
September 201
RM0045

Reference manual
SPC560D30L1, SPC560D30L3, SPC560D40L1, SPC560D40L3

32-bit MCU family built on the embedded Power Architecture®
Introduction
The SPC560D30/40 is a Power Architecture® based microcontroller that target automotive
vehicle body applications such as:

■ Central body electronics

■ Vehicle body controllers

■ Smart junction boxes

■ Front modules

■ Body peripherals

■ Door control

■ Seat control

The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It
provides the scalability needed to implement platform approaches and delivers the
performance required through the use of increasingly sophisticated software architectures.
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive
controller complies with the Power Architecture specification, and only implements the VLE
(variable-length encoding) APU, providing improved code density. It operates at speeds of
up to 48 MHz and offers high performance processing optimized for low power consumption.
It also capitalizes on the available development infrastructure of current Power Architecture®
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.

This document describes the features of the SPC560D30/40 and options available within
the family members, and highlights important electrical and physical characteristics of the
device.
3 Doc ID 16886 Rev 6 1/868

www.st.com

http://www.st.com

RM0045 Contents
Contents

1 Preface . 40

1.1 Overview . 40

1.2 Audience . 40

1.3 Guide to this reference manual . 40

1.4 Register description conventions . 43

1.5 References . 44

1.6 Developer support . 44

1.7 How to use the SPC560D30/40 documents . 44

1.7.1 The SPC560D30/40 document set . 44

1.7.2 Reference manual content . 45

1.8 Using the SPC560D30/40 . 46

1.8.1 Hardware design . 46

1.8.2 Input/output pins . 47

1.8.3 Software design . 47

1.8.4 Other features . 48

2 Introduction . 49

2.1 The SPC560D30/40 microcontroller family . 49

2.2 SPC560D30/40 device comparison . 49

2.3 Block diagram . 51

2.4 Feature summary . 52

3 Memory Map . 53

4 Signal Description . 56

4.1 Package pinouts . 56

4.2 Pad configuration during reset phases . 57

4.3 Voltage supply pins . 58

4.4 Pad types . 58

4.5 System pins . 58

4.6 Functional ports . 59

5 Microcontroller Boot . 71
Doc ID 16886 Rev 6 2/868

Contents RM0045
5.1 Boot mechanism . 71

5.1.1 Flash memory boot . 72

5.1.2 Serial boot mode . 74

5.1.3 Censorship . 75

5.2 Boot Assist Module (BAM) . 79

5.2.1 BAM software flow . 79

5.2.2 LINFlex (RS232) boot . 87

5.2.3 FlexCAN boot . 88

5.3 System Status and Configuration Module (SSCM) 90

5.3.1 Introduction . 90

5.3.2 Features . 90

5.3.3 Modes of operation . 91

5.3.4 Memory map and register description . 91

6 Clock Description. 98

6.1 Clock architecture . 98

6.2 Clock gating . 99

6.3 Fast external crystal oscillator (FXOSC) digital interface 99

6.3.1 Main features . 99

6.3.2 Functional description . 99

6.3.3 Register description . 101

6.4 Slow internal RC oscillator (SIRC) digital interface 102

6.4.1 Introduction . 102

6.4.2 Functional description . 102

6.4.3 Register description . 103

6.5 Fast internal RC oscillator (FIRC) digital interface 103

6.5.1 Introduction . 103

6.5.2 Functional description . 104

6.5.3 Register description . 105

6.6 Frequency-modulated phase-locked loop (FMPLL) 105

6.6.1 Introduction . 105

6.6.2 Overview . 106

6.6.3 Features . 106

6.6.4 Memory map . 107

6.6.5 Register description . 107

6.6.6 Functional description . 110
3/868 Doc ID 16886 Rev 6

RM0045 Contents
6.6.7 Recommendations . 113

6.7 Clock monitor unit (CMU) . 113

6.7.1 Introduction . 113

6.7.2 Main features . 113

6.7.3 Block diagram . 114

6.7.4 Functional description . 115

6.7.5 Memory map and register description . 116

7 Clock Generation Module (MC_CGM). 121

7.1 Introduction . 121

7.1.1 Overview . 121

7.1.2 Features . 123

7.2 External Signal Description . 123

7.3 Memory Map and Register Definition . 123

7.3.1 Register Descriptions . 127

7.4 Functional Description . 131

7.4.1 System Clock Generation . 131

7.4.2 Dividers Functional Description . 133

7.4.3 Output Clock Multiplexing . 133

7.4.4 Output Clock Division Selection . 133

8 Mode Entry Module (MC_ME) . 135

8.1 Introduction . 135

8.1.1 Overview . 135

8.1.2 Features . 137

8.1.3 Modes of Operation . 137

8.2 External Signal Description . 138

8.3 Memory Map and Register Definition . 138

8.3.1 Memory Map . 139

8.3.2 Register Description . 146

8.4 Functional Description . 168

8.4.1 Mode Transition Request . 168

8.4.2 Modes Details . 169

8.4.3 Mode Transition Process . 173

8.4.4 Protection of Mode Configuration Registers . 181

8.4.5 Mode Transition Interrupts . 181
Doc ID 16886 Rev 6 4/868

Contents RM0045
8.4.6 Peripheral Clock Gating . 183

8.4.7 Application Example . 183

9 Reset Generation Module (MC_RGM). 185

9.1 Introduction . 185

9.1.1 Overview . 185

9.1.2 Features . 187

9.1.3 Reset sources . 187

9.2 External signal description . 188

9.3 Memory map and register definition . 188

9.3.1 Register descriptions . 190

9.4 Functional description . 199

9.4.1 Reset State Machine . 199

9.4.2 Destructive Resets . 202

9.4.3 External Reset . 203

9.4.4 Functional Resets . 203

9.4.5 STANDBY Entry Sequence . 204

9.4.6 Alternate Event Generation . 204

9.4.7 Boot Mode Capturing . 205

10 Power Control Unit (MC_PCU) . 206

10.1 Introduction . 206

10.1.1 Overview . 206

10.1.2 Features . 207

10.2 External Signal Description . 207

10.3 Memory Map and Register Definition . 208

10.3.1 Memory Map . 208

10.3.2 Register Descriptions . 209

10.4 Functional Description . 212

10.4.1 General . 212

10.4.2 Reset / Power-On Reset . 212

10.4.3 MC_PCU Configuration . 212

10.4.4 Mode Transitions . 212

10.5 Initialization Information . 214

10.6 Application Information . 214

10.6.1 STANDBY Mode Considerations . 214
5/868 Doc ID 16886 Rev 6

RM0045 Contents
11 Voltage Regulators and Power Supplies . 215

11.1 Voltage regulators . 215

11.1.1 High power regulator (HPREG) . 215

11.1.2 Low power regulator (LPREG) . 215

11.1.3 Ultra low power regulator (ULPREG) . 215

11.1.4 LVDs and POR . 216

11.1.5 VREG digital interface . 216

11.1.6 Register description . 216

11.2 Power supply strategy . 217

11.3 Power domain organization . 218

12 Wakeup Unit (WKPU) . 219

12.1 Overview . 219

12.2 Features . 222

12.3 External signal description . 222

12.4 Memory map and register description . 222

12.4.1 Memory map . 222

12.4.2 NMI Status Flag Register (NSR) . 223

12.4.3 NMI Configuration Register (NCR) . 224

12.4.4 Wakeup/Interrupt Status Flag Register (WISR) 225

12.4.5 Interrupt Request Enable Register (IRER) . 226

12.4.6 Wakeup Request Enable Register (WRER) . 226

12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) . . . 227

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) . . . 227

12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER) 228

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER) 228

12.5 Functional description . 229

12.5.1 General . 229

12.5.2 Non-maskable interrupts . 229

12.5.3 External wakeups/interrupts . 230

12.5.4 On-chip wakeups . 232

13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API) 233

13.1 Overview . 233

13.2 Features . 233

13.3 Device-specific information . 235
Doc ID 16886 Rev 6 6/868

Contents RM0045
13.4 Modes of operation . 235

13.4.1 Functional mode . 235

13.4.2 Debug mode . 236

13.5 Register descriptions . 236

13.5.1 RTC Supervisor Control Register (RTCSUPV) 236

13.5.2 RTC Control Register (RTCC) . 237

13.5.3 RTC Status Register (RTCS) . 239

13.5.4 RTC Counter Register (RTCCNT) . 240

13.6 RTC functional description . 240

13.7 API functional description . 241

14 e200z0h Core . 242

14.1 Overview . 242

14.2 Microarchitecture summary . 242

14.3 Block diagram . 244

14.4 Features . 245

14.4.1 Instruction unit features . 245

14.4.2 Integer unit features . 246

14.4.3 Load/Store unit features . 246

14.4.4 e200z0h system bus features . 246

14.5 Core registers and programmer’s model . 246

15 Enhanced Direct Memory Access (eDMA). 249

15.1 Device-specific features . 249

15.1.1 Registers unavailable on this device . 249

15.2 Introduction . 250

15.2.1 Features . 251

15.3 Memory map and register definition . 251

15.3.1 Memory map . 251

15.3.2 Register descriptions . 253

15.4 Functional description . 274

15.4.1 eDMA basic data flow . 276

15.5 Initialization / application information . 279

15.5.1 eDMA initialization . 279

15.5.2 DMA programming errors . 281

15.5.3 DMA request assignments . 282
7/868 Doc ID 16886 Rev 6

RM0045 Contents
15.5.4 DMA arbitration mode considerations . 282

15.5.5 DMA transfer . 283

15.5.6 TCD status . 286

15.5.7 Channel linking . 287

15.5.8 Dynamic programming . 288

16 eDMA Channel Multiplexer (DMA_MUX) . 290

16.1 Introduction . 290

16.2 Features . 291

16.3 Modes of operation . 291

16.4 External signal description . 291

16.5 Memory map and register definition . 291

16.5.1 Channel configuration registers (CHCONFIGn) 292

16.6 DMA_MUX inputs . 293

16.6.1 DMA_MUX peripheral sources . 293

16.6.2 DMA_MUX periodic trigger inputs . 295

16.7 Functional description . 295

16.7.1 eDMA channels with periodic triggering capability 295

16.7.2 eDMA channels with no triggering capability . 297

16.8 Initialization/Application information . 298

16.8.1 Reset . 298

16.8.2 Enabling and configuring sources . 298

17 Interrupt Controller (INTC). 301

17.1 Introduction . 301

17.2 Features . 301

17.3 Block diagram . 302

17.4 Modes of operation . 303

17.4.1 Normal mode . 303

17.5 Memory map and register description . 304

17.5.1 Module memory map . 304

17.5.2 Register description . 305

17.6 Functional description . 312

17.6.1 Interrupt request sources . 318

17.6.2 Priority management . 318

17.6.3 Handshaking with processor . 320
Doc ID 16886 Rev 6 8/868

Contents RM0045
17.7 Initialization/application information . 322

17.7.1 Initialization flow . 322

17.7.2 Interrupt exception handler . 322

17.7.3 ISR, RTOS, and task hierarchy . 324

17.7.4 Order of execution . 325

17.7.5 Priority ceiling protocol . 326

17.7.6 Selecting priorities according to request rates and deadlines 327

17.7.7 Software configurable interrupt requests . 327

17.7.8 Lowering priority within an ISR . 328

17.7.9 Negating an interrupt request outside of its ISR 328

17.7.10 Examining LIFO contents . 329

18 Crossbar Switch (XBAR) . 330

18.1 Introduction . 330

18.2 Block diagram . 330

18.3 Overview . 331

18.4 Features . 331

18.5 Modes of operation . 331

18.5.1 Normal mode . 331

18.5.2 Debug mode . 331

18.6 Functional description . 331

18.6.1 Overview . 331

18.6.2 General operation . 332

18.6.3 Master ports . 332

18.6.4 Slave ports . 333

18.6.5 Priority assignment . 333

18.6.6 Arbitration . 333

19 System Integration Unit Lite (SIUL) . 335

19.1 Introduction . 335

19.2 Overview . 335

19.3 Features . 337

19.4 External signal description . 337

19.4.1 Detailed signal descriptions . 338

19.5 Memory map and register description . 339

19.5.1 SIUL memory map . 339
9/868 Doc ID 16886 Rev 6

RM0045 Contents
19.5.2 Register protection . 340

