the internal prescaler ratio, while the selected time base may be 
running in a different prescaler ratio.

When OPWMCB mode is entered, coming out from GPIO mode, the output flip-flop is set to 
the complement of the EDPOL bit in the EMIOSC[n] register.

The following basic steps summarize proper OPWMCB startup, assuming the channels are 
initially in GPIO mode:

1. [global] Disable Global Prescaler;

2. [MCB channel] Disable Channel Prescaler;

3. [MCB channel] Write 0x1 at internal counter;

4. [MCB channel] Set A register;

5. [MCB channel] Set channel to MCB Up mode;

6. [MCB channel] Set prescaler ratio;

7. [MCB channel] Enable Channel Prescaler;

8. [OPWMCB channel] Disable Channel Prescaler;

9. [OPWMCB channel] Set A register;

10. [OPWMCB channel] Set B register;

11. [OPWMCB channel] Select time base input through BSL[1:0] bits;

12. [OPWMCB channel] Enter OPWMCB mode;

13. [OPWMCB channel] Set prescaler ratio;

14. [OPWMCB channel] Enable Channel Prescaler;

15. [global] Enable Global Prescaler.

Figure 354 describes the load of A1 and B1 registers which occurs when the selected 
counter bus transitions from 0x2 to 0x1. This event defines the cycle boundary. Note that 
values written to A2 or B2 within cycle n are loaded into A1 or B1 registers, respectively, and 
used to generate matches in cycle n+1.
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Figure 354. OPWMCB A1 and B1 registers load

Bit OU[n] of the EMIOSOUDIS register can be used to disable the A1 and B1 updates, thus 
allowing to synchronize the load on these registers with the load of A1 or B1 registers in 
others channels. Note that using the update disable bit A1 and B1 registers can be updated 
at the same counter cycle thus allowing to change both registers at the same time.

In this mode A1 matches always sets the internal counter to 0x1. When operating with 
leading edge dead time insertion the first A1 match sets the internal counter to 0x1. When a 
match occurs between register B1 and the internal time base, the output flip-flop is set to the 
value of the EDPOL bit. In the following match between register A1 and the selected time 
base, the output flip-flop is set to the complement of the EDPOL bit. This sequence repeats 
continuously. The internal counter should not reach 0x0 as consequence of a rollover. In 
order to avoid it the user should not write to the EMIOSB register a value greater than twice 
the difference between external count up limit and EMIOSA value.

Figure 355 shows two cycles of a Center Aligned PWM signal. Note that both A1 and B1 
register values are changing within the same cycle which allows to vary at the same time the 
duty cycle and dead time values.
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Figure 355. OPWMCB with lead dead time insertion

When operating with trailing edge dead time insertion, the first match between A1 and the 
selected time base sets the output flip-flop to the value of the EDPOL bit and sets the 
internal counter to 0x1. In the second match between register A1 and the selected time 
base, the internal counter is set to 0x1 and B1 matches are enabled. When the match 
between register B1 and the selected time base occurs the output flip-flop is set to the 
complement of the EDPOL bit. This sequence repeats continuously.
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Figure 356. OPWMCB with trail dead time insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is 
cleared, or in both edges, when MODE[5] is set. If subsequent matches occur on 
comparators A and B, the PWM pulses continue to be generated, regardless of the state of 
the FLAG bit.

Note: In OPWMCB mode, FORCMA and FORCMB do not have the same behavior as a regular 
match. Instead, they force the output flip-flop to constant value which depends upon the 
selected dead time insertion mode, lead or trail, and the value of the EDPOL bit.

FORCMA has different behaviors depending upon the selected dead time insertion mode, 
lead or trail. In lead dead time insertion FORCMA force a transition in the output flip-flop to 
the opposite of EDPOL. In trail dead time insertion the output flip-flop is forced to the value 
of EDPOL bit.

If bit FORCMB is set, the output flip-flop value depends upon the selected dead time 
insertion mode. In lead dead time insertion FORCMB forces the output flip-flop to transition 
to EDPOL bit value. In trail dead time insertion the output flip-flop is forced to the opposite of 
EDPOL bit value.

Note: FORCMA bit set does not set the internal time-base to 0x1 as a regular A1 match.

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are 
issued at the same time.

Note: FORCMA and FORCMB have the same behavior even in Freeze or normal mode regarding 
the output pin transition.

When FORCMA is issued along with FORCMB the output flip-flop is set to the opposite of 
EDPOL bit value. This is equivalent of saying that.FORCMA has precedence over FORCMB 
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when lead dead time insertion is selected and FORCMB has precedence over FORCMA 
when trail dead time insertion is selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1 
registers relatively to the period of the external time base. Setting A1 = 1 generates a 100% 
duty cycle waveform. Assuming EDPOL is set to ‘1’ and OPWMCB mode with trail dead time 
insertion, 100% duty cycle signals can be generated if B1 occurs at or after the cycle 
boundary (external counter = 1). If A1 is greater than the maximum value of the selected 
counter bus period, then a 0% duty cycle is produced, only if the pin starts the current cycle 
in the opposite of EDPOL value. In case of 100% duty cycle, the transition from EDPOL to 
the opposite of EDPOL may be obtained by forcing pin, using FORCMA or FORCMB, or 
both.

Note: If A1 is set to 0x1 at OPWMCB entry the 100% duty cycle may not be obtained in the very 
first PWM cycle due to the pin condition at mode entry.

Only values different than 0x0 are allowed to be written to A1 register. If 0x0 is loaded to A1 
the results are unpredictable.

Note: A special case occurs when A1 is set to (external counter bus period)/2, which is the 
maximum value of the external counter. In this case the output flip-flop is constantly set to 
the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle. 
In trail dead time insertion B1 match from cycle n could eventually cross the cycle boundary 
and occur in cycle n+1. In this case B1 match is masked out and does not cause the output 
flip-flop to transition. Therefore matches in cycle n+1 are not affected by the late B1 
matches from cycle n.

Figure 357 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3. 
In this case the trailing edge is positioned at the boundary of cycle n+1, which is actually 
considered to belong to cycle n+2 and therefore does not cause the output flip-flip to 
transition.
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Figure 357. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3)

It is important to notice that, such as in OPWMB and OPWFMB modes, the match signal 
used to set or clear the channel output flip-flop is generated on the deassertion of the 
channel combinational comparator output signal which compares the selected time base 
with A1 or B1 register values. Please refer to Figure 350 which describes the delay from 
matches to output flip-flop transition in OPWFMB mode. The operation of OPWMCB mode 
is similar to OPWFMB regarding matches and output pin transition.

Output Pulse Width Modulation Buffered (OPWMB) Mode

OPWMB mode (MODE[0:6] = 11000b0) is used to generate pulses with programmable 
leading and trailing edge placement. An external counter driven in MCB Up mode must be 
selected from one of the counter buses. A1 register value defines the first edge and B1 the 
second edge. The output signal polarity is defined by the EDPOL bit. If EDPOL is zero, a 
negative edge occurs when A1 matches the selected counter bus and a positive edge 
occurs when B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at 
the cycle boundary. The load operation is similar to the OPWFMB mode. Please refer to 
Figure 352 for more information about A1 and B1 registers update.

FLAG can be generated at B1 matches, when MODE[5] is cleared, or in both A1 and B1 
matches, when MODE[5] is set. If subsequent matches occur on comparators A and B, the 
PWM pulses continue to be generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level 
corresponding to a match on A1 or B1 respectively. FLAG bit is not set by the FORCMA and 
FORCMB operations.

At OPWMB mode entry the output flip-flop is set to the value of the EDPOL bit in the 
EMIOSC[n] register.
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Some rules applicable to the OPWMB mode are:

● B1 matches have precedence over A1 matches if they occur at the same time within 
the same counter cycle

● A1 = 0 match from cycle n has precedence over B1 match from cycle n-1

● A1 matches are masked out if they occur after B1 match within the same cycle

● Any value written to A2 or B2 on cycle n is loaded to A1 and B1 registers at the 
following cycle boundary (assuming OU[n] bit of EMIOSOUDIS register is not 
asserted). Thus the new values will be used for A1 and B1 matches in cycle n+1

Figure 358 describes the operation of the OPWMB mode regarding A1 and B1 matches and 
the transition of the channel output pin. In this example EDPOL is set to ‘0’.

         

Figure 358. OPWMB mode matches and flags

Note that the output pin transitions are based on the negedges of the A1 and B1 match 
signals. Figure 358 shows in cycle n+1 the value of A1 register being set to ‘0’. In this case 
the match posedge is used instead of the negedge to transition the output flip-flop.

Figure 359 describes the channel operation for 0% duty cycle. Note that the A1 match 
posedge signal occurs at the same time as the B1 = 0x8 negedge signal. In this case A1 
match has precedence over B1 match, causing the output pin to remain at EDPOL bit value, 
thus generating a 0% duty cycle signal.
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Figure 359. OPWMB mode with 0% duty cycle

Figure 360 shows a waveform changing from 100% to 0% duty cycle. EDPOL in this case is 
zero. In this example B1 is programmed to the same value as the period of the external 
selected time base.

         

Figure 360. OPWMB mode from 100% to 0% duty cycle

In Figure 360 if B1 is set to a value lower than 0x8 it is not possible to achieve 0% duty cycle 
by only changing A1 register value. Since B1 matches have precedence over A1 matches 
the output pin transitions to the opposite of EDPOL bit at B1 match. Note also that if B1 is 
set to 0x9, for instance, B1 match does not occur, thus a 0% duty cycle signal is generated.
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Output Pulse Width Modulation with Trigger (OPWMT) mode

OPWMT mode (MODE[0:6] = 0100110) is intended to support the generation of pulse width 
modulation signals where the period is not modified while the signal is being output, but 
where the duty cycle will be varied and must not create glitches. The mode is intended to be 
used in conjunction with other channels executing in the same mode and sharing a common 
timebase. It will support each channel with a fixed PWM leading edge position with respect 
to the other channels and the ability to generate a trigger signal at any point in the period 
that can be output from the module to initiate activity in other parts of the device such as 
starting ADC conversions.

An external counter driven in either MC Up or MCB Up mode must be selected from one of 
the counter buses.

Register A1 defines the leading edge of the PWM output pulse and as such the beginning of 
the PWM’s period. This makes it possible to insure that the leading edge of multiple 
channels in OPWMT mode can occur at a specific time with respect to the other channels 
when using a shared timebase. This can allow the introduction of a fixed offset for each 
channel which can be particularly useful in the generation of lighting PWM control signals 
where it is desirable that edges are not coincident with each other to help eliminate noise 
generation. The value of register A1 represents the shift of the PWM channel with respect to 
the selected timebase. A1 can be configured with any value within the range of the selected 
time base. Note that registers loaded with 0x0 will not produce matches if the timebase is 
driven by a channel in MCB mode.

A1 is not buffered as the shift of a PWM channel must not be modified while the PWM signal 
is being generated. In case A1 is modified it is immediately updated and one PWM pulse 
could be lost.

EMIOSB[n] address gives access to B2 register for write and B1 register for read. Register 
B1 defines the trailing edge of the PWM output pulse and as such the duty cycle of the PWM 
signal. To synchronize B1 update with the PWM signal and so ensure a correct output pulse 
generation the transfer from B2 to B1 is done at every match of register A1.

EMIOSOUDIS register affects transfers between B2 and B1 only.

In order to account for the shift in the leading edge of the waveform defined by register A1 it 
will be necessary that the trailing edge, held in register B1, can roll over into the next period. 
This means that a match against the B1 register should not have to be qualified by a match 
in the A1 register. The impact of this would mean that incorrectly setting register B1 to a 
value less that register A1 will result in the output being held over a cycle boundary until the 
B1 value is encountered.

This mode provides a buffered update of the trailing edge by updating register B1 with 
register B2 contents only at a match of register A1.

The value loaded in register A1 is compared with the value on the selected time base. When 
a match on comparator A1 occurs, the output flip-flop is set to the value of the EDPOL bit. 
When a match occurs on comparator B, the output flip-flop is set to the complement of the 
EDPOL bit.

Note that the output pin and flag transitions are based on the posedges of the A1, B1 and 
A2 match signals. Please, refer to Figure 358 at Section , Output Pulse Width Modulation 
Buffered (OPWMB) Mode for details on match posedge.

Register A2 defines the generation of a trigger event within the PWM period and A2 should 
be configured with any value within the range of the selected time base, otherwise no trigger 
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will be generated. A match on the comparator will generate the FLAG signal but it has no 
effect on the PWM output signal generation. The typical setup to obtain a trigger with FLAG 
is to enable DMA and to drive the channel’s ipd_done input high.

A2 is not buffered and therefore its update is immediate. If the channel is running when a 
change is made this could cause either the loss of one trigger event or the generation of two 
trigger events within the same period. Register A2 can be accessed by reading or writing the 
eMIOS UC Alternate A Register (EMIOSALTA) at UC[n] base address +0x14.

FLAG signal is set only at match on the comparator with A2. A match on the comparator 
with A1 or B1 or B2 has no effect on FLAG.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop 
to the level corresponding to a match on A or B respectively. Any FORCMA and/or FORCMB 
has priority over any simultaneous match regarding to output pin transitions. Note that the 
load of B2 content on B1 register at an A match is not inhibited due to a simultaneous 
FORCMA/FORCMB assertion. If both FORCMA and FORCMB are asserted simultaneously 
the output pin goes to the opposite of EDPOL value such as if A1 and B1 registers had the 
same value. FORCMA assertion causes the transfer from register B2 to B1 such as a 
regular A match, regardless of FORCMB assertion.

If subsequent matches occur on comparators A1 and B, the PWM pulses continue to be 
generated, regardless of the state of the FLAG bit.

At OPWMT mode entry the output flip-flop is set to the complement of the EDPOL bit in the 
EMIOSC[n] register.

In order to achieve 0% duty cycle both registers A1 and B must be set to the same value. 
When a simultaneous match on comparators A and B occur, the output flip-flop is set at 
every period to the complement value of EDPOL.

In order to achieve 100% duty cycle the register B1 must be set to a value greater than 
maximum value of the selected time base. As a consequence, if 100% duty cycle must be 
implemented, the maximum counter value for the time base is 0xFFFE for a 16-bit counter. 
When a match on comparator A1 occurs the output flip-flop is set at every period to the 
value of EDPOL bit. The transfer from register B2 to B1 is still triggered by the match at 
comparator A.

Figure 361 shows the Unified Channel running in OPWMT mode with Trigger Event 
Generation and duty cycle update on next period update.
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Figure 361. OPWMT example

Figure 362 shows the Unified Channel running in OPWMT mode with Trigger Event 
Generation and 0% duty.

         

Figure 362. OPWMT with 0% Duty Cycle

Figure 363 shows the Unified Channel running in OPWMT mode with Trigger Event 
Generation and 100% duty cycle.
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Figure 363. OPWMT with 100% duty cycle

Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the Unified Channel 
edge detector. A block diagram of the IPF is shown in Figure 364.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock 
source, according to bits IF[0:3] in EMIOSC[n] register.

         

Figure 364. lnput programmable filter submodule diagram

The input signal is synchronized by system clock. When a state change occurs in this signal, 
the 5-bit counter starts counting up. As long as the new state is stable on the pin, the 
counter remains incrementing. If a counter overflows occurs, the new pin value is validated. 
In this case, it is transmitted as a pulse edge to the edge detector. If the opposite edge 
appears on the pin before validation (overflow), the counter is reset. At the next pin 
transition, the counter starts counting again. Any pulse that is shorter than a full range of the 
masked counter is regarded as a glitch and it is not passed on to the edge detector. A timing 
diagram of the input filter is shown in Figure 365.
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Figure 365. Input programmable filter example

The filter is not disabled during either freeze state or negated GTBE input.

Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of 
the Unified Channels. The GCP output signal is prescaled by the value defined in 
Figure 324 according to the UCPRE[0:1] bits in EMIOSC[n] register. The prescaler is 
enabled by setting the UCPREN bit in the EMIOSC[n] and can be stopped at any time by 
clearing this bit, thereby stopping the internal counter in the Unified Channel.

In order to ensure safe working and avoid glitches the following steps must be performed 
whenever any update in the prescaling rate is desired:

1. Write 0 at both GPREN bit in EMIOSMCR register and UCPREN bit in EMIOSC[n] 
register, thus disabling prescalers;

2. Write the desired value for prescaling rate at UCPRE[0:1] bits in EMIOSC[n] register;

3. Enable channel prescaler by writing 1 at UCPREN bit in EMIOSC[n] register;

4. Enable global prescaler by writing 1 at GPREN bit in EMIOSMCR register.

The prescaler is not disabled during either freeze state or negated GTBE input.

Effect of Freeze on the Unified Channel

When in debug mode, bit FRZ in the EMIOSMCR and bit FREN in the EMIOSC[n] register 
are both set, the internal counter and Unified Channel capture and compare functions are 
halted. The UC is frozen in its current state.

During freeze, all registers are accessible. When the Unified Channel is operating in an 
output mode, the force match functions remain available, allowing the software to force the 
output to the desired level.

Note that for input modes, any input events that may occur while the channel is frozen are 
ignored.

When exiting debug mode or freeze enable bit is cleared (FRZ in the EMIOSMCR or FREN 
in the EMIOSC[n] register) the channel actions resume, but may be inconsistent until 
channel enters GPIO mode again.

Time

 

selected clock

EMIOSI

5-bit counter

filter out 

IF[0:3] = 0010
Doc ID 16886 Rev 6 642/868



Timers RM0045
IP Bus Interface Unit (BIU)

The BIU provides the interface between the Internal Interface Bus (IIB) and the Peripheral 
Bus, allowing communication among all submodules and this IP interface.

The BIU allows 8, 16 and 32-bit access. They are performed over a 32-bit data bus in a 
single cycle clock. 

Effect of Freeze on the BIU

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation 
of BIU is not affected.

Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the channels. The 
main clock signal is prescaled by the value defined in Figure 318 according to bits 
GPRE[0:7] in the EMIOSMCR. The global prescaler is enabled by setting the GPREN bit in 
the EMIOSMCR and can be stopped at any time by clearing this bit, thereby stopping the 
internal counters in all the channels.

In order to ensure safe working and avoid glitches the following steps must be performed 
whenever any update in the prescaling rate is desired:

1. Write ‘0’ at GPREN bit in EMIOSMCR, thus disabling global prescaler;

2. Write the desired value for prescaling rate at GPRE[0:7] bits in EMIOSMCR;

3. Enable global prescaler by writing ‘1’ at GPREN bit in EMIOSMCR.

The prescaler is not disabled during either freeze state or negated GTBE input.

Effect of Freeze on the GCP

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation 
of GCP submodule is not affected, that is, there is no freeze function in this submodule.

24.4.5 Initialization/Application information

On resetting the eMIOS the Unified Channels enter GPIO input mode.

Considerations

Before changing an operating mode, the UC must be programmed to GPIO mode and 
EMIOSA[n] and EMIOSB[n] registers must be updated with the correct values for the next 
operating mode. Then the EMIOSC[n] register can be written with the new operating mode. 
If a UC is changed from one mode to another without performing this procedure, the first 
operation cycle of the selected time base can be random, that is, matches can occur in 
random time if the contents of EMIOSA[n] or EMIOSB[n] were not updated with the correct 
value before the time base matches the previous contents of EMIOSA[n] or EMIOSB[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the 
interrupt service routine.

Application information

Correlated output signals can be generated by all output operation modes. Bits OU[n] of the 
EMIOSOUDIS register can be used to control the update of these output signals.
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In order to guarantee that the internal counters of correlated channels are incremented in 
the same clock cycle, the internal prescalers must be set up before enabling the global 
prescaler. If the internal prescalers are set after enabling the global prescaler, the internal 
counters may increment in the same ratio, but at a different clock cycle.

Time base generation

For MC with internal clock source operation modes, the internal counter rate can be 
modified by configuring the clock prescaler ratio. Figure 366 shows an example of a time 
base with prescaler ratio equal to one.

Note: MCB and OPWFMB modes have a different behavior.

         

Figure 366. Time base period when running in the fastest prescaler ratio

If the prescaler ratio is greater than one or external clock is selected, the counter may 
behave in three different ways depending on the channel mode:

● If MC mode and Clear on Match Start and External Clock source are selected the 
internal counter behaves as described in Figure 367.

● If MC mode and Clear on Match Start and Internal Clock source are selected the 
internal counter behaves as described in Figure 368.

● If MC mode and Clear on Match End are selected the internal counter behaves as 
described in Figure 369.

Note: MCB and OPWFMB modes have a different behavior.

system clock

input event/prescaler clock enable = 1

internal counter

match value = 3

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PRE SCALED CLOCK RATIO = 1 (bypassed)

see note 1

FLAG set event

Note 1: When a match occurs, the first clock cycle is used to
             clear the internal counter, starting another period.

FLAG pin/register

FLAG clear
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Figure 367. Time base generation with external clock and clear on match start

         

Figure 368. Time base generation with internal clock and clear on match start

system clock

input event

internal counter

match value = 3

1 23 0

see note 1

Note 1: When a match occurs, the first system clock cycle is used to clear the
            internal counter, and at the next edge of prescaler clock enable

1 2

             the counter will start counting.

1 23 0

FLAG set event

FLAG clear

FLAG pin/register

system clock

prescaler clock enable

internal counter

match value = 3

0 13 0 2 03 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: When a match occurs, the first clock cycle is used to clear the
            internal counter, and only after a second edge of pre scaled clock

1 2

             the counter will start counting.

FLAG set event

FLAG clear

FLAG pin/register
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Figure 369. Time base generation with clear on match end

Coherent accesses

It is highly recommended that the software waits for a new FLAG set event before start 
reading EMIOSA[n] and EMIOSB[n] registers to get a new measurement. The FLAG 
indicates that new data has been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt 
request or DMA request or CTU trigger generation.

Reading the EMIOSA[n] register again in the same period of the last read of EMIOSB[n] 
register may lead to incoherent results. This will occur if the last read of EMIOSB[n] register 
occurred after a disabled B2 to B1 transfer.

Channel/Modes initialization

The following basic steps summarize basic output mode startup, assuming the channels are 
initially in GPIO mode:

1. [global] Disable Global Prescaler.

2. [timebase channel] Disable Channel Prescaler.

3. [timebase channel] Write initial value at internal counter.

4. [timebase channel] Set A/B register.

5. [timebase channel] Set channel to MC(B) Up mode.

6. [timebase channel] Set prescaler ratio.

7. [timebase channel] Enable Channel Prescaler.

8. [output channel] Disable Channel Prescaler.

9. [output channel] Set A/B register.

10. [output channel] Select timebase input through bits BSL[1:0].

11. [output channel] Enter output mode.

12. [output channel] Set prescaler ratio (same ratio as timebase channel).

13. [output channel] Enable Channel Prescaler.

14. [global] Enable Global Prescaler.

15. [global] Enable Global Time Base.

system clock

input event/prescaler clock enable

internal counter

match value = 3

0 13 2 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: The match occurs only when the input event/prescaler clock enable is active.
         Then, the internal counter is immediately cleared.

1 2 3

FLAG set event

FLAG clear

FLAG pin/register
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The timebase channel and the output channel may be the same for some applications such 
as in OPWFM(B) mode or whenever the output channel is intended to run the timebase 
itself.

The flags can be configured at any time.

24.5 Periodic Interrupt Timer (PIT)

24.5.1 Introduction

The PIT is an array of timers that can be used to raise interrupts and trigger DMA channels.

Figure 370 shows the PIT block diagram.

         

         

Figure 370. PIT block diagram

24.5.2 Features

The main features of this block are:

● Timers can generate DMA trigger pulses

● Timers can generate interrupts

● All interrupts are maskable

● Independent timeout periods for each timer
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24.5.3 Signal description

The PIT module has no external pins.

24.5.4 Memory map and register description

This section provides a detailed description of all registers accessible in the PIT module.

Memory map

Table 329 gives an overview of the PIT registers. See the chip memory map for the PIT base 
address.

         

         

Note: Register Address = Base Address + Address Offset, where the Base Address is defined at 
the MCU level and the Address Offset is defined at the module level.

Note: Reserved registers will read as 0, writes will have no effect.

PIT Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers 
should run in debug mode.

Table 329. PIT memory map

Base address: 0xC3FF_0000

Address offset Use Location

0x000 PIT Module Control Register (PITMCR) on page 24-648

0x004–0x0FC Reserved

0x100–0x10C Timer Channel 0 See Table 330

0x110–0x11C Timer Channel 1 See Table 330

0x120–0x12C Timer Channel 2 See Table 330

0x130–0x13C Timer Channel 3 See Table 330

Table 330. Timer channel n

Address offset Use Location

channel + 0x00 Timer Load Value Register (LDVAL) on page 24-649

channel + 0x04 Current Timer Value Register (CVAL) on page 24-650

channel + 0x08 Timer Control Register (TCTRL) on page 24-650

channel + 0x0C Timer Flag Register (TFLG) on page 24-651
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Timer Load Value Register (LDVAL)

This register selects the timeout period for the timer interrupts.

         

Figure 371. PIT Module Control Register (PITMCR)

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MDIS FRZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 331. PITMCR field descriptions

Field Description

MDIS

Module Disable

This is used to disable the module clock. This bit should be enabled before any other setup is done.
0 Clock for PIT timers is enabled
1 Clock for PIT timers is disabled (default)

FRZ

Freeze

Allows the timers to be stopped when the device enters debug mode. 
0 = Timers continue to run in debug mode.

1 = Timers are stopped in debug mode.

Figure 372. Timer Load Value Register (LDVAL)

Offset: channel_base + 0x00 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Current Timer Value Register (CVAL)

This register indicates the current timer position.

         

         

         

Timer Control Register (TCTRL)

This register contains the control bits for each timer.

Table 332. LDVAL field descriptions

Field Description

TSV

Time Start Value

This field sets the timer start value. The timer counts down until it reaches 0, then it generates an 
interrupt and loads this register value again. Writing a new value to this register does not restart the 
timer, instead the value is loaded once the timer expires. To abort the current cycle and start a timer 
period with the new value, the timer must be disabled and enabled again (see Figure 377).

Figure 373. Current Timer Value Register (CVAL)

Offset: channel_base + 0x04 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 333. CVAL field descriptions

Field Description

TVL

Current Timer Value

This field represents the current timer value. Note that the timer uses a downcounter.

Note: The timer values will be frozen in Debug mode if the FRZ bit is set in the PIT Module Control 
Register (see Figure 316).
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Timer Flag Register (TFLG)

This register holds the PIT interrupt flags.

         

Figure 374. Timer Control Register (TCTRL)

Offset: channel_base + 0x08 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 334. TCTRL field descriptions

Field Description

TIE

Timer Interrupt Enable Bit

0 Interrupt requests from Timer x are disabled
1 Interrupt will be requested whenever TIF is set

When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event. 
To avoid this, the associated TIF flag must be cleared first.

TEN
Timer Enable Bit

0 Timer will be disabled
1 Timer will be active

Figure 375. Timer Flag Register (TFLG)

Offset: channel_base + 0x0C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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24.5.5 Functional description

General

This section gives detailed information on the internal operation of the module. Each timer 
can be used to generate trigger pulses as well as to generate interrupts, each interrupt will 
be available on a separate interrupt line.

Timers

The timers generate triggers at periodic intervals, when enabled. They load their start 
values, as specified in their LDVAL registers, then count down until they reach 0. Then they 
load their respective start value again. Each time a timer reaches 0, it will generate a trigger 
pulse and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRL registers). A 
new interrupt can be generated only after the previous one is cleared.

If desired, the current counter value of the timer can be read via the CVAL registers.

The counter period can be restarted, by first disabling, then enabling the timer with the TEN 
bit (see Figure 376).

The counter period of a running timer can be modified, by first disabling the timer, setting a 
new load value and then enabling the timer again (see Figure 377).

It is also possible to change the counter period without restarting the timer by writing the 
LDVAL register with the new load value. This value will then be loaded after the next trigger 
event (see Figure 378).

         

Figure 376. Stopping and starting a timer

Table 335. TFLG field descriptions

Field Description

TIF

Time Interrupt Flag

TIF is set to 1 at the end of the timer period. This flag can be cleared only by writing it with a 1. Writing a 
0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.

0 Time-out has not yet occurred
1 Time-out has occurred

p1p1

Timer Enabled Disable 
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable 
Timer
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Figure 377. Modifying running timer period

         

Figure 378. Dynamically setting a new load value

Debug mode

In Debug mode the timers will be frozen. This is intended to aid software development, 
allowing the developer to halt the processor, investigate the current state of the system (for 
example, the timer values) and then continue the operation.

Interrupts

All of the timers support interrupt generation. See the INTC chapter of the reference manual 
for related vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to zero. The timer interrupt flags 
(TIF) are set to 1 when a timeout occurs on the associated timer, and are cleared to 0 by 
writing a 1 to that TIF bit.

24.5.6 Initialization and application information

Example configuration

In the example configuration:

● The PIT clock has a frequency of 50 MHz

● Timer 1 creates an interrupt every 5.12 ms

● Timer 3 creates a trigger event every 30 ms

First the PIT module needs to be activated by programming PIT_MCR[MDIS] = 0.

The 50 MHz clock frequency equates to a clock period of 20 ns. Timer 1 needs to trigger 
every 5.12 ms/20 ns = 256000 cycles and Timer 3 every 30 ms/20 ns = 1500000 cycles. 
The value for the LDVAL register trigger would be calculated as (period / clock period) – 1.

The LDVAL registers must be set as follows:

● LDVAL for Timer 1 is set to 0x0003E7FF

● LDVAL for Timer 3 is set to 0x0016E35F

p1

Timer Enabled Disable 
Timer, Start Value = p1

Trigger
Event

Re-Enable 
Timer

p1

Set new 
Load Value

p2 p2 p2

p1p1

Timer Enabled New Start 
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event
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The interrupt for Timer 1 is enabled by setting TIE in the TCTRL1 register. The timer is 
started by writing a 1 to bit TEN in the TCTRL1 register.

Timer 3 shall be used only for triggering. Therefore Timer 3 is started by writing a 1 to bit 
TEN in the TCTRL3 register; bit TIE stays at 0.

The following example code matches the described setup:
// turn on PIT
PIT_CTRL = 0x00;

// Timer 1
PIT_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_TCTRL1 = TIE; // enable Timer 1 interrupts 
PIT_TCTRL1 |= TEN; // start timer 1

// Timer 3
PIT_LDVAL3 = 0x0016E35F; // setup timer 3 for 1500000 cycles
PIT_TCTRL3 = TEN; // start timer 3
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25 Analog-to-Digital Converter (ADC)

25.1 Overview

25.1.1 Device-specific features

● One 12-bit ADC module

● 0–VDD common mode conversion range

● Up to 33 single-ended inputs channels, expandable to 61 channels with external 
multiplexers

– Internally multiplexed channels

up to 33 channels. 16 channels are precision ones

– Externally multiplexed channels

Internal control to support generation of external analog multiplexer selection

4 internal channels optionally used to support externally multiplex inputs, providing 
transparent control for additional ADC channels

Each of the 4 channels supports up to 8 externally multiplexed inputs

● 3 independently configurable sample and conversion times for high precision channels, 
standard precision channels and externally multiplexed channels

● Dedicated result registers available for every channel.

● One Shot/Scan Modes

● Chain Injection Mode

● Conversion triggering support

– Internal conversion triggering from periodic interrupt timer (PIT) or timed I/O 
module (eMIOS) through cross triggering unit (CTU)

– Internal conversion triggering from periodic interrupt timer (PIT)

– 1 input pin configurable as external conversion trigger source

● Up to 3 configurable analog comparator channels offering range comparison with 
triggered alarm

– Greater than

– Less than

– Out of range

● Conversion triggering sources:

– Software

– CTU

– PIT channel 2 (for injected conversion)

● Conversion triggering support — Internal conversion triggering from periodic interrupt 
timer (PIT) or timed I/O module (eMIOS)

● Power-down mode for analog portion of ADC

● Supports DMA transfer of results based on the end of conversion

● 3 analog watchdogs with interrupt capability for continuous hardware monitoring 
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25.1.2 Device-specific implementation
         

Figure 379. ADC implementation

25.2 Introduction
The analog-to-digital converter (ADC) block provides accurate and fast conversions for a 
wide range of applications.

The ADC contains advanced features for normal or injected conversion. It provides support 
for eDMA (direct memory access) mode operation. A conversion can be triggered by 
software or hardware (Cross Triggering Unit or PIT). 

There are three types of input channels:

● Internal precision, ADC1_P[n] (internally multiplexed precision channels)

● Internal standard, ADC1_S[n] (internally multiplexed standard channels)

● External ADC1_X[n] (externally multiplexed standard channels)

The mask registers present within the ADC can be programmed to configure which channel 
has to be converted.

Three external decode signals MA[2:0] (multiplexer address) are provided for external 
channel selection and are available as alternate functions on GPIO.

The MA[0:2] are controlled by the ADC itself and are set automatically by the hardware.

A conversion timing register for configuring different sampling and conversion times is 
associated to each channel type.

Analog watchdogs allow continuous hardware monitoring. 
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25.3 Functional description

25.3.1 Analog channel conversion

Three conversion modes are available within the ADC:

● Normal conversion

● Injected conversion

● CTU triggered conversion

Normal conversion

This is the normal conversion that the user programs by configuring the normal conversion 
mask registers (NCMR). Each channel can be individually enabled by setting ‘1’ in the 
corresponding field of NCMR registers. Mask registers must be programmed before starting 
the conversion and cannot be changed until the conversion of all the selected channels 
ends (NSTART bit in the Main Status Register (MSR) is reset).

Start of normal conversion

The conversion chain starts when the NSTART bit in the Main Configuration Register (MCR) 
is set.

The MSR[NSTART] status bit is automatically set when the normal conversion starts. At the 
same time the MCR[NSTART] bit is reset, allowing the software to program a new start of 
conversion. In that case the new requested conversion starts after the running conversion is 
completed.

If the content of all the normal conversion mask registers is zero (that is, no channel is 
selected) the conversion operation is considered completed and the interrupt ECH (see 
interrupt controller chapter for further details) is immediately issued after the start of 
conversion.

Normal conversion operating modes

Two operating modes are available for the normal conversion:

● One Shot

● Scan

To enter one of these modes, it is necessary to program the MCR[MODE] bit. The first 
phase of the conversion process involves sampling the analog channel and the next phase 
involves the conversion phase when the sampled analog value is converted to digital as 
shown in Figure 380.

         

Figure 380. Normal conversion flow

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C
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In One Shot Mode (MODE = 0) a sequential conversion specified in the NCMR registers is 
performed only once. At the end of each conversion, the digital result of the conversion is 
stored in the corresponding data register.

Example 8 One Shot Mode (MODE = 0)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be 
converted in the One Shot Mode. MODE = 0 is set for One Shot mode. Conversion 
starts from the channel B followed by conversion of channels D-E. At the end of 
conversion of channel E the scanning of channels stops.

The NSTART status bit in the MSR is automatically set when the Normal conversion starts. 
At the same time the MCR[NSTART] bit is reset, allowing the software to program a new 
start of conversion. In that case the new requested conversion starts after the running 
conversion is completed.

In Scan Mode (MODE = 1), a sequential conversion of N channels specified in the NCMR 
registers is continuously performed. As in the previous case, at the end of each conversion 
the digital result of the conversion is stored into the corresponding data register.

The MSR[NSTART] status bit is automatically set when the Normal conversion starts. Unlike 
One Shot Mode, the MCR[NSTART] bit is not reset. It can be reset by software when the 
user needs to stop scan mode. In that case, the ADC completes the current scan conversion 
and, after the last conversion, also resets the MSR[NSTART] bit.

Example 9 Scan Mode (MODE = 1)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be 
converted in the Scan Mode. MODE = 1 is set for Scan Mode. Conversion starts from 
the channel B followed by conversion of the channels D-E. At the end of conversion of 
channel E the scanning of channel B starts followed by conversion of the channels D-E. 
This sequence repeats itself till the MCR[NSTART] bit is cleared by software.

At the end of each conversion an End Of Conversion interrupt is issued (if enabled by the 
corresponding mask bit) and at the end of the conversion sequence an End Of Chain 
interrupt is issued (if enabled by the corresponding mask bit in the IMR register).

Injected channel conversion

A conversion chain can be injected into the ongoing Normal conversion by configuring the 
Injected Conversion Mask Registers (JCMR). As Normal conversion, each channel can be 
individually selected. This injected conversion (which can only occur in One Shot mode) 
interrupts the normal conversion (which can be in One Shot or Scan mode). When an 
injected conversion is inserted, ongoing normal channel conversion is aborted and the 
injected channel request is processed. After the last channel in the injected chain is 
converted, normal conversion resumes from the channel at which the normal conversion 
was aborted as shown in Figure 381.
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Figure 381. Injected sample/conversion sequence

The injected conversion can be started using two options:

● By software setting the MCR[JSTART]; the current conversion is suspended and the 
injected chain is converted. At the end of the chain, the JSTART bit in the MSR is reset 
and the normal chain conversion is resumed.

● By an internal trigger signal from the PIT when MCR[JTRGEN] is set; a programmed 
event (rising/falling edge depending on MCR[JEDGE]) on the signal coming from PIT 
starts the injected conversion by setting the MSR[JSTART]. At the end of the chain, the 
MSR[JSTART] is cleared and the normal conversion chain is resumed.

The MSR[JSTART] is automatically set when the Injected conversion starts. At the same 
time the MCR[JSTART] is reset, allowing the software to program a new start of conversion. 
In that case the new requested conversion starts after the running injected conversion is 
completed.

At the end of each injected conversion, an End Of Injected Conversion (JEOC) interrupt is 
issued (if enabled by the IMR[MSKJEOC]) and at the end of the sequence an End Of 
Injected Chain (JECH) interrupt is issued (if enabled by the IMR[MSKJEOC]).

If the content of all the injected conversion mask registers (JCMR) is zero (that is, no 
channel is selected) the JECH interrupt is immediately issued after the start of conversion.

Abort conversion

Two different abort functions are provided.

● The user can abort the ongoing conversion by setting the MCR[ABORT] bit. The 
current conversion is aborted and the conversion of the next channel of the chain is 
immediately started. In the case of an abort operation, the NSTART/JSTART bit 
remains set and the ABORT bit is reset after the conversion of the next channel starts. 
The EOC interrupt corresponding to the aborted channel is not generated. This 
behavior is true for normal or Injected conversion modes. If the last channel of a chain 
is aborted, the end of chain is reported generating an ECH interrupt.

● It is also possible to abort the current chain conversion by setting the 
MCR[ABORTCHAIN] bit. In that case the behavior of the ADC depends on the MODE 
bit. If scan mode is disabled, the NSTART bit is automatically reset together with the 
MCR[ABORTCHAIN] bit. Otherwise, if the scan mode is enabled, a new chain 

The ongoing channel conversion is interrupted and the injected 
conversion chain is processed first. After the injected chain is 
converted the normal chain conversion resumes from the channel at 
which normal conversion was aborted.

Injected conversion of channels I and J

Normal conversion resumes from 
the last aborted channel.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

Sample C Abort C Sample I Sample J Convert J Sample C Convert CConvert I
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conversion is started. The EOC interrupt of the current aborted conversion is not 
generated but an ECH interrupt is generated to signal the end of the chain.

When a chain conversion abort is requested (ABORTCHAIN bit is set) while an injected 
conversion is running over a suspended Normal conversion, both injected chain and 
Normal conversion chain are aborted (both the NSTART and JSTART bits are also 
reset).

25.3.2 Analog clock generator and conversion timings

The clock frequency can be selected by programming the MCR[ADCLKSEL]. When this bit 
is set to ‘1’ the ADC clock has the same frequency as the peripheral set 3 clock. Otherwise, 
the ADC clock is half of the peripheral set 3 clock frequency. The ADCLKSEL bit can be 
written only in power-down mode.

When the internal divider is not enabled (ADCCLKSEL = 1), it is important that the 
associated clock divider in the clock generation module is ‘1’. This is needed to ensure 50% 
clock duty cycle.

The direct clock should basically be used only in low power mode when the device is using 
only the 16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock 
(an 8 MHz clock is not fast enough).

In all other cases, the ADC should use the clock divided by two internally.

25.3.3 ADC sampling and conversion timing

In order to support different loading and switching times, several different Conversion Timing 
registers (CTR) are present. There is one register per channel type. INPLATCH and 
INPCMP configurations are limited when the system clock frequency is greater than 
20 MHz.

When a conversion is started, the ADC connects the internal sampling capacitor to the 
respective analog input pin, allowing the capacitance to charge up to the input voltage value. 
The time to load the capacitor is referred to as sampling time. After completion of the 
sampling phase, the evaluation phase starts and all the bits corresponding to the resolution 
of the ADC are estimated to provide the conversion result.

The conversion times are programmed via the bit fields of the CTR. Bit fields INPLATCH, 
INPCMP and INPSAMP are used to define the total conversion duration (Tconv) and in 
particular the partition between sampling phase duration (Tsample) and total evaluation 
phase duration (Teval).

ADC_1

Figure 382 represents the sampling and conversion sequence.
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Figure 382. Sampling and conversion timings

The sampling phase duration is:

where ndelay is equal to 0.5 if INPSAMP is less than or equal to 06h, otherwise it is 1. 
INPSAMP must be greater than or equal to 8 (hardware requirement).

The total evaluation phase duration is:

Where:

The total conversion duration is (not including external multiplexing):

The timings refer to the unit Tck, where fck = (1/2 x ADC peripheral set clock).

0.5 cycles

2.5 cycles

Sampling phase Successive approximation / evaluation phase

10 cycles

Latching phase:
The capacitors field input
switch is opened

Note: Operating conditions — INPLATCH = 0, INPSAMP = 3, INPCMP = 1 and Fadc clk = 20 MHz

End of conversion

Tsample INPSAMP 1–  Tck=

INPSAMP 8

Teval 12 Tbiteval=

Tbiteval INPCMP Tck= if INPCMP 1 

Tbiteval 4 Tck= if INPCMP 0= 

Tconv Tsample Teval Tck+ +=
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Table 336. ADC sampling and conversion timing at 5 V for ADC_1 

Clock
(MHz)

Tck
(s)

INPSAMPLE(1) Ndelay
(2)

Tsample
(3) Tsample/Tck INPCMP

Teval 
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

4 0.250 8 1 1.750 7.000 1 3.000 1 5.000 20.000

5 0.200 8 1 1.400 7.000 1 2.400 1 4.000 20.000

6 0.167 8 1 1.167 7.000 1 2.000 1 3.333 20.000

7 0.143 8 1 1.000 7.000 1 1.714 1 2.857 20.000

8 0.125 8 1 0.875 7.000 1 1.500 1 2.500 20.000

16 0.063 9 1 0.500 8.000 2 1.500 1 2.063 33.000

32 0.031 17 1 0.500 16.000 0 1.500 1 2.031 65.000

1. Where: INPSAMPLE 8

2. Where: INPSAMP  6, N = 0.5; INPSAMP > 6, N = 1

3. Where: Tsample = (INPSAMP-N)Tck; Must be  500 ns

Table 337. ADC sampling and conversion timing at 3.3 V for ADC_1

Clock
(MHz)

Tck
(s)

INPSAMPLE(1) Ndelay
(2)

Tsample
(3) Tsample/Tck INPCMP

Teval 
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

4 0.250 8 1 1.750 7.000 1 3.000 1 5.000 20.000

5 0.200 8 1 1.400 7.000 1 2.400 1 4.000 20.000

7 0.143 8 1 1.000 7.000 2 3.429 1 4.571 32.000

8 0.125 8 1 0.875 7.000 2 3.000 1 4.000 32.000

16 0.063 11 1 0.625 10.000 0 3.000 1 3.688 59.000

20 0.050 13 1 0.600 12.000 0 2.400 1 3.050 61.000

1. Where: INPSAMPLE 8

2. Where: INPSAMP  6, N = 0.5; INPSAMP > 6, N = 1

3. Where: Tsample = (INPSAMP-N)Tck; Must be  600 ns

Table 338. Max/Min ADC_clk frequency and related configuration settings at 5 V for ADC_1

INPCMP INPLATCH Max fADC_clk Min fADC_clk

00
0 16+4% 13.33

1 32+4% 13.33

01 0/1 8+4% 3.33

10
0 8+4% 6.67

1 16+4% 6.67

11
0 16+4% 10

1 24+4% 10
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25.3.4 ADC CTU (Cross Triggering Unit)

Overview

The ADC cross triggering unit (CTU) is added to enhance the injected conversion capability 
of the ADC. The CTU is triggered by multiple input events (eMIOS and PIT) and can be used 
to select the channels to be converted from the appropriate event configuration register. A 
single channel is converted for each request. After performing the conversion, the ADC 
returns the result on internal bus.

The CTU can be enabled by setting MCR[CTUEN].

The CTU and the ADC are synchronous with the peripheral set 3 clock in both cases.

CTU in trigger mode

In CTU trigger mode, normal and injected conversions triggered by the CPU are still 
enabled.

Once the CTU event configuration register (CTU_EVTCFGRx) is configured and the 
corresponding trigger from the eMIOS or PIT is received, the conversion starts. The 
MSR[CTUSTART] is set automatically at this point and it is also automatically reset when 
the CTU triggered conversion is completed.

If an injected conversion (programmed by the user by setting the JSTART bit) is ongoing and 
CTU conversion is triggered, then the injected channel conversion chain is aborted and only 
the CTU triggered conversion proceeds. By aborting the injected conversion, the 
MSR[JSTART] is reset. That abort is signalled through the status bit MSR[JABORT].

If a normal conversion is ongoing and a CTU conversion is triggered, then any ongoing 
channel conversion is aborted and the CTU triggered conversion is processed. When it is 
finished, the normal conversion resumes from the channel at which the normal conversion 
was aborted.

If another CTU conversion is triggered before the end of the conversion, that request is 
discarded.

When a normal conversion is requested during CTU conversion (CTUSTART bit = ‘1’), the 
normal conversion starts when CTU conversion is completed (CTUSTART = ‘0’). 
Otherwise, when an Injected conversion is requested during CTU conversion, the injected 
conversion is discarded and the MCR[JSTART] is immediately reset.

Table 339. Max/Min ADC_clk frequency and related configuration settings at 3.3 V for ADC_1

INPCMP INPLATCH Max fADC_clk Min fADC_clk

00
0 Not allowed Not allowed

1 20+4% 13.33

01 0/1 5+4% 3.33

10
0 Not allowed Not allowed

1 10+4% 6.67

11
0 10+4% 10

1 15+4% 10
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25.3.5 Presampling

Introduction

Presampling is used to precharge or discharge the ADC internal capacitor before it starts 
sampling of the analog input coming from the input pins. This is useful for resetting 
information regarding the last converted data or to have more accurate control of conversion 
speed. During presampling, the ADC samples the internally generated voltage.

Presampling can be enabled/disabled on a channel basis by setting the corresponding bits 
in the PSR registers.

After enabling the presampling for a channel, the normal sequence of operation will be 
Presampling + Sampling + Conversion for that channel. Sampling of the channel can be 
bypassed by setting the PRECONV bit in the PSCR. When sampling of a channel is 
bypassed, the sampled data of internal voltage in the presampling state is converted 
(Figure 383, Figure 384).

         

Figure 383. Presampling sequence

         

Figure 384. Presampling sequence with PRECONV = 1

Presampling channel enable signals

It is possible to select  internally generated voltages V0 and V1 depending on the value of 
the PSCR[PREVAL] as shown in Table 340.

         

Three presampling value fields, one per channel type, in the PSCR make it possible to 
select different presampling values for each type.

Presampling is enabled in the channel C and D. For channel B total conversion clock cycles = (S) + (C).

For channel C and D total conversion clock cycles = (P) + (S) + (C).

Sample B Convert B Presample C Convert C Presample D Sample D Convert DSample C Sample E

Sample B Convert B Presample C Presample D Convert D Sample E Convert EConvert C

Presampling enabled in channel C and D but sampling is bypassed in these channels by setting PRECONV = 1 in the PSCR. 

For channel C and D total conversion clock cycles = (P) + (C).

Table 340. Presampling voltage selection based on PREVALx fields

PSCR[PREVALx] Presampling voltage

00 V0 = VSS_HV_ADC

01 V1 = VDD_HV_ADC

10 Reserved

11 Reserved
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25.3.6 Programmable analog watchdog

Introduction

The analog watchdogs are used for determining whether the result of a channel conversion 
lies within a given guarded area (as shown in Figure 385) specified by an upper and a lower 
threshold value named THRH and THRL respectively.

         

Figure 385. Guarded area

After the conversion of the selected channel, a comparison is performed between the 
converted value and the threshold values. If the converted value lies outside that guarded 
area then corresponding threshold violation interrupts are generated. The comparison result 
is stored as WTISR[WDGxH] and WTISR[WDGxL] as explained in Table 341. Depending on 
the mask bits WTIMR[MSKWDGxL] and WTIMR[MSKWDGxH], an interrupt is generated on 
threshold violation.

         

Each channel can be enabled independently from the CWENR registers and can select the 
watchdog threshold registers (THRHLRx) to be used by programming the CWSELR 
registers. The threshold registers selected by the CWSELR[WSEL_CHx] provides the 
threshold values.

For example, if channel number 15 is to be monitored with the threshold values in 
THRHLR1, then CWSELR[WSEL_CH15] is programmed to select THRHLR1 to provide the 
threshold values. The channel monitoring is enabled by setting the bit corresponding to 
channel 15 in the CWENR.

If a converted value for a particular channel lies outside the range specified by threshold 
values, then the corresponding bit is set in the Analog Watchdog Out of Range Register 
(AWORR).

A set of threshold registers (THRHLRx) can be linked to several ADC channels. The 
threshold values to be selected for a channel need be programmed only once in the 
CWSELRx.

THRH

THRL

Analog voltage

Upper threshold

Lower threshold
Guarded area

Table 341. Values of WDGxH and WDGxL fields

WDGxH WDGxL Converted data

1 0 converted data > THRH

0 1 converted data < THRL

0 0 THRL <= converted data <= THRH
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Note: If the higher threshold for the analog watchdog is programmed lower than the lower 
threshold and the converted value is less than the lower threshold, then the WDGxL 
interrupt for the low threshold violation is set, else if the converted value is greater than the 
lower threshold (consequently also greater than the higher threshold) then the interrupt 
WDGxH for high threshold violation is set. Thus, the user should avoid that situation as it 
could lead to misinterpretation of the watchdog interrupts.

25.3.7 DMA functionality

A DMA request can be programmed after the conversion of every channel by setting the 
respective masking bit in the DMAR registers. The DMAR masking registers must be 
programmed before starting any conversion. There is one DMAR per channel type.

The DMA transfers can be enabled using the DMAEN bit of DMAE register. When the DCLR 
bit of DMAE register is set then the DMA request is cleared on the reading of the register for 
which DMA transfer has been enabled.

25.3.8 Interrupts

The ADC generates the following maskable interrupt signals:

● ADC_EOC interrupt requests

– EOC (end of conversion)

– ECH (end of chain)

– JEOC (end of injected conversion)

– JECH (end of injected chain)

– EOCTU (end of CTU conversion)

● WDGxL and WDGxH (watchdog threshold) interrupt requests

Interrupts are generated during the conversion process to signal events such as End Of 
Conversion as explained in register description for CEOCFR[0..2]. Two registers named 
CEOCFR[0..2] (Channel Pending Registers) and IMR (Interrupt Mask Register) are 
provided in order to check and enable the interrupt request to INT module.

Interrupts can be individually enabled on a channel by channel basis by programming the 
CIMR (Channel Interrupt Mask Register).

Several CEOCFR[0..2] are also provided in order to signal which of the channels’ 
measurement has been completed.

The analog watchdog interrupts are handled by two registers WTISR (Watchdog Threshold 
Interrupt Status Register) and WTIMR (Watchdog Threshold Interrupt Mask Register) in 
order to check and enable the interrupt request to the INTC module. The Watchdog interrupt 
source sets two pending bits WDGxH and WDGxL in the WTISR for each of the channels 
being monitored.

The CEOCFR[0..2] contains the interrupt pending request status. If the user wants to clear a 
particular interrupt event status, then writing a ‘1’ to the corresponding status bit clears the 
pending interrupt flag (at this write operation all the other bits of the CEOCFR[0..2] must be 
maintained at ‘0’).

25.3.9 External decode signals delay

The ADC provides several external decode signals to select which external channel has to 
be converted. In order to take into account the control switching time of the external analog 
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multiplexer, a Decode Signals Delay register (DSDR) is provided. The delay between the 
decoding signal selection and the actual start of conversion can be programmed by writing 
the field DSD[0:11].

After having selected the channel to be converted, the MA[0:2] control lines are 
automatically reset. For instance, in the event of normal scan conversion on ANP[0] followed 
by ANX[0,7] (ADC ch 71) all the MA[0:2] bits are set and subsequently reset.

25.3.10 Power-down mode

The analog part of the ADC can be put in low power mode by setting the MCR[PWDN]. After 
releasing the reset signal the ADC analog module is kept in power-down mode by default, 
so this state must be exited before starting any operation by resetting the appropriate bit in 
the MCR.

The power-down mode can be requested at any time by setting the MCR[PWDN]. If a 
conversion is ongoing, the ADC must complete the conversion before entering the power 
down mode. In fact, the ADC enters power-down mode only after completing the ongoing 
conversion. Otherwise, the ongoing operation should be aborted manually by resetting the 
NSTART bit and using the ABORTCHAIN bit.

MSR[ADCSTATUS] bit is set only when ADC enters power-down mode.

After the power-down phase is completed the process ongoing before the power-down 
phase must be restarted manually by setting the appropriate MCR[START] bit.

Resetting MCR[PWDN] bit and setting MCR[NSTART] or MCR[JSTART] bit during the same 
cycle is forbidden.

If a CTU trigger pulse is received during power-down, it is discarded.

If the CTU is enabled and the CSR[CTUSTART] bit is ‘1’, then the MCR[PWDN] bit cannot 
be set.

When CTU trigger mode is enabled, the application has to wait for the end of conversion 
(CTUSTART bit automatically reset). 

25.3.11 Auto-clock-off mode

To reduce power consumption during the IDLE mode of operation (without going into power-
down mode), an “auto-clock-off” feature can be enabled by setting the MCR[ACKO] bit. 
When enabled, the analog clock is automatically switched off when no operation is ongoing, 
that is, no conversion is programmed by the user.

25.4 Register descriptions

25.4.1 Introduction

Table 342 lists the ADC_1 registers with their address offsets and reset values.
667/868 Doc ID 16886 Rev 6



RM0045 Analog-to-Digital Converter (ADC)
         

Table 342. 12-bit ADC_1 digital registers

Base address: 0xFFE0_4000
Location

Address offset Register name

0x0000 Main Configuration Register (MCR) on page 25-671

0x0004 Main Status Register (MSR) on page 25-673

0x0008 .. 0x000F Reserved —

0x0010 Interrupt Status Register (ISR) on page 25-675

0x0014 Channel Pending Register (CEOCFR0) on page 25-675

0x0018 Channel Pending Register (CEOCFR1) on page 25-675

0x001C Channel Pending Register (CEOCFR2) on page 25-675

0x0020 Interrupt Mask Register (IMR) on page 25-677

0x0024 Channel Interrupt Mask Register (CIMR0) on page 25-678

0x0028 Channel Interrupt Mask Register (CIMR1) on page 25-678

0x002C Channel Interrupt Mask Register (CIMR2) on page 25-678

0x0030 Watchdog Threshold Interrupt Status Register (WTISR) on page 25-679

0x0034 Watchdog Threshold Interrupt Mask Register (WTIMR) on page 25-680

0x0038 .. 0x003F Reserved —

0x0040 DMA Enable Register (DMAE) on page 25-681

0x0044 DMA Channel Select Register 0 (DMAR0) on page 25-682

0x0048 DMA Channel Select Register 1 (DMAR1) on page 25-682

0x004C DMA Channel Select Register 2 (DMAR2) on page 25-682

0x0050 .. 0x005F Reserved —

0x0060 Threshold Register 0 (THRHLR0) on page 25-684

0x0064 Threshold Register 1 (THRHLR1) on page 25-684

0x0068 Threshold Register 2 (THRHLR2) on page 25-684

0x006C .. 0x007F Reserved —

0x0080 Presampling Control Register (PSCR) on page 25-684

0x0084 Presampling Register 0 (PSR0) on page 25-685

0x0088 Presampling Register 1 (PSR1) on page 25-685

0x008C Presampling Register 2 (PSR2) on page 25-685

0x0090 .. 0x0093 Reserved —

0x0094 Conversion Timing Register 0 (CTR0) on page 25-687

0x0098–0x00A3 Reserved

0x00A4 Normal Conversion Mask Register 0 (NCMR0) on page 25-687

0x00A8–0x00B3 Reserved

0x00B4 Injected Conversion Mask Register 0 (JCMR0) on page 25-690
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0x00B8–00C3 Reserved

0x00C4 Decode Signals Delay Register (DSDR) on page 25-692

0x00C8 Power-down Exit Delay Register (PDEDR) on page 25-692

0x00CC .. 0x00FF Reserved —

0x0100 Channel 0 Data Register (CDR0) on page 25-693

0x0104 Channel 1 Data Register (CDR1) on page 25-693

0x0108 Channel 2 Data Register (CDR2) on page 25-693

0x010C Channel 3 Data Register (CDR3) on page 25-693

0x0110 Channel 4 Data Register (CDR4) on page 25-693

0x0114 Channel 5 Data Register (CDR5) on page 25-693

0x0118 Channel 6 Data Register (CDR6) on page 25-693

0x011C Channel 7 Data Register (CDR7) on page 25-693

0x0120 Channel 8 Data Register (CDR8) on page 25-693

0x0124 Channel 9 Data Register (CDR9) on page 25-693

0x0128 Channel 10 Data Register (CDR10) on page 25-693

0x012C Channel 11 Data Register (CDR11) on page 25-693

0x0130 Channel 12 Data Register (CDR12) on page 25-693

0x0134 Channel 13 Data Register (CDR13) on page 25-693

0x0138 Channel 14 Data Register (CDR14) on page 25-693

0x013C Channel 15 Data Register (CDR15) on page 25-693

0x0140 .. 0x017F Reserved —

0x0180 Channel 32 Data Register (CDR32) on page 25-693

0x0184 Channel 33 Data Register (CDR33) on page 25-693

0x0188 Channel 34 Data Register (CDR34) on page 25-693

0x018C Channel 35 Data Register (CDR35) on page 25-693

0x0190 Channel 36 Data Register (CDR36) on page 25-693

0x0194 Channel 37 Data Register (CDR37) on page 25-693

0x0198 Channel 38 Data Register (CDR38) on page 25-693

0x019C Channel 39 Data Register (CDR39) on page 25-693

0x01A0 Channel 40 Data Register (CDR40) on page 25-693

0x01A4 Channel 41 Data Register (CDR41) on page 25-693

0x01A8 Channel 42 Data Register (CDR42) on page 25-693

0x01AC Channel 43 Data Register (CDR43) on page 25-693

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
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0x01B0 .. 0x01FF Reserved —

0x0200 Channel 64 Data Register (CDR64) on page 25-693

0x0204 Channel 65 Data Register (CDR65) on page 25-693

0x0208 Channel 66 Data Register (CDR66) on page 25-693

0x020C Channel 67 Data Register (CDR67) on page 25-693

0x0210 Channel 68 Data Register (CDR68) on page 25-693

0x0214 Channel 69 Data Register (CDR69) on page 25-693

0x0218 Channel 70 Data Register (CDR70) on page 25-693

0x021C Channel 71 Data Register (CDR71) on page 25-693

0x0220 Channel 72 Data Register (CDR72) on page 25-693

0x0224 Channel 73 Data Register (CDR73) on page 25-693

0x0228 Channel 74 Data Register (CDR74) on page 25-693

0x022C Channel 75 Data Register (CDR75) on page 25-693

0x0230 Channel 76 Data Register (CDR76) on page 25-693

0x0234 Channel 77 Data Register (CDR77) on page 25-693

0x0238 Channel 78 Data Register (CDR78) on page 25-693

0x023C Channel 79 Data Register (CDR79) on page 25-693

0x0240 Channel 80 Data Register (CDR80) on page 25-693

0x0244 Channel 81 Data Register (CDR81) on page 25-693

0x0248 Channel 82 Data Register (CDR82) on page 25-693

0x024C Channel 83 Data Register (CDR83) on page 25-693

0x0250 Channel 84 Data Register (CDR84) on page 25-693

0x0254 Channel 85 Data Register (CDR85) on page 25-693

0x0258 Channel 86 Data Register (CDR86) on page 25-693

0x025C Channel 87 Data Register (CDR87) on page 25-693

0x0260 Channel 88 Data Register (CDR88) on page 25-693

0x0264 Channel 89 Data Register (CDR89) on page 25-693

0x0268 Channel 90 Data Register (CDR90) on page 25-693

0x026C Channel 91 Data Register (CDR91) on page 25-693

0x0270 Channel 92 Data Register (CDR92) on page 25-693

0x0274 Channel 93 Data Register (CDR93) on page 25-693

0x0278 Channel 94 Data Register (CDR94) on page 25-693

0x027C Channel 95 Data Register (CDR95) on page 25-693

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
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25.4.2 Control logic registers

Main Configuration Register (MCR)

The Main Configuration Register (MCR) provides configuration settings for the ADC.

0x0280 .. 0x02AF Reserved —

0x02B0 Channel Watchdog Selection Register 0 (CWSEL0) on page 25-694

0x02B4 Channel Watchdog Selection Register 1 (CWSEL1) on page 25-694

0x02B8 .. 0x02BF Reserved —

0x02C0 Channel Watchdog Selection Register 4 (CWSEL4) on page 25-695

0x02C4 Channel Watchdog Selection Register 5 (CWSEL5) on page 25-695

0x02C8 .. 0x02CF Reserved —

0x02D0 Channel Watchdog Selection Register 8 (CWSEL8) on page 25-695

0x02D4 Channel Watchdog Selection Register 9 (CWSEL9) on page 25-695

0x02D8 Channel Watchdog Selection Register 10 (CWSEL10) on page 25-695

0x02DC Channel Watchdog Selection Register 11 (CWSEL11) on page 25-695

0x02E0 Channel Watchdog Enable Register 0 (CWENR0) on page 25-695

0x02E4 Channel Watchdog Enable Register 1 (CWENR1) on page 25-695

0x02E8 Channel Watchdog Enable Register 2 (CWENR2) on page 25-695

0x02EC .. 0x02EF Reserved —

0x02F0 Analog Watchdog Out of Range register 0 (AWORR0) on page 25-696

0x02F4 Analog Watchdog Out of Range register 1 (AWORR1) on page 25-696

0x02F8 Analog Watchdog Out of Range register 2 (AWORR2) on page 25-696

0x2FC .. 0x02FF Reserved —

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
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Figure 386. Main Configuration Register (MCR)

Address: Base + 0x0000 Access: User read/write
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Table 343. MCR field descriptions

Field Description

OWREN

Overwrite enable

This bit enables or disables the functionality to overwrite unread converted data.
0 Prevents overwrite of unread converted data; new result is discarded 
1 Enables converted data to be overwritten by a new conversion 

WLSIDE

Write left/right-aligned
0 The conversion data is written right-aligned. 
1 Data is left-aligned (from 15 to (15 – resolution + 1)). 
The WLSIDE bit affects all the CDR registers simultaneously. See Figure 416 and Figure 416.

MODE

One Shot/Scan
0 One Shot Mode—Configures the normal conversion of one chain. 
1 Scan Mode—Configures continuous chain conversion mode; when the programmed chain 

conversion is finished it restarts immediately. 

NSTART

Normal Start conversion
Setting this bit starts the chain or scan conversion. Resetting this bit during scan mode causes the 
current chain conversion to finish, then stops the operation.
This bit stays high while the conversion is ongoing (or pending during injection mode).

0 Causes the current chain conversion to finish and stops the operation
1 Starts the chain or scan conversion 

JTRGEN
Injection external trigger enable

0 External trigger disabled for channel injection
1 External trigger enabled for channel injection

JEDGE

Injection trigger edge selection

Edge selection for external trigger, if JTRGEN = 1.

0 Selects falling edge for the external trigger
1 Selects rising edge for the external trigger

JSTART
Injection start
Setting this bit will start the configured injected analog channels to be converted by software. 
Resetting this bit has no effect, as the injected chain conversion cannot be interrupted.
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Main Status Register (MSR)

The Main Status Register (MSR) provides status bits for the ADC. 

CTUEN
Cross trigger unit conversion enable
0 CTU triggered conversion disabled
1 CTU triggered conversion enabled

ADCLKSEL

Analog clock select

This bit can only be written when ADC in Power-Down mode
0 ADC clock frequency is half Peripheral Set Clock frequency  
1 ADC clock frequency is equal to Peripheral Set Clock frequency 

ABORTCHAIN

Abort Chain

When this bit is set, the ongoing Chain Conversion is aborted. This bit is reset by hardware as soon 
as a new conversion is requested.

0 Conversion is not affected
1 Aborts the ongoing chain conversion

ABORT

Abort Conversion

When this bit is set, the ongoing conversion is aborted and a new conversion is invoked. This bit is 
reset by hardware as soon as a new conversion is invoked. If it is set during a scan chain, only the 
ongoing conversion is aborted and the next conversion is performed as planned.
0 Conversion is not affected
1 Aborts the ongoing conversion

ACKO

Auto-clock-off enable

If set, this bit enables the Auto clock off feature. 
0 Auto clock off disabled
1 Auto clock off enabled

PWDN

Power-down enable

When this bit is set, the analog module is requested to enter Power Down mode. When ADC status 
is PWDN, resetting this bit starts ADC transition to IDLE mode.

0 ADC is in normal mode
1 ADC has been requested to power down

Table 343. MCR field descriptions (continued)

Field Description
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Note: MSR[JSTART] is automatically set when the injected conversion starts. At the same time 
MCR[JSTART] is reset, allowing the software to program a new start of conversion.

The JCMR registers do not change their values. 

Figure 387. Main Status Register (MSR)

Address: Base + 0x0004 Access: User read-only
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Table 344. MSR field descriptions

Field Description

NSTART This status bit is used to signal that a Normal conversion is ongoing.

JABORT
This status bit is used to signal that an Injected conversion has been aborted. This bit is reset 
when a new injected conversion starts.

JSTART This status bit is used to signal that an Injected conversion is ongoing.

CTUSTART This status bit is used to signal that a CTU conversion is ongoing.

CHADDR
Current conversion channel address
This status field indicates current conversion channel address.

ACKO
Auto-clock-off enable
This status bit is used to signal if the Auto-clock-off feature is on.

ADCSTATUS

The value of this parameter depends on ADC status:
000 IDLE
001 Power-down
010 Wait state
011 Reserved
100 Sample
101 Reserved
110 Conversion
111 Reserved
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25.4.3 Interrupt registers

Interrupt Status Register (ISR)

The Interrupt Status Register (ISR) contains interrupt status bits for the ADC.

         

         

Channel Pending Registers (CEOCFR[0..2]) 

CEOCFR0 = End of conversion pending interrupt for channel 0 to 15 (precision channels)

CEOCFR1 = End of conversion pending interrupt for channel 32 to 44 (standard channels)

CEOCFR2 = End of conversion pending interrupt for channel 64 to 95 (external multiplexed 
channels)

Figure 388. Interrupt Status Register (ISR)

Address: Base + 0x0010 Access: User read/write
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Table 345. ISR field descriptions

Field Description

EOCTU
End of CTU Conversion interrupt flag

When this bit is set, an EOCTU interrupt has occurred.

JEOC
End of Injected Channel Conversion interrupt flag

When this bit is set, a JEOC interrupt has occurred.

JECH
End of Injected Chain Conversion interrupt flag

When this bit is set, a JECH interrupt has occurred.

EOC
End of Channel Conversion interrupt flag

When this bit is set, an EOC interrupt has occurred.

ECH
End of Chain Conversion interrupt flag

When this bit is set, an ECH interrupt has occurred.
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Figure 389. Channel Pending Register 0 (CEOCFR0)

Address: Base + 0x0014 Access: User read/write
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Figure 390. Channel Pending Register 1 (CEOCFR1)

Address: Base + 0x0018 Access: User read/write
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Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) contains the interrupt enable bits for the ADC.

         

         

Figure 391. Channel Pending Register 2 (CEOCFR2)

Address: Base + 0x001C Access: User read/write
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Figure 392. Interrupt Mask Register (IMR)

Address: Base + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

M
S

K
E

O
C

T
U

M
S

K
JE

O
C

M
S

K
JE

C
H

M
S

K
E

O
C

M
S

K
E

C
H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 346. Interrupt Mask Register (IMR) field descriptions

Field Description

MSKEOCTU
Mask for end of CTU conversion (EOCTU) interrupt
When set, the EOCTU interrupt is enabled.

MSKJEOC
Mask for end of injected channel conversion (JEOC) interrupt
When set, the JEOC interrupt is enabled.
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Channel Interrupt Mask Register (CIMR[0..2]) 

CIMR0 = Enable bits for channel 0 to 15 (precision channels)

CIMR1 = Enable bits for channel 32 to 44 (standard channels)

CIMR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

         

         

         

MSKJECH
Mask for end of injected chain conversion (JECH) interrupt
When set, the JECH interrupt is enabled.

MSKEOC
Mask for end of channel conversion (EOC) interrupt
When set, the EOC interrupt is enabled.

MSKECH
Mask for end of chain conversion (ECH) interrupt
When set, the ECH interrupt is enabled.

Table 346. Interrupt Mask Register (IMR) field descriptions (continued)

Field Description

Figure 393. Channel Interrupt Mask Register 0 (CIMR0)

Address: Base + 0x0024 Access: User read/write
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Figure 394. Channel Interrupt Mask Register 1 (CIMR1)

Address: Base + 0x0028 Access: User read/write
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Watchdog Threshold Interrupt Status Register (WTISR)

         

         

Figure 395. Channel Interrupt Mask Register 2 (CIMR2)

Address: Base + 0x002C Access: User read/write
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Table 347. CIMR field descriptions

Field Description

CIMn
Interrupt enable
When set (CIMn = 1), interrupt for channel n is enabled. 

Figure 396. ADC_1 Watchdog Threshold Interrupt Status Register (WTISR)

Address: Base + 0x0030 Access: User read/write
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Table 348. ADC_1 WTISR field descriptions

Field Description

WDGxH
This corresponds to the interrupt generated on the converted value being higher than the programmed 
higher threshold (for [x = 0..2]). 

WDGxL
This corresponds to the interrupt generated on the converted value being lower than the programmed 
lower threshold (for [x = 0..2]). 
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Figure 397. ADC_1 Watchdog Threshold Interrupt Mask Register (WTIMR)

Address: Base + 0x0034 Access: User read/write
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Table 349. ADC_1 WTIMR field descriptions

Field Description

MSKWDGxH
This corresponds to the mask bit for the interrupt generated on the converted value being 
higher than the programmed higher threshold (for [x = 0..2]). When set the interrupt is enabled. 

MSKWDGxL
This corresponds to the mask bit for the interrupt generated on the converted value being lower 
than the programmed lower threshold (for [x = 0..2]). When set the interrupt is enabled. 
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25.4.4 DMA registers

DMA Enable Register (DMAE)

The DMA Enable (DMAE) register sets up the DMA for use with the ADC.

         

         

Figure 398. DMA Enable Register (DMAE)

Address: Base + 0x0040 Access: User read/write
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Table 350. DMAE field descriptions

Field Description

DCLR
DMA clear sequence enable
0 DMA request cleared by Acknowledge from DMA controller
1 DMA request cleared on read of data registers

DMAEN
DMA global enable

0 DMA feature disabled
1 DMA feature enabled
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DMA Channel Select Register (DMAR[0..2])

DMAR0 = Enable bits for channel 0 to 15 (precision channels)

DMAR1 = Enable bits for channel 32 to 44 (standard channels)

DMAR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

         

         

Figure 399. DMA Channel Select Register 0 (DMAR0)

Address: Base + 0x0044 Access: User read/write
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Figure 400. DMA Channel Select Register 1 (DMAR1)

Address: Base + 0x0048 Access: User read/write
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DMA
36

DMA
35

DMA
34

DMA
33

DMA
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 401. DMA Channel Select Register 2 (DMAR2)

Address: Base + 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DMA
95

DMA
94

DMA
93

DMA
92

DMA
91

DMA
90

DMA
89

DMA
88

DMA
87

DMA
86

DMA
85

DMA
84

DMA
83

DMA
82

DMA
81

DMA
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
79

DMA
78

DMA
77

DMA
76

DMA
75

DMA
74

DMA
73

DMA
72

DMA
71

DMA
70

DMA
69

DMA
68

DMA
67

DMA
66

DMA
65

DMA
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 351. DMARx field descriptions

Field Description

DMAn
DMA enable
When set (DMAn = 1), channel n is enabled to transfer data in DMA mode.
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25.4.5 Threshold registers

Threshold Register (THRHLR)

         

         

25.4.6 Presampling registers

Presampling Control Register (PSCR)

         

Figure 402. ADC_1 Threshold Register THRHLR[0..2]

Address:
Base + 0x0060 (THRHLR0)
Base + 0x0064 (THRHLR1)

Base + 0x0068 (THRHLR2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
THRH

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 352. ADC_1 THRHLR field descriptions

Field Description

THRH High threshold value for channel n. 

THRL Low threshold value for channel n. 

Figure 403. Presampling Control Register (PSCR)

Address: Base + 0x0080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
PREVAL2 PREVAL1 PREVAL0

PRE
CONVW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Presampling Register (PSR[0..])

PSR0 = Enable bits of presampling for channel 0 to 15 (precision channels)

PSR1 = Enable bits of presampling for channel 32 to 44 (standard channels)

PSR2 = Enable bits of presampling for channel 64 to 95 (external multiplexed channels)

         

Table 353. PSCR field descriptions

Field Description

PREVAL2
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available  internal voltages (external 
multiplexed channels).

PREVAL1
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available  internal voltages (standard 
channels).

PREVAL0
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available  internal voltages (precision 
channels).

PRECONV
Convert presampled value
If bit PRECONV is set, presampling is followed by the conversion. Sampling will be bypassed and 
conversion of presampled data will be done.

Figure 404. Presampling Register 0 (PSR0)

Address: Base + 0x0084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
15

PRES
14

PRES
13

PRES
12

PRES
11

PRES
10

PRES
9

PRES
8

PRES
7

PRES
6

PRES
5

PRES
4

PRES
3

PRES
2

PRES
1

PRES
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
685/868 Doc ID 16886 Rev 6



RM0045 Analog-to-Digital Converter (ADC)
         

         

         

Figure 405. Presampling Register 1 (PSR1)

Address: Base + 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 PRES
44

PRES
43

PRES
42

PRES
41

PRES
40

PRES
39

PRES
38

PRES
37

PRES
36

PRES
35

PRES
34

PRES
33

PRES
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 406. Presampling Register 2 (PSR2)

Address: Base + 0x008C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
95

PRES
94

PRES
93

PRES
92

PRES
91

PRES
90

PRES
89

PRES
88

PRES
87

PRES
86

PRES
85

PRES
84

PRES
83

PRES
82

PRES
81

PRES
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
79

PRES
78

PRES
77

PRES
76

PRES
75

PRES
74

PRES
73

PRES
72

PRES
71

PRES
70

PRES
69

PRES
68

PRES
67

PRES
66

PRES
65

PRES
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 354. PSR field descriptions

Field Description

PRESn
Presampling enable
When set (PRESn = 1), presampling is enabled for channel n. 
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25.4.7 Conversion timing registers CTR[0..2] 

CTR0 = associated to internal precision channels (from 0 to 15)

CTR1 = associated to standard channels (from 32 to 44)

CTR2 = associated to external multiplexed channels (from 64 to 95)

         

         

25.4.8 Mask registers

Introduction

These registers are used to program which of the 96 input channels must be converted 
during Normal and Injected conversion.

Normal Conversion Mask Registers (NCMR[0..2]) 

NCMR0 = Enable bits of normal sampling for channel 0 to 15 (precision channels)

Figure 407. Conversion timing registers CTR[0..2]

Address:
Base + 0x0094 (CTR0)
Base + 0x0098 (CTR1)

Base + 0x009C (CTR2)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
P

LA
T

C
H 0

OFFSHIFT
(1)

1. Available only on CTR0

0

INPCMP

0

INPSAMP
W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

Table 355. CTR field descriptions

Field Description

INPLATCH Configuration bit for latching phase duration

OFFSHIFT

Configuration for offset shift characteristic
00 No shift (that is the transition between codes 000h and 001h) is reached when the AVIN (analog 

input voltage) is equal to 1 LSB.
01 Transition between code 000h and 001h is reached when the AVIN is equal to1/2 LSB
10 Transition between code 00h and 001h is reached when the AVIN is equal to 0
11 Not used
Note: Available only on CTR0

INPCMP Configuration bits for comparison phase duration

INPSAMP Configuration bits for sampling phase duration
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NCMR1 = Enable bits of normal sampling for channel 32 to 44 (standard channels)

NCMR2 = Enable bits of normal sampling for channel 64 to 95 (external multiplexed 
channels)

         

         

Figure 408. Normal Conversion Mask Register 0 (NCMR0)

Address: Base + 0x00A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 409. Normal Conversion Mask Register 1 (NCMR1)

Address: Base + 0x00A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Note: The implicit channel conversion priority in the case in which all channels are selected is the 
following: ADC1_P[0:x], ADC1_S[0:y], ADC1_X[0:z].

The channels always start with 0, the lowest index.