19.5.3 Register descriptions . 340

19.6 Functional description . 357

19.6.1 Pad control . 357

19.6.2 General purpose input and output pads (GPIO) 358

19.6.3 External interrupts . 359

19.7 Pin muxing . 360

20 LIN Controller (LINFlex) . 361

20.1 Introduction . 361

20.2 Main features . 361

20.2.1 LIN mode features . 361

20.2.2 UART mode features . 361

20.2.3 Features common to LIN and UART . 362

20.3 General description . 362

20.4 Fractional baud rate generation . 363

20.5 Operating modes . 365

20.5.1 Initialization mode . 365

20.5.2 Normal mode . 365

20.5.3 Low power mode (Sleep) . 365

20.6 Test modes . 366

20.6.1 Loop Back mode . 366

20.6.2 Self Test mode . 366

20.7 Memory map and registers description . 367

20.7.1 Memory map . 367

20.8 Functional description . 393

20.8.1 UART mode . 393

20.8.2 LIN mode . 395

20.8.3 8-bit timeout counter . 403

20.8.4 Interrupts . 404

21 LIN Controller (LINFlexD) . 406

21.1 Introduction . 406

21.2 Main features . 406

21.2.1 LIN mode features . 407

21.2.2 UART mode features . 407
Doc ID 16886 Rev 6 10/868

Contents RM0045
21.3 The LIN protocol . 408

21.3.1 Dominant and recessive logic levels . 408

21.3.2 LIN frames . 408

21.3.3 LIN header . 409

21.3.4 Response . 410

21.4 LINFlexD and software intervention . 411

21.5 Summary of operating modes . 411

21.6 Controller-level operating modes . 412

21.6.1 Initialization mode . 412

21.6.2 Normal mode . 413

21.6.3 Sleep (low-power) mode . 413

21.7 LIN modes . 413

21.7.1 Master mode . 413

21.7.2 Slave mode . 415

21.7.3 Slave mode with identifier filtering . 418

21.7.4 Slave mode with automatic resynchronization 420

21.8 Test modes . 422

21.8.1 Loop Back mode . 422

21.8.2 Self Test mode . 422

21.9 UART mode . 423

21.9.1 Data frame structure . 423

21.9.2 Buffer . 424

21.9.3 UART transmitter . 425

21.9.4 UART receiver . 426

21.10 Memory map and register description . 428

21.10.1 LIN control register 1 (LINCR1) . 430

21.10.2 LIN interrupt enable register (LINIER) . 433

21.10.3 LIN status register (LINSR) . 435

21.10.4 LIN error status register (LINESR) . 438

21.10.5 UART mode control register (UARTCR) . 439

21.10.6 UART mode status register (UARTSR) . 442

21.10.7 LIN timeout control status register (LINTCSR) 444

21.10.8 LIN output compare register (LINOCR) . 445

21.10.9 LIN timeout control register (LINTOCR) . 446

21.10.10 LIN fractional baud rate register (LINFBRR) . 447

21.10.11 LIN integer baud rate register (LINIBRR) . 447
11/868 Doc ID 16886 Rev 6

RM0045 Contents
21.10.12 LIN checksum field register (LINCFR) . 448

21.10.13 LIN control register 2 (LINCR2) . 449

21.10.14 Buffer identifier register (BIDR) . 450

21.10.15 Buffer data register least significant (BDRL) . 451

21.10.16 Buffer data register most significant (BDRM) . 452

21.10.17 Identifier filter enable register (IFER) . 453

21.10.18 Identifier filter match index (IFMI) . 454

21.10.19 Identifier filter mode register (IFMR) . 455

21.10.20 Identifier filter control registers (IFCR0–IFCR15) 456

21.10.21 Global control register (GCR) . 457

21.10.22 UART preset timeout register (UARTPTO) . 458

21.10.23 UART current timeout register (UARTCTO) . 459

21.10.24 DMA Tx enable register (DMATXE) . 460

21.10.25 DMA Rx enable register (DMARXE) . 461

21.11 DMA interface . 462

21.11.1 Master node, TX mode . 462

21.11.2 Master node, RX mode . 465

21.11.3 Slave node, TX mode . 467

21.11.4 Slave node, RX mode . 470

21.11.5 UART node, TX mode . 473

21.11.6 UART node, RX mode . 475

21.11.7 Use cases and limitations . 478

21.12 Functional description . 479

21.12.1 8-bit timeout counter . 479

21.12.2 Interrupts . 480

21.12.3 Fractional baud rate generation . 482

21.13 Programming considerations . 483

21.13.1 Master node . 484

21.13.2 Slave node . 485

21.13.3 Extended frames . 488

21.13.4 Timeout . 489

21.13.5 UART mode . 489

22 FlexCAN . 490

22.1 Information specific to this device . 490

22.1.1 Device-specific features . 490

22.2 Introduction . 490
Doc ID 16886 Rev 6 12/868

Contents RM0045
22.2.1 Overview . 491

22.2.2 FlexCAN module features . 492

22.2.3 Modes of operation . 493

22.3 External signal description . 493

22.3.1 Overview . 493

22.3.2 Signal descriptions . 494

22.4 Memory map/register definition . 494

22.4.1 FlexCAN memory mapping . 494

22.4.2 Message Buffer Structure . 496

22.4.3 Rx FIFO structure . 498

22.4.4 Register descriptions . 500

22.5 Functional description . 521

22.5.1 Overview . 521

22.5.2 Local Priority Transmission . 521

22.5.3 Transmit process . 521

22.5.4 Arbitration process . 522

22.5.5 Receive process . 523

22.5.6 Matching process . 524

22.5.7 Data coherence . 525

22.5.8 Rx FIFO . 528

22.5.9 CAN Protocol Related Features . 529

22.5.10 Modes of operation details . 533

22.5.11 Interrupts . 534

22.5.12 Bus interface . 534

22.6 Initialization/application information . 535

22.6.1 FlexCAN initialization sequence . 535

22.6.2 FlexCAN Addressing and RAM size configurations 536

23 Deserial Serial Peripheral Interface (DSPI) . 537

23.1 Introduction . 537

23.2 Features . 538

23.3 Modes of operation . 539

23.3.1 Master mode . 539

23.3.2 Slave mode . 539

23.3.3 Module Disable mode . 539

23.3.4 External Stop mode . 540
13/868 Doc ID 16886 Rev 6

RM0045 Contents
23.3.5 Debug mode . 540

23.4 External signal description . 540

23.4.1 Signal overview . 540

23.4.2 Signal names and descriptions . 540

23.5 Memory map and register description . 541

23.5.1 Memory map . 541

23.5.2 DSPI Module Configuration Register (DSPIx_MCR) 542

23.5.3 DSPI Transfer Count Register (DSPIx_TCR) . 545

23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn) . . 546

23.5.5 DSPI Status Register (DSPIx_SR) . 554

23.5.6 DSPI DMA / Interrupt Request Select and Enable Register
(DSPIx_RSER) . 556

23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR) 558

23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR) 560

23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn) 561

23.6 Functional description . 562

23.6.1 Modes of operation . 563

23.6.2 Start and stop of DSPI transfers . 564

23.6.3 Serial peripheral interface (SPI) configuration 565

23.6.4 DSPI baud rate and clock delay generation . 568

23.6.5 Transfer formats . 571

23.6.6 Continuous serial communications clock . 579

23.6.7 Interrupt/DMA requests . 582

23.6.8 Power saving features . 583

23.7 Initialization and application information . 584

23.7.1 How to change queues . 584

23.7.2 Baud rate settings . 585

23.7.3 Delay settings . 587

23.7.4 Calculation of FIFO pointer addresses . 587

24 Timers . 590

24.1 Introduction . 590

24.2 Technical overview . 590

24.2.1 Overview of the STM . 592

24.2.2 Overview of the eMIOS . 592

24.2.3 Overview of the PIT . 593

24.3 System Timer Module (STM) . 594
Doc ID 16886 Rev 6 14/868

Contents RM0045
24.3.1 Introduction . 594

24.3.2 External signal description . 594

24.3.3 Memory map and register definition . 594

24.3.4 Functional description . 598

24.4 Enhanced Modular IO Subsystem (eMIOS) . 598

24.4.1 Introduction . 598

24.4.2 External signal description . 601

24.4.3 Memory map and register description . 601

24.4.4 Functional description . 613

24.4.5 Initialization/Application information . 643

24.5 Periodic Interrupt Timer (PIT) . 647

24.5.1 Introduction . 647

24.5.2 Features . 647

24.5.3 Signal description . 648

24.5.4 Memory map and register description . 648

24.5.5 Functional description . 652

24.5.6 Initialization and application information . 653

25 Analog-to-Digital Converter (ADC) . 655

25.1 Overview . 655

25.1.1 Device-specific features . 655

25.1.2 Device-specific implementation . 656

25.2 Introduction . 656

25.3 Functional description . 657

25.3.1 Analog channel conversion . 657

25.3.2 Analog clock generator and conversion timings 660

25.3.3 ADC sampling and conversion timing . 660

25.3.4 ADC CTU (Cross Triggering Unit) . 663

25.3.5 Presampling . 664

25.3.6 Programmable analog watchdog . 665

25.3.7 DMA functionality . 666

25.3.8 Interrupts . 666

25.3.9 External decode signals delay . 666

25.3.10 Power-down mode . 667

25.3.11 Auto-clock-off mode . 667

25.4 Register descriptions . 667
15/868 Doc ID 16886 Rev 6

RM0045 Contents
25.4.1 Introduction . 667

25.4.2 Control logic registers . 671

25.4.3 Interrupt registers . 675

25.4.4 DMA registers . 681

25.4.5 Threshold registers . 684

25.4.6 Presampling registers . 684

25.4.7 Conversion timing registers CTR[0..2] . 687

25.4.8 Mask registers . 687

25.4.9 Delay registers . 692

25.4.10 Data registers . 693

25.4.11 Watchdog register . 694

26 Cross Triggering Unit (CTU) . 698

26.1 Introduction . 698

26.2 Main features . 698

26.3 Block diagram . 698

26.4 Memory map and register descriptions . 699

26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31) 699

26.5 Functional description . 700

26.5.1 Channel value . 701

27 Flash Memory . 703

27.1 Introduction . 703

27.2 Main features . 704

27.3 Block diagram . 704

27.4 Functional description . 705

27.4.1 Module structure . 705

27.4.2 Flash memory module sectorization . 706

27.4.3 TestFlash block . 707

27.4.4 Shadow sector . 708

27.4.5 User mode operation . 709

27.4.6 Reset . 710

27.4.7 Power-down mode . 710

27.4.8 Low power mode . 710

27.5 Register description . 711

27.5.1 CFlash register description . 713
Doc ID 16886 Rev 6 16/868

Contents RM0045
27.5.2 DFlash register description . 740

27.6 Programming considerations . 764

27.6.1 Modify operation . 764

27.6.2 Double word program . 765

27.6.3 Sector erase . 767

27.7 Platform flash memory controller . 775

27.7.1 Introduction . 775

27.7.2 Memory map and register description . 778

27.8 Functional description . 788

27.8.1 Access protections . 789

27.8.2 Read cycles – Buffer miss . 789

27.8.3 Read cycles – Buffer hit . 789

27.8.4 Write cycles . 789

27.8.5 Error termination . 790

27.8.6 Access pipelining . 790

27.8.7 Flash error response operation . 790

27.8.8 Bank0 page read buffers and prefetch operation 790

27.8.9 Bank1 Temporary Holding Register . 792

27.8.10 Read-while-write functionality . 793

27.8.11 Wait-state emulation . 794

28 Static RAM (SRAM) . 796

28.1 Introduction . 796

28.2 Register memory map . 796

28.3 SRAM ECC mechanism . 796

28.3.1 Access timing . 797

28.3.2 Reset effects on SRAM accesses . 798

28.4 Functional description . 798

28.5 Initialization and application information . 798

29 Register Protection . 799

29.1 Introduction . 799

29.2 Features . 799

29.3 Modes of operation . 800

29.4 External signal description . 800

29.5 Memory map and register description . 800
17/868 Doc ID 16886 Rev 6

RM0045 Contents
29.5.1 Memory map . 801

29.5.2 Register description . 802

29.6 Functional description . 804

29.6.1 General . 804

29.6.2 Change lock settings . 804

29.6.3 Access errors . 807

29.7 Reset . 808

29.8 Protected registers . 808

30 Software Watchdog Timer (SWT) . 813

30.1 Overview . 813

30.2 Features . 813

30.3 Modes of operation . 813

30.4 External signal description . 813

30.5 Memory map and register description . 814

30.5.1 Memory map . 814

30.5.2 Register description . 814

30.6 Functional description . 819