Figure 410. Normal Conversion Mask Register 2 (NCMR2)

Address: Base + 0x00AC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 356. NCMR field descriptions

Field Description

CHn
Sampling enable
When set Sampling is enabled for channel n.
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Injected Conversion Mask Registers (JCMR[0..2])

JCMR0 = Enable bits of injected sampling for channel 0 to 15 (precision channels)

JCMR1 = Enable bits of injected sampling for channel 32 to 44(standard channels)

JCMR2 = Enable bits of injected sampling for channel 64 to 95 (external multiplexed 
channels)

         

         

Figure 411. Injected Conversion Mask Register 0 (JCMR0)

Address: Base + 0x00B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 412. Injected Conversion Mask Register 1 (JCMR1)

Address: Base + 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 413. Injected Conversion Mask Register 2 (JCMR2)

Address: Base + 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 357. JCMR field descriptions

Field Description

CHn
Sampling enable
When set, sampling is enabled for channel n.
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25.4.9 Delay registers

Decode Signals Delay Register (DSDR)

         

         

Power-down Exit Delay Register (PDEDR)

         

Figure 414. Decode Signals Delay Register (DSDR)

Address: Base + 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
DSD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 358. DSDR field descriptions

Field Description

DSD

Delay between the external decode signals and the start of the sampling phase

It is used to take into account the settling time of the external multiplexer.
The decode signal delay is calculated as: DSD × 1/frequency of ADC clock.

Note: when ADC clock = Peripheral Clock/2 the DSD has to be incremented by 2 to see an additional 
ADC clock cycle delay on the decode signal.
For example:
DSD = 0; 0 ADC clock cycle delay
DSD = 2; 1 ADC clock cycle delay
DSD = 4; 2 ADC clock cycles delay

Figure 415. Power-down Exit Delay Register (PDEDR)

Address: Base + 0x00C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
PDED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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25.4.10 Data registers

Introduction

ADC conversion results are stored in data registers. There is one register per channel.

Channel Data Register (CDR[0..95])

CDR[0..15] = precision channels

CDR[32..44] = standard channels

CDR[64..95] = external multiplexed channels

Each data register also gives information regarding the corresponding result as described 
below.

         

         

Table 359. PDEDR field descriptions

Field Description

PDED
Delay between the power-down bit reset and the start of conversion. The delay is to allow time for the 
ADC power supply to settle before commencing conversions.
The power down delay is calculated as: PDED x 1/frequency of ADC clock.

Figure 416. Channel Data Register (CDR[0..95])

Address: See Table 342 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 VA
LID

OVER
W

RESULT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 CDATA[0:11]
(MCR[WLSIDE] = 0)W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDATA[0:11]
(MCR[WLSIDE] = 1)

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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25.4.11 Watchdog register

Channel Watchdog Select Register (CWSELR[0..11])

Register WSEL_CHn[3:0] = Selects the threshold register which provides the values to be 
used for upper and lower bounds for channel n. 

         

CWSELR[0..1] = Channel watchdog select register for channel 0 to 15 (precision channels)

CWSELR[4..5] = Channel watchdog select register for channel 32 to 44 (standard channels)

CWSELR[8..1] = Channel watchdog select register for channel 64 to 95 (external 
multiplexed channels)

         

Table 360. CDR field descriptions

Field Description

VALID
Used to notify when the data is valid (a new value has been written). It is automatically cleared when 
data is read.

OVERW

Overwrite data

This bit signals that the previous converted data has been overwritten by a new conversion. This 
functionality depends on the value of MCR[OWREN]:

– When OWREN = 0, then OVERW is frozen to 0 and CDATA field is protected against being 
overwritten until being read.

– When OWREN = 1, then OVERW flags the CDATA field overwrite status.
0 Converted data has not been overwritten
1 Previous converted data has been overwritten before having been read

RESULT

This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of Normal conversion mode
01 Data is a result of Injected conversion mode
10 Data is a result of CTU conversion mode
11 Reserved

CDATA
Channel 0-95 converted data. Depending on the value of the MCR[WLSIDE] bit, the position of this 
bitfield can be changed as shown in Figure 416 and Figure 416.

Figure 417. Channel Watchdog Select Register (CWSELR[0..11])

Address: See Table 342 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WSEL_CH7 WSEL_CH6 WSEL_CH5 WSEL_CH4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WSEL_CH3 WSEL_CH2 WSEL_CH1 WSEL_CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Channel Watchdog Enable Register (CWENRx, x = [0..2])

CWENR0 = Enable bits for channel 0 to 15 (precision channels)

CWENR1 = Enable bits for channel 32 to 44 (standard channels)

CWENR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

         

         

         

Table 361. CWSELR field descriptions

Field Description

WSEL_CHn

: Channel Watchdog select for channel n

0000 THRHLR0 register is selected
0001 THRHLR1 register is selected
. . .
. . .
x THRHLRx register is selected

Figure 418. Channel Watchdog Enable Register 0 (CWENR0)

Address: Base + 0x02E0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CWEN
15

CWEN
14

CWEN
13

CWEN
12

CWEN
11

CWEN
10

CWEN
9

CWEN
8

CWEN
7

CWEN
6

CWEN
5

CWEN
4

CWEN
3

CWEN
2

CWEN
1

CWEN
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 419. Channel Watchdog Enable Register 1 (CWENR1)

Address: Base + 0x02E4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 CWEN
44

CWEN
43

CWEN
42

CWEN
41

CWEN
40

CWEN
39

CWEN
38

CWEN
37

CWEN
36

CWEN
35

CWEN
34

CWEN
33

CWEN
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Analog Watchdog Out of Range Register (AWORRx, x = [0..2])

         

         

Figure 420. Channel Watchdog Enable Register 2 (CWENR2)

Address: Base + 0x02E08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CWEN
95

CWEN
94

CWEN
93

CWEN
92

CWEN
91

CWEN
90

CWEN
89

CWEN
88

CWEN
87

CWEN
86

CWEN
85

CWEN
84

CWEN
83

CWEN
82

CWEN
81

CWEN
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CWEN
79

CWEN
78

CWEN
77

CWEN
76

CWEN
75

CWEN
74

CWEN
73

CWEN
72

CWEN
71

CWEN
70

CWEN
69

CWEN
68

CWEN
67

CWEN
66

CWEN
65

CWEN
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 362. CWENRx field descriptions

Field Description

CWENn
Channel Watchdog enable
When set (CWENn = 1) Watchdog feature is enabled for channel n. 

Figure 421. Analog Watchdog Out of Range Register 0 (AWORR0)

Address: Base + 0x02F0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 422. Analog Watchdog Out of Range Register 1 (AWORR1)

Address: Base + 0x02F4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 423. Analog Watchdog Out of Range Register 2 (AWORR2)

Address: Base + 0x02F8 Access: User read/write
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R

A
W

O
R

_C
H

95

A
W

O
R

_C
H

94

A
W

O
R

_C
H

93

A
W

O
R

_C
H

92

A
W

O
R

_C
H

91

A
W

O
R

_C
H

90

A
W

O
R

_C
H

89

A
W

O
R

_C
H

88

A
W

O
R

_C
H

87

A
W

O
R

_C
H

86

A
W

O
R

_C
H

85

A
W

O
R

_C
H

84

A
W

O
R

_C
H

83

A
W

O
R

_C
H

82

A
W

O
R

_C
H

81

A
W

O
R

_C
H

80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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H

64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 363. AWORRx field descriptions

Field Description

AWORR_CHn When set indicates channel n converted data is out of range
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26 Cross Triggering Unit (CTU)

26.1 Introduction
The Cross Triggering Unit (CTU) allows to synchronize an ADC conversion with a timer 
event from eMIOS (every mode which can generate a DMA request can trigger CTU) or PIT. 
To select which ADC channel must be converted on a particular timer event, the CTU 
provides the ADC with a 7-bit channel number. This channel number can be configured for 
each timer channel event by the application.

26.2 Main features
● Single cycle delayed trigger output. The trigger output is a combination of 64 (generic 

value) input flags/events connected to different timers in the system.

● One event configuration register dedicated to each timer event allows to define the 
corresponding ADC channel.

● Acknowledgment signal to eMIOS/PIT for clearing the flag

● Synchronization with ADC to avoid collision

26.3 Block diagram
The CTU block diagram is shown in Figure 424.

         

          

Figure 424. Cross Triggering Unit block diagram
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26.4 Memory map and register descriptions
The CTU registers are listed in Table 364. Every register can have 32-bit access. The base 
address of the CTU is 0xFFE6_4000.

         

26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31)
         

Table 364. CTU memory map

Base address: 0xFFE6_4000

Address offset Register Location

0x000–0x02F Reserved

0x030–0x0AC Event Configuration Registers 0..31 (CTU_EVTCFGR0..31) 
on page 26-

699

Figure 425. Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31)

Offsets: 0x030–0x0AC Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

TM

C
LR

_F
LA

G
(1

)

1. This bit implementation is generic based and implemented only for inputs mapped to PIT event flags.

0 0 0 0 0

A
D

C
_S

E
L 0

CHANNEL_VALUE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 365. CTU_EVTCFGRx field descriptions

Field Description

TM

Trigger Mask

0: Trigger masked
1: Trigger enabled

CLR_FLAG
To provide flag_ack through software
1: Flag_ack is forced to ‘1’ for the particular event

0: Flag_ack is dependent on flag servicing
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These registers contain the ADC channel number to be converted when the timer event 
occurs. The CLR_FLAG is used to clear the respective timer event flag by software (this 
applies only to the PIT as the eMIOS flags are automatically cleared by the CTU).

The CLR_FLAG bit has to be used cautiously as setting this bit may result in a loss of 
events.

The event input can be masked by writing ‘0’ to bit TM of the CTU_EVTCFGR register. 
Writing ‘1’ to bit TM enables the CTU triggering and automatically disables the DMA 
connection for the corresponding eMIOS channel.

26.5 Functional description
This peripheral is used to synchronize ADC conversions with timer events (from eMIOS or 
PIT). When a timer event occurs, the CTU triggers an ADC conversion providing the ADC 
channel number to be converted. In case concurrent events occur the priority is managed 
according to the index of the timer event. The trigger output is a single cycle pulse used to 
trigger ADC conversion of the channel number provided by the CTU.

Each trigger input from the CTU is connected to the Event Trigger signal of an eMIOS 
channel. The assignment between eMIOS outputs and CTU trigger inputs is defined in 
Table 366.

         

ADC_SEL

This bit selects the ADC number.

0: Reserved
1: 12-bit ADC1 is selected

CHANNEL_
VALUE These bits provide the ADC channel number to be converted. Valid values are 0b0 to 0b1011111 

(decimal 95).

Table 365. CTU_EVTCFGRx field descriptions (continued)

Field Description

Table 366. Trigger source

CTU trigger No. Module Source

0 eMIOS 0 Channel_0

1 eMIOS 0 Channel_1

2 eMIOS 0 Channel_2

3 eMIOS 0 Channel_3

4 eMIOS 0 Channel_4

5 eMIOS 0 Channel_5

6 eMIOS 0 Channel_6

7 eMIOS 0 Channel_7

8 eMIOS 0 Channel_8

9 eMIOS 0 Channel_9

10 eMIOS 0 Channel_10
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Each event has a dedicated configuration register (CTU_EVTCFGR). These registers store 
a channel number which is used to communicate which channel needs to be converted.

In case several events are pending for ADC request, the priority is managed according to 
the timer event index. The lowest index has the highest priority. Once an event has been 
serviced (conversion requested to ADC) the eMIOS flag is cleared by the CTU and next 
prior event is handled.

The acknowledgment signal can be forced to ‘1’ by setting the CLR_FLAG bit of the 
CTU_EVTCFGR register. These bits are implemented for only those input flags to which PIT 
flags are connected. Providing these bits offers the option of clearing PIT flags by software.

26.5.1 Channel value

The channel value stored in an event configuration register is demultiplexed to 7 bits and 
then provided to the ADC. 

The mapping of the channel number value to the corresponding ADC channel is provided in 
Table 366. 

11 eMIOS 0 Channel_11

12 eMIOS 0 Channel_12

13 eMIOS 0 Channel_13

14 eMIOS 0 Channel_14

15 eMIOS 0 Channel_15

16 eMIOS 0 Channel_16

17 eMIOS 0 Channel_17

18 eMIOS 0 Channel_18

19 eMIOS 0 Channel_19

20 eMIOS 0 Channel_20

21 eMIOS 0 Channel_21

22 eMIOS 0 Channel_22

23 PIT PIT_3

24 eMIOS 0 Channel_24

25 eMIOS 0 Channel_25

26 eMIOS 0 Channel_26

27 eMIOS 0 Channel_27

Table 366. Trigger source (continued)

CTU trigger No. Module Source
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CTU channel mapping should be taken into consideration when programming an event 
configuration register. For example, if the channel value of any event configuration register is 
programmed to 16, it will actually correspond to ADC channel 32 and conversion will occur 
for this channel.

Table 367. CTU-to-ADC channel assignment

12-bit ADC_1 Signal name 12-bit ADC_1 channel #
Channel number in 
CTU_EVTCFGRx

ADC1_P[0] CH0 0

ADC1_P[1] CH1 1

ADC1_P[2] CH2 2

ADC1_P[3] CH3 3

ADC1_P[4] CH4 4

ADC1_P[5] CH5 5

ADC1_P[6] CH6 6

ADC1_P[7] CH7 7

ADC1_P[8] CH8 8

ADC1_P[9] CH9 9

ADC1_P[10] CH10 10

ADC1_P[11] CH11 11

ADC1_P[12] CH12 12

ADC1_P[13] CH13 13

ADC1_P[14] CH14 14

ADC1_P[15] CH15 15

ADC1_S[0] CH32 32

ADC1_S[1] CH33 33

ADC1_S[2] CH34 34

ADC1_S[3] CH35 35

ADC1_S[4] CH36 36

ADC1_S[5] CH37 37

ADC1_S[6] CH38 38

ADC1_S[7] CH39 39

ADC1_S[8] CH40 40

ADC1_S[9] CH41 41

ADC1_S[10] CH42 42

ADC1_S[11] CH43 43

ADC1_S[12] CH44 44
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27 Flash Memory

27.1 Introduction
The flash memory comprises a platform flash memory controller (PFlash) interface and the 
following flash memory arrays:

● One array of 256 KB for code (CFlash)

● One array of 64 KB for data (DFlash)

The flash memory architecture of this device is illustrated in Figure 426.

         

         

Figure 426. Flash memory architecture

The primary function of the flash memory module is to serve as electrically programmable 
and erasable nonvolatile memory.

Nonvolatile memory may be used for instruction and/or data storage.

The module is a nonvolatile solid-state silicon memory device consisting of:

● Blocks (also called “sectors”) of single transistor storage elements

● An electrical means for selectively adding (programming) and removing (erasing) 
charge from these elements

● A means of selectively sensing (reading) the charge stored in these elements

The flash memory module is arranged as two functional units:

● The flash memory core

● The memory interface
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The flash memory core is composed of arrayed nonvolatile storage elements, sense 
amplifiers, row decoders, column decoders and charge pumps. The arrayed storage 
elements in the flash memory core are subdivided into physically separate units referred to 
as blocks (or sectors).

The memory interface contains the registers and logic which control the operation of the 
flash memory core. The memory interface is also the interface between the flash memory 
module and a platform flash memory controller. It contains the ECC logic and redundancy 
logic.

A platform flash memory controller connects the flash memory module to a system bus, and 
contains all system level customization required for the device application.

27.2 Main features
         

27.3 Block diagram
The flash memory module contains one Matrix Module, composed of a single bank (Bank 0) 
normally used for code storage. RWW operations are not possible.

Modify operations are managed by an embedded Flash Memory Program/Erase Controller 
(FPEC). Commands to the FPEC are given through a User Registers Interface.

The read data bus is 128 bits wide, while the flash memory registers are on a separate bus 
32 bits wide addressed in the user memory map.

The high voltages needed for program/erase operations are generated internally.

Table 368. Flash memory features

Feature CFlash DFlash

High read parallelism (128 bits) Yes

Error Correction Code (SEC-DED) to enhance data retention Yes

Double Word Program (64 bits) Yes

Sector erase Yes

Single bank—Read-While-Write (RWW) No

Erase Suspend Yes

Program Suspend No

Software programmable program/erase protection to avoid unwanted 
writings

Yes

Censored Mode against piracy Yes

Shadow Sector available Yes No

One-Time Programmable (OTP) area in Test Flash block Yes

Boot sectors Yes No
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Figure 427. CFlash and DFlash module structures

27.4 Functional description

27.4.1 Module structure

The flash memory module is addressable by Double Word (64 bits) for program, and page 
(128 bits) for read. Reads to the flash memory always return 128 bits, although read page 
buffering may be done in the platform flash memory controller.

Each read of the flash memory module retrieves a page, or four consecutive words (128 
bits) of information. The address for each word retrieved within a page differs from the other 
addresses in the page only by address bits (3:2).

The flash memory module supports fault tolerance through Error Correction Code (ECC) or 
error detection, or both. The ECC implemented within the flash memory module will correct 
single bit failures and detect double bit failures.

The flash memory module uses an embedded hardware algorithm implemented in the 
Memory Interface to program and erase the flash memory core.

The embedded hardware algorithm includes control logic that works with software block 
enables and software lock mechanisms to guard against accidental program/erase.

The hardware algorithm performs the steps necessary to ensure that the storage elements 
are programmed and erased with sufficient margin to guarantee data integrity and reliability.
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In the flash memory module, logic levels are defined as follows:

● A programmed bit reads as logic level 0 (or low).

● An erased bit reads as logic level 1 (or high).

Program and erase of the flash memory module requires multiple system clock cycles to 
complete.

The erase sequence may be suspended.

The program and erase sequences may be aborted.

27.4.2 Flash memory module sectorization

CFlash module sectorization

The CFlash module supports 256 KBof user memory, plus 16 KB of test memory (a portion 
of which is One-Time Programmable by the user). An extra 16 KB sector is available as 
Shadow space usable for user option bits and censorship settings.

The module is composed of a single bank (Bank 0): Read-While-Write is not supported.

Bank 0 of the module is divided in 8 sectors including a reserved sector, named TestFlash, 
in which some One-Time Programmable (OTP) user data are stored, as well as a Shadow 
Sector in which user erasable configuration values can be stored.

The matrix module sectorization is shown in Table 369.

         

The division into blocks of the flash memory module is also used to implement independent 
erase/program protection. A software mechanism is provided to independently lock/unlock 
each block in low and mid address space against program and erase.

DFlash module sectorization

The DFlash module supports 64 KB of user memory, plus 16 KB of test memory (a portion 
of which is One-Time Programmable by the user).

The module is composed of a single bank (Bank 0): Read-While-Write is not supported. 

Bank 0 of the 80 KB module is divided in four sectors. Bank 0 also contains a reserved 
sector named TestFlash in which some One-Time Programmable user data are stored.

Table 369. CFlash module sectorization

Bank Sector Addresses Size (KB)
Address 

space
CFLASH_LML field for 

locking the address space

0

0 0x00000000–0x00007FFF 32

Low

LLK0

1 0x00008000–0x0000BFFF 16 LLK1

2 0x0000C000–0x0000FFFF 16 LLK2

3 0x00010000–0x00017FFF 32 LLK3

4 0x00018000–0x0001FFFF 32 LLK4

5 0x00020000–0x0003FFFF 128 LLK5

Shadow 0x00200000–0x00203FFF 16 Shadow TSLK

Test 0x00400000–0x00403FFF 16 Test TSLK
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The sectorization of the 80 KB matrix module is shown in Table 370.

         

         

The flash memory module is divided into blocks also to implement independent 
erase/program protection. A software mechanism is provided to independently lock/unlock 
each block in low and mid address space against program and erase.

27.4.3 TestFlash block

A TestFlash block is available in both the CFlash and DFlash modules. The TestFlash block 
exists outside the normal address space and is programmed and read independently of the 
other blocks. The independent TestFlash block is included to also support systems which 
require nonvolatile memory for security or to store system initialization information, or both.

A section of the TestFlash is reserved to store the nonvolatile information related to 
Redundancy, Configuration and Protection.

The ECC is also applied to TestFlash.

The structure of the TestFlash sector is detailed in Table 371 and Table 372.

         

Table 370. DFlash module sectorization

Bank Sector Addresses
Size 
(KB)

Address 
space

DFLASH_LML field for 
locking the address 

space

0

0 0x00800000–0x00803FFF

16
Low

LLK0

1 0x00804000–0x00807FFF LLK1

2 0x00808000–0x0080BFFF LLK2

3 0x0080C000–0x0080FFFF LLK3

Test 0x00C00000–0x00C03FFF Test TSLK

Table 371. CFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0x400000–0x401FFF 8192 bytes

— Reserved 0x402000–0x403CFF 7424 bytes

— User OTP area 0x403D00–0x403DE7 232 bytes

CFLASH_NVLML
 CFlash Nonvolatile Low/Mid Address Space Block 

Locking Register
0x403DE8–0x403DEF 8 bytes

—  Reserved 0x403DF0–0x403DF7 8 bytes

CFLASH_NVSLL
CFlash Nonvolatile Secondary Low/mid Address 

Space Block Locking Register
0x403DF8–0x403DFF 8 bytes

— User OTP area 0x403E00–0x403EFF 256 bytes

— Reserved 0x403F00–0x403FFF 256 bytes
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Erase of the TestFlash block is always locked.

Programming of the TestFlash block has similar restrictions as the array in terms of how 
ECC is calculated. Only one programming operation is allowed per 64-bit ECC segment.

The first 8 KB of TestFlash block may be used for user defined functions (possibly to store 
serial numbers, other configuration words or factory process codes). Locations of the 
TestFlash other than the first 8 KB of OTP area cannot be programmed by the user 
application.

27.4.4 Shadow sector

The shadow sector is only present in the CFlash module.

User Mode program and erase of the shadow sector are enabled only when 
CFLASH_MCR[PEAS] is high.

The shadow sector may be locked/unlocked against program or erase by using the 
CFLASH_LML[TSLK] and CFLASH_SLL[STSLK] fields.

Programming of the shadow sector has similar restrictions as the array in terms of how ECC 
is calculated. Only one programming operation is allowed per 64-bit ECC segment between 
erases.

Erase of the shadow sector is done similarly to a sector erase.

The shadow sector contains specified data that are needed for user features.

The user area of shadow sector may be used for user defined functions (possibly to store 
boot code, other configuration words or factory process codes).

The structure of the shadow sector is detailed in Table 373.

         

Table 372. DFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0xC00000–0xC01FFF 8192 bytes

— Reserved 0xC02000–0xC03CFF 7424 bytes

— User OTP area 0xC03D00–0xC03DE7 232 bytes

DFLASH_NVLML
DFlash Nonvolatile Low/Mid Address Space Block 

Locking Register
0xC03DE8–0xC03DEF 8 bytes

— Reserved 0xC03DF0–0xC03DF7 8 bytes

DFLASH_NVSLL
DFlash Nonvolatile Secondary Low/Mid Address 

Space Block Locking Register
0xC03DF8–0xC03DFF 8 bytes

— User OTP area 0xC03E00–0xC03EFF 256 bytes

— Reserved 0xC03F00–0xC03FFF 256 bytes

Table 373. Shadow sector structure

Name Description Addresses
Size 

(bytes)

— User area 0x200000–0x203DCF 15824

— Reserved 0x203DD0–0x203DD7 8
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27.4.5 User mode operation

In User Mode the flash memory module may be read and written (register writes and 
interlock writes), programmed or erased.

The default state of the flash memory module is read.

The main, shadow and test address space can be read only in the read state.

The majority of CFlash and DFlash memory-mapped registers can be read even when the 
CFlash or DFlash is in power-down or low-power mode. The exceptions are as follows:

● CFlash

– UT0[MRE, MRV, AIS, DSI0:7]

– UT1

– UT2

● DFlash

– UT0[MRE, MRV, AIS, DSI0:7]

– UT1

– UT2

The flash memory module enters the read state on reset.

The module is in the read state under two sets of conditions:

● The read state is active when the module is enabled (User Mode Read).

● The read state is active when the ERS and ESUS fields in the corresponding MCR 
(CFLASH_MCR or DFLASH_MCR) are 1 and the PGM field is 0 (Erase Suspend).

Flash memory core reads return 128 bits (1 Page = 2 Double Words).

Registers reads return 32 bits (1 Word).

Flash memory core reads are done through the platform flash memory controller.

Registers reads to unmapped register address space will return all 0’s.

Registers writes to unmapped register address space will have no effect.

Attempted array reads to invalid locations will result in indeterminate data. Invalid locations 
occur when blocks that do not exist in non 2n array sizes are addressed.

NVPWD0–1  Nonvolatile Private Censorship PassWord 0–1 registers 0x203DD8–0x203DDF 8

NVSCC0–1  Nonvolatile System Censorship Control 0–1 registers 0x203DE0–0x203DE7 8

— Reserved 0x203DE8–0x203DFF 24

NVPFAPR
 Nonvolatile Platform Flash Memory Access Protection 

Register
0x203E00–0x203E07 8

— Reserved 0x203E08–0x203E17 16

NVUSRO  Nonvolatile User Options register 0x203E18–0x203E1F 8

— Reserved 0x203E20–0x203FFF 480

Table 373. Shadow sector structure (continued)

Name Description Addresses
Size 

(bytes)
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Attempted interlock writes to invalid locations will result in an interlock occurring, but 
attempts to program these blocks will not occur since they are forced to be locked. Erase will 
occur to selected and unlocked blocks even if the interlock write is to an invalid location.

Simultaneous Read cycle on the Flash Matrix and Read/Write cycles on the registers are 
possible. On the contrary, registers read/write accesses simultaneous to a Flash Matrix 
interlock write are forbidden.

27.4.6 Reset

A reset is the highest priority operation for the flash memory module and terminates all other 
operations.

The flash memory module uses reset to initialize register and status bits to their default 
reset values. If the flash memory module is executing a Program or Erase operation 
(PGM = 1 or ERS = 1 in CFLASH_MCR or DFLASH_MCR) and a reset is issued, the 
operation will be suddenly terminated and the module will disable the high voltage logic 
without damage to the high voltage circuits. Reset terminates all operations and forces the 
flash memory module into User Mode ready to receive accesses. Reset and power-off must 
not be used as a systematic way to terminate a Program or Erase operation.

After reset is negated, read register access may be done, although it should be noted that 
registers that require updating from shadow information, or other inputs, may not read 
updated values until the DONE field (in CFLASH_MCR or DFLASH_MCR) transitions. The 
DONE field may be polled to determine if the flash memory module has transitioned out of 
reset. Notice that the registers cannot be written until the DONE field is high.

27.4.7 Power-down mode

All flash memory DC current sources can be turned off in power-down mode, so that all 
power dissipation is due only to leakage in this mode. Flash memory power-down mode can 
be selected at ME_<mode>_MC.

Reads from or writes to the module are not possible in power-down mode.

When enabled the flash memory module returns to its pre-disable state in all cases unless 
in the process of executing an erase high voltage operation at the time of disable.

If the flash memory module is disabled during an erase operation, MCR[ESUS] bit is 
programmed to ‘1’. The user may resume the erase operation at the time the module is 
enabled by programming MCR[ESUS] = 0. MCR[EHV] must be high to resume the erase 
operation.

If the flash memory module is disabled during a program operation, the operation will in any 
case be completed and the power-down mode will be entered only after the programming 
ends.

The user should realize that, if the flash memory module is put in power-down mode and the 
interrupt vectors remain mapped in the flash memory address space, the flash memory 
module will greatly increase the interrupt response time by adding several wait-states.

It is forbidden to enter in low power mode when the power-down mode is active.

27.4.8 Low power mode

The low power mode turns off most of the DC current sources within the flash memory 
module. Flash memory low power mode can be selected at ME_<mode>_MC.
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The module (flash memory core and registers) is not accessible for read or write once it 
enters low power mode.

Wake-up time from low power mode is faster than wake-up time from power-down mode.

When exiting from low power mode the flash memory module returns to its pre-sleep state 
in all cases unless it is executing an erase high voltage operation at the time low power 
mode is entered.

If the flash memory module enters low power mode during an erase operation, MCR[ESUS] 
is programmed to ‘1’. The user may resume the erase operation at the time the module exits 
low power mode by programming MCR[ESUS] = 0. MCR[EHV] must be high to resume the 
erase operation.

If the flash memory module enters low power mode during a program operation, the 
operation will be in any case completed and the low power mode will be entered only after 
the programming end.

It is forbidden to enter power-down mode when the low power mode is active.

27.5 Register description
The CFlash and DFlash modules have respective sets of memory mapped registers.  The 
CFlash register mapping is shown in Table 374.  The DFlash register mapping is shown in 
Table 375.

         

Table 374. CFlash registers

Address offset Register Location

0x0000 on page 27-713

0x0004
CFlash Low/Mid Address Space Block Locking Register 
(CFLASH_LML)

on page 27-718

0x0008 Reserved

0x000C
CFlash Secondary Low/Mid Address Space Block Locking 
Register (CFLASH_SLL)

on page 27-722

0x0010
CFlash Low/Mid Address Space Block Select Register 
(CFLASH_LMS)

on page 27-726

0x0014 Reserved

0x0018 CFlash Address Register (CFLASH_ADR) on page 27-727

0x0028–0x0038 Reserved

0x003C CFlash User Test 0 register (CFLASH_UT0) on page 27-728

0x0040 CFlash User Test 1 register (CFLASH_UT1) on page 27-730

0x0044 CFlash User Test 2 register (CFLASH_UT2) on page 27-730

0x0048
CFlash User Multiple Input Signature Register 0 
(CFLASH_UMISR0)

on page 27-731

0x004C
CFlash User Multiple Input Signature Register 1 
(CFLASH_UMISR1)

on page 27-732

0x0050
CFlash User Multiple Input Signature Register 2 
(CFLASH_UMISR2)

on page 27-733
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In the following some nonvolatile registers are described. Please notice that such entities 
are not Flip-Flops, but locations of TestFlash or Shadow sectors with a special meaning.

0x0054
CFlash User Multiple Input Signature Register 3 
(CFLASH_UMISR3)

on page 27-734

0x0058
CFlash User Multiple Input Signature Register 4 
(CFLASH_UMISR4)

on page 27-735

Table 375. DFlash registers

Address offset Register name Location

0x0000 DFlash Module Configuration Register (DFLASH_MCR) on page 27-740

0x0004
DFlash Low/Mid Address Space Block Locking Register 
(DFLASH_LML)

on page 27-746

0x0008 Reserved —

0x000C
DFlash Secondary Low/Mid Address Space Block Locking 
Register (DFLASH_SLL)

on page 27-750

0x0010
DFlash Low/Mid Address Space Block Select Register 
(DFLASH_LMS)

on page 27-754

0x0014 Reserved —

0x0018 DFlash Address Register (DFLASH_ADR) on page 27-754

0x001C–0x0038 Reserved —

0x003C DFlash User Test 0 register (DFLASH_UT0) on page 27-755

0x0040 DFlash User Test 1 register (DFLASH_UT1) on page 27-758

0x0044 DFlash User Test 2 register (DFLASH_UT2) on page 27-758

0x0048
DFlash User Multiple Input Signature Register 0 
(DFLASH_UMISR0)

on page 27-759

0x004C
DFlash User Multiple Input Signature Register 1 
(DFLASH_UMISR1)

on page 27-760

0x0050
DFlash User Multiple Input Signature Register 2 
(DFLASH_UMISR2)

on page 27-761

0x0054
DFlash User Multiple Input Signature Register 3 
(DFLASH_UMISR3)

on page 27-762

0x0058
DFlash User Multiple Input Signature Register 4 
(DFLASH_UMISR4)

on page 27-763

Table 374. CFlash registers (continued)

Address offset Register Location
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During the flash memory initialization phase, the FPEC reads these nonvolatile registers 
and updates the corresponding volatile registers. When the FPEC detects ECC double 
errors in these special locations, it behaves in the following way:

● In case of a failing system locations (configurations, device options, redundancy, 
embedded firmware), the initialization phase is interrupted and a Fatal Error is flagged.

● In case of failing user locations (protections, censorship, platform flash memory 
controller, ...), the volatile registers are filled with all ‘1’s and the flash memory 
initialization ends setting low the PEG bit of the corresponding MCR (CFLASH_MCR or 
DFLASH_MCR).

27.5.1 CFlash register description

CFlash Module Configuration Register (CFLASH_MCR)

The CFlash Module Configuration Register is used to enable and monitor all modify 
operations of the flash memory module.

         

         

Figure 428. CFlash Module Configuration Register (CFLASH_MCR)

Offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE 0 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 376. CFLASH_MCR field descriptions

Field Description

 EDC

Ecc Data Correction
EDC provides information on previous reads. If an ECC Single Error detection and 
correction occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must 
occur before this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or 
clearing of EDC) were not corrected through ECC.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE
array space SIZE
The value of SIZE field is dependent upon the size of the flash memory module; see 
Table 377.
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LAS
Low Address Space

The value of the LAS field corresponds to the configuration of the Low Address Space; see 
Table 378.

MAS
Mid Address Space

The value of the MAS field corresponds to the configuration of the Mid Address Space; see 
Table 379.

EER

Ecc event ERror 
EER provides information on previous reads. If an ECC Double Error detection occurred, 
the EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. 
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or 
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

RWE

Read-while-Write event Error

RWE provides information on previous reads when a Modify operation is on going. If a 
RWW Error occurs, the RWE bit is set to ‘1’. Read-While-Write Error means that a read 
access to the flash memory Matrix has occurred while the FPEC was performing a program 
or erase operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. 
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last 
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS

Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations: main array 
space or shadow/test space. 
PEAS = 0 indicates that the main address space is active for all flash memory module 
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify 
operations. The value of PEAS is retained between sampling events (that is, subsequent 
first interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space 
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space 
disabled.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
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DONE

modify operation DONE 
DONE indicates if the flash memory module is performing a high voltage operation.

DONE is set to 1 on termination of the flash memory module reset.

DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage 
operation, or after resuming a suspended operation.

DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of 
EHV, which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1 
transition of ESUS, which suspends an erase operation.
0: Flash memory is executing a high voltage operation.

1: Flash memory is not executing a high voltage operation.

PEG

Program/Erase Good 
The PEG bit indicates the completion status of the last flash memory Program or Erase 
sequence for which high voltage operations were initiated. The value of PEG is updated 
automatically during the Program and Erase high voltage operations. Aborting a 
Program/Erase high voltage operation will cause PEG to be cleared to 0, indicating the 
sequence failed. PEG is set to 1 when the flash memory module is reset, unless a flash 
memory initialization error has been detected. The value of PEG is valid only when PGM=1 
and/or ERS=1 and after DONE transitions from 0 to 1 due to an abort or the completion of a 
Program/Erase operation. PEG is valid until PGM/ERS makes a 1 to 0 transition or EHV 
makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE 
caused by ESUS being set to logic 1. If Program or Erase are attempted on blocks that are 
locked, the response will be PEG=1, indicating that the operation was succesful, and the 
content of the block were properly protected from the Program or Erase operation. If a 
Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is 
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating 
that the requested operation has failed. In Array Integrity Check or Margin Read PEG is set 
to 1 when the operation is completed, regardless the occurrence of any error. The presence 
of errors can be detected only comparing checksum value stored in UMIRS0-1. Aborting an 
Array Integrity Check or a Margin Read operation will cause PEG to be cleared to 0, 
indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode 
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode 
completed.

PGM

ProGraM 

PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS
Program SUSpend
Write this bit has no effect, but the written data can be read back.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
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ERS

ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

ESUS

Erase SUSpend 
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the 
process of entering a Suspend state. The flash memory module is in Erase Suspend when 
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash 
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this 
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and 
returns the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV

Enable High Voltage 

The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be 
set under one of the following conditions:
Erase (ERS = 1, ESUS = 0, UT0[AIE] = 0)

Program (ERS = 0, ESUS = 0, PGM = 1, UT0[AIE] = 0)

In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates 
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the 
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a 
failing program/erase; address locations being operated on by the aborted operation contain 
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an 
indeterminate data state. This may be recovered by executing an erase on the affected 
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be 
written after ESUS is set and before DONE transitions high. EHV may not be cleared after 
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
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A number of CFLASH_MCR bits are protected against write when another bit, or set of bits, 
is in a specific state. These write locks are covered on a bit by bit basis in the preceding 
description, but those locks do not consider the effects of trying to write two or more bits 
simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would 
put the device into an illegal state. This is implemented through a priority mechanism among 
the bits. The bit changing priorities are detailed in Table 380.

Table 377. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 1024 KB

100 1536 KB

101 Reserved (2048 KB)

110 64 KB

111 Reserved

Table 378. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100  Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 379. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128 KB or 0 KB

1 Reserved
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If the user attempts to write two or more CFLASH_MCR bits simultaneously then only the bit 
with the lowest priority level is written.

If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while 
fetching code from another then the following sequence is executed:

● CPU is stalled when flash is unavailable

● PEG flag set (stall case) or reset (abort case)

● Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the 
RWE flag. The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See 
Section 27.8.10, Read-while-write functionality.

CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

The CFlash Low/Mid Address Space Block Locking register provides a means to protect 
blocks from being modified. These bits, along with bits in the CFLASH_SLL register, 
determine if the block is locked from Program or Erase. An “OR” of CFLASH_LML and 
CFLASH_SLL determine the final lock status.

         

Table 380. CFLASH_MCR bits set/clear priority levels

Priority level CFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS

Figure 429. CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0 0 0

W

Reset
Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One 
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML 

register. 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset
Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One 
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML 

register. 
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Table 381. CFLASH_LML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or 
cleared by registers writes. 

This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the LME bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the 
CFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and 
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program 
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive 
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK 
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block 
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK 
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory 
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to 
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
LLK field is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field 
may be written as a register. Reset will cause the field to go back to its TestFlash block 
value. The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK 
field will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.

LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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CFlash Nonvolatile Low/Mid Address Space Block Locking Register 
(CFLASH_NVLML)

The CFLASH_LML register has a related CFlash Nonvolatile Low/Mid Address Space Block 
Locking register located in TestFlash that contains the default reset value for CFLASH_LML. 
During the reset phase of the flash memory module, the CFLASH_NVLML register content 
is read and loaded into the CFLASH_LML.

The CFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32 
are ‘don’t care’ and are used to manage ECC codes.

         

Figure 430. CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML)

Offset: 0x403DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 382. CFLASH_NVLML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or 
cleared by registers writes. 

This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the LME bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the 
CFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and 
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program 
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive 
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK 
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block 
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK 
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory 
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.

LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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CFlash Secondary Low/Mid Address Space Block Locking Register 
(CFLASH_SLL)

The CFlash Secondary Low/Mid Address Space Block Locking Register provides an 
alternative means to protect blocks from being modified. These bits, along with bits in the 
CFLASH_LML register, determine if the block is locked from Program or Erase. An “OR” of 
CFLASH_LML and CFLASH_SLL determine the final lock status.

         

Figure 431. CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL)

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 0 0

W

Reset
Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One 
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL 

register. 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset
Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One 
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL 

register.
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Table 383. CFLASH_SLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or 
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the 
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot 
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be 
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space 
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for 
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to 
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The 
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash 
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from 
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this 
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.

SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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CFlash Nonvolatile Secondary Low/Mid Address Space Block Locking 
Register (CFLASH_NVSLL)

The CFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space 
Block Locking register located in TestFlash that contains the default reset value for SLL. 
During the reset phase of the flash memory module, the CFLASH_NVSLL register content 
is read and loaded into the CFLASH_SLL.

The CFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32 
are ‘don’t care’ and are used to manage ECC codes.

         

Figure 432. CFlash Nonvolatile Secondary Low/mid address space block Locking register 
(CFLASH_NVSLL)

Offset: 0x403DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 384. CFLASH_NVSLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or 
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the 
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot 
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be 
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space 
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for 
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to 
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The 
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash 
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from 
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this 
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until 
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.

SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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CFlash Low/Mid Address Space Block Select Register (CFLASH_LMS)

         

The CFLASH_LMS register provides a means to select blocks to be operated on during 
erase.

         

Figure 433. CFlash Low/Mid address space block Select register (CFLASH_LMS)

Offset: 0x00010  Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 385. CFLASH_LMS field descriptions

Field Description

LSL

Low address space block SeLect
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset 
value for the select register is 0, or unselected.
LSL[5:0] are related to sectors B0F5-0, respectively. LSL[15:6] are not used for this memory 
cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of 
the erase sequence. The select register is not writable once an interlock write is completed 
or if a high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the 
corresponding LSL bits will default to unselected, and will not be writable. The reset value 
will always be 0, and register writes will have no effect.
Bits LSL[15:6] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for erase.
1: Low Address Space Block is selected for erase.
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CFlash Address Register (CFLASH_ADR)

         

The CFLASH_ADR provides the first failing address in the event module failures (ECC or 
FPEC) occur or the first address at which an ECC single error correction occurs.

         

         

Figure 434. CFlash Address Register (CFLASH_ADR)

Offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 386. CFLASH_ADR field descriptions

Field Description

AD

ADdress 22-3 (Read Only)
The Address Register provides the first failing address in the event of ECC error 
(CFLASH_MCR[EER] = 1) or the first failing address in the event of RWW error 
(CFLASH_MCR[RWE] = 1), or the address of a failure that may have occurred in a FPEC 
operation (CFLASH_MCR[PEG] = 0). The Address Register also provides the first address 
at which an ECC single error correction occurs (CFLASH_MCR[EDC] = 1).

The ECC double error detection takes the highest priority, followed by the FPEC error and 
the ECC single error correction. When accessed CFLASH_ADR will provide the address 
related to the first event occurred with the highest priority. The priorities between these four 
possible events is summarized in Table 387.

This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same 
page, bit AD3 will output 0. The same is valid for a simultaneous ECC Single Error 
Correction on both Double Words of the same page.

Table 387. CFLASH_ADR content: priority list

Priority level Error flag CFLASH_ADR content

1 CFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 CFLASH_MCR[RWE] = 1 Address of first RWW Error

3 CFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 CFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction
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CFlash User Test 0 register (CFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash 
memory module. The User Test 0 Register allows to control the way in which the flash 
memory content check is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible 
whenever CFLASH_MCR[DONE] or UT0[AID] are low: reading returns indeterminate data 
while writing has no effect.

         

         

Figure 435. CFlash User Test 0 register (CFLASH_UT0)

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 388. CFLASH_UT0 field descriptions

Field Description

UTE

User Test Enable
This status bit gives indication when User Test is enabled. All bits in CFLASH_UT0-2 and 
CFLASH_UMISR0-4 are locked when this bit is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE 
bit is set to reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the CFLASH_UT0 register.

DSI

Data Syndrome Input 

These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. 
Bits DSI[7:0] correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are 
low: reading returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X

Reserved 
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: 
reading returns indeterminate data while writing has no effect.
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MRE

Margin Read Enable

MRE enables margin reads to be done. This bit, combined with MRV, enables regular user 
mode reads

to be replaced by margin reads inside the Array Integrity Checks sequences. Margin reads 
are only active during Array Integrity Checks; Normal User reads are not affected by MRE. 
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: 
reading returns indeterminate data while writing has no effect.
0: Margin reads are not enabled

1: Margin reads are enabled.

MRV

Margin Read Value

If MRE is high, MRV selects the margin level that is being checked. Margin can be checked 
to an erased level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: 
reading returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE

ECC data Input Enable 

EIE enables the ECC Logic Check operation to be done. This bit is not accessible whenever 
CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading returns indeterminate data 
while writing has no effect.

0: ECC Logic Check is not enabled.

1: ECC Logic Check is enabled.

AIS

Array Integrity Sequence 

AIS determines the address sequence to be used during array integrity checks or Margin 
Read . The default sequence (AIS=0) is meant to replicate sequences normal user code 
follows, and thoroughly checks the read propagation paths. This sequence is proprietary. 
The alternative sequence (AIS=1) is just logically sequential. It should be noted that the time 
to run a sequential sequence is significantly shorter than the time to run the proprietary 
sequence. The usage of proprietary sequence is forbidden in Margin Read. This bit is not 
accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.

0: Array Integrity sequence is proprietary sequence.
1: Array Integrity or f sequence is sequential.

AIE

Array Integrity Enable

AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (CFLASH_UMISR0-4) can be checked after 
the operation is complete, to determine if a correct signature is obtained.
AIE can be set only if CFLASH_MCR[ERS], CFLASH_MCR[PGM] and 
CFLASH_MCR[EHV] are all low.
0: Array Integrity Checks, Margin Read and ECC Logic Checks are not enabled.
1: Array Integrity Checks, Margin Read and ECC Logic Checks are enabled.

AID

Array Integrity Done

AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is 
on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At 
this time the MISR (CFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 388. CFLASH_UT0 field descriptions (continued)

Field Description
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CFlash User Test 1 register (CFLASH_UT1)

The CFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32 
LSB of the Double Word.

The User Test 1 Register is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

         

         

CFlash User Test 2 register (CFLASH_UT2)

The CFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32 
MSB of the Double Word.

The User Test 2 Register is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 436. CFlash User Test 1 register (CFLASH_UT1)

Offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 389. CFLASH_UT1 field descriptions

Field Description

DAI[31:0]

Data Array Input, bits 31–0

These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits 
DAI[31:00] correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
Doc ID 16886 Rev 6 730/868



Flash Memory RM0045

O

R

R

         

         

CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

The CFLASH_UMISR0 register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 0 represents the bits 31:0 of the whole 144 bits 
word (2 Double Words including ECC).

The CFLASH_UMISR0 Register is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 437. CFlash User Test 2 register (CFLASH_UT2)

ffset: 0x00044 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

eset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

eset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 390. CFLASH_UT2 field descriptions

Field Description

DAI[63:32]

Data Array Input, bits 63–32

These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits 
DAI[63:32] correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
731/868 Doc ID 16886 Rev 6



RM0045 Flash Memory
         

         

CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

The CFLASH_UMISR1 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double 
Words including ECC).

The CFLASH_UMISR1 is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 438. CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

Offset: 0x00048 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 391. CFLASH_UMISR0 field descriptions

Field Description

MS0[31:0]

Multiple input Signature, bits 31–0

These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages 
read from the flash memory. 
The MS can be seeded to any value by writing the CFLASH_UMISR0 register.
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CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

The CFLASH_UMISR2 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double 
Words including ECC).

The CFLASH_UMISR2 is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 439. CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

Offset: 0x0004C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 392. CFLASH_UMISR1 field descriptions

Field Description

MS0[63:32]

Multiple input Signature, bits 63–32

These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages 
read from the flash memory. 
The MS can be seeded to any value by writing the CFLASH_UMISR1.
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CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

The CFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double 
Words including ECC).

The CFLASH_UMISR3 is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 440. CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

Offset: 0x00050 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 393. CFLASH_UMISR2 field descriptions

Field Description

MS0[95:64]

Multiple input Signature, bits 95–64

These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages 
read from the flash memory. 
The MS can be seeded to any value by writing the CFLASH_UMISR2.
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CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

The CFLASH_UMISR4 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR4 represents the ECC bits of the whole 144 bits word (2 Double Words 
including ECC): bits 8:15 are ECC bits for the odd Double Word and bits 24:31 are the ECC 
bits for the even Double Word; bits 4:5 and 20:21 of MISR are respectively the double and 
single ECC error detection for odd and even Double Word.

The CFLASH_UMISR4 is not accessible whenever CFLASH_MCR[DONE] or 
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 441. CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

Offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 394. CFLASH_UMISR3 field descriptions

Field Description

MS[127:96]

Multiple input Signature, bits127–96

These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages 
read from the flash memory. 
The MS can be seeded to any value by writing the CFLASH_UMISR3.
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CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

The nonvolatile private censorship password 0 register contains the 32 LSB of the Password 
used to validate the Censorship information contained in NVSCC0–1 registers.

Figure 442. CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

Offset: 0x00058 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 395. CFLASH_UMISR4 field descriptions

Field Description

MS[159:128]

Multiple input Signature, bits 159–128

These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the CFLASH_UMISR4 register.
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CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

The nonvolatile private censorship password 1 register contains the 32 MSB of the 
Password used to validate the Censorship information contained in NVSCC0–1 registers.

         

Figure 443. CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

Offset: 0x203DD8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[31:16]

W

Reset 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[15:0]

W

Reset 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Table 396. NVPWD0 field descriptions

Field Description

PWD[31:0]
Password, bits 31–0

These bits represent the 32 LSB of the Private Censorship Password.

Figure 444. CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

Offset: 0x203DDC Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[63:48]

W

Reset 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[47:32]

W

Reset 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1
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Note: In a secured device, starting with a serial boot, it is possible to read the content of the four 
flash locations where the RCHW can be stored. For example if the RCHW is stored at 
address 0x00000000, the reads at address 0x00000000, 0x00000004, 0x00000008 and 
0x0000000C will return a correct value. Any other flash address cannot be accessed.

CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

The NVSCC0 register stores the 32 LSB of the Censorship Control Word of the device.

The NVSCC0 is a nonvolatile register located in the Shadow sector: it is read during the 
reset phase of the flash memory module and the protection mechanisms are activated 
consequently.

The parts are delivered uncensored to the user.

         

         

Table 397. NVPWD1 field descriptions

Field Description

PWD[63:32]
Password, bits 63–32

These bits represent the 32 MSB of the Private Censorship Password.

Figure 445. CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

Offset: 0x203DE0 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Table 398. NVSCC0 field descriptions

Field Description

SC[15:0]

Serial Censorship control word, bits 15-0

These bits represent the 16 LSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[15:0]

Censorship control Word, bits 15-0

These bits represent the 16 LSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.
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CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

The NVSCC1 register stores the 32 MSB of the Censorship Control Word of the device.

The NVSCC1 is a nonvolatile register located in the Shadow sector: it is read during the 
reset phase of the flash memory module and the protection mechanisms are activated 
consequently.

The parts are delivered uncensored to the user.

         

         

CFlash Nonvolatile User Options register (NVUSRO)

The nonvolatile User Options Register contains configuration information for the user 
application.

The NVUSRO register is a 64-bit register, of which the 32 most significant bits 63:32 are 
‘don’t care’ and are used to manage ECC codes.

Figure 446. CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

Offset: 0x203DE4 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Table 399. NVSCC1 field descriptions

Field Description

SC[31:16]

Serial Censorship control word, bits 31-16

These bits represent the 16 MSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[31:16]

Censorship control Word, bits 31-16

These bits represent the 16 MSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.
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27.5.2 DFlash register description

DFlash Module Configuration Register (DFLASH_MCR)

The Module Configuration Register is used to enable and monitor all modify operations of 
the flash memory module.

Figure 447. CFlash Nonvolatile User Options register (NVUSRO)

Offset: 0x203E18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W
AT

C
H

D
O

G
_E

N

O
S

C
IL

LA
TO

R
_M

A
R

G
IN

PA
D

3V
5V

1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 400. NVUSRO field descriptions

Field Description

WATCHDOG_EN

WATCHDOG_EN 

0: Disable after reset
1: Enable after reset

Default manufacturing value before flash memory initialization is ‘1’ 

OSCILLATOR_ 
MARGIN

OSCILLATOR_MARGIN

0: Low consumption configuration (4 MHz/8 MHz)

1: High margin configuration (4 MHz/16 MHz)
Default manufacturing value before flash memory initialization is ‘1’ 

PAD3V5V

PAD3V5V 
0: High voltage supply is 5.0 V

1: High voltage supply is 3.3 V

Default manufacturing value before flash memory initialization is ‘1’ (3.3 V) which should 
ensure correct minimum slope for boundary scan.
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Figure 448. DFlash Module Configuration Register (DFLASH_MCR)

Address offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE 0 0
P

E
A

S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 401. DFLASH_MCR field descriptions

Field Description

 EDC

ECC Data Correction 

EDC provides information on previous reads. If an ECC Single Error detection and 
correction occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must 
occur before this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or 
clearing of EDC) were not corrected through ECC.
The function of this bit is device dependent and it can be configured to be disabled.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE
array space SIZE

The value of SIZE field is dependent upon the size of the flash memory module; see 
Table 402.

LAS
Low Address Space
The value of the LAS field corresponds to the configuration of the Low Address Space; see 
Table 403.

MAS
Mid Address Space

The value of the MAS field corresponds to the configuration of the Mid Address Space; see 
Table 404.

EER

ECC event Error

EER provides information on previous reads. If an ECC Double Error detection occurred, 
the EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. 
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or 
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.
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RWE

Read-while-Write event Error

RWE provides information on previous reads when a Modify operation is on going. If a 
RWW Error occurs, the RWE bit will be set to ‘1’. Read-While-Write Error means that a read 
access to the flash memory Matrix has occurred while the FPEC was performing a program 
or erase operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state. 
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last 
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS

Program/Erase Access Space

PEAS is used to indicate which space is valid for program and erase operations: main array 
space or shadow/test space. 
PEAS = 0 indicates that the main address space is active for all flash memory module 
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify 
operations. The value of PEAS is retained between sampling events (that is, subsequent 
first interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space 
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space 
disabled.

DONE

modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.

DONE is set to 1 on termination of the flash memory module reset.

DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage 
operation, or after

resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.

DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of 
EHV,

which aborts a high voltage Program/Erase operation.

DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1 
transition of ESUS,

which suspends an erase operation.

0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
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PEG

Program/Erase Good 

The PEG bit indicates the completion status of the last flash memory program or erase 
sequence for which high voltage operations were initiated. The value of PEG is updated 
automatically during the program and erase high voltage operations.
Aborting a program/erase high voltage operation will cause PEG to be cleared to ‘0’, 
indicating the sequence failed.
PEG is set to ‘1’ when the flash memory module is reset, unless a flash memory 
initialization error has been detected.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions 
from 0 to 1 due to an abort or the completion of a program/erase operation. PEG is valid 
until PGM/ERS makes a 1 to 0 transition or EHV makes a 0 to 1 transition. 
The value in PEG is not valid after a 0 to 1 transition of DONE caused by ESUS being set to 
logic 1.
If program or erase are attempted on blocks that are locked, the response will be PEG = 1, 
indicating that the operation was successful, and the content of the block were properly 
protected from the program or erase operation.
If a Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is 
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating 
that the requested operation has failed.

In Array Integrity Check or Margin Read PEG is set to 1 when the operation is completed, 
regardless the occurrence of any error. The presence of errors can be detected only 
comparing checksum value stored in UMIRS0-1.
Aborting an Array Integrity Check or a Margin Read operation will cause PEG to be cleared 
to 0, indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode 
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode 
completed.

PGM

ProGraM

PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and DFLASH_UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS
PSUS: Program SUSpend 
Write this bit has no effect, but the written data can be read back.

ERS

ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and DFLASH_UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
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ESUS

Erase SUSpend

ESUS is used to indicate that the flash memory module is in Erase Suspend or in the 
process of entering a Suspend state. The flash memory module is in Erase Suspend when 
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash 
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this 
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and 
returns the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV

Enable High Voltage

The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be 
set under one of the following conditions:

Erase (ERS = 1, ESUS = 0, DFLASH_UT0[AIE] = 0)
Program (ERS = 0, ESUS = 0, PGM = 1, DFLASH_UT0[AIE] = 0)

In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates 
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the 
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a 
failing program/erase; address locations being operated on by the aborted operation contain 
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an 
indeterminate data state. This may be recovered by executing an erase on the affected 
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be 
written after ESUS is set and before DONE transitions high. EHV may not be cleared after 
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 402. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 Reserved (1024 KB)

100 Reserved (1536 KB)

101 Reserved (2048 KB)

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
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A number of DFLASH_MCR bits are protected against write when another bit, or set of bits, 
is in a specific state. These write locks are covered on a bit by bit basis in the preceding 
description, but those locks do not consider the effects of trying to write two or more bits 
simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would 
put the device into an illegal state. This is implemented through a priority mechanism among 
the bits. The bit changing priorities are detailed in the Table 405.

         

If the user attempts to write two or more DFLASH_MCR bits simultaneously then only the bit 
with the lowest priority level is written.

110 64 KB

111 Reserved

Table 403. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 404. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128KB

1 Reserved

Table 402. Array space size (continued)

SIZE Array space size

Table 405. DFLASH_MCR bits set/clear priority levels

Priority level DFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS
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If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while 
fetching code from another then the following sequence is executed:

● CPU is stalled when flash is unavailable

● PEG flag set (stall case) or reset (abort case)

● Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the 
RWE flag. The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See 
Section 27.8.10, Read-while-write functionality.

DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

The DFlash Low/Mid Address Space Block Locking register provides a means to protect 
blocks from being modified. These bits, along with bits in the DFLASH_SLL register, 
determine if the block is locked from Program or Erase. An “OR” of DFLASH_LML and 
DFLASH_SLL determine the final lock status.

         

Figure 449. DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0 0 0

W

Reset
Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One 
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML 

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset
Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One 
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML 

register.
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Table 406. DFLASH_LML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or 
cleared by registers writes. 

This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the LME bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the 
DFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and 
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program 
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive 
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK 
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block 
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK 
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory 
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to 
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
LLK field is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field 
may be written as a register. Reset will cause the field to go back to its TestFlash block 
value. The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK 
field will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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DFlash Nonvolatile Low/Mid Address Space Block Locking Register 
(DFLASH_NVLML)

The DFLASH_LML register has a related Nonvolatile Low/Mid Address Space Block 
Locking register located in TestFlash that contains the default reset value for DFLASH_LML. 
During the reset phase of the flash memory module, the DFLASH_NVLML register content 
is read and loaded into the DFLASH_LML.

The DFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32 
are ‘don’t care’ and are used to manage ECC codes.

         

Figure 450. DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML)

Offset: 0xC03DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 407. DFLASH_NVLML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or 
cleared by registers writes. 

This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the LME bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the 
DFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and 
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program 
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive 
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK 
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block 
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK 
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory 
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
749/868 Doc ID 16886 Rev 6



RM0045 Flash Memory
DFlash Secondary Low/Mid Address Space Block Locking Register 
(DFLASH_SLL)

The DFlash Secondary Low/Mid Address Space Block Locking Register provides an 
alternative means to protect blocks from being modified. These bits, along with bits in the 
DFLASH_LML register, determine if the block is locked from Program or Erase. An “OR” of 
DFLASH_LML and DFLASH_SLL determine the final lock status.

         

Figure 451. DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL)

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 0 0

W

Reset
Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One 
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL 

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset
Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One 
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL 

register.
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Table 408. DFLASH_SLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or 
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the 
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot 
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be 
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space 
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for 
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to 
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The 
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash 
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from 
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this 
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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DFlash Nonvolatile Secondary Low/Mid Address Space Block Locking 
Register (DFLASH_NVSLL)

The DFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space 
Block Locking register located in TestFlash that contains the default reset value for 
DFLASH_SLL. During the reset phase of the flash memory module, the DFLASH_NVSLL 
register content is read and loaded into the DFLASH_SLL.

The DFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32 
are ‘don’t care’ and are used to manage ECC codes.

         

Figure 452. DFlash Nonvolatile Secondary Low/mid address space block Locking register 
(DFLASH_NVSLL)

Offset: 0xC03DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 409. DFLASH_NVSLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or 
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the 
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled 
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the 
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot 
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be 
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space 
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for 
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to 
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The 
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash 
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if 
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from 
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this 
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for 
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to 
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until 
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the 
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK 
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block 
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK 
bits will default to locked, and will not be writable. The reset value will always be 1 
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] = 
0).
1: Low Address Space Block is locked and cannot be modified.
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DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

The DFLASH_LMS register provides a means to select blocks to be operated on during 
erase.

         

         

         
DFlash Address Register (DFLASH_ADR)

The DFLASH_ADR provides the first failing address in the event module failures (ECC, 
RWW or FPEC) occur or the first address at which an ECC single error correction occurs.

Figure 453. DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

Offset: 0x00010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 410. DFLASH_LMS field descriptions

Field Description

LSL

Low address space block SeLect

A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value 
for the select register is 0, or unselected.
LSL[3:0] are related to sectors B1F3-0, respectively. LSL[15:4] are not used for this memory cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the 
erase sequence. The select register is not writable once an interlock write is completed or if a high 
voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the 
corresponding LSL bits will default to unselected, and will not be writable. The reset value will 
always be 0, and register writes will have no effect.
In the 80 KB flash memory module bits LSL[15:4] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for Erase.
1: Low Address Space Block is selected for Erase.
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DFlash User Test 0 register (DFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash 
memory module.

Figure 454. DFlash Address Register (DFLASH_ADR)

Address offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 411. DFLASH_ADR field descriptions

Field Description

AD[22:3]

ADdress 22-3 

The Address Register provides the first failing address in the event of ECC error 
(DFLASH_MCR[EER] set) or the first failing address in the event of RWW error 
(DFLASH_MCR[RWE] set), or the address of a failure that may have occurred in a FPEC operation 
(DFLASH_MCR[PEG] cleared). The Address Register also provides the first address at which an 
ECC single error correction occurs (DFLASH_MCR[EDC] set), if the device is configured to show 
this feature. 
The ECC double error detection takes the highest priority, followed by the RWW error, the FPEC 
error and the ECC single error correction. When accessed DFLASH_ADR will provide the address 
related to the first event occurred with the highest priority. The priorities between these four possible 
events is summarized in the Table 412.
This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same page, bit 
AD3 will output 0. The same is valid for a simultaneous ECC Single Error Correction on both Double 
Words of the same page.
In User Mode the Address Register is read only.

Table 412. DFLASH_ADR content: priority list

Priority level Error flag DFLASH_ADR content

1 DFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 DFLASH_MCR[RWE] = 1 Address of first RWW Error

3 DFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 DFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction
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The User Test 0 Register allows to control the way in which the flash memory content check 
is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible 
whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading returns 
indeterminate data while writing has no effect.

         

         

Figure 455. DFlash User Test 0 register (DFLASH_UT0)

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 413. DFLASH_UT0 field descriptions

Field Description

UTE

User Test Enable 

This status bit gives indication when User Test is enabled. All bits in DFLASH_UT0-2 and 
DFLASH_UMISR0-4 are locked when this bit is 0.
This bit is not writeable to a 1, but may be cleared. The reset value is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to 
reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the DFLASH_UT0 register.

DSI

Data Syndrome Input
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. Bits 
DSI[7:0] correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X

Reserved

This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.
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MRE

Margin Read Enable

MRE enables margin reads to be done. This bit, combined with MRV, enables regular user mode reads 
to be replaced by margin reads.
Margin reads are only active during Array Integrity Checks; Normal User reads are not affected by 
MRE.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data

while writing has no effect.

0: Margin reads are not enabled, all reads are User mode reads.
1: Margin reads are enabled.

MRV

Margin Read Value
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked to an 
erased level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE

ECC data Input Enable

EIE enables the ECC Logic Check operation to be done.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.
0: ECC Logic Check is not enabled.

1: ECC Logic Check is enabled.

AIS

Array Integrity Sequence

AIS determines the address sequence to be used during array integrity checks or Margin Read.
The default sequence (AIS = 0) is meant to replicate sequences normal user code follows, and 
thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS = 1) is just logically sequential. Proprietary sequence is forbidden in 
Margin Read.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run 
the proprietary sequence.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading 
returns indeterminate data while writing has no effect.
0: Array Integrity equence is proprietary sequence.
1: Array Integrity or Margin Read sequence is sequential.

AIE

Array Integrity Enable

AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (DFLASH_UMISR0-4) can be checked after the operation 
is complete, to determine if a correct signature is obtained.
AIE can be set only if DFLASH_MCR[ERS], DFLASH_MCR[PGM] and DFLASH_MCR[EHV] are all 
low.
0: Array Integrity Checks are not enabled.
1: Array Integrity Checks are enabled.

AID

Array Integrity Done

AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this time the 
MISR (DFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 413. DFLASH_UT0 field descriptions (continued)

Field Description
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DFlash User Test 1 register (DFLASH_UT1)

The DFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32 
LSB of the Double Word.

The User Test 1 Register is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

         

         

DFlash User Test 2 register (DFLASH_UT2)

The DFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32 
MSB of the Double Word.

The User Test 2 Register is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 456. DFlash User Test 1 register (DFLASH_UT1)

Address offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 414. DFLASH_UT1 field descriptions

Field Description

DAI[31:16]

Data Array Input, bits 31-0

These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits DAI[31:00] 
correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
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DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

The DFLASH_UMISR0 provides a means to evaluate the Array Integrity.

The DFLASH_UMISR0 represents the bits 31:0 of the whole 144 bits word (2 Double Words 
including ECC).

The DFLASH_UMISR0 is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 457. DFlash User Test 2 register (DFLASH_UT2)

Offset: 0x00044 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 415. DFLASH_UT2 field descriptions

Field Description

DAI[63:32]

Data Array Input, bits 63-32

These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits DAI[63:32] 
correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
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DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

The DFLASH_UMISR1 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double 
Words including ECC).

The DFLASH_UMISR1 is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 458. DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

Address offset: 0x00048 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 416. DFLASH_UMISR0 field descriptions

Field Description

MS[31:0]

Multiple input Signature, bits 31–0

These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages read from 
the flash memory. 
The MS can be seeded to any value by writing the DFLASH_UMISR0 register.
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DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

The DFLASH_UMISR2 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double 
Words including ECC).

The DFLASH_UMISR2 is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 459. DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

Address offset: 0x0004C Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 417. DFLASH_UMISR1 field descriptions

Field Description

MS[63:32]

Multiple input Signature, bits 63-32

These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages read from 
the flash memory. 
The MS can be seeded to any value by writing the DFLASH_UMISR1.
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DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

The DFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double 
Words including ECC).

The DFLASH_UMISR3 is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 460. DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

Address offset: 0x00050 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 418. DFLASH_UMISR2 field descriptions

Field Description

MS[95:64]

Multiple input Signature, bits 95-64

These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages read from 
the flash memory. 
The MS can be seeded to any value by writing the DFLASH_UMISR2.
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DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 4 represents the ECC bits of the whole 144 bits 
word (2 Double Words including ECC): bits 23-168:15 are ECC bits for the odd Double Word 
and bits 7-024:31 are the ECC bits for the even Double Word; bits 27-264:5 and 11-1020:21 
of MISR are respectively the double and single ECC error detection for odd and even 
Double Word.

The DFLASH_UMISR4 Register is not accessible whenever DFLASH_MCR[DONE] or 
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 461. DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

Address offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 419. DFLASH_UMISR3 field descriptions

Field Description

MS[127:96]

Multiple input Signature, bits 127096

These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages read from 
the flash memory. 
The MS can be seeded to any value by writing the DFLASH_UMISR3.
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27.6 Programming considerations
In the following sections, register names can refer to the CFlash or DFlash versions of those 
registers. Thus, for example, the term “MCR” can refer to the CFLASH_MCR or 
DFLASH_MCR based on context.

27.6.1 Modify operation

All modify operations of the flash memory module are managed through the flash memory 
User Registers Interface.

All the sectors of the flash memory module belong to the same partition (Bank), therefore 
when a Modify operation is active on some sectors no read access is possible on any other 
sector (Read-While-Write is not supported).

During a flash memory modify operation any attempt to read any flash memory location will 
output invalid data and bit MCR[RWE] will be automatically set. This means that the flash 
memory module is not fetchable when a modify operation is active and these commands 
must be executed from another memory (internal SRAM or another flash memory module).

If during a Modify Operation a reset occurs, the operation is suddenly terminated and the 
Macrocell is reset to Read Mode. The data integrity of the flash memory section where the 

Figure 462. DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

Address offset: 0x00058 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 420. DFLASH_UMISR4 field descriptions

Field Description

MS[159:128]

Multiple input Signature, bits 159-128

These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the DFLASH_UMISR4 register.
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Modify Operation has been terminated is not guaranteed: the interrupted flash memory 
Modify Operation must be repeated.

In general each modify operation is started through a sequence of three steps:

1. The first instruction is used to select the desired operation by setting its corresponding 
selection bit in MCR (PGM or ERS) or UT0 (MRE or EIE).

2. The second step is the definition of the operands: the Address and the Data for 
programming or the Sectors for erase or margin read.

3. The third instruction is used to start the modify operation, by setting MCR[EHV] or 
UT0[AIE].

Once selected, but not yet started, one operation can be canceled by resetting the operation 
selection bit.

A summary of the available flash memory modify operations is shown in Table 421.

         

Once the MCR[EHV] bit (or UT0[AIE]) is set, all the operands can no more be modified until 
the MCR[DONE] bit (or UT0[AID]) is high.

In general each modify operation is completed through a sequence of four steps:

1. Wait for operation completion: wait for the MCR[DONE] bit (or UT0[AID]) to go high.

2. Check operation result: check the MCR[PEG] bit (or compare UMISR0-4 with expected 
value).

3. Switch off FPEC by resetting the MCR[EHV] bit (or UT0[AIE]).

4. Deselect current operation by clearing the MCR[PGM] / MCR[ERS] fields (or 
UT0[MRE] /UT0[EIE]).

If the device embeds more than one flash memory module and a modify operation is on-
going on one of them, then it is forbidden to start any other modify operation on the other 
flash memory modules.

In the following all the possible modify operations are described and some examples of the 
sequences needed to activate them are presented.

27.6.2 Double word program

A flash memory Program sequence operates on any Double Word within the flash memory 
core.

Up to two words within the Double Word may be altered in a single Program operation.

ECC is handled on a 64-bit boundary. Thus, if only one word in any given 64-bit ECC 
segment is programmed, the adjoining word (in that segment) should not be programmed 

Table 421. Flash memory modify operations

Operation Select bit Operands Start bit

Double word program MCR[PGM] Address and data by interlock writes MCR[EHV]

Sector erase MCR[ERS] LMS MCR[EHV]

Array integrity check None LMS UT0[AIE]

Margin read UT0[MRE] UT0[MRV] + LMS UT0[AIE]

ECC Logic Check UT0[EIE] UT0[DSI], UT1, UT2 UT0[AIE]
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since ECC calculation has already completed for that 64-bit segment. Attempts to program 
the adjoining word will probably result in an operation failure. It is recommended that all 
programming operations be of 64 bits. The programming operation should completely fill 
selected ECC segments within the Double Word.

Programming changes the value stored in an array bit from logic 1 to logic 0 only. 
Programming cannot change a stored logic 0 to a logic 1.

Addresses in locked/disabled blocks cannot be programmed.

The user may program the values in any or all of two words, of a Double Word, with a single 
program sequence.

Double Word-bound words have addresses which differ only in address bit 2.

The Program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from 0 to 1.

2. Ensure the block that contains the address to be programmed is unlocked.
Write the first address to be programmed with the program data.
The flash memory module latches address bits (22:3) at this time.
The flash memory module latches data written as well.
This write is referred to as a program data interlock write. An interlock write may be as 
large as 64 bits, and as small as 32 bits (depending on the CPU bus).

3. If more than 1 word is to be programmed, write the additional address in the Double 
Word with data to be programmed. This is referred to as a program data write.
The flash memory module ignores address bits (22:3) for program data writes.
The eventual unwritten data word default to 0xFFFFFFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to 
step 9 to terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm that the MCR[PEG] bit is 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program operation.

Program may be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the 
MCR[EHV] bit at the end of a previous program.

The first write after a program is initiated determines the page address to be programmed. 
This first write is referred to as an interlock write. The interlock write determines if the 
shadow, test or normal array space will be programmed by causing the MCR[PEAS] field to 
be set/cleared.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a 
program sequence by clearing MCR[PGM] prior to setting MCR[EHV].

After the interlock write, additional writes only affect the data to be programmed at the word 
location determined by address bit 2. Unwritten locations default to a data value of 
0xFFFFFFFF. If multiple writes are done to the same location the data for the last write is 
used in programming.

While MCR[DONE] is low and MCR[EHV] is high, the user may clear EHV, resulting in a 
program abort. 
A Program abort forces the module to step 8 of the program sequence.
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An aborted program will result in MCR[PEG] being set low, indicating a failed operation. 
MCR[DONE] must be checked to know when the aborting command has completed.

The data space being operated on before the abort will contain indeterminate data. This 
may be recovered by repeating the same program instruction or executing an erase of the 
affected blocks.

Example 10 Double word program of data 0x55AA55AA at address 0x00AAA8 and data 
0xAA55AA55 at address 0x00AAAC

MCR = 0x00000010; /* Set PGM in MCR: Select Operation */
(0x00AAA8) = 0x55AA55AA; /* Latch Address and 32 LSB data */
(0x00AAAC) = 0xAA55AA55; /* Latch 32 MSB data */
MCR = 0x00000011; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while ( !(tmp & 0x00000400) );
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000010; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset PGM in MCR: Deselect Operation */

27.6.3 Sector erase

Erase changes the value stored in all bits of the selected block(s) to logic 1.

An erase sequence operates on any combination of blocks (sectors) in the low, mid or high 
address space, or the shadow sector (if available). The test block cannot be erased.

The erase sequence is fully automated within the flash memory. The user only needs to 
select the blocks to be erased and initiate the erase sequence.

Locked/disabled blocks cannot be erased.

If multiple blocks are selected for erase during an erase sequence, no specific operation 
order must be assumed.

The erase operation consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to 1.

2. Select the block(s) to be erased by writing ‘1’s to the appropriate bit(s) in the LMS 
register.
If the shadow sector is to be erased, this step may be skipped, and LMS is ignored.
Note that Lock and Select are independent. If a block is selected and locked, no erase 
will occur.

3. Write to any address in flash memory. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR[EHV] bit to start the internal erase sequence or skip to step 
9 to terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase operation.

After setting MCR[ERS], one write, referred to as an interlock write, must be performed 
before MCR[EHV] can be set to ‘1’. Data words written during erase sequence interlock 
writes are ignored.
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The user may terminate the erase sequence by clearing ERS before setting EHV.

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low, 
MCR[EHV] is high and MCR[ESUS] is low.

An erase abort forces the module to step 8 of the erase sequence.

An aborted erase will result in MCR[PEG] being set low, indicating a failed operation. 
MCR[DONE] must be checked to know when the aborting command has completed.

The block(s) being operated on before the abort contain indeterminate data. This may be 
recovered by executing an erase on the affected blocks.

The user may not abort an erase sequence while in erase suspend.

Example 11 Erase of sectors B0F1 and B0F2
MCR = 0x00000004; /* Set ERS in MCR: Select Operation */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors to erase */
(0x000000) = 0xFFFFFFFF; /* Latch a flash memory Address with any data */
MCR = 0x00000005; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while ( !(tmp & 0x00000400) );
status = MCR & 0x00000200;/* Check PEG flag */
MCR = 0x00000004; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset ERS in MCR: Deselect Operation */

Erase suspend/resume

The erase sequence may be suspended to allow read access to the flash memory core.

It is not possible to program or to erase during an erase suspend.

During erase suspend, all reads to blocks targeted for erase return indeterminate data.

An erase suspend can be initiated by changing the value of the MCR[ESUS] bit from 0 to 1. 
MCR[ESUS] can be set to ‘1’ at any time when MCR[ERS] and MCR[EHV] are high and 
MCR[PGM] is low. A 0 to 1 transition of MCR[ESUS] causes the module to start the 
sequence which places it in erase suspend.

The user must wait until MCR[DONE] = 1 before the module is suspended and further 
actions are attempted. MCR[DONE] will go high no more than tESUS after MCR[ESUS] is set 
to ‘1’.

Once suspended, the array may be read. flash memory core reads while MCR[ESUS] = 1 
from the block(s) being erased return indeterminate data.

Example 12 Sector erase suspend
MCR = 0x00000007; /* Set ESUS in MCR: Erase Suspend */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while ( !(tmp & 0x00000400) );

Notice that there is no need to clear MCR[EHV] and MCR[ERS] in order to perform reads 
during erase suspend.

The erase sequence is resumed by writing a logic 0 to MCR[ESUS]. 

MCR[EHV] must be set to ‘1’ before MCR[ESUS] can be cleared to resume the operation.
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The module continues the erase sequence from one of a set of predefined points. This may 
extend the time required for the erase operation.

Example 13 Sector erase resume
MCR = 0x00000005; /* Reset ESUS in MCR: Erase Resume */

User Test mode

The user can perform specific tests to check flash memory module integrity by putting the 
flash memory module in User Test Mode.

Three kinds of test can be performed:

● Array Integrity Self Check

● Margin Read

● ECC Logic Check

The User Test Mode is equivalent to a Modify operation: read accesses attempted by the 
user during User Test Mode generates a Read-While-Write Error (MCR[RWE] set).

It is not allowed to perform User Test operations on the Test and shadow sectors.

Array integrity self check

Array Integrity is checked using a predefined address sequence (proprietary), and this 
operation is executed on selected and unlocked blocks. Once the operation is completed, 
the results of the reads can be checked by reading the MISR value (stored in UMISR0–4), to 
determine if an incorrect read, or ECC detection was noted.

The internal MISR calculator is a 32-bit register.

The 128 bit data, the 16 ECC data and the single and double ECC errors of the two Double 
Words are therefore captured by the MISR through five different read accesses at the same 
location.

The whole check is done through five complete scans of the memory address space: 

1. The first pass will scan only bits 31:0 of each page.

2. The second pass will scan only bits 63:32 of each page.

3. The third pass will scan only bits 95:64 of each page.

4. The fourth pass will scan only bits 127:96 of each page.

5. The fifth pass will scan only the ECC bits (8 + 8) and the single and double ECC errors 
(2 + 2) of both Double Words of each page.

The 128 bit data and the 16 ECC data are sampled before the eventual ECC correction, 
while the single and double error flags are sampled after the ECC evaluation.

Only data from existing and unlocked locations are captured by the MISR.

The MISR can be seeded to any value by writing the UMISR0–4 registers.

The Array Integrity Self Check consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing ‘1’s to the appropriate bit(s) in the LMS 
register.
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Note that Lock and Select are independent. If a block is selected and locked, no Array 
Integrity Check will occur.