31 Error Correction Status Module (ECSM) . 821

31.1 Introduction . 821

31.2 Overview . 821

31.3 Features . 821

31.4 Memory map and register description . 821

31.4.1 Memory map . 821

31.4.2 Register description . 822

31.4.3 Register protection . 843

32 IEEE 1149.1 Test Access Port Controller (JTAGC) 844

32.1 Introduction . 844

32.2 Block diagram . 844

32.3 Overview . 844

32.4 Features . 845

32.5 Modes of operation . 845

32.5.1 Reset . 845
Doc ID 16886 Rev 6 18/868

Contents RM0045
32.5.2 IEEE 1149.1-2001 defined test modes . 845

32.6 External signal description . 846

32.7 Memory map and register description . 846

32.7.1 Instruction Register . 846

32.7.2 Bypass Register . 847

32.7.3 Device Identification Register . 847

32.7.4 Boundary Scan Register . 848

32.8 Functional Description . 848

32.8.1 JTAGC Reset Configuration . 848

32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port . 848

32.8.3 TAP controller state machine . 848

32.8.4 JTAGC instructions . 850

32.8.5 Boundary Scan . 852

32.9 e200z0 OnCE controller . 852

32.9.1 e200z0 OnCE Controller Block Diagram . 852

32.9.2 e200z0 OnCE Controller Functional Description 853

32.9.3 e200z0 OnCE Controller Register Description 853

32.10 Initialization/application information . 855

Revision history . 856
19/868 Doc ID 16886 Rev 6

RM0045 List of tables
List of tables

Table 1. Guide to this reference manual. 40
Table 2. Reference manual integration and functional content . 46
Table 3. SPC560D30/40 device comparison . 49
Table 4. SPC560D30/40 memory map. 53
Table 5. Voltage supply pin descriptions . 58
Table 6. System pin descriptions . 59
Table 7. Functional port pin descriptions . 59
Table 8. Boot mode selection . 71
Table 9. RCHW field descriptions. 73
Table 10. Examples of legal and illegal passwords . 75
Table 11. Censorship configuration and truth table . 76
Table 12. SSCM_STATUS[BMODE] values as used by BAM . 81
Table 13. Serial boot mode – baud rates . 81
Table 14. BAM censorship mode detection . 82
Table 15. UART boot mode download protocol . 87
Table 16. FlexCAN boot mode download protocol . 89
Table 17. SSCM memory map . 91
Table 18. SSCM_STATUS allowed register accesses . 91
Table 19. SSCM_STATUS field descriptions . 92
Table 20. SSCM_MEMCONFIG field descriptions . 92
Table 21. SSCM_MEMCONFIG allowed register accesses . 93
Table 22. SSCM_ERROR field descriptions. 94
Table 23. SSCM_ERROR allowed register accesses . 94
Table 24. SSCM_DEBUGPORT field descriptions . 95
Table 25. Debug status port modes . 95
Table 26. SSCM_DEBUGPORT allowed register accesses. 95
Table 27. Password Comparison Register field descriptions . 96
Table 28. SSCM_PWCMPH/L allowed register accesses . 97
Table 29. SPC560D30/40 — Peripheral clock sources . 99
Table 30. Truth table of crystal oscillator . 100
Table 31. FXOSC_CTL field descriptions. 101
Table 32. SIRC_CTL field descriptions. 103
Table 33. FIRC_CTL field descriptions. 105
Table 34. FMPLL memory map . 107
Table 35. CR field descriptions. 107
Table 36. Input divide ratios . 108
Table 37. Output divide ratios. 109
Table 38. Loop divide ratios . 109
Table 39. MR field descriptions . 110
Table 40. FMPLL lookup table . 111
Table 41. Progressive clock switching on pll_select rising edge . 111
Table 42. CMU memory map . 116
Table 43. CMU_CSR field descriptions . 117
Table 44. CMU_FDR field descriptions . 118
Table 45. CMU_HFREFR field descriptions . 118
Table 46. CMU_LFREFR field descriptions . 119
Table 47. CMU_ISR field descriptions . 119
Table 48. CMU_MDR field descriptions . 120
Doc ID 16886 Rev 6 20/868

List of tables RM0045
Table 49. MC_CGM Register Description . 123
Table 50. MC_CGM Memory Map . 124
Table 51. Output Clock Enable Register (CGM_OC_EN) Field Descriptions. 128
Table 52. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions 129
Table 53. System Clock Select Status Register (CGM_SC_SS) Field Descriptions 130
Table 54. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions . 130
Table 55. MC_ME Mode Descriptions . 137
Table 56. MC_ME Register Description . 139
Table 57. MC_ME Memory Map. 141
Table 58. Global Status Register (ME_GS) Field Descriptions . 147
Table 59. Mode Control Register (ME_MCTL) Field Descriptions . 149
Table 60. Mode Enable Register (ME_ME) Field Descriptions. 150
Table 61. Interrupt Status Register (ME_IS) Field Descriptions . 152
Table 62. Interrupt Mask Register (ME_IM) Field Descriptions . 153
Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions 153
Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions 155
Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions 161
Table 66. Peripheral Status Registers 0…4 (ME_PS0…4) Field Descriptions. 165
Table 67. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions. 165
Table 68. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) Field Descriptions. . . 166
Table 69. Peripheral Control Registers (ME_PCTL0…143) Field Descriptions 167
Table 70. Peripheral control registers by peripheral . 167
Table 71. MC_ME Resource Control Overview . 174
Table 72. MC_ME System Clock Selection Overview . 178
Table 73. MC_RGM register description . 188
Table 74. MC_RGM memory map . 189
Table 75. Functional Event Status Register (RGM_FES) Field Descriptions 191
Table 76. Destructive Event Status Register (RGM_DES) Field Descriptions 193
Table 77. Functional Event Reset Disable Register (RGM_FERD) Field Descriptions 194
Table 78. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions 195
Table 79. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions 196
Table 80. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions 197
Table 81. STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions 198
Table 82. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions. 199
Table 83. MC_RGM Reset Implications . 200
Table 84. MC_RGM Alternate Event Selection . 204
Table 85. MC_PCU Register Description . 208
Table 86. MC_PCU Memory Map. 208
Table 87. Power Domain Configuration Register Field Descriptions . 210
Table 88. Power Domain Status Register (PCU_PSTAT) Field Descriptions. 212
Table 89. VREG_CTL field descriptions . 217
Table 90. Wakeup vector mapping . 219
Table 91. WKPU memory map . 223
Table 92. NSR field descriptions . 224
Table 93. NCR field descriptions . 224
Table 94. WISR field descriptions. 225
Table 95. IRER field descriptions . 226
Table 96. WRER field descriptions . 226
Table 97. WIREER field descriptions . 227
Table 98. WIFEER field descriptions . 227
Table 99. WIFER field descriptions . 228
Table 100. WIPUER field descriptions . 228
21/868 Doc ID 16886 Rev 6

RM0045 List of tables
Table 101. RTC/API register map. 236
Table 102. RTCSUPV field descriptions. 236
Table 103. RTCC field descriptions . 237
Table 104. RTCS field descriptions . 239
Table 105. RTCCNTfield descriptions . 240
Table 106. eDMA memory map . 251
Table 107. EDMA_CR field descriptions . 254
Table 108. EDMA_ESR field descriptions . 256
Table 109. EDMA_ERQRL field descriptions . 258
Table 110. EDMA_EEIRL field descriptions . 259
Table 111. EDMA_SERQR field descriptions. 259
Table 112. EDMA_CERQR field descriptions. 260
Table 113. EDMA_SEEIR field descriptions. 260
Table 114. EDMA_CEEIR field descriptions. 261
Table 115. EDMA_CIRQR field descriptions . 261
Table 116. EDMA_CER field descriptions . 262
Table 117. EDMA_SSBR field descriptions . 263
Table 118. EDMA_CDSBR field descriptions . 263
Table 119. EDMA_IRQRL field descriptions. 264
Table 120. EDMA_ERL field descriptions. 265
Table 121. EDMA_HRSL field descriptions . 266
Table 122. EDMA_CPRn field descriptions . 267
Table 123. TCDn 32-bit memory structure . 267
Table 124. TCDn field descriptions. 269
Table 125. TCD primary control and status fields. 280
Table 126. DMA Request Summary for eDMA. 282
Table 127. Modulo Feature Example . 286
Table 128. Channel linking parameters . 288
Table 129. DMA_MUX memory map . 292
Table 130. CHCONFIGn field descriptions. 292
Table 131. Channel and trigger enabling . 293
Table 132. eDMA channel mapping . 293
Table 133. DMA_MUX periodic trigger inputs . 295
Table 134. Interrupt sources available . 302
Table 135. INTC memory map . 305
Table 136. INTC_MCR field descriptions . 306
Table 137. INTC_CPR field descriptions . 306
Table 138. PRI values . 307
Table 139. INTC_IACKR field descriptions. 308
Table 140. INTC_SSCIR[0:7] field descriptions . 310
Table 141. INTC_PSR0_3–INTC_PSR152_154 field descriptions. 311
Table 142. INTC Priority Select Register address offsets. 311
Table 143. Interrupt vector table. 312
Table 144. Order of ISR execution example. 325
Table 145. XBAR switch ports for SPC560D30/40. 330
Table 146. Hardwired bus master priorities . 333
Table 147. SIUL signal properties . 337
Table 148. SIUL memory map . 339
Table 149. MIDR1 field descriptions. 341
Table 150. MIDR2 field descriptions. 342
Table 151. ISR field descriptions . 343
Table 152. IRER field descriptions . 344
Doc ID 16886 Rev 6 22/868

List of tables RM0045
Table 153. IREER field descriptions . 345
Table 154. IFEER field descriptions . 345
Table 155. IFER field descriptions . 346
Table 156. PCRx field descriptions. 347
Table 157. PSMI0_3 field descriptions . 349
Table 158. Peripheral input pin selection . 349
Table 159. GPDO0_3 field descriptions . 352
Table 160. GPDI0_3 field descriptions . 353
Table 161. PGPDO0 – PGPDO3 register map. 354
Table 162. PGPDI0 – PGPDI3 register map . 354
Table 163. MPGPDO0 – MPGPDO7 register map. 355
Table 164. MPGPDO0..MPGPDO7 field descriptions . 356
Table 165. IFMC field descriptions . 357
Table 166. IFCPR field descriptions . 357
Table 167. Error calculation for programmed baud rates . 364
Table 168. LINFlex memory map . 367
Table 169. LINCR1 field descriptions . 369
Table 170. Checksum bits configuration. 370
Table 171. LIN master break length selection . 370
Table 172. Operating mode selection. 371
Table 173. LINIER field descriptions . 371
Table 174. LINSR field descriptions . 374
Table 175. LINESR field descriptions . 376
Table 176. UARTCR field descriptions . 378
Table 177. UARTSR field descriptions . 379
Table 178. LINTCSR field descriptions. 381
Table 179. LINOCR field descriptions . 382
Table 180. LINTOCR field descriptions . 383
Table 181. LINFBRR field descriptions. 383
Table 182. LINIBRR field descriptions . 384
Table 183. Integer baud rate selection . 384
Table 184. LINCFR field descriptions . 385
Table 185. LINCR2 field descriptions . 386
Table 186. BIDR field descriptions . 387
Table 187. BDRL field descriptions . 388
Table 188. BDRM field descriptions . 389
Table 189. IFER field descriptions . 389
Table 190. IFER[FACT] configuration. 389
Table 191. IFMI field descriptions. 390
Table 192. IFMR field descriptions . 391
Table 193. IFMR[IFM] configuration . 391
Table 194. IFCR2n field descriptions . 392
Table 195. IFCR2n + 1 field descriptions . 393
Table 196. Message buffer . 394
Table 197. Filter to interrupt vector correlation . 401
Table 198. LINFlex interrupt control . 404
Table 199. Errors in Master mode . 415
Table 200. Errors in Slave mode . 417
Table 201. Filter submodes . 418
Table 202. Filter to interrupt vector correlation . 420
Table 203. UART buffer structure. 425
Table 204. BDRL access in UART mode . 425
23/868 Doc ID 16886 Rev 6

RM0045 List of tables
Table 205. BDRM access in UART mode . 426
Table 206. UART receiver scenarios . 427
Table 207. LINFlexD_0 memory map. 428
Table 208. LINFlexD_1 memory map. 429
Table 209. LINCR1 field descriptions . 430
Table 211. LIN master break length selection . 432
Table 212. Operating mode selection. 432
Table 210. Checksum bits configuration. 432
Table 213. LINIER field descriptions . 433
Table 214. LINSR field descriptions . 436
Table 215. LINESR field descriptions . 438
Table 216. UARTCR field descriptions . 440
Table 217. UARTSR field descriptions . 442
Table 218. LINTCSR field descriptions. 444
Table 219. LINOCR field descriptions . 445
Table 220. LINTOCR field descriptions . 446
Table 221. LINFBRR field descriptions. 447
Table 222. LINIBRR field descriptions . 448
Table 223. Integer baud rate selection . 448
Table 224. LINCFR field descriptions . 448
Table 225. LINCR2 field descriptions . 449
Table 226. BIDR field descriptions . 451
Table 227. BDRL field descriptions . 451
Table 228. BDRM field descriptions . 452
Table 229. IFER field descriptions . 453
Table 230. IFER[FACT] configuration. 453
Table 231. IFMI field descriptions. 454
Table 232. IFMR field descriptions . 455
Table 233. IFMR[IFM] configuration . 455
Table 234. IFCR functionality based on mode . 456
Table 235. IFCR field descriptions . 457
Table 236. GCR field descriptions . 458
Table 237. UARTPTO field descriptions. 459
Table 238. UARTCTO field descriptions. 460
Table 239. DMATXE field descriptions . 461
Table 240. DMARXE field descriptions. 462
Table 241. Register settings (master node, TX mode) . 463
Table 242. TCD settings (master node, TX mode) . 465
Table 243. TCD settings (master node, RX mode). 467
Table 244. Register settings (slave node, TX mode) . 468
Table 245. TCD settings (slave node, TX mode) . 470
Table 246. Register settings (slave node, RX mode) . 471
Table 247. TCD settings (slave node, RX mode) . 472
Table 248. TCD settings (UART node, TX mode) . 475
Table 249. TCD settings (UART node, RX mode) . 478
Table 250. LINFlexD interrupt control . 480
Table 251. Error calculation for programmed baud rates . 483
Table 252. FlexCAN Signals. 494
Table 253. FlexCAN memory map . 495
Table 254. Message Buffer MB0 memory mapping . 495
Table 255. Message Buffer Structure field description . 496
Table 256. Message Buffer Code for Rx buffers . 497
Doc ID 16886 Rev 6 24/868

List of tables RM0045
Table 257. Message Buffer Code for Tx buffers . 498
Table 258. Rx FIFO Structure field description. 500
Table 259. MCR field descriptions . 501
Table 260. IDAM coding . 505
Table 261. CTRL field descriptions. 506
Table 262. TIMER field descriptions. 509
Table 263. RXGMASK field descriptions . 511
Table 264. ECR field descriptions . 513
Table 265. ESR field descriptions. 514
Table 266. Fault confinement state . 516
Table 267. MASK2 field descriptions . 517
Table 268. IMASK1 field descriptions. 518
Table 269. IFLAG2 field descriptions . 519
Table 270. IFLAG1 field descriptions . 520
Table 271. Time Segment Syntax . 531
Table 272. CAN Standard Compliant Bit Time Segment Settings . 531
Table 273. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate 532
Table 274. Signal properties. 540
Table 275. DSPI memory map . 541
Table 276. DSPIx_MCR field descriptions . 543
Table 277. DSPIx_TCR field descriptions . 546
Table 278. DSPIx_CTARn field descriptions . 547
Table 279. DSPI SCK duty cycle . 550
Table 280. DSPI transfer frame size. 550
Table 281. DSPI PCS to SCK delay scaler . 551
Table 282. DSPI After SCK delay scaler . 551
Table 283. DSPI delay after transfer scaler . 551
Table 284. DSPI baud rate scaler. 552
Table 285. DSPI SCK duty cycle . 552
Table 286. DSPI transfer frame size. 552
Table 287. DSPI PCS to SCK delay scaler . 553
Table 288. DSPI After SCK delay scaler . 553
Table 289. DSPI delay after transfer scaler . 553
Table 290. DSPI baud rate scaler. 554
Table 291. DSPIx_SR field descriptions. 555
Table 292. DSPIx_RSER field descriptions . 557
Table 293. DSPIx_PUSHR field descriptions . 559
Table 294. DSPIx_POPR field descriptions . 560
Table 295. DSPIx_TXFRn field descriptions . 561
Table 296. DSPIx_RXFRn field description . 562
Table 297. State transitions for start and stop of DSPI transfers . 565
Table 298. Baud rate computation example . 569
Table 299. CS to SCK delay computation example . 569
Table 300. After SCK delay computation example . 570
Table 301. Delay after transfer computation example . 570
Table 302. Peripheral chip select strobe assert computation example. 571
Table 303. Peripheral chip select strobe negate computation example . 571
Table 304. Delayed master sample point . 575
Table 305. Interrupt and DMA Request Conditions . 582
Table 306. Baud rate values. 586
Table 307. Delay values . 587
Table 308. eMIOS_0 channel to pin mapping . 593
25/868 Doc ID 16886 Rev 6

RM0045 List of tables
Table 309. STM memory map . 594
Table 310. STM_CR field descriptions . 596
Table 311. STM_CNT field descriptions . 596
Table 312. STM_CCRn field descriptions. 597
Table 313. STM_CIRn field descriptions . 597
Table 314. STM_CMPn field descriptions . 598
Table 315. eMIOS memory map. 601
Table 316. Unified Channel memory map . 602
Table 317. EMIOSMCR field descriptions . 603
Table 318. Global prescaler clock divider . 603
Table 319. EMIOSGFLAG field descriptions . 604
Table 320. EMIOSOUDIS field descriptions . 605
Table 321. EMIOSUCDIS field descriptions . 605
Table 322. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment. 607
Table 323. EMIOSC[n] field descriptions . 608
Table 324. UC internalprescaler clock divider . 610
Table 325. UC input filter bits . 610
Table 326. UC BSL bits . 611
Table 327. Channel mode selection . 611
Table 328. EMIOSS[n] field descriptions . 612
Table 329. PIT memory map . 648
Table 330. Timer channel n . 648
Table 331. PITMCR field descriptions . 649
Table 332. LDVAL field descriptions. 650
Table 333. CVAL field descriptions. 650
Table 334. TCTRL field descriptions . 651
Table 335. TFLG field descriptions. 652
Table 336. ADC sampling and conversion timing at 5 V for ADC_1. 662
Table 337. ADC sampling and conversion timing at 3.3 V for ADC_1 . 662
Table 338. Max/Min ADC_clk frequency and related configuration settings at 5 V for ADC_1 662
Table 339. Max/Min ADC_clk frequency and related configuration settings at 3.3 V for ADC_1 663
Table 340. Presampling voltage selection based on PREVALx fields . 664
Table 341. Values of WDGxH and WDGxL fields. 665
Table 342. 12-bit ADC_1 digital registers . 668
Table 343. MCR field descriptions . 672
Table 344. MSR field descriptions . 674
Table 345. ISR field descriptions . 675
Table 346. Interrupt Mask Register (IMR) field descriptions. 677
Table 347. CIMR field descriptions. 679
Table 348. ADC_1 WTISR field descriptions . 679
Table 349. ADC_1 WTIMR field descriptions . 680
Table 350. DMAE field descriptions . 681
Table 351. DMARx field descriptions . 683
Table 352. ADC_1 THRHLR field descriptions. 684
Table 353. PSCR field descriptions . 685
Table 354. PSR field descriptions. 686
Table 355. CTR field descriptions. 687
Table 356. NCMR field descriptions . 689
Table 357. JCMR field descriptions . 691
Table 358. DSDR field descriptions . 692
Table 359. PDEDR field descriptions . 693
Table 360. CDR field descriptions . 694
Doc ID 16886 Rev 6 26/868

List of tables RM0045
Table 361. CWSELR field descriptions. 695
Table 362. CWENRx field descriptions. 696
Table 363. AWORRx field descriptions . 697
Table 364. CTU memory map . 699
Table 365. CTU_EVTCFGRx field descriptions . 699
Table 366. Trigger source. 700
Table 367. CTU-to-ADC channel assignment . 702
Table 368. Flash memory features . 704
Table 369. CFlash module sectorization . 706
Table 370. DFlash module sectorization . 707
Table 371. CFlash TestFlash structure. 707
Table 372. DFlash TestFlash structure. 708
Table 373. Shadow sector structure . 708
Table 374. CFlash registers . 711
Table 375. DFlash registers . 712
Table 376. CFLASH_MCR field descriptions . 713
Table 378. Low address space configuration . 717
Table 379. Mid address space configuration . 717
Table 377. Array space size . 717
Table 380. CFLASH_MCR bits set/clear priority levels . 718
Table 381. CFLASH_LML field descriptions. 719
Table 382. CFLASH_NVLML field descriptions . 721
Table 383. CFLASH_SLL field descriptions . 723
Table 384. CFLASH_NVSLL field descriptions . 725
Table 385. CFLASH_LMS field descriptions . 726
Table 386. CFLASH_ADR field descriptions . 727
Table 387. CFLASH_ADR content: priority list . 727
Table 388. CFLASH_UT0 field descriptions . 728
Table 389. CFLASH_UT1 field descriptions . 730
Table 390. CFLASH_UT2 field descriptions . 731
Table 391. CFLASH_UMISR0 field descriptions . 732
Table 392. CFLASH_UMISR1 field descriptions . 733
Table 393. CFLASH_UMISR2 field descriptions . 734
Table 394. CFLASH_UMISR3 field descriptions . 735
Table 395. CFLASH_UMISR4 field descriptions . 736
Table 396. NVPWD0 field descriptions. 737
Table 397. NVPWD1 field descriptions. 738
Table 398. NVSCC0 field descriptions . 738
Table 399. NVSCC1 field descriptions . 739
Table 400. NVUSRO field descriptions. 740
Table 401. DFLASH_MCR field descriptions . 741
Table 402. Array space size . 744
Table 403. Low address space configuration . 745
Table 404. Mid address space configuration . 745
Table 405. DFLASH_MCR bits set/clear priority levels . 745
Table 406. DFLASH_LML field descriptions. 747
Table 407. DFLASH_NVLML field descriptions . 749
Table 408. DFLASH_SLL field descriptions . 751
Table 409. DFLASH_NVSLL field descriptions . 753
Table 410. DFLASH_LMS field descriptions . 754
Table 411. DFLASH_ADR field descriptions . 755
Table 412. DFLASH_ADR content: priority list . 755
27/868 Doc ID 16886 Rev 6

RM0045 List of tables
Table 413. DFLASH_UT0 field descriptions . 756
Table 414. DFLASH_UT1 field descriptions . 758
Table 415. DFLASH_UT2 field descriptions . 759
Table 416. DFLASH_UMISR0 field descriptions . 760
Table 417. DFLASH_UMISR1 field descriptions . 761
Table 418. DFLASH_UMISR2 field descriptions . 762
Table 419. DFLASH_UMISR3 field descriptions . 763
Table 420. DFLASH_UMISR4 field descriptions . 764
Table 421. Flash memory modify operations . 765
Table 422. Bit manipulation: Double words with the same ECC value . 773
Table 423. Flash memory-related regions in the system memory map . 779
Table 424. Platform flash memory controller 32-bit memory map . 779
Table 425. PFCR0 field descriptions . 781
Table 426. PFCR1 field descriptions . 785
Table 427. PFAPR field descriptions . 787
Table 428. NVPFAPR field descriptions . 788
Table 429. Platform flash memory controller stall-while-write interrupts. 794
Table 430. Additional wait-state encoding . 795
Table 431. Extended additional wait-state encoding . 795
Table 432. SRAM memory map . 796
Table 433. Number of wait states required for SRAM operations. 797
Table 434. Register protection memory map . 801
Table 435. SLBRn field descriptions. 802
Table 436. Soft lock bits vs. protected address . 803
Table 437. GCR field descriptions . 804
Table 438. Protected registers . 808
Table 439. SWT memory map . 814
Table 440. SWT_CR field descriptions. 815
Table 441. SWT_IR field descriptions . 817
Table 442. SWT_TO Register field descriptions. 817
Table 443. SWT_WN Register field descriptions . 818
Table 444. SWT_SR field descriptions . 818
Table 445. SWT_CO field descriptions. 819
Table 446. ECSM memory map . 821
Table 447. PCT field descriptions. 823
Table 448. REV field descriptions. 823
Table 449. IOPMC field descriptions . 824
Table 450. MWCR field descriptions . 825
Table 451. MIR field descriptions . 826
Table 452. MUDCR field descriptions. 827
Table 453. ECR field descriptions . 829
Table 454. ESR field descriptions. 831
Table 455. EEGR field descriptions . 832
Table 456. PFEAR field descriptions . 835
Table 457. PFEMR field descriptions . 836
Table 458. PFEAT field descriptions . 837
Table 459. PFEDR field descriptions . 838
Table 460. PREAR field descriptions . 838
Table 461. PRESR field descriptions . 839
Table 462. RAM syndrome mapping for single-bit correctable errors. 839
Table 463. PREMR field descriptions . 841
Table 464. PREAT field descriptions . 842
Doc ID 16886 Rev 6 28/868