3. Set eventually UT0[AIS] bit for a sequential addressing only.

4. Write a logic 1 to the UT0[AIE] bit to start the Array Integrity Check.

5. Wait until the UT0[AID] bit goes high.

6. Compare UMISR0-4 content with the expected result.

7. Write a logic 0 to the UT0[AIE] bit.

8. If more blocks are to be checked, return to step 2.

It is recommended to leave UT0[AIS] at 0 and use the proprietary address sequence that 
checks the read path more fully, although this sequence takes more time. During the 
execution of the Array Integrity Check operation it is forbidden to modify the content of Block 
Select (LMS) and Lock (LML, SLL) registers, otherwise the MISR value can vary in an 
unpredictable way. While UT0[AID] is low and UT0[AIE] is high, the User may clear AIE, 
resulting in a Array Integrity Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 14 Array integrity check of sectors B0F1 and B0F2
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000002; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while ( !(tmp & 0x00000001) );
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x00000000; /* Reset UTE and AIE in UT0: Operation End */

Margin read

Margin read procedure (either Margin 0 or Margin 1), can be run on unlocked blocks in order 
to unbalance the Sense Amplifiers, respect to standard read conditions, so that all the read 
accesses reduce the margin vs ‘0’ (UT0[MRV] = ‘0’) or vs ‘1’ (UT0[MRV] = ‘1’). Locked 
sectors are ignored by MISR calculation and ECC flagging. The results of the margin reads 
can be checked comparing checksum value in UMISR0-4. Since Margin reads are done at 
voltages that differ than the normal read voltage, lifetime expectancy of the flash memory 
macrocell is impacted by the execution of Margin reads. Doing Margin reads repetitively 
results in degradation of the flash memory Array, and shorten expected lifetime experienced 
at normal read levels. For these reasons the Margin Read usage is allowed only in Factory, 
while it is forbidden to use it inside the User Application.

In any case the charge losses detected through the Margin Read cannot be considered 
failures of the device and no Failure Analysis will be opened on them. The Margin Read 
Setup operation consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate bit(s) in the LMS 
register.
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Note that Lock and Select are independent. If a block is selected and locked, no Array 
Integrity Check will occur.

3. Set T0.AIS bit for a sequential addressing only.

4. Change the value in the UT0[MRE] bit from 0 to 1.

5. Select the Margin level: UT0[MRV]=0 for 0’s margin, UT0[MRV]=1 for 1’s margin.

6. Write a logic 1 to the UT0[AIE] bit to start the Margin Read Setup or skip to step 6 to 
terminate.

7. Wait until the UT0[AID] bit goes high.

8. Compare UMISR0-4 content with the expected result.

9. Write a logic 0 to the UT0[AIE], UT0[MRE] and UT0[MRV] bits.

10. If more blocks are to be checked, return to step 2.

It is mandatory to leave UT0[AIS] at 1 and use the linear address sequence, the usage of 
the proprietary sequence in Margin Read is forbidden.

During the execution of the Margin Read operation it is forbidden to modify the content of 
Block Select (LMS) and Lock (LML, SLL) registers, otherwise the MISR value can vary in an 
unpredictable way.

The read accesses will be done with the addition of a proper number of Wait States to 
guarantee the correctness of the result.

While UT0[AID] is low and UT0[AIE] is high, the User may clear AIE, resulting in a Array 
Integrity Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 15 Margin read setup versus ‘1’s
UMISR0 = 0x00000000; /* Reset UMISR0 content */
UMISR1 = 0x00000000; /* Reset UMISR1 content */
UMISR2 = 0x00000000; /* Reset UMISR2 content */
UMISR3 = 0x00000000; /* Reset UMISR3 content */
UMISR4 = 0x00000000; /* Reset UMISR4 content */
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000004; /* Set AIS in UT0: Select Operation */
UT0 = 0x80000024; /* Set MRE in UT0: Select Operation */
UT0 = 0x80000034; /* Set MRV in UT0: Select Margin versus 1’s */
UT0 = 0x80000036; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while ( !(tmp & 0x00000001) );
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x80000034; /* Reset AIE in UT0: Operation End */
UT0 = 0x00000000; /* Reset UTE, MRE, MRV, AIS in UT0: Deselect Op. */

To exit from the Margin Read Mode a Read Reset operation must be executed.
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ECC logic check

ECC logic can be checked by forcing the input of ECC logic: The 64 bits of data and the 8 
bits of ECC syndrome can be individually forced and they will drive simultaneously at the 
same value the ECC logic of the whole page (2 Double Words). 

The results of the ECC Logic Check can be verified by reading the MISR value.

The ECC Logic Check operation consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Write in UT1[DAI31–0] and UT2[DAI63–32] the Double Word Input value.

3. Write in UT0[DSI7–0] the Syndrome Input value.

4. Select the ECC Logic Check: write a logic 1 to the UT0[EIE] bit.

5. Write a logic 1 to the UT0[AIE] bit to start the ECC Logic Check.

6. Wait until the UT0[AID] bit goes high.

7. Compare UMISR0–4 content with the expected result.

8. Write a logic 0 to the UT0[AIE] bit.

Notice that when UT0[AID] is low UMISR0–4, UT1–2 and bits MRE, MRV, EIE, AIS and 
DSI7–0 of UT0 are not accessible: reading returns indeterminate data and write has no 
effect.

Example 16 ECC logic check
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT1 = 0x55555555; /* Set DAI31-0 in UT1: Even Word Input Data */
UT2 = 0xAAAAAAAA; /* Set DAI63-32 in UT2: Odd Word Input Data */
UT0 = 0x80FF0000; /* Set DSI7-0 in UT0: Syndrome Input Data */
UT0 = 0x80FF0008; /* Set EIE in UT0: Select ECC Logic Check */
UT0 = 0x80FF000A; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while ( !(tmp & 0x00000001) );
data0 = UMISR0; /* Read UMISR0 content (expected 0x55555555) */
data1 = UMISR1; /* Read UMISR1 content (expected 0xAAAAAAAA) */
data2 = UMISR2; /* Read UMISR2 content (expected 0x55555555) */
data3 = UMISR3; /* Read UMISR3 content (expected 0xAAAAAAAA) */
data4 = UMISR4; /* Read UMISR4 content (expected 0x00FF00FF) */
UT0 = 0x00000000; /* Reset UTE, AIE and EIE in UT0: Operation End */

Error correction code

The flash memory module provides a method to improve the reliability of the data stored in 
flash memory: the usage of an Error Correction Code. The word size is fixed at 64 bits.

Eight ECC bits, programmed to guarantee a Single Error Correction and a Double Error 
Detection (SEC-DED), are associated to each 64-bit Double Word.

ECC circuitry provides correction of single bit faults and is used to achieve automotive 
reliability targets. Some units will experience single bit corrections throughout the life of the 
product with no impact to product reliability.

ECC algorithms

The flash memory module supports one ECC Algorithm: “All ‘1’s No Error”. A modified 
Hamming code is used that ensures the all erased state (that is, 0xFFFF.....FFFF) data is a 
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valid state, and will not cause an ECC error. This allows the user to perform a blank check 
after a sector erase operation.

EEPROM emulation

The choosen ECC algorithm allows some bit manipulations so that a Double Word can be 
rewritten several times without needing an erase of the sector. This allows to use a Double 
Word to store flags useful for the Eeprom Emulation. As an example the choosen ECC 
algorithm allows to start from an All ‘1’s Double Word value and rewrite whichever of its four 
16-bits Half-Words to an All ‘0’s content by keeping the same ECC value.

Table 422 shows a set of Double Words sharing the same ECC value.

         

When some flash memory sectors are used to perform an Eeprom Emulation, it is 
reccomended for safety reasons to reserve at least 3 sectors to this purpose.

All ‘1’s No Error

The All ‘1’s No Error Algorithm detects as valid any Double Word read on a just erased 
sector (all the 72 bits are ‘1’s).

This option allows to perform a Blank Check after a Sector Erase operation.

Protection strategy

Two kinds of protection are available: Modify Protection to avoid unwanted program/erase in 
flash memory sectors and Censored Mode to avoid piracy.

Table 422. Bit manipulation: Double words with the same ECC value

Double word ECC all ‘1’s no error

0xFFFF_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_FFFF_0000 0xFF

0xFFFF_FFFF_0000_FFFF 0xFF

0xFFFF_0000_FFFF_FFFF 0xFF

0x0000_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_0000_0000 0xFF

0xFFFF_0000_FFFF_0000 0xFF

0x0000_FFFF_FFFF_0000 0xFF

0xFFFF_0000_0000_FFFF 0xFF

0x0000_FFFF_0000_FFFF 0xFF

0x0000_0000_FFFF_FFFF 0xFF

0xFFFF_0000_0000_0000 0xFF

0x0000_FFFF_0000_0000 0xFF

0x0000_0000_0000_0000 0xFF
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Modify protection

The flash memory Modify Protection information is stored in nonvolatile flash memory cells 
located in the TestFlash. This information is read once during the flash memory initialization 
phase following the exiting from Reset and is stored in volatile registers that act as 
actuators.

The reset state of all the volatile modify protection registers is the protected state.

All the nonvolatile modify protection registers can be programmed through a normal Double 
Word Program operation at the related locations in TestFlash.

The nonvolatile modify protection registers cannot be erased.

● The nonvolatile Modify Protection Registers are physically located in TestFlash their 
bits can be programmed to ‘0’ only once and they can no more be restored to ‘1’. 

● The Volatile Modify Protection Registers are Read/Write registers which bits can be 
written at ‘0’ or ‘1’ by the user application.

A software mechanism is provided to independently lock/unlock each Low, Mid and High 
Address Space Block against program and erase.

Software locking is done through the LML register.

An alternate means to enable software locking for blocks of Low Address Space only is 
through the SLL.

All these registers have a nonvolatile image stored in TestFlash (NVLML, NVSLL), so that 
the locking information is kept on reset.

On delivery the TestFlash nonvolatile image is at all ‘1’s, meaning all sectors are locked.

By programming the nonvolatile locations in TestFlash the selected sectors can be 
unlocked.

Being the TestFlash One Time Programmable (that is, not erasable), once unlocked the 
sectors cannot be locked again.

Of course, on the contrary, all the volatile registers can be written at 0 or 1 at any time, 
therefore the user application can lock and unlock sectors when desired.

Censored mode

The Censored Mode information is stored in nonvolatile flash memory cells located in the 
Shadow Sector. This information is read once during the flash memory initialization phase 
following the exiting from Reset and is stored in volatile registers that act as actuators.

The reset state of all the Volatile Censored Mode Registers is the protected state. 

All the nonvolatile Censored Mode registers can be programmed through a normal Double 
Word Program operation at the related locations in the Shadow Sector.

The nonvolatile Censored Mode registers can be erased by erasing the Shadow Sector.

● The nonvolatile Censored Mode Registers are physically located in the Shadow Sector 
their bits can be programmed to ‘0’ and restored to ‘1’ by erasing the Shadow Sector. 

● The Volatile Censored Mode Registers are registers not accessible by the user 
application.
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The flash memory module provides two levels of protection against piracy:

● If bits CW15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the 
Censored Mode is disabled, while all the other possible values enable the Censored 
Mode.

● If bits SC15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the 
Public Access is disabled, while all the other possible values enable the Public Access.

The parts are delivered to the user with Censored Mode and Public Access disabled.

27.7 Platform flash memory controller

27.7.1 Introduction

The platform flash memory controller acts as the interface between the system bus (AHB-
Lite 2.v6) and up to two banks of integrated flash memory arrays (Program and Data). It 
intelligently converts the protocols between the system bus and the dedicated flash memory 
array interfaces.

A block diagram of the e200z0h Power Architecture reduced product platform (RPP) 
reference design is shown below in Figure 463 with the platform flash memory controller 
module and its attached off-platform flash memory arrays highlighted.
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Figure 463. Power Architecture e200z0h RPP reference platform block diagram

The module list includes:

● Power Architecture e200z0h (Harvard) core with Nexus1 or optional Nexus2+ debug

● AHB crossbar switch “lite” (XBAR)

● Memory Protection Unit (MPU)

● Platform flash memory controller with connections to 2 memory banks

● Platform SRAM memory controller (PRAM)

● AHB-to-IPS/APB bus controller (PBRIDGE) for access to on- and off-platform slave 
modules

● Interrupt Controller (INTC)

● 4-channel System Timers (STM)

● Software Watchdog Timer (SWT)

● Error Correction Status Module (ECSM)
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Throughout this document, several important terms are used to describe the platform flash 
memory controller module and its connections. These terms are defined here:

● Port — This is used to describe the AMBA-AHB connection(s) into the platform flash 
memory controller. From an architectural and programming model viewpoint, the 
definition supports up to two AHB ports, even though this specific controller only 
supports a single AHB connection.

● Bank — This term is used to describe the attached flash memories. From the platform 
flash memory controller’s perspective, there may be one or two attached banks of flash 
memory. The “code flash memory” is required and always attached to bank0. 
Additionally, there is a “data flash memory” attached to bank1. The platform flash 
memory controller interface supports two separate connections, one to each memory 
bank.

● Array — Within each memory bank, there is one flash memory array instantiations.

● Page — This value defines the number of bits read from the flash memory array in a 
single access. For this controller and memory, the page size is 128 bits (16 bytes).

The nomenclature “page buffers and “line buffers” are used interchangeably.

Overview

The platform flash memory controller supports a 32-bit data bus width at the AHB port and 
connections to 128-bit read data interfaces from two memory banks, where each bank 
contains one instantiations of the flash memory array. One flash memory bank is connected 
to the code flash memory and the other bank is connected to the optional data flash 
memory. The memory controller capabilities vary between the two banks with each bank’s 
functionality optimized with the typical use cases associated with the attached flash 
memory. As an example, the platform flash memory controller logic associated with the code 
flash memory bank contains a four-entry “page” buffer, each entry containing 128 bits of 
data (1 flash memory page) plus an associated controller which prefetches sequential lines 
of data from the flash memory array into the buffer, while the controller logic associated with 
the data flash memory bank only supports a 128-bit register which serves as a temporary 
page holding register and does not support any prefetching. Prefetch buffer hits from the 
code flash memory bank support zero-wait AHB data phase responses. AHB read requests 
which miss the buffers generate the needed flash memory array access and are forwarded 
to the AHB upon completion, typically incurring two wait-states at an operating frequency of 
60–64 MHz.

This memory controller is optimized for applications where a cacheless processor core, e.g., 
the Power e200z0h, is connected through the platform to on-chip memories, e.g., flash 
memory and SRAM, where the processor and platform operate at the same frequency. For 
these applications, the 2-stage pipeline AMBA-AHB system bus is effectively mapped 
directly into stages of the processor’s pipeline and zero wait-state responses for most 
memory accesses are critical for providing the required level of system performance. 
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Features

The following list summarizes the key features of the platform flash memory controller:

● Dual array interfaces support up to a total of 16 MB of flash memory, partitioned as two 
separate 8 MB banks

● Single AHB port interface supports a 32-bit data bus. All AHB aligned and unaligned 
reads within the 32-bit container are supported. Only aligned word writes are 
supported.

● Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each 
bank

● Interface with code flash memory (bank0) provides configurable read buffering and 
page prefetch support. Four page read buffers (each 128 bits wide) and a prefetch 
controller are used to support single-cycle read responses (zero AHB data phase wait-
states) for hits in the buffers. The buffers implement a least-recently-used replacement 
algorithm to maximize performance.

● Interface with optional data flash memory (bank1) includes a 128-bit register to 
temporarily hold a single flash memory page. This logic supports single-cycle read 
responses (zero AHB data phase wait-states) for accesses that hit in the holding 
register. There is no support for prefetching associated with this bank.

● Programmable response for read-while-write sequences including support for stall-
while-write, optional stall notification interrupt, optional flash memory operation abort, 
and optional abort notification interrupt

● Separate and independent configurable access timing (on a per bank basis) to support 
use across a wide range of platforms and frequencies

● Support of address-based read access timing for emulation of other memory types

● Support for reporting of single- and multi-bit flash memory ECC events

● Typical operating configuration loaded into programming model by system reset

27.7.2 Memory map and register description

Two memory maps are associated with the platform flash memory controller: one for the 
flash memory space and another for the program-visible control and configuration registers. 
The flash memory space is accessed via the AMBA-AHB port and the program-visible 
registers are accessed via the slave peripheral bus. Details on both memory spaces are 
provided in Section , Memory map.

There are no program-visible registers that physically reside inside the platform flash 
memory controller. Rather, the platform flash memory controller receives control and 
configuration information from the flash memory array controller(s) to determine the 
operating configuration. These are part of the flash memory array’s configuration registers 
mapped into its slave peripheral (IPS) address space but are described here.

Memory map

First, consider the flash memory space accessed via transactions from the platform flash 
memory controller’s AHB port.

To support the two separate flash memory banks, each up to 8 MB in size, the platform flash 
memory controller uses address bit 23 (haddr[23]) to steer the access to the appropriate 
memory bank. In addition to the actual flash memory regions, the system memory map 
includes shadow and test sectors. The program-visible control and configuration registers 
associated with each memory array are included in the slave peripheral address region. The 
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system memory map defines one code flash memory array and one data flash memory 
array. See Table 423.

         

For additional information on the address-based read access timing for emulation of other 
memory types, see Section 27.8.11, Wait-state emulation.

Next, consider the memory map associated with the control and configuration registers.

Regardless of the number of populated banks or the number of flash memory arrays 
included in a given bank, the configuration of the platform flash memory controller is wholly 
specified by the platform flash memory controller registers associated with code flash 
memory array 0. The code array0 register settings define the operating behavior of both 
flash memory banks; it is recommended that the platform flash memory controller registers 
for all physically-present arrays be set to the code flash memory array0 values.

Note: To perform program and erase operations, the control registers in the actual referenced 
flash memory array must be programmed, but the configuration of the platform flash 
memory controller module is defined by the platform flash controller registers of code 
array0.

The 32-bit memory map for the platform flash memory controller control registers is shown 
in Table 424. The base address of the controller is 0xC3F8_8000.

         

Table 423. Flash memory-related regions in the system memory map

Start address End address Size [KB] Region

0x0000_0000 0x0003_FFFF 256 Code flash memory array 0

0x0004_0000 0x001F_FFFF 1792 Reserved

0x0020_0000 0x0027_FFFF 16 Code flash memory array 0: shadow sector

0x0028_0000 0x002F_FFFF 1536 Reserved

0x0040_0000 0x0040_3FFF 16 Code flash memory array 0: test sector

0x0040_4000 0x007F_FFFF 4078 Reserved

0x0080_0000 0x0080_FFFF 64 Data flash memory array 0

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_0000 0x00C7_FFFF 16 Data flash memory array 0: test sector

0x00C8_0000 0x00FF_FFFF 3584 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Emulation mapping

0xC3F8_8000 0xC3F8_BFFF 16 Code flash memory array 0 configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data flash memory array 0 configuration

Table 424. Platform flash memory controller 32-bit memory map

Address offset Register Location

0x1C Platform Flash Configuration Register 0 (PFCR0) on page 27-780

0x20 Platform Flash Configuration Register 1 (PFCR1) on page 27-783

0x24 Platform Flash Access Protection Register (PFAPR) on page 27-786
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See the SPC560D30/40 data sheet for detailed settings for different values of frequency.

Register description

This section details the individual registers of the platform flash memory controller.

Flash memory configuration registers must be written only with 32-bit write operations to 
avoid any issues associated with register “incoherency” caused by bits spanning smaller-
size (8- or 16-bit) boundaries.

Platform Flash Configuration Register 0 (PFCR0)

This register defines the configuration associated with the code flash memory bank0. It 
includes fields that provide specific information for up to two separate AHB ports (p0 and the 
optional p1). For the platform flash memory controller module, the fields associated with 
AHB port p1 are ignored. The register is described in Figure 464 and Table 425.

Note: Do not execute code from flash memory when you are programming PFCR0. If you wish to 
program PFCR0, execute your application code from RAM.

         

Figure 464. PFlash Configuration Register 0 (PFCR0)
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Table 425. PFCR0 field descriptions

Field Description

BK0_APC

Bank0 Address Pipelining Control

This field is used to control the number of cycles between flash memory array access requests. 
This field must be set to a value appropriate to the operating frequency of the PFlash. The required 
settings are documented in the device datasheet. Higher operating frequencies require non-zero 
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle 
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles
Note:

BK0_WWSC

Bank0 Write Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access 
time for writes. This field must be set to a value appropriate to the operating frequency of the 
PFlash. The required settings are documented in the device datasheet. Higher operating 
frequencies require non-zero settings for this field for proper flash memory operation. This field is 
set to an appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added
Note:

BK0_RWSC

Bank0 Read Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access 
time for reads. This field must be set to a value corresponding to the operating frequency of the 
PFlash and the actual read access time of the PFlash. The required settings are documented in the 
device datasheet.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added
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BK0_RWWC

Bank0 Read-While-Write Control

This 3-bit field defines the controller response to flash memory reads while the array is busy with a 
program (write) or erase operation.

0––: This state should be avoided. Setting to this state can cause unpredictable operation.
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable 

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable 

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort 

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort 

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the 
abort and notification interrupts.

B0_P0_BCFG

Bank0, Port 0 Page Buffer Configuration

This field controls the configuration of the four page buffers in the PFlash controller. The buffers can 
be organized as a “pool” of available resources, or with a fixed partition between instruction and 
data buffers.

If enabled, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the 
group and the just-fetched entry then marked as most-recently-used. If the flash memory access is 
for the next-sequential line, the buffer is not marked as most-recently-used until the given address 
produces a buffer hit.

00: All four buffers are available for any flash memory access, that is, there is no partitioning of the 
buffers based on the access type.

01: Reserved
10: The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction fetches 

and buffers 2 and 3 for data accesses.
11: The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction fetches and 

buffer 3 for data accesses.

This field is set to 2b11 by hardware reset.

B0_P0_DPFE

Bank0, Port 0 Data Prefetch Enable

This field enables or disables prefetching initiated by a data read access. This field is cleared by 
hardware reset. Prefetching can be enabled/disabled on a per Master basis at PFAPR[MxPFD].

0: No prefetching is triggered by a data read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any data read access

Table 425. PFCR0 field descriptions (continued)

Field Description
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Platform Flash Configuration Register 1 (PFCR1)

This register defines the configuration associated with flash memory bank1. This 
corresponds to the “data flash memory”. It includes fields that provide specific information 
for up to two separate AHB ports (p0 and the optional p1). For the platform flash memory 
controller module, the fields associated with AHB port p1 are ignored. The register is 
described below in Figure 465 and Table 426.

Note: Do not execute code from flash memory when you are programming PFCR1. If you wish to 
program PFCR1, execute your application code from RAM.

B0_P0_IPFE

Bank0, Port 0 Instruction Prefetch Enable

This field enables or disables prefetching initiated by an instruction fetch read access. This field is 
set by hardware reset. Prefetching can be enabled/disabled on a per Master basis at 
PFAPR[MxPFD].

0: No prefetching is triggered by an instruction fetch read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any instruction fetch read 

access

B0_P0_PFLM

Bank0, Port 0 Prefetch Limit
This field controls the prefetch algorithm used by the PFlash controller. This field defines the 
prefetch behavior. In all situations when enabled, only a single prefetch is initiated on each buffer 
miss or hit. This field is set to 2b10 by hardware reset.

00: No prefetching is performed.
01: The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1–: The referenced line is prefetched on a buffer miss, or the next sequential page is prefetched on 

a buffer hit (if not already present), that is, prefetch on miss or hit.

B0_P0_BFE

Bank0, Port 0 Buffer Enable
This bit enables or disables page buffer read hits. It is also used to invalidate the buffers. This bit is 
set by hardware reset.

0: The page buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1: The page buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when 

the buffers are successfully filled.

Table 425. PFCR0 field descriptions (continued)

Field Description
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Figure 465. PFlash Configuration Register 1 (PFCR1)
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Table 426. PFCR1 field descriptions

Field Description

BK1_APC

Bank1 Address Pipelining Control

This field is used to control the number of cycles between flash memory array access requests. 
This field must be set to a value appropriate to the operating frequency of the PFlash. The required 
settings are documented in the device datasheet. Higher operating frequencies require non-zero 
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle 
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles

This field is ignored in single bank flash memory configurations.

Note:

BK1_WWSC

Bank1 Write Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access 
time for writes. This field must be set to a value appropriate to the operating frequency of the 
PFlash. The required settings are documented in the device datasheet. Higher operating 
frequencies require non-zero settings for this field for proper flash memory operation. This field is 
set to an appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added

00010: Two additional wait-states are added

...
11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.
Note:

BK1_RWSC

Bank1 Read Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access 
time for reads. This field must be set to a value corresponding to the operating frequency of the 
PFlash and the actual read access time of the PFlash. The required settings are documented in the 
device datasheet.

00000: No additional wait-states are added

00001: One additional wait-state is added
00010: Two additional wait-states are added

...

11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.
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Platform Flash Access Protection Register (PFAPR)

The PFlash Access Protection Register (PFAPR) is used to control read and write accesses 
to the flash memory based on system master number. Prefetching capabilities are defined 
on a per master basis. This register also defines the arbitration mode for controllers 
supporting two AHB ports. The register is described below in Figure 466 and Table 427. 

The contents of the register are loaded from location 0x203E00 of the shadow region in the 
code flash memory (bank0) array at reset. To temporarily change the values of any of the 
fields in the PFAPR, a write to the IPS-mapped register is performed. To change the values 
loaded into the PFAPR at reset, the word location at address 0x203E00 of the shadow 
region in the flash memory array must be programmed using the normal sequence of 
operations. The reset value shown in Table 466 reflects an erased or unprogrammed value 
from the shadow region.

BK1_RWWC

Bank1 Read-While-Write Control

This 3-bit field defines the controller response to flash memory reads while the array is busy with a 
program (write) or erase operation.

0––: Terminate any attempted read while write/erase with an error response
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable 

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable 

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort 

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort 

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the 
abort and notification interrupts.

This field is ignored in single bank flash memory configurations.

B1_P0_PFE

Bank1, Port 0 Buffer Enable

This bit enables or disables read hits from the 128-bit holding register. It is also used to invalidate 
the contents of the holding register. This bit is set by hardware reset, enabling the use of the holding 
register.

0: The holding register is disabled from satisfying read requests.
1: The holding register is enabled to satisfy read requests on hits. 

Table 426. PFCR1 field descriptions (continued)

Field Description
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Figure 466. PFlash Access Protection Register (PFAPR)
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Table 427. PFAPR field descriptions

Field Description

M2PFD

eDMA Master 2 Prefetch Disable
This field controls whether prefetching may be triggered based on the master number of the 
requesting AHB master. This field is further qualified by the PFCR0[B0_Px_DPFE, B0_Px_IPFE, 
Bx_Py_BFE] bits. For master numbering, see Table 145.

0: Prefetching may be triggered by this master

1: No prefetching may be triggered by this master

M0PFD

e200z0 core Master 0 Prefetch Disable

This field controls whether prefetching may be triggered based on the master number of the 
requesting AHB master. This field is further qualified by the PFCR0[B0_Px_DPFE, B0_Px_IPFE, 
Bx_Py_BFE] bits. For master numbering, see Table 145.

0: Prefetching may be triggered by this master

1: No prefetching may be triggered by this master

M2AP

eDMA Master 2 Access Protection

These fields control whether read and write accesses to the flash memory are allowed based on 
the master number of the initiating module. For master numbering, see Table 145.

00: No accesses may be performed by this master
01: Only read accesses may be performed by this master

10: Only write accesses may be performed by this master

11: Both read and write accesses may be performed by this master

M0AP

e200z0 core Master 0 Access Protection

These fields control whether read and write accesses to the flash memory are allowed based on 
the master number of the initiating module. For master numbering, see Table 145.

00: No accesses may be performed by this master

01: Only read accesses may be performed by this master

10: Only write accesses may be performed by this master
11: Both read and write accesses may be performed by this master
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Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

The NVPFAPR register has a related Nonvolatile PFAPR located in the Shadow Sector that 
contains the default reset value for PFAPR. During the reset phase of the flash memory 
module, the NVPFAPR register content is read and loaded into the PFAPR.

The NVPFAPR register is a 64-bit register, of which the 32 most significant bits 63:32 are 
‘don’t care’ and are used to manage ECC codes.

         

         

27.8 Functional description
The platform flash memory controller interfaces between the AHB system bus and the flash 
memory arrays.

The platform flash memory controller generates read and write enables, the flash memory 
array address, write size, and write data as inputs to the flash memory array. The platform 
flash memory controller captures read data from the flash memory array interface and drives 
it onto the AHB. Up to four pages of data (128-bit width) from bank0 are buffered by the 
platform flash memory controller. Lines may be prefetched in advance of being requested by 
the AHB interface, allowing single-cycle (zero AHB wait-states) read data responses on 
buffer hits.

Several prefetch control algorithms are available for controlling page read buffer fills. 
Prefetch triggering may be restricted to instruction accesses only, data accesses only, or 
may be unrestricted. Prefetch triggering may also be controlled on a per-master basis. 

Figure 467. Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

Offset: 0x203E00 Access: Read/write
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Table 428. NVPFAPR field descriptions

Field Description

M2PFD See Table 427.

M0PFD See Table 427.

M2AP See Table 427.

M0AP See Table 427.
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Buffers may also be selectively enabled or disabled for allocation by instruction and data 
prefetch; see Section , Platform Flash Configuration Register 0 (PFCR0), and Section , 
Platform Flash Configuration Register 1 (PFCR1).

Access protections may be applied on a per-master basis for both reads and writes to 
support security and privilege mechanisms; see Section , Platform Flash Access Protection 
Register (PFAPR).

Throughout this discussion, bkn_ is used as a prefix to refer to two signals, each for each 
bank: bk0_ and bk1_. Also, the nomenclature Bx_Py_RegName is used to reference a 
program-visible register field associated with bank “x” and port “y”.

27.8.1 Access protections

The platform flash memory controller provides programmable configurable access 
protections for both read and write cycles from masters via the PFlash Access Protection 
Register (PFAPR). It allows restriction of read and write requests on a per-master basis. 
This functionality is described in Section , Platform Flash Access Protection Register 
(PFAPR). Detection of a protection violation results in an error response from the platform 
flash memory controller on the AHB transfer.

27.8.2 Read cycles – Buffer miss

Read cycles from the flash memory array are initiated by the platform flash memory 
controller. The platform flash memory controller then waits for the programmed number of 
read wait-states before sampling the read data from the flash memory array. This data is 
normally stored in the least-recently updated page read buffer for bank0 in parallel with the 
requested data being forwarded to the AHB. For bank1, the data is captured in the page-
wide temporary holding register as the requested data is forwarded to the AHB bus.

If the flash memory access was the direct result of an AHB transaction, the page buffer is 
marked as most-recently-used as it is being loaded. If the flash memory access was the 
result of a speculative prefetch to the next sequential line, it is first loaded into the least-
recently-used buffer. The status of this buffer is not changed to most-recently-used until a 
subsequent buffer hit occurs.

27.8.3 Read cycles – Buffer hit

Single cycle read responses to the AHB are possible with the platform flash memory 
controller when the requested read access was previously loaded into one of the bank0 
page buffers. In these “buffer hit” cases, read data is returned to the AHB data phase with a 
zero wait-state response. 

Likewise, the bank1 logic includes a single 128-bit temporary holding register and 
sequential accesses which “hit” in this register are also serviced with a zero wait-state 
response.

27.8.4 Write cycles

Write cycles are initiated by the platform flash memory controller. The platform flash 
memory controller then waits for the appropriate number of write wait-states before 
terminating the write operation.
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27.8.5 Error termination

The first case that can cause an error response to the AHB is when an access is attempted 
by an AHB master whose corresponding Read Access Control or Write Access Control 
settings do not allow the access, thus causing a protection violation. In this case, the 
platform flash memory controller does not initiate a flash memory array access. 

The second case that can cause an error response to the AHB is when an access is 
performed to the flash memory array and is terminated with a flash memory error response. 
See Section 27.8.7, Flash error response operation. This may occur for either a read or a 
write operation. 

A third case involves an attempted read access while the flash memory array is busy doing 
a write (program) or erase operation if the appropriate read-while-write control field is 
programmed for this response. The 3-bit read-while-write control allows for immediate 
termination of an attempted read, or various stall-while-write/erase operations are occurring.

27.8.6 Access pipelining

The platform flash memory controller does not support access pipelining since this 
capability is not supported by the flash memory array. As a result, the APC (Address 
Pipelining Control) field should typically be the same value as the RWSC (Read Wait-State 
Control) field for best performance, that is, BKn_APC = BKn_RWSC. It cannot be less than 
the RWSC.

27.8.7 Flash error response operation

The flash memory array may signal an error response to terminate a requested access with 
an error. This may occur due to an uncorrectable ECC error, or because of improper 
sequencing during program/erase operations. When an error response is received, the 
platform flash memory controller does not update or validate a bank0 page read buffer nor 
the bank1 temporary holding register. An error response may be signaled on read or write 
operations. For additional information on the system registers which capture the faulting 
address, attributes, data and ECC information, see the chapter “Error Correction Status 
Module (ECSM).”

27.8.8 Bank0 page read buffers and prefetch operation

The logic associated with bank0 of the platform flash memory controller contains four 128-
bit page read buffers which are used to hold instructions and data read from the flash 
memory array. Each buffer operates independently, and is filled using a single array access. 
The buffers are used for both prefetch and normal demand fetches. 

For the general case, a page buffer is written at the completion of an error-free flash 
memory access and the valid bit asserted. Subsequent flash memory accesses that “hit” the 
buffer, that is, the current access address matches the address stored in the buffer, can be 
serviced in 0 AHB wait-states as the stored read data is routed from the given page buffer 
back to the requesting bus master. 

As noted in Section 27.8.7, Flash error response operation, a page buffer is not marked as 
valid if the flash memory array access terminated with any type of transfer error. However, 
the result is that flash memory array accesses that are tagged with a single-bit correctable 
ECC event are loaded into the page buffer and validated. For additional comments on this 
topic, see Section , Buffer invalidation.
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Prefetch triggering is controllable on a per-master and access-type basis. Bus masters may 
be enabled or disabled from triggering prefetches, and triggering may be further restricted 
based on whether a read access is for instruction or data. A read access to the platform 
flash memory controller may trigger a prefetch to the next sequential page of array data on 
the first idle cycle following the request. The access address is incremented to the next-
higher 16-byte boundary, and a flash memory array prefetch is initiated if the data is not 
already resident in a page buffer. Prefetched data is always loaded into the least-recently-
used buffer.

Buffers may be in one of six states, listed here in order of priority:

1. Invalid — The buffer contains no valid data.

2. Used — The buffer contains valid data which has been provided to satisfy an AHB burst 
type read.

3. Valid — The buffer contains valid data which has been provided to satisfy an AHB 
single type read.

4. Prefetched — The buffer contains valid data which has been prefetched to satisfy a 
potential future AHB access.

5. Busy AHB — The buffer is currently being used to satisfy an AHB burst read.

6. Busy Fill — The buffer has been allocated to receive data from the flash memory array, 
and the array access is still in progress.

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are 
multiple invalid buffers, the one to be used is selected using a simple numeric priority, 
where buffer 0 is selected first, then buffer 1, etc.

2. If there are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate page buffer has been selected, the flash memory array is accessed and 
read data loaded into the buffer. If the buffer load was in response to a miss, the just-loaded 
buffer is immediately marked as most-recently-used. If the buffer load was in response to a 
speculative fetch to the next-sequential line address after a buffer hit, the recently-used 
status is not changed. Rather, it is marked as most-recently-used only after a subsequent 
buffer hit.

This policy maximizes performance based on reference patterns of flash memory accesses 
and allows for prefetched data to remain valid when non-prefetch enabled bus masters are 
granted flash memory access.

Several algorithms are available for prefetch control which trade off performance versus 
power. They are defined by the Bx_Py_PFLM (prefetch limit) register field. More aggressive 
prefetching increases power slightly due to the number of wasted (discarded) prefetches, 
but may increase performance by lowering average read latency.

In order for prefetching to occur, a number of control bits must be enabled. Specifically, the 
global buffer enable (PFCRn[Bx_Py_BFE]) must be set, the prefetch limit 
(PFCRn[Bx_Py_PFLM]) must be non-zero, either instruction prefetching 
(PFCRn[Bx_Py_IPFE]) or data prefetching (PFCRn[Bx_Py_DPFE]) enabled, and Master 
Access must be enabled (PFAPR[MxPFD]). See Section , Register description, for a 
description of these control fields.

Instruction/Data prefetch triggering

Prefetch triggering may be enabled for instruction reads via the Bx_Py_IPFE control field, 
while prefetching for data reads is enabled via the Bx_Py_DPFE control field. Additionally, 
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the Bx_Py_PFLIM field must be set to enable prefetching. Prefetches are never triggered by 
write cycles.

Per-master prefetch triggering

Prefetch triggering may be also controlled for individual bus masters. See Section , Platform 
Flash Access Protection Register (PFAPR), for details on these controls.

Buffer allocation

Allocation of the line read buffers is controlled via page buffer configuration (Bx_Py_BCFG) 
field. This field defines the operating organization of the four page buffers. The buffers can 
be organized as a “pool” of available resources (with all four buffers in the pool) or with a 
fixed partition between buffers allocated to instruction or data accesses. For the fixed 
partition, two configurations are supported. In one configuration, buffers 0 and 1 are 
allocated for instruction fetches and buffers 2 and 3 for data accesses. In the second 
configuration, buffers 0, 1 and 2 are allocated for instruction fetches and buffer 3 reserved 
for data accesses.

Buffer invalidation

The page read buffers may be invalidated under hardware or software control.

At the beginning of all program/erase operations, the flash memory array will invalidate the 
page read buffers. Buffer invalidation occurs at the next AHB non-sequential access 
boundary, but does not affect a burst from a page read buffer which is in progress.

Software may invalidate the buffers by clearing the Bx_Py_BFE bit, which also disables the 
buffers. Software may then re-assert the Bx_Py_BFE bit to its previous state, and the buffers 
will have been invalidated.

One special case needing software invalidation relates to page buffer “hits” on flash memory 
data which was tagged with a single-bit ECC event on the original array access. Recall that 
the page buffer structure includes an status bit signaling the array access detected and 
corrected a single-bit ECC error. On all subsequent buffer hits to this type of page data, a 
single-bit ECC event is signaled by the platform flash memory controller. Depending on the 
specific hardware configuration, this reporting of a single-bit ECC event may generate an 
ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need 
to be invalidated by software after the first notification of the single-bit ECC event.

Finally, the buffers are invalidated by hardware on any non-sequential access with a non-
zero value on haddr[28:24] to support wait-state emulation.

27.8.9 Bank1 Temporary Holding Register

Recall the bank1 logic within the platform flash memory controller includes a single 128-bit 
data register, used for capturing read data. Since this bank does not support prefetching, the 
read data for the referenced address is bypassed directly back to the AHB data bus. The 
page is also loaded into the temporary data register and subsequent accesses to this page 
can hit from this register, if it is enabled (B1_P0_BFE).

For the general case, a temporary holding register is written at the completion of an error-
free flash memory access and the valid bit asserted. Subsequent flash memory accesses 
that “hit” the buffer, that is, the current access address matches the address stored in the 
temporary holding register, can be serviced in 0 AHB wait-states as the stored read data is 
routed from the temporary register back to the requesting bus master. 
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The contents of the holding register are invalidated by the flash memory array at the 
beginning of all program/erase operations and on any non-sequential access with a non-
zero value on haddr[28:24] (to support wait-state emulation) in the same manner as the 
bank0 page buffers. Additionally, the B1_P0_BFE register bit can be cleared by software to 
invalidate the contents of the holding register.

As noted in Section 27.8.7, Flash error response operation, the temporary holding register 
is not marked as valid if the flash memory array access terminated with any type of transfer 
error. However, the result is that flash memory array accesses that are tagged with a single-
bit correctable ECC event are loaded into the temporary holding register and validated. 
Accordingly, one special case needing software invalidation relates to holding register “hits” 
on flash memory data which was tagged with a single-bit ECC event. Depending on the 
specific hardware configuration, the reporting of a single-bit ECC event may generate an 
ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need 
to be invalidated by software after the first notification of the single-bit ECC event.

The bank1 temporary holding register effectively operates like a single page buffer.

27.8.10 Read-while-write functionality

The platform flash memory controller supports various programmable responses for read 
accesses while the flash memory is busy performing a write (program) or erase operation. 
For all situations, the platform flash memory controller uses the state of the flash memory 
array’s MCR[DONE] output to determine if it is busy performing some type of high voltage 
operation, namely, if MCR[DONE] = 0, the array is busy.

Specifically, two 3-bit read-while-write (BKn_RWWC) control register fields define the 
platform flash memory controller’s response to these types of access sequences. Five 
unique responses are defined by the BKn_RWWC setting: one that immediately reports an 
error on an attempted read and four settings that support various stall-while-write 
capabilities. Consider the details of these settings.

● BKn_RWWC = 0b0--

For this mode, any attempted flash memory read to a busy array is immediately 
terminated with an AHB error response and the read is blocked in the controller and not 
seen by the flash memory array.

● BKn_RWWC = 0b111

This defines the basic stall-while-write capability and represents the default reset 
setting. For this mode, the platform flash memory controller module simply stalls any 
read reference until the flash memory has completed its program/erase operation. If a 
read access arrives while the array is busy or if MCR[DONE] goes low while a read is 
still in progress, the AHB data phase is stalled and the read access address is saved. 
Once the array has completed its program/erase operation, the platform flash memory 
controller uses the saved address and attribute information to create a pseudo address 
phase cycle to “retry” the read reference and sends the registered information to the 
array. Once the retried address phase is complete, the read is processed normally and 
once the data is valid, it is forwarded to the AHB bus to terminate the system bus 
transfer.

● BKn_RWWC = 0b110

This setting is similar to the basic stall-while-write capability provided when 
BKn_RWWC = 0b111 with the added ability to generate a notification interrupt if a read 
arrives while the array is busy with a program/erase operation. There are two 
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notification interrupts, one for each bank (see the INTC chapter of this reference 
manual).

● BKn_RWWC = 0b101

Again, this setting provides the basic stall-while-write capability with the added ability to 
abort any program/erase operation if a read access is initiated. For this setting, the 
read request is captured and retried as described for the basic stall-while-write, plus 
the program/erase operation is aborted by the platform flash memory controller. For 
this setting, no notification interrupts are generated.

● BKn_RWWC = 0b100

This setting provides the basic stall-while-write capability with the ability to abort any 
program/erase operation if a read access is initiated plus the generation of an abort 
notification interrupt. For this setting, the read request is captured and retried as 
described for the basic stall-while-write, the program/erase operation is aborted by the 
platform flash memory controller and an abort notification interrupt generated. There 
are two abort notification interrupts, one for each bank.

As detailed above, a total of four interrupt requests are associated with the stall-while-write 
functionality. These interrupt requests are captured as part of ECSM’s interrupt register and 
logically summed together to form a single request to the interrupt controller.

         

27.8.11 Wait-state emulation

Emulation of other memory array timings are supported by the platform flash memory 
controller on read cycles to the flash memory. This functionality may be useful to maintain 
the access timing for blocks of memory which were used to overlay flash memory blocks for 
the purpose of system calibration or tuning during code development.

The platform flash memory controller inserts additional wait-states according to the values 
of haddr[28:24]. When these inputs are non-zero, additional cycles are added to AHB read 
cycles. Write cycles are not affected. In addition, no page read buffer prefetches are 
initiated, and buffer hits are ignored.

Table 430 and Table 431 show the relationship of haddr[28:24] to the number of additional 
primary wait-states. These wait-states are applied to the initial access of a burst fetch or to 
single-beat read accesses on the AHB system bus.

Note that the wait-state specification consists of two components: haddr[28:26] and 
haddr[25:24] and effectively extends the flash memory read by (8 * haddr[25:24] + 
haddr[28:26]) cycles.

Table 429. Platform flash memory controller stall-while-write interrupts

MIR[n] Interrupt description

ECSM.MIR[0] Platform flash memory bank0 abort notification, MIR[FB0AI]

ECSM.MIR[1] Platform flash memory bank0 stall notification, MIR[FB0SI]

ECSM.MIR[2] Platform flash memory bank1 abort notification, MIR[FB1AI]

ECSM.MIR[3] Platform flash memory bank1 stall notification, MIR[FB1S1]
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Table 431 shows the relationship of haddr[25:24] to the number of additional wait-states. 
These are applied in addition to those specified by haddr[28:26] and thus extend the total 
wait-state specification capability.

         

Table 430. Additional wait-state encoding

Memory address

haddr[28:26]
Additional wait-states

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 431. Extended additional wait-state encoding

Memory address

haddr[25:24]

Additional wait-states

(added to those specified by haddr[28:26])

00 0

01 8

10 16

11 24
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28 Static RAM (SRAM)

28.1 Introduction
This device has up to  16 KB of general-purpose static RAM (SRAM).

The SRAM provides the following features:

● SRAM can be read/written from any bus master

● Byte, halfword and word addressable

● ECC (error correction code) protected with single-bit correction and double-bit 
detection

The SRAM has only one operating mode. The RAM domain (all 16 KB) will be joined directly 
to the ‘always_on’ digital domain. 

28.2 Register memory map 
The L2SRAM occupies 16 KB of memory starting at the base address as shown in 
Table 432.

         

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM 
(see the Error Correction Status Module (ECSM) chapter of the reference manual for more 
information).

28.3 SRAM ECC mechanism
The SRAM ECC detects the following conditions and produces the following results:

● Detects and corrects all 1-bit errors

● Detects and flags all 2-bit errors as non-correctable errors

● Detects 39-bit reads (32-bit data bus plus the 7-bit ECC) that return all zeros or all 
ones, asserts an error indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than 2 bits.

Internal SRAM write operations are performed on the following byte boundaries:

● 1 byte (0:7 bits)

● 2 bytes (0:15 bits)

● 4 bytes or 1 word (0:31 bits)

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is 
calculated across the 32-bit data bus. The 8-bit ECC is appended to the data segment and 
written to SRAM. 

Table 432. SRAM memory map

Address Register name Register description Size

0x4000_0000 (Base) — SRA up to 16 KB
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If the write operation is less than the entire 32-bit data width (1 or 2-byte segment), the 
following occurs:

1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either 
correcting or flagging errors.

2. The write data bytes (1 or 2-byte segment) are merged with the corrected 32 bits on the 
data bus.

3. The ECC is then calculated on the resulting 32 bits formed in the previous step.

4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value 
is then written to SRAM.

28.3.1 Access timing

The system bus is a two-stage pipelined bus, which makes the timing of any access 
dependent on the access during the previous clock cycle. Table 433 lists the various 
combinations of read and write operations to SRAM and the number of wait states used for 
the each operation. The table columns contain the following information:

● Current operation — Lists the type of SRAM operation currently executing

● Previous operation — Lists the valid types of SRAM operations that can precede the 
current SRAM operation (valid operation during the preceding clock)

● Wait states — Lists the number of wait states (bus clocks) the operation requires which 
depends on the combination of the current and previous operation

         

Table 433. Number of wait states required for SRAM operations

Operation type Current operation Previous operation Number of wait states required

Read

Read Idle
1

Pipelined read

8, 16 or 32-bit write

0
(read from the same address)

1
(read from a different address)

Pipelined read Read 0

Write

8 or 16-bit write

Idle
1

Read

Pipelined 8 or 16-bit write
2

32-bit write

8 or 16-bit write
0

(write to the same address)

Pipelined 8, 16 or 32-bit write 8, 16 or 32-bit write 0

32-bit write

Idle

032-bit write

Read
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28.3.2 Reset effects on SRAM accesses

Asynchronous reset will possibly corrupt SRAM if it asserts during a read or write operation 
to SRAM. The completion of that access depends on the cycle at which the reset occurs. 
Data read from or written to SRAM before the reset event occurred is retained, and no other 
address locations are accessed or changed. In case of no access ongoing when reset 
occurs, the SRAM corruption does not happen.

Instead, synchronous reset (SW reset) should be used in controlled function (without SRAM 
accesses) in case an initialization procedure without SRAM initialization is needed.

28.4 Functional description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W) 
operation, and ECC calculations are performed during the write portion of a R/W operation. 
Because the ECC bits can contain random data after the device is powered on, the SRAM 
must be initialized by executing 32-bit write operations prior to any read accesses. This is 
also true for implicit read accesses caused by any write accesses of less than 32 bits as 
discussed in Section 28.3 SRAM ECC mechanism.

28.5 Initialization and application information
To use the SRAM, the ECC must check all bits that require initialization after power on. All 
writes must specify an even number of registers performed on 32-bit word-aligned 
boundaries. If the write is not the entire 32 bits (8 or 16 bits), a read / modify / write operation 
is generated that checks the ECC value upon the read. See Section 28.3 SRAM ECC 
mechanism.
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29 Register Protection

29.1 Introduction
The Register Protection module offers a mechanism to protect defined memory-mapped 
address locations in a module under protection from being written. The address locations 
that can be protected are module-specific. 

The protection module is located between the module under protection and the peripheral 
bridge. This is shown in Figure 468.

         

Figure 468. Register Protection block diagram

Please see the “Registers Under Protection” appendix for the list of protected registers.

29.2 Features
The Register Protection includes these distinctive features:

● Restrict write accesses for the module under protection to supervisor mode only

● Lock registers for first 6 KB of memory-mapped address space

● Address mirror automatically sets corresponding lock bit

● Once configured lock bits can be protected from changes
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29.3 Modes of operation
The Register Protection module is operable when the module under protection is operable.

29.4 External signal description
There are no external signals.

29.5 Memory map and register description
This section provides a detailed description of the memory map of a module using the 
Register Protection. The original 16 KB module memory space is divided into five areas as 
shown in Figure 469.

         

Figure 469. Register protection memory diagram

Area 1 spans 6 KB and holds the normal functional module registers and is transparent for 
all read/write operations.

Area 2 spans 2 KB starting at address 0x1800. It is a reserved area, which cannot be 
accessed.

Area 3 spans 6 KB, starting at address 0x2000 and is a mirror of area 1. A read/write 
access to a 0x2000+X address will reads/writes the register at address X. As a side effect, a 
write access to address 0x2000+X sets the optional soft lock bits for address X in the same 
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cycle as the register at address X is written. Not all registers in area 1 need to have 
protection defined by associated soft lock bits. For unprotected registers at address Y, 
accesses to address 0x2000+Y will be identical to accesses at address Y. Only for registers 
implemented in area 1 and defined as protectable soft lock bits are available in area 4.

Area 4 is 1.5 KB and holds the soft lock bits, one bit per byte in area 1. The four soft lock bits 
associated with a module register word are arranged at byte boundaries in the memory 
map. The soft lock bit registers can be directly written using a bit mask.

Area 5 is 512 byte and holds the configuration bits of the protection mode. There is one 
configuration hard lock bit per module that prevents all further modifications to the soft lock 
bits and can only be cleared by a system reset once set. The other bits, if set, will allow user 
access to the protected module.

If any locked byte is accessed with a write transaction, a transfer error will be issued to the 
system and the write transaction will not be executed. This is true even if not all accessed 
bytes are locked.

Accessing unimplemented 32-bit registers in Areas 4 and 5 results in a transfer error.

29.5.1 Memory map

Table 434 gives an overview on the Register Protection registers implemented.

         

Note: Reserved registers in area #2 will be handled according to the protected IP (module under 
protection).

Table 434. Register protection memory map

Address offset Register Location

0x0000 Module Register 0 (MR0) on page 29-802

0x0001 Module Register 1 (MR1) on page 29-802

0x0002 Module Register 2 (MR2) on page 29-802

0x0003–0x17FF Module Register 3 (MR3) - Module Register 6143 (MR6143) on page 29-802

0x1800–0x1FFF Reserved —

0x2000 Module Register 0 (MR0) + Set soft lock bit 0 (LMR0) on page 29-802

0x2001 Module Register 1 (MR1) + Set soft lock bit 1 (LMR1) on page 29-802

0x2002–0x37FF
Module Register 2 (MR2) + Set soft lock bit 2 (LMR2) –

Module Register 6143 (MR6143) + Set soft lock bit 6143 (LMR6143)
on page 29-802

0x3800 Soft Lock Bit Register 0 (SLBR0): soft lock bits 0-3 on page 29-802

0x3801 Soft Lock Bit Register 1 (SLBR1): soft lock bits 4-7 on page 29-802

0x3802–0x3DFF
Soft Lock Bit Register 2 (SLBR2): soft lock bits 8-11 –

Soft Lock Bit Register 1535 (SLBR1535): soft lock bits 6140-6143
on page 29-802

0x3E00–0x3FFB Reserved —

0x3FFC Global Configuration Register (GCR) on page 29-803
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29.5.2 Register description

Module Registers (MR0-6143)

This is the lower 6 KB module memory space which holds all the functional registers of the 
module that is protected by the Register Protection module.

Module Register and Set Soft Lock Bit (LMR0-6143)

This is memory area #3 that provides mirrored access to the MR0-6143 registers with the 
side effect of setting soft lock bits in case of a write access to a MR that is defined as 
protectable by the locking mechanism. Each MR is protectable by one associated bit in a 
SLBRn.SLBm, according to the mapping described in Table 435.

Soft Lock Bit Register (SLBR0-1535)

These registers hold the soft lock bits for the protected registers in memory area #1.

         

         

         

         

Figure 436 gives some examples how SLBRn.SLB and MRn go together.

Figure 470. Soft Lock Bit Register (SLBRn)

 Address 0x3800-0x3DFF
Access: Read always

Supervisor write

0 1 2 3 4 5 6 7

R 0 0 0 0
SLB0 SLB1 SLB2 SLB3

W WE0 WE1 WE2 WE3

Reset 0 0 0 0 0 0 0 0

Table 435. SLBRn field descriptions

Field Description

WE0

WE1

WE2
WE3

Write Enable Bits for soft lock bits (SLB):
WE0 enables writing to SLB0

WE1 enables writing to SLB1

WE2 enables writing to SLB2
WE3 enables writing to SLB3

1 Value is written to SLB
0 SLB is not modified

SLB0

SLB1

SLB2
SLB3

Soft lock bits for one MRn register:
SLB0 can block accesses to MR[n *4 + 0]

SLB1 can block accesses to MR[n *4 + 1]

SLB2 can block accesses to MR[n *4 + 2]
SLB3 can block accesses to MR[n *4 + 3]

1 Associated MRn byte is locked against write accesses
0 Associated MRn byte is unprotected and writeable
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Global Configuration Register (GCR)

This register is used to make global configurations related to register protection.

         

Table 436. Soft lock bits vs. protected address

Soft lock bit Protected address

SLBR0.SLB0 MR0

SLBR0.SLB1 MR1

SLBR0.SLB2 MR2

SLBR0.SLB3 MR3

SLBR1.SLB0 MR4

SLBR1.SLB1 MR5

SLBR1.SLB2 MR6

SLBR1.SLB3 MR7

SLBR2.SLB0 MR8

... ...

Figure 471. Global Configuration Register (GCR)

Address 0x3FFC Access: Read Always Supervisor write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HLB 0 0 0 0 0 0 0 UAA 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Note: The GCR.UAA bit has no effect on the allowed access modes for the registers in the 
Register Protection module.

29.6 Functional description

29.6.1 General

This module provides a generic register (address) write-protection mechanism. The 
protection size can be:

● 32-bit (address == multiples of 4)

● 16-bit (address == multiples of 2)

● 8-bit (address == multiples of 1)

● unprotected (address == multiples of 1)

Which addresses are protected and the protection size depend on the SoC and/or module. 
Therefore this section can just give examples for various protection configurations.

For all addresses that are protected there are SLBRn.SLBm bits that specify whether the 
address is locked. When an address is locked it can be read but not written in any mode 
(supervisor/normal). If an address is unprotected the corresponding SLBRn.SLBm bit is 
always 0b0 no matter what software is writing to. 

29.6.2 Change lock settings

To change the setting whether an address is locked or unlocked the corresponding 
SLBRn.SLBm bit needs to be changed. This can be done using the following methods:

● Modify the SLBRn.SLBm directly by writing to area #4

● Set the SLBRn.SLBm bit(s) by writing to the mirror module space (area #3)

Both methods are explained in the following sections.

Table 437. GCR field descriptions

Field Description

HLB

Hard Lock Bit. 

This register can not be cleared once it is set by software. It can only be cleared by a system reset.

1 All SLB bits are write protected and can not be modified
0 All SLB bits are accessible and can be modified.

UAA

User Access Allowed.

1 The registers in the module under protection can be accessed in the mode defined for the module 
registers without any additional restrictions.

0 The registers in the module under protection can only be written in supervisor mode. All write 
accesses in non-supervisor mode are not executed and a transfer error is issued. This access 
restriction is in addition to any access restrictions imposed by the protected IP module. 
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Change lock settings directly via area #4

Memory area #4 contains the lock bits. They can be modified by writing to them. Each 
SLBRn.SLBm bit has a mask bit SLBRn.WEm, which protects it from being modified. This 
masking makes clear-modify-write operations unnecessary. 

Figure 472 shows two modification examples. In the left example there is a write access to 
the SLBRn register specifying a mask value which allows modification of all SLBRn.SLBm 
bits. The example on the right specifies a mask which only allows modification of the bits 
SLBRn.SLB[3:1].

         

Figure 472. Change Lock Settings Directly Via Area #4

Figure 472 shows four registers that can be protected 8-bit wise. In Figure 473 registers with 
16-bit protection and in Figure 474 registers with 32-bit protection are shown:

         

Figure 473. Change Lock Settings for 16-bit Protected Addresses

On the right side of Figure 473 it is shown that the data written to SLBRn.SLB[0] is 
automatically written to SLBRn.SLB[1] also. This is done as the address reflected by 
SLBRn.SLB[0] is protected 16-bit wise. Note that in this case the write enable SLBRn.WE[0] 
must be set while SLBRn.WE[1] does not matter. As the enable bits SLBRn.WE[3:2] are 
cleared the lock bits SLBRn.SLB[3:2] remain unchanged.

In the example on the left side of Figure 473 the data written to SLBRn.SLB[0] is mirrored to 
SLBRn.SLB[1] and the data written to SLBRn.SLB[2] is mirrored to SLBRn.SLB[3] as for 
both registers the write enables are set.

1

SLB3SLB2SLB1SLB0

SLBRn.WE[3:0]

SLBRn.SLB[3:0] SLB3SLB2SLB1SLB0 SLBRn.SLB[3:0]

change allowed

to SLB3 write datato SLB2to SLB1to SLB0

111 1 SLBRn.WE[3:0]

to SLB3 write datato SLB2to SLB1to SLB0

110

change allowed

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 1 X

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 0 0
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In Figure 474 a 32-bit wise protected register is shown. When SLBRn.WE[0] is set the data 
written to SLBRn.SLB[0] is automatically written to SLBRn.SLB[3:1] also. Otherwise 
SLBRn.SLB[3:0] remains unchanged.

         

Figure 474. Change Lock Settings for 32-bit Protected Addresses

In Figure 475 an example is shown which has a mixed protection size configuration:

         

Figure 475. Change Lock Settings for Mixed Protection

The data written to SLBRn.SLB[0] is mirrored to SLBRn.SLB[1] as the corresponding 
register is 16-bit protected. The data written to SLBRn.SLB[2] is blocked as the 
corresponding register is unprotected. The data written to SLBRn.SLB[3] is written to 
SLBRn.SLB[3].

Enable locking via mirror module space (area #3)

It is possible to enable locking for a register after writing to it. To do so the mirrored module 
address space must be used. Figure 476 shows one example:

1

SLB0 SLB1 SLB2 SLB3

SLBRn.WE[3:0]

SLBR.SLB[3:0]

update lock bits

to SLB0 write datato SLB1 to SLB2 to SLB3

X X X

SLB0 SLB1 0 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X X 1
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Figure 476. Enable Locking Via Mirror Module Space (Area #3)

When writing to address 0x0008 the registers MR9 and MR8 in the protected module are 
updated. The corresponding lock bits remain unchanged (left part of Figure 473). 

When writing to address 0x2008 the registers MR9 and MR8 in the protected module are 
updated. The corresponding lock bits SLBR2.SLB[1:0] are set while the lock bits 
SLBR2.SLB[3:2] remain unchanged (right part of Figure 473).

Figure 477 shows an example where some addresses are protected and some are not:

         

Figure 477. Enable Locking for Protected and Unprotected Addresses

In the example in Figure 477 addresses 0x0C and 0x0D are unprotected. Therefore their 
corresponding lock bits SLBR3.SLB[1:0] are always 0b0 (shown in bold). When doing a 32-
bit write access to address 0x200C only lock bits SLBR3.SLB[3:2] are set while bits 
SLBR3.SLB[1:0] stay 0b0.

Note: Lock bits can only be set via writes to the mirror module space. Reads from the mirror 
module space will not change the lock bits.

Write protection for locking bits

Changing the locking bits through any of the procedures mentioned in Section , Change lock 
settings directly via area #4 and Section , Enable locking via mirror module space (area #3) 
is only possible as long as the bit GCR.HLB is cleared. Once this bit is set the locking bits 
can no longer be modified until there is a system reset.

29.6.3 Access errors

The protection module generates transfer errors under several circumstances. For the area 
definition refer to Figure 469.

SLBR2

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

16-bit write to address 0x0008

no change

write to MR[9:8]

SLBR2

WE[3:0]

0 0 0 0 1 1 0 0

SLB[3:0]

16-bit write to address 0x2008

set lock bits

write to MR[9:8]

SLBR3

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

Before write access

SLBR3

WE[3:0]

0 0 0 0 0 0 1 1

SLB[3:0]

32-bit write to address 0x200C

set lock bits

write to MR[15:12]

After 
write access
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1. If accessing area #1 or area #3, the protection module transfers any access error from 
the underlying Module under Protection.

2. If user mode is not allowed, user write attempts to all areas will assert a transfer error 
and the writes will be blocked.

3. Access attempts to the reserved area #2 cause a transfer error to be asserted.

4. Access attempts to unimplemented 32-bit registers in area #4 or area #5 cause a 
transfer error to be asserted.

5. Attempted writes to a register in area #1 or area #3 with soft lock bit set for any of the 
affected bytes causes a transfer error to be asserted and the write is blocked. The 
complete write operation to non-protected bytes in this word is ignored.

6. If writing to a soft lock register in area #4 with the hard lock bit being set a transfer error 
is asserted.

7. Any write operation in any access mode to area #3 while GCR.HLB is set result in a 
error.

29.7 Reset
The reset state of each individual bit is shown within the Register Description section (See 
Section 29.5.2, Register description). In summary, after reset, locking for all MRn registers is 
disabled. The registers can be accessed in Supervisor Mode only.

29.8 Protected registers
For SPC560D30/40 the Register Protection module protects the registers shown in 
Table 438.

         

Table 438. Protected registers

Module Register
Protected 
size (bits)

Module base 
address

Register 
offset

Protected 
bits

Code flash memory , 4 registers to protect

Code Flash MCR 32 C3F88000 000 bits[0:31]

Code Flash PFCR0 32 C3F88000 01C bits[0:31]

Code Flash PFCR1 32 C3F88000 020 bits[0:31]

Code Flash PFAPR 32 C3F88000 024 bits[0:31]

Data flash memory, 1 register to protect

Data Flash MCR 32 C3F8C000 000 bits[0:31]

SIU lite, 64 registers to protect

SIUL IRER 32 C3F90000 018 bits[0:31]

SIUL IREER 32 C3F90000 028 bits[0:31]

SIUL IFEER 32 C3F90000 02C bits[0:31]

SIUL IFER 32 C3F90000 030 bits[0:31]
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SIUL PCR0 16 C3F90000 040 bits[0:15]

SIUL PCR1 16 C3F90000 042 bits[0:15]

SIUL PCR2 16 C3F90000 044 bits[0:15]

SIUL PCR3 16 C3F90000 046 bits[0:15]

SIUL PCR4 16 C3F90000 048 bits[0:15]

SIUL PCR5 16 C3F90000 04A bits[0:15]

SIUL PCR6 16 C3F90000 04C bits[0:15]

SIUL PCR7 16 C3F90000 04E bits[0:15]

SIUL PCR8 16 C3F90000 050 bits[0:15]

SIUL PCR9 16 C3F90000 052 bits[0:15]

SIUL PCR10 16 C3F90000 054 bits[0:15]

SIUL PCR11 16 C3F90000 056 bits[0:15]

SIUL PCR12 16 C3F90000 058 bits[0:15]

SIUL PCR13 16 C3F90000 05A bits[0:15]

SIUL PCR14 16 C3F90000 05C bits[0:15]

SIUL PCR15 16 C3F90000 05E bits[0:15]

SIUL PCR16 16 C3F90000 060 bits[0:15]

SIUL PCR17 16 C3F90000 062 bits[0:15]

SIUL PCR18 16 C3F90000 064 bits[0:15]

SIUL PCR19 16 C3F90000 066 bits[0:15]

SIUL PCR34 16 C3F90000 084 bits[0:15]

SIUL PCR35 16 C3F90000 086 bits[0:15]

SIUL PCR36 16 C3F90000 088 bits[0:15]

SIUL PCR37 16 C3F90000 08A bits[0:15]

SIUL PCR38 16 C3F90000 08C bits[0:15]

SIUL PCR39 16 C3F90000 08E bits[0:15]

SIUL PCR40 16 C3F90000 090 bits[0:15]

SIUL PCR41 16 C3F90000 092 bits[0:15]

SIUL PCR42 16 C3F90000 094 bits[0:15]

SIUL PCR43 16 C3F90000 096 bits[0:15]

SIUL PCR44 16 C3F90000 098 bits[0:15]

SIUL PCR45 16 C3F90000 09A bits[0:15]

Table 438. Protected registers (continued)

Module Register
Protected 
size (bits)

Module base 
address

Register 
offset

Protected 
bits
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SIUL PCR46 16 C3F90000 09C bits[0:15]

SIUL PCR47 16 C3F90000 09E bits[0:15]

SIUL PSMI0_3 8 C3F90000 500 bits[0:7]

SIUL PSMI4_7 8 C3F90000 504 bits[0:7]

SIUL PSMI8_11 8 C3F90000 508 bits[0:7]

SIUL PSMI12_15 8 C3F90000 50C bits[0:7]

SIUL PSMI16_19 8 C3F90000 510 bits[0:7]

SIUL PSMI20_23 32 C3F90000 514 bits[0:7]

SIUL PSMI24_27 32 C3F90000 518 bits[0:7]

SIUL PSMI28_31 32 C3F90000 51C bits[0:7]

SIUL PSMI32_35 32 C3F90000 520 bits[0:7]

SIUL PSMI36_39 32 C3F90000 524 bits[0:7]

SIUL PSMI40_43 32 C3F90000 528 bits[0:7]

SIUL PSMI44_47 32 C3F90000 52C bits[0:7]

SIUL PSMI48_51 32 C3F90000 530 bits[0:7]

SIUL PSMI52_55 32 C3F90000 534 bits[0:7]

SIUL PSMI56_59 32 C3F90000 538 bits[0:7]

SIUL PSMI61_63 32 C3F90000 53C bits[0:7]

SIUL IFMC0 32 C3F90000 1000 bits[0:31]

SIUL IFMC1 32 C3F90000 1004 bits[0:31]

SIUL IFMC2 32 C3F90000 1008 bits[0:31]

SIUL IFMC3 32 C3F90000 100C bits[0:31]

SIUL IFMC4 32 C3F90000 1010 bits[0:31]

SIUL IFMC5 32 C3F90000 1014 bits[0:31]

SIUL IFMC6 32 C3F90000 1018 bits[0:31]

SIUL IFMC7 32 C3F90000 101C bits[0:31]

SIUL IFMC8 32 C3F90000 1020 bits[0:31]

SIUL IFMC9 32 C3F90000 1024 bits[0:31]

SIUL IFMC10 32 C3F90000 1028 bits[0:31]

SIUL IFMC11 32 C3F90000 102C bits[0:31]

SIUL IFMC12 32 C3F90000 1030 bits[0:31]

SIUL IFMC13 32 C3F90000 1034 bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected 
size (bits)

Module base 
address

Register 
offset

Protected 
bits
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SIUL IFMC14 32 C3F90000 1038 bits[0:31]

SIUL IFMC15 32 C3F90000 103C bits[0:31]

SIUL IFCPR 32 C3F90000 1080 bits[0:31]

 Mode Entry Module, 41 registers to protect

MC ME ME_ME 32 C3FDC000 008 bits[0:31]

MC ME ME_IM 32 C3FDC000 010 bits[0:31]

MC ME ME_TEST_MC 32 C3FDC000 024 bits[0:31]

MC ME ME_SAFE_MC 32 C3FDC000 028 bits[0:31]

MC ME ME_DRUN_MC 32 C3FDC000 02C bits[0:31]

MC ME ME_RUN0_MC 32 C3FDC000 030 bits[0:31]

MC ME ME_RUN1_MC 32 C3FDC000 034 bits[0:31]

MC ME ME_RUN2_MC 32 C3FDC000 038 bits[0:31]

MC ME ME_RUN3_MC 32 C3FDC000 03C bits[0:31]

MC ME ME_HALT_MC 32 C3FDC000 040 bits[0:31]

MC ME ME_STOP_MC 32 C3FDC000 048 bits[0:31]

MC ME ME_STANDBY_MC 32 C3FDC000 054 bits[0:31]

MC ME ME_RUN_PC0 32 C3FDC000 080 bits[0:31]

MC ME ME_RUN_PC1 32 C3FDC000 084 bits[0:31]

MC ME ME_RUN_PC2 32 C3FDC000 088 bits[0:31]

MC ME ME_RUN_PC3 32 C3FDC000 08C bits[0:31]

MC ME ME_RUN_PC4 32 C3FDC000 090 bits[0:31]

MC ME ME_RUN_PC5 32 C3FDC000 094 bits[0:31]

MC ME ME_RUN_PC6 32 C3FDC000 098 bits[0:31]

MC ME ME_RUN_PC7 32 C3FDC000 09C bits[0:31]

MC ME ME_LP_PC0 32 C3FDC000 0A0 bits[0:31]

MC ME ME_LP_PC1 32 C3FDC000 0A4 bits[0:31]

MC ME ME_LP_PC2 32 C3FDC000 0A8 bits[0:31]

MC ME ME_LP_PC3 32 C3FDC000 0AC bits[0:31]

MC ME ME_LP_PC4 32 C3FDC000 0B0 bits[0:31]

MC ME ME_LP_PC5 32 C3FDC000 0B4 bits[0:31]

MC ME ME_LP_PC6 32 C3FDC000 0B8 bits[0:31]

MC ME ME_LP_PC7 32 C3FDC000 0BC bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected 
size (bits)

Module base 
address

Register 
offset

Protected 
bits
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MC ME ME_PCTL[4..7] 32 C3FDC000 0C4 bits[0:31]

MC ME ME_PCTL[16..19] 32 C3FDC000 0D0 bits[0:31]

MC ME ME_PCTL[20..23] 32 C3FDC000 0D4 bits[0:31]

MC ME ME_PCTL[32..35] 32 C3FDC000 0E0 bits[0:31]

MC ME ME_PCTL[44..47] 32 C3FDC000 0EC bits[0:31]

MC ME ME_PCTL[48..51] 32 C3FDC000 0F0 bits[0:31]

MC ME ME_PCTL[56..59] 32 C3FDC000 0F8 bits[0:31]

MC ME ME_PCTL[60..63] 32 C3FDC000 0FC bits[0:31]

MC ME ME_PCTL[68..71] 32 C3FDC000 104 bits[0:31]

MC ME ME_PCTL[72..75] 32 C3FDC000 108 bits[0:31]

MC ME ME_PCTL[88..91] 32 C3FDC000 118 bits[0:31]

MC ME ME_PCTL[92..95] 32 C3FDC000 11C bits[0:31]

MC ME ME_PCTL[104..107] 32 C3FDC000 128 bits[0:31]

 Clock Generation Module, 3 registers to protect

MC CGM CGM_OC_EN 8 C3FE0000 373 bits[0:7]

MC CGM CGM_OCDS_SC 8 C3FE0000 374 bits[0:7]

MC CGM CGM_SC_DC[0..3] 32 C3FE0000 37C bits[0:31]

CMU, 1 register to protect

CMU CMU_CSR 8 C3FE00E0 000 bits[24:31]

 Reset Generation Module, 7 registers to protect

MC RGM RGM_FERD 16 C3FE4000 004 bits[0:15]

MC RGM RGM_DERD 16 C3FE4000 006 bits[0:15]

MC RGM RGM_FEAR 16 C3FE4000 010 bits[0:15]

MC RGM RGM_DEAR 16 C3FE4000 012 bits[0:15]

MC RGM RGM_FESS 16 C3FE4000 018 bits[0:15]

MC RGM RGM_STDBY 16 C3FE4000 01A bits[0:15]

MC RGM RGM_FBRE 16 C3FE4000 01C bits[0:15]

Power Control Unit, 2 registers to protect

MC PCU PCONF2 32 C3FE8000 008 bits[0:31]

MC PCU PCONF3 32 C3FE8000 00C bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected 
size (bits)

Module base 
address

Register 
offset

Protected 
bits
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30 Software Watchdog Timer (SWT)

30.1 Overview
The SWT is a peripheral module that can prevent system lockup in situations such as 
software getting trapped in a loop or if a bus transaction fails to terminate. When enabled, 
the SWT requires periodic execution of a watchdog servicing sequence. Writing the 
sequence resets the timer to a specified time-out period. If this servicing action does not 
occur before the timer expires the SWT generates an interrupt or hardware reset. The SWT 
can be configured to generate a reset or interrupt on an initial time-out, a reset is always 
generated on a second consecutive time-out. 

The SWT provides a window functionality. When this functionality is programmed, the 
servicing action should take place within the defined window. When occurring outside the 
defined period, the SWT generates a reset.

30.2 Features
The SWT has the following features:

● 32-bit time-out register to set the time-out period

● The unique SWT counter clock is the undivided slow internal RC oscillator 128 kHz 
(SIRC), no other clock source can be selected

● Programmable selection of window mode or regular servicing

● Programmable selection of reset or interrupt on an initial time-out

● Master access protection

● Hard and soft configuration lock bits

● The SWT is started on exit of power-on phase (RGM phase 2) to monitor flash boot 
sequence phase. It is then reset during RGM phase3 and optionally enabled when 
platform reset is released depending on value of flash user option bit 31 
(WATCHDOG_EN).

30.3 Modes of operation
The SWT supports three device modes of operation: normal, debug and stop. When the 
SWT is enabled in normal mode, its counter runs continuously. In debug mode, operation of 
the counter is controlled by the FRZ bit in the SWT_CR. If the FRZ bit is set, the counter is 
stopped in debug mode, otherwise it continues to run. In STOP mode, operation of the 
counter is controlled by the STP bit in the SWT_CR. If the STP bit is set, the counter is 
stopped in STOP mode, otherwise it continues to run. On exit from STOP mode, the SWT 
will continue from the state it was before entering this mode.

The software watchdog is not available during standby. On exit from standby, the SWT 
behaves in a usual “out of reset” situation.

30.4 External signal description
The SWT module does not have any external interface signals.
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30.5 Memory map and register description
The SWT programming model has six 32-bit registers. The programming model can only be 
accessed using 32-bit (word) accesses. References using a different size are invalid. Other 
types of invalid accesses include: writes to read only registers, incorrect values written to the 
service register when enabled, accesses to reserved addresses and accesses by masters 
without permission. If the SWT_CR[RIA] bit is set, then the SWT generates a system reset 
on an invalid access otherwise a bus error is generated. If either the HLK or SLK bits in the 
SWT_CR are set then the SWT_CR, SWT_TO and SWT_WN registers are read only. 

30.5.1 Memory map

The SWT memory map is shown in Table 439. The reset values of SWT_CR, SWT_TO and 
SWT_WN are device specific. These values are determined by SWT inputs.

         

30.5.2 Register description

SWT Control Register (SWT_CR)

The SWT_CR contains fields for configuring and controlling the SWT. The reset value of this 
register is device specific. Some devices can be configured to automatically clear the 
SWT_CR.WEN bit during the boot process. This register is read only if either the 
SWT_CR.HLK or SWT_CR.SLK bits are set.

Table 439. SWT memory map

Base address: 0xFFF3_8000

Address offset Register Location

0x0000 SWT Control Register (SWT_CR) on page 30-814

0x0004 SWT Interrupt Register (SWT_IR) on page 30-816

0x0008 SWT Time-Out Register (SWT_TO) on page 30-817

0x000C SWT Window Register (SWT_WN) on page 30-817

0x0010 SWT Service Register (SWT_SR) on page 30-818

0x0014 SWT Counter Output Register (SWT_CO) on page 30-818
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Default value for SWT_CR_RST is 0x4000_011B, corresponding to MAP1 = 1 (only data 
bus access allowed), RIA = 1 (reset on invalid SWT access), SLK = 1 (soft lock), CSL = 1 
(IRC clock source for counter), FRZ = 1 (freeze on debug), WEN = 1 (watchdog enable). 
This last bit is cleared when exiting ME RESET mode in case flash user option bit 31 
(WATCHDOG_EN) is ‘0’.

         

Figure 478. SWT Control Register (SWT_CR)

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP
0

MAP
1

MAP
2

MAP
3

MAP
4

MAP
5

MAP
6

MAP
7

0 0 0 0 0 0 0 0

W

Reset1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

                                                                                                                                                         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
KEY RIA WND ITR HLK SLK CSL STP FRZ WEN

W

Reset1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

1. The reset value for the SWT_CR is device specific.

Table 440. SWT_CR field descriptions

Field Description

MAPn
Master Access Protection for Master n. The platform bus master assignments are device specific. 
0 = Access for the master is not enabled
1 = Access for the master is enabled 

KEY

Keyed Service Mode.