List of tables RM0045
Table 465. PREDR field descriptions . 842
Table 466. JTAG signal properties . 846
Table 467. Device Identification Register Field Descriptions . 847
Table 468. JTAG Instructions . 850
Table 469. e200z0 OnCE Register Addressing. 854
Table 474. Document revision history . 856
29/868 Doc ID 16886 Rev 6

RM0045 List of figures
List of figures

Figure 1. Register figure conventions . 43
Figure 2. SPC560D30/40 series block diagram. 51
Figure 3. LQFP64 pin configuration (top view) . 56
Figure 4. LQFP100 pin configuration (top view) . 57
Figure 5. Boot mode selection . 72
Figure 6. Boot sector structure. 73
Figure 7. Flash memory boot mode sequence . 74
Figure 8. Censorship control in flash memory boot mode . 78
Figure 9. Censorship control in serial boot mode . 79
Figure 10. BAM logic flow . 80
Figure 11. BAM censorship mode detection . 83
Figure 12. BAM serial boot mode flow for censorship enabled and private password. 85
Figure 13. Start address, VLE bit and download size in bytes. 86
Figure 14. LINFlex bit timing in UART mode . 87
Figure 15. FlexCAN bit timing . 89
Figure 16. SSCM block diagram . 90
Figure 17. System Status Register (SSCM_STATUS) . 91
Figure 18. System Memory Configuration Register (SSCM_MEMCONFIG) . 92
Figure 19. Error Configuration (SSCM_ERROR). 93
Figure 20. Debug Status Port Register (SSCM_DEBUGPORT) . 94
Figure 21. Password Comparison Register High Word (SSCM_PWCMPH) . 96
Figure 22. Password Comparison Register Low Word (SSCM_PWCMPL). 96
Figure 23. SPC560D30/40 system clock generation . 98
Figure 24. Fast External Crystal Oscillator Control Register (FXOSC_CTL) 101
Figure 25. Low Power RC Control Register (SIRC_CTL) . 103
Figure 26. FIRC Oscillator Control Register (FIRC_CTL) . 105
Figure 27. FMPLL block diagram. 106
Figure 28. Control Register (CR) . 107
Figure 29. Modulation Register (MR). 109
Figure 30. FMPLL output clock division flow during progressive switching . 111
Figure 31. Frequency modulation . 112
Figure 32. Clock Monitor Unit diagram . 114
Figure 33. Control Status Register (CMU_CSR) . 117
Figure 34. Frequency Display Register (CMU_FDR). 118
Figure 35. High Frequency Reference Register FMPLL (CMU_HFREFR) . 118
Figure 36. Low Frequency Reference Register FMPLL (CMU_LFREFR) . 119
Figure 37. Interrupt status register (CMU_ISR) . 119
Figure 38. Measurement Duration Register (CMU_MDR) . 120
Figure 39. MC_CGM block diagram . 122
Figure 40. Output Clock Enable Register (CGM_OC_EN) . 128
Figure 41. Output Clock Division Select Register (CGM_OCDS_SC) . 128
Figure 42. System Clock Select Status Register (CGM_SC_SS) . 129
Figure 43. System Clock Divider Configuration Registers (CGM_SC_DC0…2) 130
Figure 44. MC_CGM System Clock Generation Overview . 132
Figure 45. MC_CGM Output Clock Multiplexer and PA[0] Generation . 133
Figure 46. MC_ME Block Diagram . 136
Figure 47. Global Status Register (ME_GS) . 146
Figure 48. Mode Control Register (ME_MCTL) . 148
Doc ID 16886 Rev 6 30/868

List of figures RM0045
Figure 49. Mode Enable Register (ME_ME) . 150
Figure 50. Interrupt Status Register (ME_IS). 151
Figure 51. Interrupt Mask Register (ME_IM) . 152
Figure 52. Invalid Mode Transition Status Register (ME_IMTS) . 153
Figure 53. Debug Mode Transition Status Register (ME_DMTS) . 154
Figure 54. RESET Mode Configuration Register (ME_RESET_MC). 157
Figure 55. TEST Mode Configuration Register (ME_TEST_MC) . 158
Figure 56. SAFE Mode Configuration Register (ME_SAFE_MC) . 158
Figure 57. DRUN Mode Configuration Register (ME_DRUN_MC) . 159
Figure 58. RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC) . 159
Figure 59. HALT Mode Configuration Register (ME_HALT_MC) . 160
Figure 60. STOP Mode Configuration Register (ME_STOP_MC) . 160
Figure 61. STANDBY Mode Configuration Register (ME_STANDBY_MC). 161
Figure 62. Peripheral Status Register 0 (ME_PS0) . 163
Figure 63. Peripheral Status Register 1 (ME_PS1) . 163
Figure 64. Peripheral Status Register 2 (ME_PS2) . 164
Figure 65. Peripheral Status Register 3 (ME_PS3) . 164
Figure 66. Run Peripheral Configuration Registers (ME_RUN_PC0…7) . 165
Figure 67. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) 166
Figure 68. Peripheral Control Registers (ME_PCTL0…143) . 167
Figure 69. MC_ME Mode Diagram . 169
Figure 70. MC_ME Transition Diagram . 180
Figure 71. MC_ME Application Example Flow Diagram . 184
Figure 72. MC_RGM block diagram . 186
Figure 73. Functional Event Status Register (RGM_FES). 191
Figure 74. Destructive Event Status Register (RGM_DES). 192
Figure 75. Functional Event Reset Disable Register (RGM_FERD) . 193
Figure 76. Destructive Event Reset Disable Register (RGM_DERD) . 195
Figure 77. Functional Event Alternate Request Register (RGM_FEAR) . 195
Figure 78. Functional Event Short Sequence Register (RGM_FESS). 196
Figure 79. STANDBY Reset Sequence Register (RGM_STDBY) . 198
Figure 80. Functional Bidirectional Reset Enable Register (RGM_FBRE) . 198
Figure 81. MC_RGM State Machine . 201
Figure 82. MC_PCU Block Diagram . 207
Figure 83. Power Domain #0 Configuration Register (PCU_PCONF0) . 209
Figure 84. Power Domain #1 Configuration Register (PCU_PCONF1) . 211
Figure 85. Power Domain Status Register (PCU_PSTAT) . 211
Figure 86. MC_PCU Events During Power Sequences (STANDBY mode). 213
Figure 87. Voltage Regulator Control Register (VREG_CTL) . 217
Figure 88. WKPU block diagram . 221
Figure 89. NMI Status Flag Register (NSR). 223
Figure 90. NMI Configuration Register (NCR) . 224
Figure 91. Wakeup/Interrupt Status Flag Register (WISR) . 225
Figure 92. Interrupt Request Enable Register (IRER) . 226
Figure 93. Wakeup Request Enable Register (WRER) . 226
Figure 94. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) 227
Figure 95. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) 227
Figure 96. Wakeup/Interrupt Filter Enable Register (WIFER) . 228
Figure 97. Wakeup/Interrupt Pullup Enable Register (WIPUER) . 228
Figure 98. NMI pad diagram . 229
Figure 99. External interrupt pad diagram . 231
Figure 100. RTC/API block diagram . 234
31/868 Doc ID 16886 Rev 6

RM0045 List of figures
Figure 101. Clock gating for RTC clocks . 235
Figure 102. RTC Supervisor Control Register (RTCSUPV). 236
Figure 103. RTC Control Register (RTCC) . 237
Figure 104. RTC Status Register (RTCS) . 239
Figure 105. RTC Counter Register (RTCCNT) . 240
Figure 106. e200z0h block diagram. 244
Figure 107. e200z0 SUPERVISOR Mode Program Model SPRs . 248
Figure 108. eDMA block diagram . 250
Figure 109. DMA Control Register (EDMA_CR) . 254
Figure 110. DMA Error Status (EDMA_ESR) Register . 256
Figure 111. DMA Enable Request (EDMA_ERQRL) Registers . 258
Figure 112. DMA Enable Error Interrupt (EDMA_EEIRL) Register . 259
Figure 113. DMA Set Enable Request (EDMA_SERQR) Register . 259
Figure 114. DMA Clear Enable Request (EDMA_CERQR) Register. 260
Figure 115. DMA Set Enable Error Interrupt (EDMA_SEEIR) Register . 260
Figure 116. DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register . 261
Figure 117. DMA Clear Interrupt Request (EDMA_CIRQR) Fields . 261
Figure 118. DMA Clear Error (EDMA_CER) Register . 262
Figure 119. DMA Set START Bit (EDMA_SSBR) Register . 262
Figure 120. DMA Clear DONE Status (EDMA_CDSBR) Register . 263
Figure 121. DMA Interrupt Request (EDMA_IRQRL) Registers . 264
Figure 122. DMA Error (EDMA_ERL) Registers . 265
Figure 123. DMA Hardware Request Status (EDMA_HRSL) Register . 265
Figure 124. DMA Channel n Priority (EDMA_CPRn) Register. 266
Figure 125. TCD structure . 268
Figure 126. eDMA operation, part 1. 277
Figure 127. eDMA operation, part 2. 278
Figure 128. eDMA operation, part 3. 279
Figure 129. Example of multiple loop iterations . 281
Figure 130. Memory array terms . 281
Figure 131. DMA_MUX block diagram . 290
Figure 132. Channel Configuration Registers (CHCONFIGn) . 292
Figure 133. DMA_MUX channel 0–3 block diagram . 296
Figure 134. DMA_MUX channel triggering: Normal operation. 296
Figure 135. DMA_MUX channel triggering: Ignored trigger . 297
Figure 136. DMA_MUX channel 4–15 block diagram . 298
Figure 137. INTC block diagram . 303
Figure 138. INTC Module Configuration Register (INTC_MCR) . 306
Figure 139. INTC Current Priority Register (INTC_CPR). 306
Figure 140. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 0. . . . 308
Figure 141. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 1. . . . 308
Figure 142. INTC End-of-Interrupt Register (INTC_EOIR) . 309
Figure 143. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3]). 309
Figure 144. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7]). 310
Figure 145. INTC Priority Select Register 0–3 (INTC_PSR[0:3]). 311
Figure 146. INTC Priority Select Register 152-154 (INTC_PSR[152:154]) . 311
Figure 147. Software vector mode handshaking timing diagram. 321
Figure 148. Hardware vector mode handshaking timing diagram . 322
Figure 149. XBAR block diagram. 330
Figure 150. System Integration Unit Lite block diagram . 336
Figure 151. MCU ID Register #1 (MIDR1) . 341
Figure 152. MCU ID Register #2 (MIDR2) . 342
Doc ID 16886 Rev 6 32/868