0 = Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog
1 = Keyed Service Mode, two pseudorandom key value are used to service the watchdog

RIA
Reset on Invalid Access.
0 = Invalid access to the SWT generates a bus error

1 = Invalid access to the SWT causes a system reset if WEN=1

WND

Window Mode.

0 = Regular mode, service sequence can be done at any time

1 = Windowed mode, the service sequence is only valid when the down counter is less than the value 
in the SWT_WN register. 

ITR
Interrupt Then Reset.
0 = Generate a reset on a time-out

1 = Generate an interrupt on an initial time-out, reset on a second consecutive time-out

HLK

Hard Lock. This bit is only cleared at reset. 

0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if SLK=0

1 = SWT_CR, SWT_TO and SWT_WN are read only registers
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SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

         

SLK

Soft Lock. This bit is cleared by writing the unlock sequence to the service register. 

0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if HLK=0
1 = SWT_CR, SWT_TO and SWT_WN are read only registers

CSL

Clock Selection. Selects the SIRC oscillator clock that drives the internal timer. 
CSL bit can be written.The status of the bit has no effect on counter clock selection on 
SPC560D30/40 device.
0 = System clock (Not applicable in SPC560D30/40)

1 = Oscillator clock

STP

Stop Mode Control. Allows the watchdog timer to be stopped when the device enters STOP mode. 

0 = SWT counter continues to run in STOP mode

1 = SWT counter is stopped in STOP mode

FRZ

Debug Mode Control. Allows the watchdog timer to be stopped when the device enters debug mode.

0 = SWT counter continues to run in debug mode
1 = SWT counter is stopped in debug mode

WEN
Watchdog Enabled.
0 = SWT is disabled
1 = SWT is enabled

Table 440. SWT_CR field descriptions

Field Description

Figure 479. SWT Interrupt Register (SWT_IR)

Offset 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

         

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. The reset value 
for this register is device specific. This register is read only if either the SWT_CR.HLK or 
SWT_CR.SLK bits are set.

         

Default counter value (SWT_TO_RST) is 1280 (0x00000500 hexadecimal) which 
correspond to around 10 ms with a 128 kHz clock.

         

SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register 
is cleared on reset. This register is read only if either the SWT_CR.HLK or SWT_CR.SLK 
bits are set.

         

Table 441. SWT_IR field descriptions

Field Description

TIF

Time-out Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has no 
effect.
0 = No interrupt request
1 = Interrupt request due to an initial time-out

Figure 480. SWT Time-Out Register (SWT_TO)

Offset
0x008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WTO

W

Reset
(1)

1. The reset value of the SWT_TO register is device specific.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

Table 442. SWT_TO Register field descriptions

Field Description

WTO
Watchdog time-out period in clock cycles. An internal 32-bit down counter is loaded with this value or 
0x100 which ever is greater when the service sequence is written or when the SWT is enabled. 

Figure 481. SWT Window Register (SWT_WN)

Offset
0x00C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WST

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service sequence writes 
used to reset the watchdog timer.

         

         

SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read only register that shows the value of 
the internal down counter when the SWT is disabled.

         

Table 443. SWT_WN Register field descriptions

Field Description

WST
Window start value. When window mode is enabled, the service sequence can only be written when 
the internal down counter is less than this value. 

Figure 482. SWT Service Register (SWT_SR)

Offset
0x010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W WSC

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 444. SWT_SR field descriptions

Field Description

WSC

Watchdog Service Code.This field is used to service the watchdog and to clear the soft lock bit 
(SWT_CR.SLK). To service the watchdog, the value 0xA602 followed by 0xB480 is written to the 
WSC field. To clear the soft lock bit (SWT_CR.SLKSWT_CR.), the value 0xC520 followed by 0xD928 
is written to the WSC field.

Figure 483. SWT Counter Output Register (SWT_CO)

Offset
0x014 Access: Read Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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30.6 Functional description
The SWT is a 32-bit timer designed to enable the system to recover in situations such as 
software getting trapped in a loop or if a bus transaction fails to terminate. It includes a a 
control register (SWT_CR), an interrupt register (SWT_IR), time-out register (SWT_TO), a 
window register (SWT_WN), a service register (SWT_SR) and a counter output register 
(SWT_CO). 

The SWT_CR includes bits to enable the timer, set configuration options and lock 
configuration of the module. The watchdog is enabled by setting the SWT_CR.WEN bit. The 
reset value of the SWT_CR.WEN bit is device specific1 (enabled). This last bit is cleared 
when exiting ME RESET mode in case flash user option bit 31 (WATCHDOG_EN) is ‘0’. If 
the reset value of this bit is 1, the watchdog starts operation automatically after reset is 
released. Some devices can be configured to clear this bit automatically during the boot 
process. 

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is 
less than 0x100 in which case the time-out period is set to 0x100. This time-out period is 
loaded into an internal 32-bit down counter when the SWT is enabled and each time a valid 
service sequence is written. The SWT_CR.CSL bit selects which clock (system or oscillator) 
is used to drive the down counter. The reset value of the SWT_TO register is device-specific 
as described previously.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock. 
In either case, when locked the SWT_CR, SWT_TO and SWT_WN registers are read only. 
The hard lock is enabled by setting the SWT_CR.HLK bit which can only be cleared by a 
reset. The soft lock is enabled by setting the SWT_CR.SLK bit and is cleared by writing the 
unlock sequence to the service register. The unlock sequence is a write of 0xC520 followed 
by a write of 0xD928 to the SWT_SR.WSC field. There is no timing requirement between 
the two writes. The unlock sequence logic ignores service sequence writes and recognizes 
the 0xC520, 0xD928 sequence regardless of previous writes. The unlock sequence can be 
written at any time and does not require the SWT_CR.WEN bit to be set. 

When enabled, the SWT requires periodic execution of the watchdog servicing sequence. 
The service sequence is a write of 0xA602 followed by a write of 0xB480 to the 
SWT_SR.WSC field. Writing the service sequence loads the internal down counter with the 
time-out period. There is no timing requirement between the two writes. The service 
sequence logic ignores unlock sequence writes and recognizes the 0xA602, 0xB480 
sequence regardless of previous writes. Accesses to SWT registers occur with no 
peripheral bus wait states. (The peripheral bus bridge may add one or more system wait 
states.) However, due to synchronization logic in the SWT design, recognition of the service 
sequence or configuration changes may require up to three system plus seven counter clock 
cycles.

Table 445. SWT_CO field descriptions

Field Description

CNT

Watchdog Count. When the watchdog is disabled (SWT_CR.WENSWT_CR.=0) this field shows the 
value of the internal down counter. When the watchdog is enabled the value of this field is 
0x0000_0000. Values in this field can lag behind the internal counter value for up to six system plus 
eight counter clock cycles. Therefore, the value read from this field immediately after disabling the 
watchdog may be higher than the actual value of the internal counter. 
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If window mode is enabled (SWT_CR.WND bit is set), the service sequence must be 
performed in the last part of the time-out period defined by the window register. The window 
is open when the down counter is less than the value in the SWT_WN register. Outside of 
this window, service sequence writes are invalid accesses and generate a bus error or reset 
depending on the value of the SWT_CR.RIA bit. For example, if the SWT_TO register is set 
to 5000 and SWT_WN register is set to 1000 then the service sequence must be performed 
in the last 20% of the time-out period. There is a short lag in the time it takes for the window 
to open due to synchronization logic in the watchdog design. This delay could be up to three 
system plus four counter clock cycles.

The interrupt then reset bit (SWT_CR.ITR) controls the action taken when a time-out occurs. 
If the SWT_CR.ITR bit is not set, a reset is generated immediately on a time-out. If the 
SWT_CR.ITR bit is set, an initial time-out causes the SWT to generate an interrupt and load 
the down counter with the time-out period. If the service sequence is not written before the 
second consecutive time-out, the SWT generates a system reset. The interrupt is indicated 
by the time-out interrupt flag (SWT_IR.TIF). The interrupt request is cleared by writing a one 
to the SWT_IR.TIF bit. 

The SWT_CO register shows the value of the down counter when the watchdog is disabled. 
When the watchdog is enabled this register is cleared. The value shown in this register can 
lag behind the value in the internal counter for up to six system plus eight counter clock 
cycles. 

The SWT_CO can be used during a software self test of the SWT. For example, the SWT 
can be enabled and not serviced for a fixed period of time less than the time-out value. Then 
the SWT can be disabled (SWT_CR.WEN cleared) and the value of the SWT_CO read to 
determine if the internal down counter is working properly. 

Note: Watchdog is disabled at the start of BAM execution. In the case of an unexpected issue 
during BAM execution, the CPU may be stalled and an external reset needs to be generated 
to recover.
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31 Error Correction Status Module (ECSM)

31.1 Introduction
The Error Correction Status Module (ECSM) provides a myriad of miscellaneous control 
functions for the device including program-visible information about configuration and 
revision levels, a reset status register, and information on memory errors reported by error-
correcting codes.

31.2 Overview
The Error Correction Status Module is mapped into the IPS space and supports a number of 
miscellaneous control functions for the device. 

31.3 Features
The ECSM includes these features:

● Program-visible information on the device configuration and revision

● Registers for capturing information on memory errors due to error-correction codes

● Registers to specify the generation of single- and double-bit memory data inversions for 
test purposes to check ECC protection

● Configuration for additional SRAM WS for system frequency above 64 + 4% MHz

31.4 Memory map and register description
This section details the programming model for the Error Correction Status Module. This is a 
128-byte space mapped to the region serviced by an IPS bus controller. 

31.4.1 Memory map

The Error Correction Status Module does not include any logic which provides access 
control. Rather, this function is supported using the standard access control logic provided 
by the IPS controller.

Table 446 shows the ECSM’s memory map.

         

Table 446. ECSM memory map

Base address: 0xFFF4_0000

Address offset Register Location

0x00 Processor Core Type Register (PCT) on page 31-823

0x02 SoC-Defined Platform Revision Register (REV) on page 31-823

0x04 Reserved

0x08 IPS On-Platform Module Configuration Register (IOPMC) on page 31-823

0x0C–0x12 Reserved
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31.4.2 Register description

Attempted accesses to reserved addresses result in an error termination, while attempted 
writes to read-only registers are ignored and do not terminate with an error. Unless noted 
otherwise, writes to the programming model must match the size of the register, e.g., an n-
bit register only supports n-bit writes, etc. Attempted writes of a different size than the 
register width produce an error termination of the bus cycle and no change to the targeted 
register.

0x13 Miscellaneous Wakeup Control Register (MWCR) on page 31-824

0x14–0x1E Reserved

0x1F Miscellaneous Interrupt Register (MIR) on page 31-826

0x20–0x23 Reserved

0x24 Miscellaneous User-Defined Control Register (MUDCR) on page 31-827

0x28–0x42 Reserved

0x43 ECC Configuration Register (ECR) on page 31-828

0x44–0x46 Reserved

0x47 ECC Status Register (ESR) on page 31-830

0x48–0x49 Reserved

0x4A ECC Error Generation Register (EEGR) on page 31-832

0x4C–0x4F Reserved

0x50 Platform Flash ECC Address Register (PFEAR) on page 31-834

0x54–0x55 Reserved

0x56 Platform Flash ECC Master Number Register (PFEMR) on page 31-836

0x57 Platform Flash ECC Attributes Register (PFEAT) on page 31-836

0x58–0x5B Reserved

0x5C Platform Flash ECC Data Register (PFEDR) on page 31-837

0x60 Platform RAM ECC Address Register (PREAR) on page 31-838

0x64 Reserved

0x65 Platform RAM ECC Syndrome Register (PRESR) on page 31-838

0x66 Platform RAM ECC Master Number Register (PREMR) on page 31-840

0x67 Platform RAM ECC Attributes Register (PREAT) on page 31-841

0x68–0x6B Reserved

0x6C Platform RAM ECC Data Register (PREDR) on page 31-842

Table 446. ECSM memory map (continued)

Base address: 0xFFF4_0000

Address offset Register Location
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Processor Core Type Register (PCT)

The PCT is a 16-bit read-only register specifying the architecture of the processor core  in 
the device. The state of this register is defined by a module input signal; it can only be read 
from the IPS programming model. Any attempted write is ignored.

         

         

SoC-Defined Platform Revision Register (REV)

The REV is a 16-bit read-only register specifying a revision number. The state of this 
register is defined by an input signal; it can only be read from the IPS programming model. 
Any attempted write is ignored. 

         

         

IPS On-Platform Module Configuration Register (IOPMC)

The IOPMC is a 32-bit read-only register identifying the presence/absence of the 32 low-
order IPS peripheral modules connected to the primary IPI slave bus controller. The state of 
this register is defined by a module input signal; it can only be read from the IPS 
programming model. Any attempted write is ignored. 

Figure 484. Processor Core Type Register (PCT)

Offset: 0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PCT

W

Reset 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 447. PCT field descriptions

Field Description

PCT
Processor Core Type

Figure 485. SoC-Defined Platform Revision Register (REV)

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 448. REV field descriptions

Field Description

REV
Revision
The REV field is specified by an input signal to define a software-visible revision number.
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Miscellaneous Wakeup Control Register (MWCR)

Implementation of low-power sleep modes and exit from these modes via an interrupt 
require communication between the ECSM, the interrupt controller and off-platform external 
logic typically associated with phase-locked loop clock generation circuitry. The 
Miscellaneous Wakeup Control Register (MWCR) provides an 8-bit register controlling entry 
into these types of low-power modes as well as definition of the interrupt level needed to exit 
the mode.

The following sequence of operations is generally needed to enable this functionality. Note 
that the exact details are likely to be system-specific.

1. The processor core loads the appropriate data value into the MWCR, setting the 
ENBWCR bit and the desired interrupt priority level.

2. At the appropriate time, the processor ceases execution. The exact mechanism varies 
by processor core. In some cases, a processor-is-stopped status is signaled to the 
ECSM and off-platform external logic. This assertion, if properly enabled by 
MWCR[ENBWCR], causes the ECSM output signal “enter_low_power_mode” to be 
set. This, in turn, causes the selected off-platform external, low-power mode, as 
specified by MWCR[LPMD], to be entered, and the appropriate clock signals disabled. 
In most implementations, there are multiple low-power modes, where the exact clocks 
to be disabled vary across the different modes.

3. After entering the low-power mode, the interrupt controller enables a special 
combinational logic path which evaluates all unmasked interrupt requests. The device 

Figure 486. IPS On-Platform Module Configuration Register (IOPMC)

Offset: 0x08 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MC[31:16]

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MC[15:0]

W

Reset: 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

Table 449. IOPMC field descriptions

Field Description

MC

IPS Module Configuration
MC[n] = 0 if an IPS module connection to decoded slot “n” is absent
MC[n] = 1 if an IPS module connection to decoded slot “n” is present
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remains in this mode until an event which generates an unmasked interrupt request 
with a priority level greater than the value programmed in the MWCR[PRILVL] occurs.

4. Once the appropriately-high interrupt request level arrives, the interrupt controller 
signals its presence, and the ECSM responds by asserting an “exit_low_power_mode” 
signal.

5. The off-platform external logic senses the assertion of the “exit” signal, and re-enables 
the appropriate clock signals.

6. With the processor core clocks enabled, the core handles the pending interrupt 
request.

         

         

Figure 487. Miscellaneous Wakeup Control (MWCR) Register

Offset: 0x13 Access: Read/write

0 1 2 3 4 5 6 7

R
ENBWCR

0 0 0
PRILVL

W

Reset: 0 0 0 0 0 0 0 0

Table 450. MWCR field descriptions

Field Description

ENBWCR
Enable WCR
0 MWCR is disabled.
1 MWCR is enabled.

PRILVL

Interrupt Priority Level
The interrupt priority level is a core-specific definition. It specifies the interrupt priority level needed 
to exit the low-power mode. Specifically, an unmasked interrupt request of a priority level greater 
than the PRILVL value is required to exit the mode.

Certain interrupt controller implementations include logic associated with this priority level that 
restricts the data value contained in this field to a [0, maximum - 1] range. See the specific interrupt 
controller module for details.
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Miscellaneous Interrupt Register (MIR)

All interrupt requests associated with ECSM are collected in the MIR. This includes the 
processor core system bus fault interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt 
source contained in the MIR must be explicitly cleared. See Figure 488 and Table 451.

         

         

Figure 488. Miscellaneous Interrupt (MIR) Register

Offset: 0x1F Access: Special

0 1 2 3 4 5 6 7

R FB0AI FB0SI FB1AI FB1SI 0 0 0 0

W 1 1 1 1

Reset: 0 0 0 0 0 0 0 0

Table 451. MIR field descriptions

Field Description

FB0AI

Flash Bank 0 Abort Interrupt
0 A flash bank 0 abort has not occurred.
1 A flash bank 0 abort has occurred. The interrupt request is negated by writing a 1 to this bit. 

Writing a 0 has no effect.

FB0SI

Flash Bank 0 Stall Interrupt
0 A flash bank 0 stall has not occurred.
1 A flash bank 0 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing 

a 0 has no effect.

FB1AI

Flash Bank 1 Abort Interrupt
0 A flash bank 1 abort has not occurred.
1 A flash bank 1 abort has occurred. The interrupt request is negated by writing a 1 to this bit. 

Writing a 0 has no effect.

FB1SI

Flash Bank 1 Stall Interrupt
0 A flash bank 1 stall has not occurred.
1 A flash bank 1 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing 

a 0 has no effect.
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Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register for user-defined control functions. It 
typically is used as configuration control for miscellaneous SoC-level modules. The contents 
of this register is simply output from the ECSM to other modules where the user-defined 
control functions are implemented.

         

         

Figure 489. Miscellaneous User-Defined Control (MUDCR) Register

Offset: 0x24 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
U

D
C

R
[3

1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 452. MUDCR field descriptions

Field Description

MUDCR[31]

XBAR force_round_robin bit
This bit is used to drive the force_round_robin bit of the XBAR. This will force the slaves into 
round robin mode of arbitration rather than fixed mode (unless a master is using priority 
elevation, which forces the design back into fixed mode regardless of this bit). By setting the 
hardware definition to ENABLE_ROUND_ROBIN_RESET, this bit will reset to 1.

1 XBAR is in round robin mode
0 XBAR is in fixed priority mode
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ECC registers

For designs including error-correcting code (ECC) implementations to improve the quality 
and reliability of memories, there are a number of program-visible registers for the sole 
purpose of reporting and logging of memory failures. These registers include:

● ECC Configuration Register (ECR)

● ECC Status Register (ESR)

● ECC Error Generation Register (EEGR)

● Platform Flash ECC Address Register (PFEAR)

● Platform Flash ECC Master Number Register (PFEMR)

● Platform Flash ECC Attributes Register (PFEAT)

● Platform Flash ECC Data Register (PFEDR)

● Platform RAM ECC Address Register (PREAR)

● Platform RAM ECC Syndrome Register (PRESR)

● Platform RAM ECC Master Number Register (PREMR)

● Platform RAM ECC Attributes Register (PREAT)

● Platform RAM ECC Data Register (PREDR)

The details on the ECC registers are provided in the subsequent sections.

ECC Configuration Register (ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of 
memory errors are reported. In all systems with ECC, the occurrence of a non-correctable 
error causes the current access to be terminated with an error condition. In many cases, this 
error termination is reported directly by the initiating bus master. However, there are certain 
situations where the occurrence of this type of non-correctable error is not reported by the 
master. Examples include speculative instruction fetches which are discarded due to a 
change-of-flow operation, and buffered operand writes. The ECC reporting logic in the 
ECSM provides an optional error interrupt mechanism to signal all non-correctable memory 
errors. In addition to the interrupt generation, the ECSM captures specific information 
(memory address, attributes and data, bus master number, etc.) which may be useful for 
subsequent failure analysis.

         

Figure 490. ECC Configuration (ECR) Register

Offset: 0x43 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
ER1BR EF1BR

0 0
ERNCR EFNCR

W

Reset: 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 828/868



Error Correction Status Module (ECSM) RM0045
         

Table 453. ECR field descriptions

Field Description

ER1BR

Enable SRAM 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a 
single-bit SRAM correction generates a ECSM ECC interrupt request as signalled by the assertion 
of ESR[R1BC]. The address, attributes and data are also captured in the PREAR, PRESR, 
PREMR, PREAT and PREDR registers.

0 Reporting of single-bit SRAM corrections is disabled.
1 Reporting of single-bit SRAM corrections is enabled.

EF1BR

Enable Flash 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a 
single-bit flash correction generates a ECSM ECC interrupt request as signalled by the assertion of 
ESR[F1BC]. The address, attributes and data are also captured in the PFEAR, PFEMR, PFEAT 
and PFEDR registers.

0 Reporting of single-bit flash corrections is disabled.
1 Reporting of single-bit flash corrections is enabled.

ERNCR

Enable SRAM Non-Correctable Reporting
The occurrence of a non-correctable multi-bit SRAM error generates a ECSM ECC interrupt 
request as signalled by the assertion of ESR[RNCE]. The faulting address, attributes and data are 
also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers.
0 Reporting of non-correctable SRAM errors is disabled.
1 Reporting of non-correctable SRAM errors is enabled.

EFNCR

Enable Flash Non-Correctable Reporting
The occurrence of a non-correctable multi-bit flash error generates a ECSM ECC interrupt request 
as signalled by the assertion of ESR[FNCE]. The faulting address, attributes and data are also 
captured in the PFEAR, PFEMR, PFEAT and PFEDR registers.

0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.
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ECC Status Register (ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly-
enabled ECC events have been detected. The ESR signals the last, properly-enabled 
memory event to be detected. ECC interrupt generation is separated into single-bit error 
detection/correction, uncorrectable error detection and the combination of the two as 
defined by the following boolean equations:

ECSM_ECC1BIT_IRQ

    =  ECR[ER1BR] &  ESR[R1BC]// ram, 1-bit correction

    |  ECR[EF1BR] &  ESR[F1BC]// flash, 1-bit correction

ECSM_ECCRNCR_IRQ

    =  ECR[ERNCR] &  ESR[RNCE]// ram, noncorrectable error

ECSM_ECCFNCR_IRQ

    =  ECR[EFNCR] &  ESR[FNCE]// flash, noncorrectable error

ECSM_ECC2BIT_IRQ

    =  ECSM_ECCRNCR_IRQ// ram, noncorrectable error

    |  ECSM_ECCFNCR_IRQ// flash, noncorrectable error

ECSM_ECC_IRQ

    =  ECSM_ECC1BIT_IRQ // 1-bit correction

    |  ECSM_ECC2BIT_IRQ// noncorrectable error

where the combination of a properly-enabled category in the ECR and the detection of the 
corresponding condition in the ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This 
preserves the association between the ESR and the corresponding address and attribute 
registers, which are loaded on each occurrence of an properly-enabled ECC event. If there 
is a pending ECC interrupt and another properly-enabled ECC event occurs, the ECSM 
hardware automatically handles the ESR reporting, clearing the previous data and loading 
the new state and thus guaranteeing that only a single flag is asserted.

To maintain the coherent software view of the reported event, the following sequence in the 
ECSM error interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the 
two values are different, go back to step 1 and repeat.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt 
request.
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In the event that multiple status flags are signaled simultaneously, ECSM records the event 
with the R1BC as highest priority, then F1BC, then RNCE, and finally FNCE.

Figure 491. ECC Status Register (ESR)

Offset: 0x47 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
R1BC F1BC

0 0
RNCE FNCE

W

Reset: 0 0 0 0 0 0 0 0

Table 454. ESR field descriptions

Field Description

R1BC

SRAM 1-bit Correction
This bit can only be set if ECR[EPR1BR] is asserted. The occurrence of a properly-enabled single-
bit SRAM correction generates a ECSM ECC interrupt request. The address, attributes and data 
are also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers. To clear this 
interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit SRAM correction has been detected.
1 A reportable single-bit SRAM correction has been detected.

F1BC

Flash Memory 1-bit Correction
This bit can only be set if ECR[EPF1BR] is asserted. The occurrence of a properly-enabled single-
bit flash memory correction generates a ECSM ECC interrupt request. The address, attributes and 
data are also captured in the PFEAR, PFEMR, PFEAT and PFEDR registers. To clear this interrupt 
flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit flash memory correction has been detected.
1 A reportable single-bit flash memory correction has been detected.

RNCE

SRAM Non-Correctable Error 
The occurrence of a properly-enabled non-correctable SRAM error generates a ECSM ECC 
interrupt request. The faulting address, attributes and data are also captured in the PREAR, 
PRESR, PREMR, PREAT and PREDR registers. To clear this interrupt flag, write a 1 to this bit. 
Writing a 0 has no effect.
0 No reportable non-correctable SRAM error has been detected.
1 A reportable non-correctable SRAM error has been detected.

FNCE

Flash Memory Non-Correctable Error 
The occurrence of a properly-enabled non-correctable flash memory error generates a ECSM ECC 
interrupt request. The faulting address, attributes and data are also captured in the PFEAR, 
PFEMR, PFEAT and PFEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0 
has no effect.

0 No reportable non-correctable flash memory error has been detected.
1 A reportable non-correctable flash memory error has been detected.
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ECC Error Generation Register (EEGR)

The ECC Error Generation Register is a 16-bit control register used to force the generation 
of single- and double-bit data inversions in the memories with ECC, most notably the SRAM. 
This capability is provided for two purposes:

● It provides a software-controlled mechanism for “injecting” errors into the memories 
during data writes to verify the integrity of the ECC logic.

● It provides a mechanism to allow testing of the software service routines associated 
with memory error logging.

It should be noted that while the EEGR is associated with the SRAM, similar capabilities 
exist for the flash, that is, the ability to program the non-volatile memory with single- or 
double-bit errors is supported for the same two reasons previously identified.

For both types of memories (SRAM and flash), the intent is to generate errors during data 
write cycles, such that subsequent reads of the corrupted address locations generate ECC 
events, either single-bit corrections or double-bit non-correctable errors that are terminated 
with an error response.

         

         

Figure 492. ECC Error Generation Register (EEGR)

Offset: 0x4A Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

F
R

C
1B

I

F
R

11
B

I

0 0

F
R

C
N

C
I

F
R

1N
C

I

0
ERRBIT

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 455. EEGR field descriptions

Field Description

FRC1BI

Force SRAM Continuous 1-bit Data Inversions
The assertion of this bit forces the SRAM controller to create 1-bit data inversions, as defined by 
the bit position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit 
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be 
cleared before being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable 
single-bit correction reporting) is asserted.

0 No SRAM continuous 1-bit data inversions are generated.
1 1-bit data inversions in the SRAM are continuously generated.
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FR11BI

Force SRAM One 1-bit Data Inversion
The assertion of this bit forces the SRAM controller to create one 1-bit data inversion, as defined by 
the bit position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit 
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before 
being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable 
single-bit correction reporting) is asserted.

0 No SRAM single 1-bit data inversion is generated.
1 One 1-bit data inversion in the SRAM is generated.

FRCNCI

Force SRAM Continuous Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create 2-bit data inversions, as defined by 
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write 
operation.

After this bit has been enabled to generate another continuous non-correctable data inversion, it 
must be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit 
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error 
in the SRAM.

0 No SRAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the SRAM are continuously generated.

FR1NCI

Force SRAM One Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create one 2-bit data inversion, as defined by 
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation 
after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit 
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error 
in the SRAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set 
again to properly re-enable the error generation logic.

0 No SRAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the SRAM is generated.

Table 455. EEGR field descriptions (continued)

Field Description
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If an attempt to force a non-correctable inversion (by asserting EEGR[FRCNCI] or 
EEGR[FRC1NCI]) and EEGR[ERRBIT] equals 64, then no data inversion will be generated. 

The only allowable values for the 4 control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI} 
are {0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in undefined 
behavior.

Platform Flash ECC Address Register (PFEAR)

The PFEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC 
event in the flash memory. Depending on the state of the ECC Configuration Register, an 
ECC event in the flash causes the address, attributes and data associated with the access 
to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR registers, and the appropriate 
flag (F1BC or FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

ERRBIT

Error Bit Position
The vector defines the bit position which is complemented to create the data inversion on the write 
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity 
bit of the ECC code are inverted.

The SRAM controller follows a vector bit ordering scheme where LSB = 0. Errors in the ECC 
syndrome bits can be generated by setting this field to a value greater than the SRAM width. For 
example, consider a 32-bit SRAM implementation. 

The 32-bit ECC approach requires 7 code bits for a 32-bit word. For PRAM data width of 32 bits, 
the actual SRAM (32b data + 7b for ECC) = 39 bits. The following association between the ERRBIT 
field and the corrupted memory bit is defined:

if ERRBIT = 0, then SRAM[0] of the odd bank is inverted

if ERRBIT = 1, then SRAM[1] of the odd bank is inverted
...

if ERRBIT = 31, then SRAM[31] of the odd bank is inverted

if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted

...

if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted

For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.

Table 455. EEGR field descriptions (continued)

Field Description
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Figure 493. Platform Flash ECC Address Register (PFEAR)

Offset: 0x50 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 456. PFEAR field descriptions

Field Description

FEAR
Flash ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled flash ECC 
event.
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Platform Flash ECC Master Number Register (PFEMR)

The PFEMR is a 4-bit register for capturing the XBAR bus master number of the last, 
properly-enabled ECC event in the flash memory. Depending on the state of the ECC 
Configuration Register, an ECC event in the flash causes the address, attributes and data 
associated with the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR 
registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be 
asserted.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

         .

         

Platform Flash ECC Attributes Register (PFEAT)

The PFEAT is an 8-bit register for capturing the XBAR bus master attributes of the last, 
properly-enabled ECC event in the flash memory. Depending on the state of the ECC 
Configuration Register, an ECC event in the flash causes the address, attributes and data 
associated with the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR 
registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be 
asserted.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

         

Figure 494. Platform Flash ECC Master Number Register (PFEMR)

Offset: 0x56 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset: 0 0 0 0 – – – –

Table 457. PFEMR field descriptions

Field Description

FEMR
Flash ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last, 
properly-enabled flash ECC event.

Figure 495. Platform Flash ECC Attributes Register (PFEAT)

Offset: 0x57 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –
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Platform Flash ECC Data Register (PFEDR)

The PFEDR is a 32-bit register for capturing the data associated with the last, properly-
enabled ECC event in the flash memory. Depending on the state of the ECC Configuration 
Register, an ECC event in the flash causes the address, attributes and data associated with 
the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR registers, and the 
appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

         

Table 458. PFEAT field descriptions

Field Description

WRITE
AMBA-AHB HWRITE
0 AMBA-AHB read access
1 AMBA-AHB write access

SIZE

AMBA-AHB HSIZE[2:0]
000 8-bit AMBA-AHB access
001 16-bit AMBA-AHB access
010 32-bit AMBA-AHB access
1xx Reserved

PROTECTION

AMBA-AHB HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable

Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable

Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data 

Figure 496. Platform Flash ECC Data Register (PFEDR)

Offset: 0x5C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –
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Platform RAM ECC Address Register (PREAR)

The PREAR is a 32-bit register for capturing the address of the last, properly-enabled ECC 
event in the SRAM memory. Depending on the state of the ECC Configuration Register, an 
ECC event in the SRAM causes the address, attributes and data associated with the access 
to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR registers, and the 
appropriate flag (R1BC or RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

         

         

Platform RAM ECC Syndrome Register (PRESR)

The PRESR is an 8-bit register for capturing the error syndrome of the last, properly-
enabled ECC event in the SRAM memory. Depending on the state of the ECC Configuration 
Register, an ECC event in the SRAM causes the address, attributes and data associated 
with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR 
registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to be 
asserted.

Table 459. PFEDR field descriptions

Field Description

FEDR
Flash ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-
enabled flash ECC event. The register contains the data value taken directly from the data bus.

Figure 497. Platform RAM ECC Address Register (PREAR)

Offset: 0x60 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 460. PREAR field descriptions

Field Description

REAR
SRAM ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled SRAM ECC 
event.
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This register can only be read from the IPS programming model; any attempted write is 
ignored.

         

         

Table 462 associates the upper 7 bits of the ECC syndrome with the exact data bit in error 
for single-bit correctable codewords. This table follows the bit vectoring notation where the 
LSB = 0. Note that the syndrome value of 0x01 implies no error condition but this value is 
not readable when the PRESR is read for the no error case.

         

Figure 498. Platform RAM ECC Syndrome Register (PRESR) 

Offset: 0x65 Access: Read

0 1 2 3 4 5 6 7

R RESR

W

Reset: – – – – – – – –

Table 461. PRESR field descriptions

Field Description

RESR

SRAM ECC Syndrome Register
This 8-bit syndrome field includes 6 bits of Hamming decoded parity plus an odd-parity bit for the 
entire 39-bit (32-bit data + 7 ECC) code word. The upper 7 bits of the syndrome specify the exact 
bit position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit 
syndrome plus overall incorrect parity bit signal a multi-bit, non-correctable error.

For correctable single-bit errors, the mapping shown in Table 462 associates the upper 7 bits of the 
syndrome with the data bit in error.

Table 462. RAM syndrome mapping for single-bit correctable errors

PRESR[RESR] Data bit in error

0x00 ECC ODD[0]

0x01 No error

0x02 ECC ODD[1]

0x04 ECC ODD[2]

0x06 DATA ODD BANK[31]

0x08 ECC ODD[3]

0x0a DATA ODD BANK[30]

0x0c DATA ODD BANK[29]

0x0e DATA ODD BANK[28]

0x10 ECC ODD[4]

0x12 DATA ODD BANK[27]

0x14 DATA ODD BANK[26]

0x16 DATA ODD BANK[25]
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Platform RAM ECC Master Number Register (PREMR)

The PREMR is a 4-bit register for capturing the XBAR bus master number of the last, 
properly-enabled ECC event in the SRAM memory. Depending on the state of the ECC 
Configuration Register, an ECC event in the SRAM causes the address, attributes and data 
associated with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and 

0x18 DATA ODD BANK[24]

0x1a DATA ODD BANK[23]

0x1c DATA ODD BANK[22]

0x50 DATA ODD BANK[21]

0x20 ECC ODD[5]

0x22 DATA ODD BANK[20]

0x24 DATA ODD BANK[19]

0x26 DATA ODD BANK[18]

0x28 DATA ODD BANK[17]

0x2a DATA ODD BANK[16

0x2c DATA ODD BANK[15]

0x58 DATA ODD BANK[14]

0x30 DATA ODD BANK[13]

0x32 DATA ODD BANK[12]

0x34 DATA ODD BANK[11]

0x64 DATA ODD BANK[10]

0x38 DATA ODD BANK[9]

0x62 DATA ODD BANK[8]

0x70 DATA ODD BANK[7]

0x60 DATA ODD BANK[6]

0x40 ECC ODD[6]

0x42 DATA ODD BANK[5]

0x44 DATA ODD BANK[4]

0x46 DATA ODD BANK[3]

0x48 DATA ODD BANK[2]

0x4a DATA ODD BANK[1]

0x4c DATA ODD BANK[0]

0x03,0x05........0x4d Multiple bit error

> 0x4d Multiple bit error

Table 462. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[RESR] Data bit in error
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PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to 
be asserted.

See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

This register can only be read from the IPS programming model; any attempted write is 
ignored.

         

         

Platform RAM ECC Attributes Register (PREAT)

The PREAT is an 8-bit register for capturing the XBAR bus master attributes of the last, 
properly-enabled ECC event in the SRAM memory. Depending on the state of the ECC 
Configuration Register, an ECC event in the SRAM causes the address, attributes and data 
associated with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and 
PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to 
be asserted.

         

Figure 499. Platform RAM ECC Master Number Register (PREMR) 

Offset: 0x66 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset: 0 0 0 0 – – – –

Table 463. PREMR field descriptions

Field Description

REMR

SRAM ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last, 
properly-enabled SRAM ECC event.
See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

Figure 500. Platform RAM ECC Attributes Register (PREAT)

Offset: 0x67 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –
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Platform RAM ECC Data Register (PREDR)

The PREDR is a 32-bit register for capturing the data associated with the last, properly-
enabled ECC event in the SRAM memory. Depending on the state of the ECC Configuration 
Register, an ECC event in the SRAM causes the address, attributes and data associated 
with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR 
registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to be 
asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

         

         

Table 464. PREAT field descriptions

Field Description

WRITE
XBAR HWRITE
0 XBAR read access
1 XBAR write access

SIZE

XBAR HSIZE[2:0]
000 8-bit XBAR access
001 16-bit XBAR access
010 32-bit XBAR access
1xx Reserved

PROTECTION

XBAR HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable

Protection[2]: Bufferable  0 = Non-bufferable,1 = Bufferable

Protection[1]: Mode  0 = User mode,  1 = Supervisor mode
Protection[0]: Type  0 = I-Fetch,  1 = Data 

Figure 501. Platform RAM ECC Data Register (PREDR)

Offset: 0x6C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 465. PREDR field descriptions

Field Description

REDR
SRAM ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-
enabled SRAM ECC event. The register contains the data value taken directly from the data bus.
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31.4.3 Register protection

Logic exists which restricts accesses to INTC, ECSM, MPU, STM and SWT to supervisor 
mode only. Accesses in User mode are not possible.
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32 IEEE 1149.1 Test Access Port Controller (JTAGC)

32.1 Introduction
The JTAG port of the device consists of three inputs and one output. These pins include test 
data input (TDI), test data output (TDO), test mode select (TMS), and test clock input (TCK). 
TDI, TDO, TMS and TCK are compliant with the IEEE 1149.1-2001 standard and are shared 
with the NDI through the test access port (TAP) interface. 

32.2 Block diagram
Figure 502 is a block diagram of the JTAG Controller (JTAGC) block.

         

Figure 502. JTAG Controller Block Diagram

32.3 Overview
The JTAGC provides the means to test chip functionality and connectivity while remaining 
transparent to system logic when not in TEST mode. Testing is performed via a boundary 
scan technique, as defined in the IEEE 1149.1-2001 standard. In addition, instructions can 
be executed that allow the Test Access Port (TAP) to be shared with other modules on the 
MCU. All data input to and output from the JTAGC is communicated in serial format.

TCK

TMS

TDI

Test access port (TAP) 

TDO

32-bit device identification register

Boundary scan register

.

.

controller

1-bit bypass register.

5-bit TAP instruction decoder

5-bit TAP instruction register

.

.

.

Power-on
reset
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32.4 Features
The JTAGC is compliant with the IEEE 1149.1-2001 standard, and supports the following 
features:

● IEEE 1149.1-2001 Test Access Port (TAP) interface

● 4 pins (TDI, TMS, TCK, and TDO)—Refer to Section 32.6 External signal description

● A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions, 
as well as several public and private MCU specific instructions

● 2 test data registers:

– Bypass register

– Device identification register

● A TAP controller state machine that controls the operation of the data registers, 
instruction register and associated circuitry

32.5 Modes of operation
The JTAGC uses a power-on reset indication as its primary reset signals. Several IEEE 
1149.1-2001 defined TEST modes are supported, as well as a bypass mode.

32.5.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-
RESET state. The TEST-LOGIC-RESET state is entered upon the assertion of the power-on 
reset signal, or through TAP controller state machine transitions controlled by TMS. 
Asserting power-on reset results in asynchronous entry into the reset state. While in reset, 
the following actions occur:

● The TAP controller is forced into the test-logic-reset state, thereby disabling the test 
logic and allowing normal operation of the on-chip system logic to continue unhindered.

● The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system 
reset. These instructions include EXTEST.

32.5.2 IEEE 1149.1-2001 defined test modes

The JTAGC supports several IEEE 1149.1-2001 defined TEST modes. The TEST mode is 
selected by loading the appropriate instruction into the instruction register while the JTAGC 
is enabled. Supported test instructions include EXTEST, SAMPLE and SAMPLE/PRELOAD. 
Each instruction defines the set of data registers that can operate and interact with the on-
chip system logic while the instruction is current. Only one test data register path is enabled 
to shift data between TDI and TDO for each instruction.

The boundary scan register is external to JTAGC but can be accessed by JTAGC TAP 
through EXTEST,SAMPLE,SAMPLE/PRELOAD instructions. The functionality of each 
TEST mode is explained in more detail in Section 32.8.4 JTAGC instructions.

Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the 
JTAGC into bypass mode. While in bypass mode, the single-bit bypass shift register is used 
to provide a minimum-length serial path to shift data between TDI and TDO.
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TAP sharing mode

There are two selectable auxiliary TAP controllers that share the TAP with the JTAGC. The 
instructions required to grant ownership of the TAP to the auxiliary TAP controllers are 
ACCESS_AUX_TAP_ONCE and ACCESS_AUX_TAP_TCU. Instruction opcodes for each 
instruction are shown in Table 468.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is 
transferred to the selected TAP controller. Any data input via TDI and TMS is passed to the 
selected TAP controller, and any TDO output from the selected TAP controller is sent back to 
the JTAGC to be output on the pins. The JTAGC regains control of the JTAG port during the 
UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held in 
RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers refer to the Nexus port controller chapter of the 
reference manual.

32.6 External signal description
The JTAGC consists of four signals that connect to off-chip development tools and allow 
access to test support functions. The JTAGC signals are outlined in Table 466:

         

The JTAGC pins are shared with GPIO. TDO at reset is a input pad and output direction 
control from JTAGC. Once TAP enters shift-ir or shift-dr then output direction control from 
JTAGC which allows the value to see on pad. It is up to the user to configure them as GPIOs 
accordingly, .

32.7 Memory map and register description
This section provides a detailed description of the JTAGC registers accessible through the 
TAP interface, including data registers and the instruction register. Individual bit-level 
descriptions and reset states of each register are included. These registers are not memory-
mapped and can only be accessed through the TAP.

32.7.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Table 503. The instruction register 
allows instructions to be loaded into the module to select the test to be performed or the test 
data register to be accessed or both. Instructions are shifted in through TDI while the TAP 
controller is in the Shift-IR state, and latched on the falling edge of TCK in the Update-IR 
state. The latched instruction value can only be changed in the update-IR and test-logic-
reset TAP controller states. Synchronous entry into the test-logic-reset state results in the 

Table 466. JTAG signal properties

Name I/O Function Reset State

TCK I Test clock Pull Up

TDI I Test data in Pull Up

TDO O Test data out High Z

TMS I Test mode select Pull Up
Doc ID 16886 Rev 6 846/868



IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
IDCODE instruction being loaded on the falling edge of TCK. Asynchronous entry into the 
test-logic-reset state results in asynchronous loading of the IDCODE instruction. During the 
capture-IR TAP controller state, the instruction shift register is loaded with the value 
0b10101, making this value the register’s read value when the TAP controller is sequenced 
into the Shift-IR state.

         

32.7.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer 
between TDI and TDO when the BYPASS, or reserve instructions are active. After entry into 
the capture-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit 
shifted out after selecting the bypass register is always a logic 0.

32.7.3 Device Identification Register

The device identification register, shown in Table 504, allows the part revision number, 
design center, part identification number, and manufacturer identity code to be determined 
through the TAP. The device identification register is selected for serial data transfer 
between TDI and TDO when the IDCODE instruction is active. Entry into the capture-DR 
state while the device identification register is selected loads the IDCODE into the shift 
register to be shifted out on TDO in the Shift-DR state. No action occurs in the update-DR 
state.

         

         

Figure 503. 5-bit Instruction Register

4 3 2 1 0

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 504. Device Identification Register

IR[4:0]: 0_0001 (IDCODE) Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Table 467. Device Identification Register Field Descriptions

Field Description

0–3
PRN

Part revision number. Contains the revision number of the device. This field changes with each revision of 
the device or module.

4–9
DC

Design center. For the SPC560D30/40 this value is 0x2B. 

10–19
PIN

Part identification number. Contains the part number of the device. For the SPC560D30/40, this value is 
0x244.
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32.7.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST, 
SAMPLE or SAMPLE/PRELOAD instructions are active. It is used to capture input pin data, 
force fixed values on output pins, and select a logic value and direction for bidirectional pins. 
Each bit of the boundary scan register represents a separate boundary scan register cell, as 
described in the IEEE 1149.1-2001 standard and discussed in Section 32.8.5 Boundary 
Scan. The size of the boundary scan register is 464 bits.

32.8 Functional Description

32.8.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the 
test logic and allowing normal operation of the on-chip system logic. In addition, the 
instruction register is loaded with the IDCODE instruction.

32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be 
shared with other TAP controllers on the MCU. For more detail on TAP sharing via JTAGC 
instructions refer to Section ACCESS_AUX_TAP_x instructions.

Data is shifted between TDI and TDO though the selected register starting with the least 
significant bit, as illustrated in Figure 505. This applies for the instruction register, test data 
registers, and the bypass register.

         

Figure 505. Shifting data through a register

32.8.3 TAP controller state machine

The TAP controller is a synchronous state machine that interprets the sequence of logical 
values on the TMS pin. Figure 506 shows the machine’s states. The value shown next to 
each state is the value of the TMS signal sampled on the rising edge of the TCK signal. 

As Figure 506 shows, holding TMS at logic 1 while clocking TCK through a sufficient 
number of rising edges also causes the state machine to enter the test-logic-reset state.

20–30

MIC
Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID  
for STMIcroelectronics, 0x20.

31

ID
IDCODE register ID. Identifies this register as the device identification register and not the bypass 
register. Always set to 1.

Table 467. Device Identification Register Field Descriptions

Field Description

Selected register

MSB LSB

TDI TDO
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Figure 506. IEEE 1149.1-2001 TAP controller finite state machine

Selecting an IEEE 1149.1-2001 register

Access to the JTAGC data registers is done by loading the instruction register with any of 
the JTAGC instructions while the JTAGC is enabled. Instructions are shifted in via the select-
IR-scan path and loaded in the update-IR state. At this point, all data register access is 
performed via the select-DR-scan path.

Test logic
reset

Run-test/idle Select-DR-scan Select-IR-scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time 
of a rising edge of TCK.
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The select-DR-scan path is used to read or write the register data by shifting in the data 
(LSB first) during the shift-DR state. When reading a register, the register value is loaded 
into the IEEE 1149.1-2001 shifter during the capture-DR state. When writing a register, the 
value is loaded from the IEEE 1149.1-2001 shifter to the register during the update-DR 
state. When reading a register, there is no requirement to shift out the entire register 
contents. Shifting can be terminated after fetching the required number of bits.

32.8.4 JTAGC instructions

This section gives an overview of each instruction, refer to the IEEE 1149.1-2001 standard 
for more details. 

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 468. 

         

BYPASS instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI 
and TDO. BYPASS enhances test efficiency by reducing the overall shift path when no test 
operation of the MCU is required. This allows more rapid movement of test data to and from 
other components on a board that are required to perform test functions. While the BYPASS 
instruction is active the system logic operates normally.

ACCESS_AUX_TAP_x instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take 
control of the TAP. When this instruction is loaded, control of the TAP pins is transferred to 
the selected auxiliary TAP controller. Any data input via TDI and TMS is passed to the 
selected TAP controller, and any TDO output from the selected TAP controller is sent back to 

Table 468. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010
Selects boundary scan register for shifting, sampling, and 
preloading without disturbing functional operation

SAMPLE 00011
Selects boundary scan register for shifting and sampling without 
disturbing functional operation

EXTEST 00100
Selects boundary scan register while applying preloaded values to 
output pins and asserting functional reset

ACCESS_AUX_TAP_TCU 11011 Grants the TCU ownership of the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the PLATFORM ownership of the TAP

Reserved 10010 —

BYPASS 11111 Selects bypass register for data operations

Factory Debug Reserved(1)

1. Intended for factory debug, and not customer use

00101
00110

01010
Intended for factory debug only

Reserved(2)

2. STMicroelectronics reserves the right to change the decoding of reserved instruction codes

All other codes Decoded to select bypass register
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the JTAGC to be output on the pins. The JTAGC regains control of the JTAG port during the 
UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held in 
RUN-TEST/IDLE while they are inactive.

EXTEST — External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It 
allows testing of off-chip circuitry and board-level interconnections by driving preloaded data 
contained in the boundary scan register onto the system output pins. Typically, the 
preloaded data is loaded into the boundary scan register using the SAMPLE/PRELOAD 
instruction before the selection of EXTEST. EXTEST asserts the internal system reset for 
the MCU to force a predictable internal state while performing external boundary scan 
operations.

IDCODE instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and 
TDO. This instruction allows interrogation of the MCU to determine its version number and 
other part identification data. IDCODE is the instruction placed into the instruction register 
when the JTAGC is reset.

SAMPLE instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at 
the MCU input pins and just before the boundary scan register cells at the output pins. This 
sampling occurs on the rising edge of TCK in the capture-DR state when the SAMPLE 
instruction is active. The sampled data is viewed by shifting it through the boundary scan 
register to the TDO output during the Shift-DR state. There is no defined action in the 
update-DR state. Both the data capture and the shift operation are transparent to system 
operation.

During the SAMPLE instruction, the following pad status is enforced:

● Weak pull is disabled (independent from PCRx[WPE])

● Analog switch is disabled (independent of PCRx[APC])

● Slew rate control is forced to the slowest configuration (independent from 
PCRx[SRC[1]])

SAMPLE/PRELOAD instruction

The SAMPLE/PRELOAD instruction has two functions:

● The SAMPLE part of the instruction samples the system data and control signals on 
the MCU input pins and just before the boundary scan register cells at the output pins. 
This sampling occurs on the rising-edge of TCK in the capture-DR state when the 
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it 
through the boundary scan register to the TDO output during the shift-DR state. Both 
the data capture and the shift operation are transparent to system operation.

● The PRELOAD part of the instruction initializes the boundary scan register cells before 
selecting the EXTEST instructions to perform boundary scan tests. This is achieved by 
shifting in initialization data to the boundary scan register during the shift-DR state. The 
initialization data is transferred to the parallel outputs of the boundary scan register 
cells on the falling edge of TCK in the update-DR state. The data is applied to the 
external output pins by the EXTEST instruction. System operation is not affected.
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During the SAMPLE/PRELOAD instruction, the following pad status is enforced:

● Weak pull is disabled (independent from PCRx[WPE])

● Analog switch is disabled (independent of PCRx[APC])

● Slew rate control is forced to the slowest configuration (independent from 
PCRx[SRC[1]])

32.8.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and 
observed through the shift-register stage associated with each pad. Each stage is part of a 
larger boundary scan register cell, and cells for each pad are interconnected serially to form 
a shift-register chain around the border of the design. The boundary scan register consists 
of this shift-register chain, and is connected between TDI and TDO when the EXTEST, 
SAMPLE, or SAMPLE/PRELOAD instructions are loaded. The shift-register chain contains 
a serial input and serial output, as well as clock and control signals.

32.9 e200z0 OnCE controller
The e200z0 core OnCE controller supports a complete set of Nexus 1 debug features. A 
complete discussion of the e200z0 OnCE debug features is available in the e200z0 
Reference Manual.

32.9.1 e200z0 OnCE Controller Block Diagram

Figure 507 is a block diagram of the e200z0 OnCE block.
Doc ID 16886 Rev 6 852/868



IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
         

Figure 507. e200z0 OnCE Block Diagram

32.9.2 e200z0 OnCE Controller Functional Description

The functional description for the e200z0 OnCE controller is the same as for the JTAGC, 
with the differences described below.

Enabling the TAP Controller

To access the e200z0 OnCE controller, the proper JTAGC instruction needs to be loaded in 
the JTAGC instruction register, as discussed in Section TAP sharing mode.

32.9.3 e200z0 OnCE Controller Register Description

Most e200z0 OnCE debug registers are fully documented in the e200z0 Reference Manual. 

OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data 
from the TDI pin and serves as the instruction register (IR). It holds the 10-bit commands to 
be used as input for the e200z0 OnCE Decoder. The OCMD is shown in Table 508. The 
OCMD is updated when the TAP controller enters the update-IR state. It contains fields for 
controlling access to a resource, as well as controlling single-step operation and exit from 
OnCE mode. 

Although the OCMD is updated during the update-IR TAP controller state, the corresponding 
resource is accessed in the DR scan sequence of the TAP controller, and as such, the 

TCK

e200z0_TMS

TDI

Test Access Port (TAP) 

e200z0_TDO

Bypass Register

External Data Register

.

.

Controller

TAP Instruction Register
.

OnCE Mapped Debug Registers

Auxiliary Data Register

.

.

.

e200z0_TRST

(OnCE OCMD)

TDO Mux
Control

{From
JTAGC

(to JTAGC)
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update-DR state must be transitioned through in order for an access to occur. In addition, 
the update-DR state must also be transitioned through in order for the single-step and/or exit 
functionality to be performed, even though the command appears to have no data resource 
requirement associated with it.

         

         

Figure 508. OnCE Command Register (OCMD)

0 1 2 3 4 5 6 7 8 9

R
R/W GO EX RS[0:6]

W

Reset: 0 0 0 0 0 1 1 0 1 1

Table 469.  e200z0 OnCE Register Addressing

RS[0:6] Register Selected

000 0000 000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011 – 000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 – 001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Data Value Compare 1 (DVC1)

010 0111 Data Value Compare 2 (DVC2)

010 1000 – 010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 – 101 1111 Reserved (do not access)

110 1111
Shared Nexus Control Register (SNC)

(only available on the e200z0 core)

111 0000 – 111 1001 General Purpose Register Selects [0:9]

111 1010 – 111 1011 Reserved

111 1100 Reserved
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32.10 Initialization/application information
The test logic is a static logic design, and TCK can be stopped in either a high or low state 
without loss of data. However, the system clock is not synchronized to TCK internally. Any 
mixed operation using both the test logic and the system functional logic requires external 
synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is 
required:

1. Place the JTAGC in reset through TAP controller state machine transitions controlled by 
TMS

2. Load the appropriate instruction for the test or action to be performed.

111 1101
LSRL Select

(factory test use only)

111 1110 Enable_OnCE

111 1111 Bypass

Table 469.  e200z0 OnCE Register Addressing (continued)

RS[0:6] Register Selected
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Table 474. Document revision history

Date Revision Changes

14-Apr-2010 1 Initial release

01-Sep-2010 2 Internal release

17-Sep-2010 3

Editorial changes and improvements.

Chapter 1, “Overview”:

In the block diagram:
– Replaced “CAN” with “FlexCAN” in the legend

– Replaced “RAM“ with “SRAM“

– Replaced “DMA” with “eDMA”
– Updated the meaning of “ECSM” in legend

Chapter 2, Signal Descriptions”:
Deleted pin multiplexing from all LQFP diagrams. 

Chapter 4, “Clock description”:
Revised the “System clock generation” figure.

Updated peripheral clock sources table.

Corrected Clock architecture description.
Revised the “System clock generation” figure.

Chapter 8, “Enhanced Direct Memory Access (eDMA)”:
In the feature list: ‘C’ pseudocode specification of TCD deleted.

In the “Memory map/register definition” section:

All registers have been renamed. Details are below.
Previously, eDMA controller was documented generically, showing support for up to 64

channels. Registers changed to match implementation of 16 channels. Several registers

are shown as 32-bit registers even though the most significant 16-bits are reserved.
Updates to registers:

– DMACR[GRP3PRI] field deleted

– DMACR[GRP2PRI] field deleted

– DMACR[GRP1PRI] field deleted
– DMACR renamed to EDMA_CR

– DMAES[ECX] field deleted

– DMAES[GPE] field deleted
– DMAES renamed to EDMA_ESR

– DMAERQH register deleted

– DMAERQL register renamed EDMA_ERQRL
– DMAEEIH register deleted
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(cont.)

– DMAEEIL register renamed to EDMA_EEIRL

– DMACEEI[NOP] field deleted
– DMACEEI register renamed to EDMA_CEEIR

– DMASEEI[NOP] field deleted

– DMASEEI register renamed to EDMA_SEEIR
– DMACERQ[NOP] field deleted

– DMACERQ register renamed to EDMA_CERQR

– DMASERQ[NOP] field deleted
– DMASERQ register renamed to EDMA_SERQR

– DMASSRT[NOP] field deleted

– DMASSRT register renamed to EDMA_SSBR
– DMACDNE[NOP] field deleted

– DMACDNE register renamed to EDMA_CDSBR

– DMACERR[NOP] field deleted
– DMACERR register renamed to EDMA_CER

– DMACINT[NOP] field deleted

– DMACINT register renamed to EDMA_CIRQR
– DMAINTH register deleted

– DMAINTL register renamed to EDMA_IRQRL

– DMAERRH register deleted
– DMAERRL register renamed to EDMA_ERL

– DMAHRSH register deleted

– DMAHRSL register renamed to EDMA_HRSL
– DMAGPOR register deleted

– DCHPRIx registers renamed to EDMACPRx

Chapter 12, “Flash memory”:

Updated UT0 field description-27 and 31

Updated ECC Logic check for UT0 addresses
Updated delivery values of NVPWD0 and NVPWD1 for Code Flash

Revised the “Margin read“ section for both Flash

Removed old Revision history.
Replaced “Margin Mode“ with “Margin Read”

Censorship password register sections: Added note “In a secured device, starting with a

serial boot, it is possible to read the content of the four Flash locations where the RCHW

can be stored.”
Module Configuration Register (MCR): Added information on RWW-Error during

stall-while-write.

Chapter 14, “Interrupt Controller (INTC)”:

Updated “INTC Priority Select Registers“ and “INTC Priority Select Register Address

Offsets“ table in according to “Interrupt Vector Table“ table
Replaced INTC_PSR121 with “INTC_PSR154”

Updated interrupt vector table: IRQ No. 9

Table 474. Document revision history (continued)

Date Revision Changes
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Chapter 15, “System Integration Unit Lite (SIUL)”:

Clarified description of I/O pad function in overview section.
Clarification: Not all GPIO pins have both input and output functions.

Replaced parallel port register sections (PGPDO, PGPDI, and MPGDO), clarifying 
register

function and bit ordering.

Chapter 18, “Real Time Clock / Autonomous Periodic Interrupt (RTC/API)”:

Updated the APIVAL description in the RTCC register

Chapter 19, “Boot Assist Module (BAM)”:

Renamed the flag "Standby-RAM Boot Flag" to "BOOT_FROM_BKP_RAM" as it is 
named

in the RGM chapter.

“Download 64-bit password and password check“ section:
– Added note about password management.

“Boot from FlexCAN“ section:

– Added note about the distirb provided by CAN traffic.
Changed the footnote of BAM logic flow

Added note in the section Download start address, VLE bit and code size

Figure Password check flow updated
NVPWD[0:1] changed to NVPWD[1:0]

Added notes in the following section:

Download 64-bit password and password check
Download data

Execute code

Chapter 21, “Wakeup Unit (WKPU)”:

Added Note about Wakeup pin termination in “External Signal description”

Overview section: Updated the interrupt vectors

Chapter 23, “Analog-to-Digital Converter (ADC)”:
ADC digital registers: Removed Channel Pending Registers (CEOCFR[x]) and Decode

Signals Delay Register (DSDR)
Section “ADC sampling and conversion timing“: Corrected instances of bitfield name

INPSAMPLE to INPSAMP

Section “Interrupts“: Removed content concerning register CEOCFR
Added a footnote on “Max AD_clk frequency and related configuration settings“ table.

Added max/min AD_clk frequency tables.

Revised the Overview, Introduction, “Injected channel conversion”, “Abort conversion”,
“ADC CTU (Cross Triggering Unit)” and Presampling sections.

Table 474. Document revision history (continued)
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Updated following registers:

– CEOCFR
– CIMR

– WTISR

– DMAR
– PSR

– NCMR

– JCMR
– CDR

– CWSEL

– CWENR
– AWORR

Inserted "CTU triggered conversion" in the conversion list of "Functional description"

section
Replaced generic “system clock” with “peripheral set 3 clock”

“ADC sampling and conversion timing” section, added information about “ADC_1”

Moved CWSEL, CWENR and AWORR register to “Watchdog register“ section
CTR register: Inserted a footnote about OFFSHIFT field stating: “available only for 
CTR0”
Changed the access type of DSDR in "read/write"

Updated the DSD description in the DSDR field description table

Chapter 24, “Safety”
Added note about Watchdog performance during BAM execution.

Chapter 25, “Deserial Serial Peripheral Interface (DSPI)”:

Included Bit fields CLR_TXF and CLR_RXF in DSPIx_MCR register

Removed the space between DSPI AND #.

Chapter 26, “FlexCAN module”:

Updated the MCR and CTRL descriptions.
Added text to the RXGMASK, RX14MASK, and RX15MASK sections.

Revised the ESR descripton.

Added note at the end of Rx Global Mask (RXGMASK) section indicating special 
handling

of global masks misalignment.

Chapter 28, “Cross Triggering Unit (CTU)”:

Replaced “Channel number value mapping” table with “CTU-to-ADC Channel 
Assignment”

table.

Removed “Control Status Register (CTU_CSR)” because the interrupt feature is not
implemented.

Cross Triggering Unit block diagram: trigger output control and output signals removed

Main Features section: Removed “Maskable interrupt generation whenever a trigger 
output is generated”. Feature not implemented

Table 474. Document revision history (continued)
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Chapter 30, “LIN Controller (LINFlexD)”:

In the “Fractional baud rate generation” section, changed the note from “LFDIV must be
greater than or equal to 1.0d” to “LFDIV must be greater than or equal to 1.5d, i.e.

LINIBRR=1 and LINFBRR=8. Therefore, the maximum possible baudrate is

fperiph_set_1_clk / 24”.

Chapter 33, “IEEE 1149.1 Test Access Port Controller (JTAGC)”:

Added a paragraph into “External Signal Description“ that explain when the device get
incompliance with IEEE 1149.1-2001.

Changed the code values for ACCESS_AUX_TAP_TCU and ACCESS_AUX_TAP_NPC 
in the “JTAG Instructions” table.

16-Sep-2011 4

Chapter Throughout
Editorial changes and improvements (including reformatting of memory maps, register 

figures, and field descriptions to a consistent format).
Rearranged the chapter order.

Chapter Preface
Added this chapter.

Chapter Introduction
Changed the chapter title (was “Overview”, is “Introduction”).
Renamed “Introduction” to “The SPC560D30/40 microcontroller family”.
In the device-comparison table, for the “Total timer I/O eMIOS”, changed “13 ch” to “14 

ch”.
Moved the “Memory map” section to its own separate chapter.
In the “Feature summary” section, changed “LINFlex 0: Master capable and slave 

capable” to “LINFlex 0: Master capable and slave capable; connected to eDMA”.

Added content to the “Feature summary” section.

Chapter Memory Map

Added this chapter (content previously contained in the Overview chapter).

Consolidated multiple adjacent reserved rows into single rows.

Chapter Signal Description

Replaced “eMIOS0”/”eMIOS 0” with eMIOS_0.

Replaced “DSPIx“/”DSPI x” with DSPI_x (x = 0, 1).
Replaced “LINFlex x” with “LINFlex_x” (x = 0, 1, 2).

Replaced “FlexCAN 0” with “FlexCAN_0”.

In the 64-pin pinout, changed pin 6 from VPP_TEST to VSS_HV.
Changed “Functional ports A, B, C, D, E, H” to “Functional ports” and modified the 
entries in that table as follows:

Table 474. Document revision history (continued)
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– PA[2] (added MA[2])

– PA[3] (added CS4_0 as AF3)
– PA[4] (added CS0_1 as AF3)

– PA[6] (added CS1_1 as AF3

– PA[9] (added CS2_1 as AF3)
– PA[10] (was LIN1TX, is LIN2TX)

– PA[13] (added CS3_1 as AF3)

– PB[0] (added LIN2TX as AF3)
– PB[1] (added LIN0RX as AF3)

– PC[8] (added E0UC[3] as AF2)

– PC[9] (added E0UC[7] as AF2)
– PE[6] (was EIRQ[21], IS EIRQ[22])

– PE[7] (was EIRQ[21], is EIRQ[23])

Chapter Safety
Migrated the chapter contents to the “Register Protection” and “SWT” chapters.

Chapter Microcontroller Boot

Added this chapter.

Chapter Clock Description
Fast external crystal oscillator (FXOSC) digital interface section: 

- Changed the sentence from “The FXOSC digital interface controls the 4–40 MHz fast 
external crystal oscillator (FXOSC).” to “The FXOSC digital interface controls the 
operation of the 4–40 MHz fast external crystal oscillator (FXOSC).”

Truth table of crystal oscillator table: Replaced "ME_GS.S_XOSC" with 
“ME_xxx_MC[FXOSCON]", replaced “FXOSC_CTL.OSCBYP” with 
“FXOSC_CTL[OSCBYP]”

Slow external crystal oscillator (SXOSC) digital interface section: 
- Changed the sentence from “The SXOSC digital interface controls the 32 KHz slow 
external crystal oscillator (SXOSC).” to “The SXOSC digital interface controls the 
operation of the 32 KHz slow external crystal oscillator (SXOSC).”

SXOSC truth table: Replaced "S_OSC” with “OSCON"
In the FXOSC_CTL figure, added footnotes to clarify the access to the OSCBYP and 

I_OSC fields.
Deleted the “CMU register map” section.
Added notes for clarifying field access to the following registers

– FXOSC_CTL

– SXOSC_CTL
– CMU_CSR

In the “SPC560D30/40 system clock generation” figure, revised the first input to API/RTC 
(was “FIRC_div”, is “FIRC_clk”).

In the “SPC560D30/40 — Peripheral clock sources” table, deleted the entry for CANS.
In the “SPC560D30/40 system clock generation” figure, revised the first input to API/RTC 

(was “FIRC_div”, is “FIRC_clk”).
In the “SPC560D30/40 — Peripheral clock sources” table, deleted the entry for CANS.
In the FIRC “Functional description” section, changed “provided by 

RC_CTL[FIRC_STDBY] bit” to “provided by RC_CTL[FIRCON_STDBY] bit”.
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In the SIRC “Functional description” section, revised the information of SIRC output 
frequency trimming.

In the FIRC “Functional description” section, revised the information of FIRC output 
frequency trimming.

Revised the reset values in the FMPLL CR.
Revised the SIRC_CTL[SIRCTRIM] field description.
Revised the FIRC_CTL[FIRCTRIM] field description.
Changed STANDBY0 to STANDBY.
In the FMPLL features, changed “SSCG” to “frequency modulation”.
In the FMPLL functional description, added the “FMPLL lookup table” table.
In the CMU introduction, changed “towards the mode” to “towards the MC_ME”.
In the CMU introduction, deleted the “CMU block diagram” figure.
In the CMU Introduction section, changed “clock management unit” to MC_CGM.

Chapter Mode Entry Module
Made the CFLAON and DFLAON bits in the ME_mode_MC registers read-only (were 

read/write).
Changed “WARNING” to “CAUTION”.
In the “STANDBY0 Mode” section, deleted “CANSampler”.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Added the “Peripheral control registers by peripheral” table.
In the ME_<mode>_MC[DFLAON] field description, added a note about configuring 

reset sources as long resets.

Chapter Reset Generation Module
Revised the RGM_DERD section to indicate that the register is always read-only.
Revised the RGM_FEAR[AR_CMU_OLR] field description.
Changed the RGM_FERD[D_EXR] field from read-only to read/write.
Changed STANDBY0 to STANDBY.
Revised the RGM_FES[F_CORE] field description.
Changed “core reset” to “debug control core reset”.

Chapter Power Control Unit
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.

Chapter Voltage Regulators and Power Supplies
Revised the “Register description” section to include the address offset and MC_PCU 

mapping.

Chapter Wakeup Unit
Changed WKUP to WKPU to match the official module abbreviation.
In the Overview section, replaced the wakeup vector mapping information with a table.
In the Overview section, deleted CAN1RX.
In the “NMI management” section, changed “This register is a clear-by-write-1 register 

type, preventing inadvertent overwriting of other flags in the same register.” to “The NIF 
and NOVF fields in this register are cleared by writing a ‘1’ to them; this prevents 
inadvertent overwriting of other flags in the register.”
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In the “External interrupt management” section, changed “This register is a clear-by-
write-1 register type, preventing inadvertent overwriting of other flags in the same 
register.” to “The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this 
prevents inadvertent overwriting of other flags in the register.”

In the NSR, changed NIF to NIF0 and NOVF to NOVF0.
In the NCR, changed all field names to contain a trailing ‘0’ (example: NLOCK0).
In the “WKPU block diagram” figure, deleted single 0s.
In the “Memory map” section, changed “If supported and enabled by the SoC” to “If 

SSCM_ERROR[RAE] is enabled”.
In the WIFER section, deleted “The number of wakeups ... 1 and 18”.
Revised the definitions of the following registers:

– WISR

– IRER
– WRER

– WIREER

– WIFEER
– WIFER

– WIPUER

In the “WKPU memory map” table, added the module base address.
In the NCR[NWRE0] field description, added a note about the proper sequence for 

enabling the NMI.

Chapter Real Time Clock / Autonomous Periodic Interrupt
Replaced ipg_clk with “system clock”.
Changed “32 kHz” to “32 KHz”.
Revised the RTCC[FRZEN] field description.
In the “RTC functional description” section, revised the paragraph on clock sources.
In the “RTC functional description” section, deleted “The RTCC[RTCVAL] field may only 

be updated when the RTCC[CNTEN] bit is cleared to disable the counter”.
In the “RTC/API register map” table, added the module base address.

Chapter e200z0h Core
In the “e200z0h block diagram” figure, added a box around the core elements.
Deleted the “Nexus 2+” section.

Chapter Enhanced Direct Memory Access
In the “DMA Clear Error (EDMA_CER)” section, corrected the offset from 0x001E to 

0x001D.
Deleted the “eDMA 32-bit memory map” table (information already present in the “eDMA 

memory map” table).
Added the following note to the CX and ECX fields in the EDMA_CR: “This bit cannot be 

set when the eDMA is in IDLE mode.”
In the “eDMA memory map” table, added the module base address.

Table 474. Document revision history (continued)

Date Revision Changes
863/868 Doc ID 16886 Rev 6



RM0045 Revision history
16-Sep-2011
4

(cont.)

Chapter eDMA Channel Multiplexer
Changed the chapter title (was “DMA Channel Multiplexer”, is “eDMA Channel 

Multiplexer”) and changed “DMA” to “eDMA” as appropriate to match the title.
In the CHCONFIG register figure, revised the bit order (was 7..0, is 0..7) to match 

Power Architecture convention.
In the Features section, changed “12 channels with normal capability” to “13 channels 

with normal capability”.
In the “Modes of operation” section, revised the number of available eDMA channels.
In the “eDMA channel mapping” table, for DMA mux channels 60 and 61, removed 

“PIT_0” and “PIT_1” from the Module column.
Revised the “eDMA channel mapping” table to show that channels 19–22 are for 

eMIOS0.
In the “DMA_MUX memory map” table, added the module base address.

Chapter Interrupt Controller
Revised the INTC_IACKR section to illustrate the register’s dependence on 

INTC_MCR[VTES] more clearly.
In the INTC_EOIR register figure, added “See text” to the W row.
In the “Interrupt vector table” table, changed “WKUP” to “WKPU”.
In the “Interrupt sources available” table, changed the number of ADC1 sources (was 3, 

is 2).
In the “Interrupt vector table” table, changed IRQ 83 to “reserved”.
In the “INTC memory map” table, added the module base address.

Chapter System Integration Unit Lite
Changed “WARNING” to “CAUTION”.
In the register figures, changed “Access: None” to the corresponding actual level of 

access.
Revised the description of the PARTNUM field in MIDR1 and MIDR2 to clarify that the 

field is split between the two registers.
In the PCRx section, revised the WPS and WPE field descriptions to indicate the correct 

functionality.
In the “External interrupts” section, changed “This register is a clear-by-write-1 register 

type, preventing inadvertent overwriting of other flags in the same register.” to “The bits 
in the ISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent 
overwriting of other flags in the register.”

In the MIDR1[PKG] field description, added “Any values not explicitly specified are 
reserved”.

Revised the “MIDR2 field descriptions” table to show how to calculate total flash memory 
size.

In the “MIDR2 field descriptions” table, deleted the entry for FR (not implemented).
In the “SIUL memory map” table, added the module base address.

Chapter LIN Controller (LINFlex)
In the “IFER field descriptions” table, switched “activated” and “deactivated” in order to 

match with “IFER[FACT] configuration” table.
Deleted the “Register map and reset values” section (duplicate content).
In the “UART mode” section, in the “9-bit frames” subsection, changed “sum of the 7 data 

bits” to “sum of the 8 data bits”.
In the “Memory map and registers description” section, added the address for LINFlex_2.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved 

and always reads 1”.
Changed “kbps” to “Kbit/s”.
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Chapter LIN Controller (LINFlexD)
In the register figures:

– Added “Access: User read/write” to all register figures.

– Updated instances of “These fields are writable only in Initialization mode.” to “These 
fields are writable only in Initialization mode (LINCR1[INIT] = 1).”.

In the LINESR figure, changed the footnote “If LINTCSR[LTOM] is set, these fields are 
read-only.“ to read “If LINTCSR[LTOM] = 1, these fields are read-only.“

In the LINTOCR figure, added the footnote “The HTO field can only be written in slave 
mode, LINCR1[MME] = 1“.

In the “UART mode” section, in the “9-bit frames” subsection, changed “sum of the 7 data 
bits” to “sum of the 8 data bits”.

In the “9-bit data frame” section, changed “sum of the 7 data bits” to “sum of the 8 data 
bits” and “8-bit UART data frame” to “9-bit UART data frame”.

In the “Filter submodes” section, changed “eight IFCR registers” to “16 IFCRs” and “eight 
identifiers” to “16 identifiers”.

In the “9-bit data frame” section, changed “The 8-bit UART data frame” to “The 9-bit 
UART data frame” and “sum of the 7 data bits” to “sum of the 8 data bits”.

Revised the IFER section.
Revised the “Memory map and register description” section to show the differences in 

register availability on the various LINFlexD modules on this chip.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved 

and always reads 1”.
Changed “kbps” to “Kbit/s”.
In the “TCD chain memory map (master node, TX mode)” figure, changed the second 

instance of “Extended Frame (n+2)” to “Extended Frame (n+3)”.
In the “TCD chain memory map (master node, RX mode)” figure, changed the second 

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, TX mode)” figure, changed the second 

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, RX mode)” figure, changed the second 

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.

Chapter FlexCAN
Changed the chapter title (was “FlexCAN module”, is “FlexCAN”).
Deleted references to Stop mode (not supported on this chip).
Revised the “FlexCAN block diagram” figure to show that this chip has 32 MBs.
Deleted references to the RXIMR0–RXIMR63 registers.
In the CTRL field descriptions, added “0” and “1” to indicate what the bit values of 0 and 

1 mean, respectively.
In the “Modes of operation” section, revised the description of Module Disable mode.
Revised the “Module Disable mode” section.
In the “FlexCAN memory map” table, added the module base address.

Chapter Deserial Serial Peripheral Interface
In the “Continuous selection format” section, added a note about filling the TX FIFO.
Added new rules to the “Continuous serial communications clock” section.
In the “DSPI memory map” table, added the module base address.

Chapter Timers
Added this chapter (incorporates content from STM, eMIOS, and PIT chapters).
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Chapter Analog-to-Digital Converter
Replaced “ipg_clk” and “system clock” with “MC_PLL_CLK”.
Updated MCR[WLSIDE] bit description.
Updated CDR register.
Replaced ADCDig with ADC, rewriting content as necessary.
In the PDEDR[PDED] field description, added “The delay is to allow time for the ADC 

power supply to settle before commencing conversions.”.
In the AWORR0 figure, changed the fields from read-only to w1c.
In the “12-bit ADC_1 digital registers” table, revised the base address (was 

0xFFE0_0000, is 0xFFE0_4000).
Deleted the “Bit access descriptions” table.
In the CIMR section, deleted the duplicate CIMR1 figure.

Chapter Cross Triggering Unit
Removed remaining references to CTU_CSR (not implemented on this chip).
In the “CTU memory map” table, changed the end address of the reserved space (was 

0x002C, is 0x002F).
In the “CTU-to-ADC channel assignment” table, deleted the entries for ADC1_X[n].
In the “CTU memory map” table, added the module base address.

Chapter Flash Memory
Replaced the entire chapter.

Chapter Static RAM
In the Introduction section, replaced the text “Except in standby mode...” with the “SRAM 

behavior in chip modes” table.

Chapter Register Protection
Added this chapter.

Chapter Software Watchdog Timer
Added this chapter.

Chapter Error Correction Status Module
Revised the Introduction section.
Revised the Features section.
Revised the MUDCR section to show completely that bit 1 is reserved.
In the register descriptions, revised the names as needed to match the names in the 

memory map.
In the PREMR section, added text on where to find bus master IDs.
Aligned register names in the descriptions and the memory map.
Deleted the second paragraph in the Introduction section.
Deleted the last bullet (about spp_ips_reg_protection) in the Features section.
In the PREAT field descriptions, changed “AMBA-AHB” to “XBAR”.
Renamed the “Spp_ips_reg_protection” section to “Register protection” and revised the 

section.
Revised the “ECC registers” section.
In the “ECSM memory map” table, added the module base address.
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Chapter IEEE 1149.1 Test Access Port Controller
In the Features section, changed “3 test data registers” to “2 test data registers”.
In the “SAMPLE instruction” section, added information about pad status.
In the “SAMPLE/PRELOAD instruction” section, added information about pad status.
In the “e200z0 OnCE controller” section, deleted references to Nexus 2+.

Chapter Multi-Layer AHB Crossbar Switch
Renamed the chapter (is “Crossbar Switch”) and replaced the entire contents.

Chapter Boot Assist Module
Deleted this chapter (relevant content is now represented by the “Microcontroller Boot” 

chapter).

Chapter Enhanced Modular IO Subsystem
Deleted this chapter (relevant content is now represented by the “Timers” chapter).

Chapter System Status and Configuration Module
Deleted this chapter (relevant content is now represented by the “Microcontroller Boot” 

chapter).

Appendix: Registers Under Protection
Deleted this appendix (relevant content is now represented by the “Register Protection” 

chapter).

04-Jun-2012 5 Added SIUL chapter.

18-Sep-2013 6 Updated Disclaimer.
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