List of figures RM0045
Figure 153. Interrupt Status Flag Register (ISR) . 343
Figure 154. Interrupt Request Enable Register (IRER) . 344
Figure 155. Interrupt Rising-Edge Event Enable Register (IREER). 344
Figure 156. Interrupt Falling-Edge Event Enable Register (IFEER). 345
Figure 157. Interrupt Filter Enable Register (IFER) . 346
Figure 158. Pad Configuration Registers (PCRx) . 347
Figure 159. Pad Selection for Multiplexed Inputs Register (PSMI0_3) . 349
Figure 160. Port GPIO Pad Data Output Register 0–3 (GPDO0_3) . 352
Figure 161. Port GPIO Pad Data Input Register 0–3 (GPDI0_3). 353
Figure 162. Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23) . 356
Figure 163. Interrupt Filter Clock Prescaler Register (IFCPR). 357
Figure 164. Data Port example arrangement showing configuration for different port width accesses 358
Figure 165. External interrupt pad diagram . 359
Figure 166. LIN topology network . 363
Figure 167. LINFlex block diagram . 363
Figure 168. LINFlex operating modes . 365
Figure 169. LINFlex in loop back mode . 366
Figure 170. LINFlex in self test mode . 367
Figure 171. LIN control register 1 (LINCR1) . 368
Figure 172. LIN interrupt enable register (LINIER) . 371
Figure 173. LIN status register (LINSR). 373
Figure 174. LIN error status register (LINESR) . 376
Figure 175. UART mode control register (UARTCR). 377
Figure 176. UART mode status register (UARTSR) . 379
Figure 177. LIN timeout control status register (LINTCSR) . 381
Figure 178. LIN output compare register (LINOCR) . 382
Figure 179. LIN timeout control register (LINTOCR) . 382
Figure 180. LIN fractional baud rate register (LINFBRR). 383
Figure 181. LIN integer baud rate register (LINIBRR) . 384
Figure 182. LIN checksum field register (LINCFR) . 385
Figure 183. LIN control register 2 (LINCR2) . 385
Figure 184. Buffer identifier register (BIDR). 387
Figure 185. Buffer data register LSB (BDRL) . 388
Figure 186. Buffer data register MSB (BDRM) . 388
Figure 187. Identifier filter enable register (IFER) . 389
Figure 188. Identifier filter match index (IFMI) . 390
Figure 189. Identifier filter mode register (IFMR) . 391
Figure 190. Identifier filter control register (IFCR2n) . 392
Figure 191. Identifier filter control register (IFCR2n + 1) . 393
Figure 192. UART mode 8-bit data frame . 394
Figure 193. UART mode 9-bit data frame . 394
Figure 194. Filter configuration—register organization . 400
Figure 195. Identifier match index . 401
Figure 196. LIN synch field measurement . 402
Figure 197. Header and response timeout . 404
Figure 198. LINFlexD block diagram . 406
Figure 199. LIN network topology . 408
Figure 200. LIN frame structure . 409
Figure 201. Break field. 409
Figure 202. Sync pattern . 410
Figure 203. Structure of the data field . 410
Figure 204. Identifier . 410
33/868 Doc ID 16886 Rev 6

RM0045 List of figures
Figure 205. LINFlexD controller operating modes . 412
Figure 206. Filter configuration - register organization . 419
Figure 207. Identifier match index . 420
Figure 208. LIN sync field measurement . 421
Figure 209. LINFlexD in Loop Back mode . 422
Figure 210. LINFlexD in Self Test mode . 423
Figure 211. UART mode 8-bit data frame . 423
Figure 212. UART mode 9-bit data frame . 424
Figure 213. UART mode 16-bit data frame . 424
Figure 214. UART mode 17-bit data frame . 424
Figure 215. LIN control register 1 (LINCR1) . 430
Figure 216. LIN interrupt enable register (LINIER) . 433
Figure 217. LIN status register (LINSR). 435
Figure 218. LIN error status register (LINESR) . 438
Figure 219. UART mode control register (UARTCR). 439
Figure 220. UART mode status register (UARTSR) . 442
Figure 221. LIN timeout control status register (LINTCSR) . 444
Figure 222. LIN output compare register (LINOCR) . 445
Figure 223. LIN timeout control register (LINTOCR) . 446
Figure 224. LIN timeout control register (LINTOCR) . 447
Figure 225. LIN integer baud rate register (LINIBRR) . 447
Figure 226. LIN checksum field register (LINCFR) . 448
Figure 227. LIN control register 2 (LINCR2) . 449
Figure 228. Buffer identifier register (BIDR). 450
Figure 229. Buffer data register least significant (BDRL). 451
Figure 230. Buffer data register most significant (BDRM) . 452
Figure 231. Identifier filter enable register (IFER) . 453
Figure 232. Identifier filter match index (IFMI) . 454
Figure 233. Identifier filter mode register (IFMR) . 455
Figure 234. Identifier filter control registers (IFCR0–IFCR15) . 456
Figure 235. Global control register (GCR) . 457
Figure 236. UART preset timeout register (UARTPTO). 459
Figure 237. UART current timeout register (UARTCTO) . 460
Figure 238. DMA Tx enable register (DMATXE) . 461
Figure 239. DMA Rx enable register (DMARXE) . 461
Figure 240. TCD chain memory map (master node, TX mode) . 463
Figure 241. FSM to control the DMA TX interface (master node) . 464
Figure 242. TCD chain memory map (master node, RX mode). 465
Figure 243. FSM to control the DMA RX interface (master node) . 466
Figure 244. TCD chain memory map (slave node, TX mode) . 467
Figure 245. FSM to control the DMA TX interface (slave node) . 469
Figure 246. TCD chain memory map (slave node, RX mode) . 470
Figure 247. FSM to control the DMA RX interface (slave node) . 472
Figure 248. TCD chain memory map (UART node, TX mode) . 473
Figure 249. FSM to control the DMA TX interface (UART node) . 474
Figure 250. TCD chain memory map (UART node, RX mode) . 475
Figure 251. FSM to control the DMA RX interface (UART node). 477
Figure 252. Header and response timeout . 480
Figure 253. Interrupt diagram . 482
Figure 254. Programming consideration: master node, transmitter . 484
Figure 255. Programming consideration: master node, receiver . 484
Figure 256. Programming consideration: master node, transmitter, bit error. 484
Doc ID 16886 Rev 6 34/868

List of figures RM0045
Figure 257. Programming consideration: master node, receiver, checksum error 484
Figure 258. Programming consideration: slave node, transmitter, no filters . 485
Figure 259. Programming consideration: slave node, receiver, no filters . 485
Figure 260. Programming consideration: slave node, transmitter, no filters, bit error 485
Figure 261. Programming consideration: slave node, receiver, no filters, checksum error 485
Figure 262. Programming consideration: slave node, at least one TX filter, BF is reset, ID matches filter

 . 486
Figure 263. Programming consideration: slave node, at least one RX filter, BF is reset, ID matches filter

 . 486
Figure 264. Programming consideration: slave node, RX only, TX only, RX and TX filters, ID not matching

filter, BF is reset . 486
Figure 265. Programming consideration: slave node, TX filter, BF is set . 487
Figure 266. Programming consideration: slave node, RX filter, BF is set . 487
Figure 267. Programming consideration: slave node, TX filter, RX filter, BF is set 488
Figure 268. Programming consideration: extended frames . 488
Figure 269. Programming consideration: response timeout . 489
Figure 270. Programming consideration: frame timeout . 489
Figure 271. Programming consideration: header timeout . 489
Figure 272. Programming consideration: UART mode . 489
Figure 273. FlexCAN block diagram . 491
Figure 274. Message Buffer Structure . 496
Figure 275. Rx FIFO structure . 499
Figure 276. ID Table 0–7 . 499
Figure 277. Module Configuration Register (MCR) . 501
Figure 278. Control Register (CTRL) . 505
Figure 279. Free Running Timer (TIMER) . 509
Figure 280. Rx Global Mask Register (RXGMASK). 510
Figure 281. Error Counter Register (ECR). 513
Figure 282. Error and Status Register (ESR) . 514
Figure 283. Interrupt Masks 2 Register (IMASK2) . 517
Figure 284. Interrupt Masks 1 Register (IMASK1) . 518
Figure 285. Interrupt Flags 2 Register (IFLAG2) . 519
Figure 286. Interrupt Flags 1 Register (IFLAG1) . 520
Figure 287. CAN Engine Clocking Scheme . 530
Figure 288. Segments within the Bit Time . 531
Figure 289. Arbitration, Match and Move Time Windows . 532
Figure 290. DSPI block diagram . 537
Figure 291. DSPI with queues and eDMA . 538
Figure 292. DSPI Module Configuration Register (DSPIx_MCR) . 543
Figure 293. DSPI Transfer Count Register (DSPIx_TCR) . 546
Figure 294. DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn) 547
Figure 295. DSPI Status Register (DSPIx_SR) . 554
Figure 296. DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER) 557
Figure 297. DSPI PUSH TX FIFO Register (DSPIx_PUSHR) . 558
Figure 298. DSPI POP RX FIFO Register (DSPIx_POPR) . 560
Figure 299. DSPI Transmit FIFO Register 0–3 (DSPIx_TXFRn) . 561
Figure 300. DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn) . 562
Figure 301. SPI serial protocol overview . 563
Figure 302. DSPI start and stop state diagram . 565
Figure 303. Communications clock prescalers and scalers . 569
Figure 304. Peripheral chip select strobe timing . 571
Figure 305. DSPI transfer timing diagram (MTFE = 0, CPHA = 0, FMSZ = 8) 573
35/868 Doc ID 16886 Rev 6

RM0045 List of figures
Figure 306. DSPI transfer timing diagram (MTFE = 0, CPHA = 1, FMSZ = 8) 574
Figure 307. DSPI modified transfer format (MTFE = 1, CPHA = 0, fSCK = fSYS / 4) 576
Figure 308. DSPI modified transfer format (MTFE = 1, CPHA = 1, fSCK = fSYS / 4) 577
Figure 309. Example of non-continuous format (CPHA = 1, CONT = 0) . 578
Figure 310. Example of continuous transfer (CPHA = 1, CONT = 1). 578
Figure 311. Polarity switching between frames . 579
Figure 312. Continuous SCK timing diagram (CONT= 0) . 580
Figure 313. Continuous SCK timing diagram (CONT=1) . 581
Figure 314. TX FIFO pointers and counter . 588
Figure 315. Interaction between timers and relevant peripherals . 591
Figure 316. STM Control Register (STM_CR) . 595
Figure 317. STM Count Register (STM_CNT) . 596
Figure 318. STM Channel Control Register (STM_CCRn) . 597
Figure 319. STM Channel Interrupt Register (STM_CIRn) . 597
Figure 320. STM Channel Compare Register (STM_CMPn). 598
Figure 321. Channel configuration. 600
Figure 322. eMIOS Module Configuration Register (EMIOSMCR) . 602
Figure 323. eMIOS Global FLAG (EMIOSGFLAG) Register . 604
Figure 324. eMIOS Output Update Disable (EMIOSOUDIS) Register. 604
Figure 325. eMIOS Enable Channel (EMIOSUCDIS) Register . 605
Figure 326. eMIOS UC A Register (EMIOSA[n]) . 606
Figure 327. eMIOS UC B Register (EMIOSB[n]) . 606
Figure 328. eMIOS UC Counter Register (EMIOSCNT[n]) . 607
Figure 329. eMIOS UC Control Register (EMIOSC[n]) . 608
Figure 330. eMIOS UC Status Register (EMIOSS[n]) . 612
Figure 331. eMIOS UC Alternate A register (EMIOSALTA[n]). 613
Figure 332. Single action input capture with rising edge triggering example . 615
Figure 333. Single action input capture with both edges triggering example. 615
Figure 334. SAOC example with EDPOL value being transferred to the output flip-flop 616
Figure 335. SAOC example toggling the output flip-flop . 616
Figure 336. SAOC example with flag behavior . 617
Figure 337. Input pulse width measurement example . 618
Figure 338. B1 and A1 updates at EMIOSA[n] and EMIOSB[n] reads . 618
Figure 339. Input period measurement example . 619
Figure 340. A1 and B1 updates at EMIOSA[n] and EMIOSB[n] reads . 620
Figure 341. Double action output compare with FLAG set on the second match 621
Figure 342. Double action output compare with FLAG set on both matches. 621
Figure 343. DAOC with transfer disabling example . 622
Figure 344. Modulus Counter Up mode example . 623
Figure 345. Modulus Counter Up/Down mode example . 624
Figure 346. Modulus Counter Buffered (MCB) Up Count mode . 625
Figure 347. Modulus Counter Buffered (MCB) Up/Down mode. 625
Figure 348. MCB Mode A1 Register Update in Up Counter mode . 626
Figure 349. MCB Mode A1 Register Update in Up/Down Counter mode . 626
Figure 350. OPWFMB A1 and B1 match to Output Register Delay. 627
Figure 351. OPWFMB Mode with A1 = 0 (0% duty cycle) . 628
Figure 352. OPWFMB A1 and B1 registers update and flags . 629
Figure 353. OPWFMB mode from 100% to 0% duty cycle . 629
Figure 354. OPWMCB A1 and B1 registers load. 631
Figure 355. OPWMCB with lead dead time insertion. 632
Figure 356. OPWMCB with trail dead time insertion . 633
Figure 357. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3) . 635
Doc ID 16886 Rev 6 36/868

List of figures RM0045
Figure 358. OPWMB mode matches and flags . 636
Figure 359. OPWMB mode with 0% duty cycle . 637
Figure 360. OPWMB mode from 100% to 0% duty cycle . 637
Figure 361. OPWMT example . 640
Figure 362. OPWMT with 0% Duty Cycle . 640
Figure 363. OPWMT with 100% duty cycle . 641
Figure 364. lnput programmable filter submodule diagram . 641
Figure 365. Input programmable filter example . 642
Figure 366. Time base period when running in the fastest prescaler ratio . 644
Figure 367. Time base generation with external clock and clear on match start 645
Figure 368. Time base generation with internal clock and clear on match start 645
Figure 369. Time base generation with clear on match end . 646
Figure 370. PIT block diagram. 647
Figure 371. PIT Module Control Register (PITMCR) . 649
Figure 372. Timer Load Value Register (LDVAL) . 649
Figure 373. Current Timer Value Register (CVAL) . 650
Figure 374. Timer Control Register (TCTRL). 651
Figure 375. Timer Flag Register (TFLG) . 651
Figure 376. Stopping and starting a timer . 652
Figure 377. Modifying running timer period . 653
Figure 378. Dynamically setting a new load value. 653
Figure 379. ADC implementation. 656
Figure 380. Normal conversion flow . 657
Figure 381. Injected sample/conversion sequence . 659
Figure 382. Sampling and conversion timings . 661
Figure 383. Presampling sequence . 664
Figure 384. Presampling sequence with PRECONV = 1 . 664
Figure 385. Guarded area . 665
Figure 386. Main Configuration Register (MCR) . 672
Figure 387. Main Status Register (MSR) . 674
Figure 388. Interrupt Status Register (ISR) . 675
Figure 389. Channel Pending Register 0 (CEOCFR0) . 676
Figure 390. Channel Pending Register 1 (CEOCFR1) . 676
Figure 391. Channel Pending Register 2 (CEOCFR2) . 677
Figure 392. Interrupt Mask Register (IMR) . 677
Figure 393. Channel Interrupt Mask Register 0 (CIMR0). 678
Figure 394. Channel Interrupt Mask Register 1 (CIMR1). 678
Figure 395. Channel Interrupt Mask Register 2 (CIMR2). 679
Figure 396. ADC_1 Watchdog Threshold Interrupt Status Register (WTISR) 679
Figure 397. ADC_1 Watchdog Threshold Interrupt Mask Register (WTIMR) 680
Figure 398. DMA Enable Register (DMAE) . 681
Figure 399. DMA Channel Select Register 0 (DMAR0) . 682
Figure 400. DMA Channel Select Register 1 (DMAR1) . 682
Figure 401. DMA Channel Select Register 2 (DMAR2) . 683
Figure 402. ADC_1 Threshold Register THRHLR[0..2] . 684
Figure 403. Presampling Control Register (PSCR) . 684
Figure 404. Presampling Register 0 (PSR0) . 685
Figure 405. Presampling Register 1 (PSR1) . 686
Figure 406. Presampling Register 2 (PSR2) . 686
Figure 407. Conversion timing registers CTR[0..2] . 687
Figure 408. Normal Conversion Mask Register 0 (NCMR0) . 688
Figure 409. Normal Conversion Mask Register 1 (NCMR1) . 688
37/868 Doc ID 16886 Rev 6

RM0045 List of figures
Figure 410. Normal Conversion Mask Register 2 (NCMR2) . 689
Figure 411. Injected Conversion Mask Register 0 (JCMR0) . 690
Figure 412. Injected Conversion Mask Register 1 (JCMR1) . 690
Figure 413. Injected Conversion Mask Register 2 (JCMR2) . 691
Figure 414. Decode Signals Delay Register (DSDR). 692
Figure 415. Power-down Exit Delay Register (PDEDR) . 692
Figure 416. Channel Data Register (CDR[0..95]) . 693
Figure 417. Channel Watchdog Select Register (CWSELR[0..11]) . 694
Figure 418. Channel Watchdog Enable Register 0 (CWENR0). 695
Figure 419. Channel Watchdog Enable Register 1 (CWENR1). 695
Figure 420. Channel Watchdog Enable Register 2 (CWENR2). 696
Figure 421. Analog Watchdog Out of Range Register 0 (AWORR0). 696
Figure 422. Analog Watchdog Out of Range Register 1 (AWORR1). 697
Figure 423. Analog Watchdog Out of Range Register 2 (AWORR2). 697
Figure 424. Cross Triggering Unit block diagram . 698
Figure 425. Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31) . 699
Figure 426. Flash memory architecture . 703
Figure 427. CFlash and DFlash module structures . 705
Figure 428. CFlash Module Configuration Register (CFLASH_MCR) . 713
Figure 429. CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML). 718
Figure 430. CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML) . 720
Figure 431. CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL) . . . 722
Figure 432. CFlash Nonvolatile Secondary Low/mid address space block Locking register

(CFLASH_NVSLL) . 724
Figure 433. CFlash Low/Mid address space block Select register (CFLASH_LMS) 726
Figure 434. CFlash Address Register (CFLASH_ADR). 727
Figure 435. CFlash User Test 0 register (CFLASH_UT0) . 728
Figure 436. CFlash User Test 1 register (CFLASH_UT1) . 730
Figure 437. CFlash User Test 2 register (CFLASH_UT2) . 731
Figure 438. CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0). 732
Figure 439. CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1). 733
Figure 440. CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2). 734
Figure 441. CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3). 735
Figure 442. CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4). 736
Figure 443. CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0) 737
Figure 444. CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1) 737
Figure 445. CFlash Nonvolatile System Censorship Control 0 register (NVSCC0) 738
Figure 446. CFlash Nonvolatile System Censorship Control 1 register (NVSCC1) 739
Figure 447. CFlash Nonvolatile User Options register (NVUSRO) . 740
Figure 448. DFlash Module Configuration Register (DFLASH_MCR) . 741
Figure 449. DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML). 746
Figure 450. DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML) . 748
Figure 451. DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL) 750
Figure 452. DFlash Nonvolatile Secondary Low/mid address space block Locking register

(DFLASH_NVSLL) . 752
Figure 453. DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS). 754
Figure 454. DFlash Address Register (DFLASH_ADR). 755
Figure 455. DFlash User Test 0 register (DFLASH_UT0) . 756
Figure 456. DFlash User Test 1 register (DFLASH_UT1) . 758
Figure 457. DFlash User Test 2 register (DFLASH_UT2) . 759
Figure 458. DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0). 760
Figure 459. DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1). 761
Doc ID 16886 Rev 6 38/868

List of figures RM0045
Figure 460. DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2). 762
Figure 461. DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3). 763
Figure 462. DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4). 764
Figure 463. Power Architecture e200z0h RPP reference platform block diagram. 776
Figure 464. PFlash Configuration Register 0 (PFCR0) . 780
Figure 465. PFlash Configuration Register 1 (PFCR1) . 784
Figure 466. PFlash Access Protection Register (PFAPR) . 787
Figure 467. Nonvolatile Platform Flash Access Protection Register (NVPFAPR) 788
Figure 468. Register Protection block diagram . 799
Figure 469. Register protection memory diagram . 800
Figure 470. Soft Lock Bit Register (SLBRn) . 802
Figure 471. Global Configuration Register (GCR) . 803
Figure 472. Change Lock Settings Directly Via Area #4 . 805
Figure 473. Change Lock Settings for 16-bit Protected Addresses . 805
Figure 474. Change Lock Settings for 32-bit Protected Addresses . 806
Figure 475. Change Lock Settings for Mixed Protection . 806
Figure 476. Enable Locking Via Mirror Module Space (Area #3). 807
Figure 477. Enable Locking for Protected and Unprotected Addresses . 807
Figure 478. SWT Control Register (SWT_CR) . 815
Figure 479. SWT Interrupt Register (SWT_IR) . 816
Figure 480. SWT Time-Out Register (SWT_TO) . 817
Figure 481. SWT Window Register (SWT_WN) . 817
Figure 482. SWT Service Register (SWT_SR) . 818
Figure 483. SWT Counter Output Register (SWT_CO) . 818
Figure 484. Processor Core Type Register (PCT) . 823
Figure 485. SoC-Defined Platform Revision Register (REV). 823
Figure 486. IPS On-Platform Module Configuration Register (IOPMC). 824
Figure 487. Miscellaneous Wakeup Control (MWCR) Register . 825
Figure 488. Miscellaneous Interrupt (MIR) Register . 826
Figure 489. Miscellaneous User-Defined Control (MUDCR) Register . 827
Figure 490. ECC Configuration (ECR) Register . 828
Figure 491. ECC Status Register (ESR) . 831
Figure 492. ECC Error Generation Register (EEGR). 832
Figure 493. Platform Flash ECC Address Register (PFEAR) . 835
Figure 494. Platform Flash ECC Master Number Register (PFEMR) . 836
Figure 495. Platform Flash ECC Attributes Register (PFEAT). 836
Figure 496. Platform Flash ECC Data Register (PFEDR) . 837
Figure 497. Platform RAM ECC Address Register (PREAR). 838
Figure 498. Platform RAM ECC Syndrome Register (PRESR) . 839
Figure 499. Platform RAM ECC Master Number Register (PREMR) . 841
Figure 500. Platform RAM ECC Attributes Register (PREAT) . 841
Figure 501. Platform RAM ECC Data Register (PREDR) . 842
Figure 502. JTAG Controller Block Diagram . 844
Figure 503. 5-bit Instruction Register . 847
Figure 504. Device Identification Register . 847
Figure 505. Shifting data through a register. 848
Figure 506. IEEE 1149.1-2001 TAP controller finite state machine. 849
Figure 507. e200z0 OnCE Block Diagram. 853
Figure 508. OnCE Command Register (OCMD) . 854
39/868 Doc ID 16886 Rev 6

RM0045 Preface
1 Preface

1.1 Overview
The primary objective of this document is to define the functionality of the SPC560D30/40
microcontroller for use by software and hardware developers. The SPC560D30/40 is built on
Power Architecture® technology and integrates technologies that are important for today’s
automotive vehicle body applications.

The information in this book is subject to change without notice, as described in the
disclaimers on the title page. As with any technical documentation, it is the reader’s
responsibility to be sure he or she is using the most recent version of the documentation.

To locate any published errata or updates for this document, visit the ST Web site at
www.st.com.

1.2 Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products with the SPC560D30/40 device. It is assumed
that the reader understands operating systems, microprocessor system design, basic
principles of software and hardware, and basic details of the Power Architecture.

1.3 Guide to this reference manual

Table 1. Guide to this reference manual

Chapter
Description Functional group

Title

2 Introduction
General overview, family description, feature list and
information on how to use the reference manual in
conjunction with other available documents.

Introductory
material

3 Memory Map Memory map of all peripherals and memory. Memory map

4 Signal Description Pinout diagrams and descriptions of all pads. Signals

5

Microcontroller Boot

Boot

– Boot mechanism

– Describes what configuration is required by the user
and what processes are involved when the
microcontroller boots from flash memory or serial
boot modes.

– Describes censorship.

– Boot Assist Module (BAM) Features of BAM code and when it's used.

– System Status and
Configuration Module
(SSCM)

Reports information about current state and
configuration of the microcontroller.
Doc ID 16886 Rev 6 40/868

Preface RM0045
6 Clock Description
– Covers configuration of all of the clock sources in

the system.

– Describes the Clock Monitor Unit (CMU).

Clocks and power

(includes operating
mode configuration
and how to wake up

from low power
mode)

7
Clock Generation Module
(MC_CGM)

Determines how the clock sources are used (including
clock dividers) to generate the reference clocks for all
of the modules and peripherals.

8 Mode Entry Module (MC_ME)
Determines the clock source, memory, power and
peripherals that are available in each operating mode.

9
Reset Generation Module
(MC_RGM)

Manages the process of entering and exiting reset,
allows reset sources to be configured (including
LVD's) and provides status reporting.

10 Power Control Unit (MC_PCU)
Controls the power to different power domains within
the microcontroller (allowing SRAM to be selectively
powered in STANDBY mode).

11
Voltage Regulators and Power
Supplies

Information on voltage regulator implementation.
Includes enable bit for 5 V LVD (see also MC_RGM).

12 Wakeup Unit (WKPU)
Always-active analog block. Details configuration of 2
internal (API/RTC) and 30 external (pin) low power
mode wakeup sources.

13
Real Time Clock / Autonomous
Periodic Interrupt (RTC/API)

Details configuration and operation of timers that are
predominately used for system wakeup.

14 e200z0h Core
Overview on cores. For more details consult the core
reference manuals available on www.st.com.

Core platform
modules

15
Enhanced Direct Memory
Access (eDMA)

Operation and configuration information on the 32-
channel direct memory access that can be used to
transfer data between any memory mapped locations.
Certain peripherals have eDMA triggers that can be
used to feed configuration data to, or read results from
the peripherals.

16
eDMA Channel Multiplexer
(DMA_MUX)

Operation and configuration information for the eDMA
multiplexer, which takes the 56 possible eDMA
sources (triggers from the DSPI, eMIOS, I2C, ADC
and LINFlexD) and multiplexes them onto the 32
eDMA channels.

17 Interrupt Controller (INTC)
Provides the configuration and control of all of the
external interrupts (non-core) that are then routed to
the IVOR4 core interrupt vector.

18 Crossbar Switch (XBAR)
Describes the connections of the XBAR masters and
slaves on this microcontroller.

19
System Integration Unit Lite
(SIUL)

How to configure the pins or ports for input or output
functions including external interrupts and DSI
serialization.

Ports

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title
41/868 Doc ID 16886 Rev 6

RM0045 Preface
20 LIN Controller (LINFlex)

These chapters describe the configuration and
operation of the various communication modules.
Some of these modules support eDMA requests to fill
/ empty buffer queues to minimize CPU overhead.

Communication
modules

21 LIN Controller (LINFlexD)

22 FlexCAN

23
Deserial Serial Peripheral
Interface (DSPI)

24

Timers

Timer modules

– Technical overview

Gives an overview of the available system timer
modules showing links to other modules as well as
tables detailing the external pins associated with
eMIOS timer channels.

– System Timer Module (STM)
A simple 32-bit free running counter with 4 compare
channels with interrupt on match. It can be read at any
time; this is very useful for measuring execution times.

– Enhanced Modular IO
Subsystem (eMIOS)

Highly configurable timer module(s) supporting PWM,
output compare and input capture features. Includes
interrupt and eDMA support.

– Periodic Interrupt Timer (PIT)
Set of 32-bit countdown timers that provide periodic
events (which can trigger an interrupt) with automatic
re-load.

25
Analog-to-Digital Converter
(ADC)

Details the configuration and operation of the ADC
modules as well as detailing the channels that are
shared between the 10-bit and 12-bit ADC. The ADC
is tightly linked to the INTC, eDMA, PIT_RTI and CTU.
When used in conjunction with these other modules,
the CPU overhead for an ADC conversion is
significantly reduced.

ADC system

26 Cross Triggering Unit (CTU)

The CTU allows an ADC conversion to be
automatically triggered based on an eMIOS event
(like a PWM output going high) or a PIT_RTI event
with no CPU intervention.

27 Flash Memory

Details the code and data flash memory structure
(with ECC), block sizes and the flash memory port
configuration, including wait states, line buffer
configuration and pre-fetch control. Memory

28 Static RAM (SRAM)
Details the structure of the SRAM (with ECC). There
are no user configurable registers associated with the
SRAM.

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title
Doc ID 16886 Rev 6 42/868

Preface RM0045
1.4 Register description conventions
The register information for SPC560D30/40 is presented in:

● Memory maps containing:

– An offset from the module’s base address

– The name and acronym/abbreviation of each register

– The page number on which each register is described

● Register figures

● Field-description tables

● Associated text

The register figures show the field structure using the conventions in Figure 1.

Figure 1. Register figure conventions

29 Register Protection

Certain registers in each peripheral can be protected
from further writes using the register protection
mechanism detailed in this section. Registers can
either be configured to be unlocked via a soft lock bit
or locked unit the next reset.

Integrity
30

Software Watchdog Timer
(SWT)

The SWT offers a selection of configurable modes
that can be used to monitor the operation of the
microcontroller and /or reset the device or trigger an
interrupt if the SWT is not correctly serviced. The
SWT is enabled out of reset.

31
Error Correction Status Module
(ECSM)

Provides information about the last reset, general
device information, system fault information and
detailed ECC error information.

32
IEEE 1149.1 Test Access Port
Controller (JTAGC)

Used for boundary scan as well as device debug. Debug

A Revision History
Summarizes the changes between each successive
revision of this reference manual

Revision history
information

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group

Title

R 0 1

W

R FIELD1 FIELD2

W

R
FIELD

W

Reserved bits Read-only fields Read/write fields

R FIELD

W w1c

Write 1 to clear field
(field will always read 0)

R 0 0 0

W FIELD1 FIELD2

Write-only fields
43/868 Doc ID 16886 Rev 6

RM0045 Preface
The numbering of register bits and fields on SPC560D30/40 is as follows:

● Register bit numbers, shown at the top of each figure, use the standard
Power Architecture bit ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).

● Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is
the least significant bit (LSB).

1.5 References
In addition to this reference manual, the following documents provide additional information
on the operation of the SPC560D30/40:

● IEEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)

● IEEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan
Architecture

1.6 Developer support
The SPC560D30/40 MCU family uses tools and third-party developers which offer a
widespread, established network of tool and software vendors. It also features a high-
performance Nexus debug interface.

The following development support is available:

● Automotive evaluation boards (EVB) featuring CAN, LIN interfaces, and more

● Compilers

● Debuggers

● JTAG and Nexus interfaces

The following software support is available:

● OSEK solutions will be available from multiple third parties

● CAN and LIN drivers

● AUTOSAR package

1.7 How to use the SPC560D30/40 documents
This section:

● Describes how the SPC560D30/40 documents provide information on the
microcontroller

● Makes recommendations on how to use the documents in a system design

1.7.1 The SPC560D30/40 document set

The SPC560D30/40 document set comprises:

● This reference manual (provides information on the features of the logical blocks on the
device and how they are integrated with each other)

● The device data sheet (specifies the electrical characteristics of the device)

● The device product brief
Doc ID 16886 Rev 6 44/868

Preface RM0045
The following reference documents (available online at www.st.com) are also available to
support the CPU on this device:

● Programmer’s Reference Manual for Book E Processors

● Variable-Length Encoding (VLE) Extension - Programming Interface Manual

The aforementioned documents describe all of the functional and electrical characteristics
of the SPC560D30/40 microcontroller.

Depending on your task, you may need to refer to multiple documents to make design
decisions. However, in general the use of the documents can be divided up as follows:

● Use the reference manual (this document) during software development and when
allocating functions during system design.

● Use the data sheet when designing hardware and optimizing power consumption.

● Use the CPU reference documents when doing detailed software development in
assembly language or debugging complex software interactions.

1.7.2 Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than
its performance. Most chapters describe the functionality of a particular on-chip module,
such as a CAN controller or timer. The remaining chapters describe how these modules are
integrated into the memory map, how they are powered and clocked, and the pinout of the
device.

In general, when an individual module is enabled for use all of the detail required to
configure and operate it is contained in the dedicated chapter. In some cases there are
multiple implementations of this module, however, there is only one chapter for each type of
module in use. For this reason, the address of registers in each module is normally provided
as an offset from a base address which can be found in Chapter 3: Memory Map. The
benefit of this approach is that software developed for a particular module can be easily
reused on this device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the
integration features of the microcontroller. The module will normally have to be powered and
enabled at system level, then a clock may have to be explicitly chosen and finally if required
the input and output connections to the external system must be configured.

The primary integration chapters of the reference manual contain most of the information
required to enable the modules. There are special cases where a chapter may describe
module functionality and some integration features for convenience — for example, the
microcontroller input/output (SIUL) module. Integration and functional content is provided in
the manual as shown in Table 2.
45/868 Doc ID 16886 Rev 6

RM0045 Preface

1.8 Using the SPC560D30/40
There are many different approaches to designing a system using the SPC560D30/40 so
the guidance in this section is provided as an example of how the documents can be applied
in this task.

Familiarity with the SPC560D30/40 modules can help ensure that its features are being
optimally used in a system design. Therefore, the current chapter is a good starting point.
Further information on the detailed features of a module are provided within the module
chapters. These, combined with the current chapter, should provide a good introduction to
the functions available on the MCU.

1.8.1 Hardware design

The SPC560D30/40 requires that certain pins are connected to particular power supplies,
system functions and other voltage levels for operation.

Table 2. Reference manual integration and functional content

Chapter Integration content Functional content

Introduction
– The main features on chip

– A summary of the functions provided by
each module

—

Memory Map

How the memory map is allocated,
including:

– Internal RAM
– Flash memory

– External memory-mapped resources
and the location of the registers used by
the peripherals(1)

1. To find the address of a register in a particular module take the start address of the module given in the memory map and
add the offset for the register given in the module chapter.

—

Signal Description
How the signals from each of the modules
are combined and brought to a particular
pin on a package

—

Boot Assist Module CPU boot sequence from reset
Implementation of the boot options if
internal flash memory is not used

Clock Description
Clocking architecture of the device (which
clock is available for the system and each
peripheral)

Description of operation of different clock
sources

Interrupt Controller Interrupt vector table Operation of the module

Mode Entry Module Module numbering for control and status Operation of operating modes

System Integration Unit Lite
How input signals are mapped to
individual modules including external
interrupt pins

Operation of GPIO

Voltage regulators and
power supplies

Power distribution to the MCU —

Wakeup Unit Allocation of inputs to the Wakeup Unit Operation of the wakeup feature
Doc ID 16886 Rev 6 46/868

Preface RM0045
The SPC560D30/40 internal logic operates from 1.2 V (nominal) supplies that are normally
supplied by the on-chip voltage regulator from a 5 V or 3.3 V supply. The 3.3–5 V (±10%)
supply is also used to supply the input/output pins on the MCU. Chapter 4: Signal
Description, describes the power supply pin names, numbers and their purpose. For more
detail on the voltage supply of each pin, see Chapter 11: Voltage Regulators and Power
Supplies. For specifications of the voltage ranges and limits and decoupling of the power
supplies see the SPC560D30/40 data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These
include pins to force test or alternate boot conditions and debug features. These are
described in Chapter 4: Signal Description, and a hardware designer should take care that
these pins are connected to allow correct operation.

Beyond power supply and pins that have special functions there are also pins that have
special system purposes such as oscillator and reset pins. These are also described in
Chapter 4: Signal Description. The reset pin is bidirectional and its function is closely tied to
the reset generation module [Chapter 9: Reset Generation Module (MC_RGM)]. The crystal
oscillator pins are dedicated to this function but the oscillator is not started automatically
after reset. The oscillator module is described in Chapter 6: Clock Description, along with
the internal clock architecture and the other oscillator sources on chip.

1.8.2 Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as
general purpose pins or be connected to a particular on-chip module. The arrangement
allows a function to be available on several pins. The system designer should allocate the
function for the pin before connecting to external hardware. The software should then
choose the correct function to match the hardware. The pad characteristics can vary
depending on the functions on the pad. Chapter 4: Signal Description, describes each pad
type (for example, S, M, or J). Two pads may be able to carry the same function but have
different pad types. The electrical specification of the pads is described in the data sheet
dependent on the function enabled and the pad type.

There are two modules that configure the various functions available:

● System Integration Unit Lite (SIUL)

● Wakeup Unit (WKPU)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module
that allows selection of the output functions that is connected to the pin. The available
settings for the PCR are described in Section 4.6: Functional ports. Inputs are selected
using the PSMI registers; these are described in Chapter 19: System Integration Unit Lite
(SIUL). (PSMI registers connect a module to one of several pins, whereas the PCR registers
connect a pin to one of several modules).

The WKPU provides the ability to cause interrupts and wake the MCU from low power
modes and operates independently from the SIUL.

The ADC functions are enabled using the PCRs.

1.8.3 Software design

Certain modules provide system integration functions, and other modules (such as timers)
provide specific functions.
47/868 Doc ID 16886 Rev 6

RM0045 Preface
From reset, the modules involved in configuring the system for application software are:

● Boot Assist Module (BAM) — determines the selected boot source

● Reset Generation Module (MC_RGM) — determines the behavior of the MCU when
various reset sources are triggered and reports the source of the reset

● Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and
configures the peripherals and clocks and power supplies for each of the modes

● Power Control Unit (MC_PCU) — determines which power domains are active

● Clock Generation Module (MC_CGM) — chooses the clock source for the system and
many peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to
execute code. At this point the system clock is the 16 MHz FIRC oscillator, the CPU is in
supervisor mode and all the memory is available. Initialization is required before most
peripherals may be used and before the SRAM can be read (since the SRAM is protected
by ECC, the syndrome will generally be uninitialized after reset and reads would fail the
check). Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks,
heaps, variable initialization and so on and configuring the MCU for the application.

The MC_ME module enables the modules and other features like clocks. It is therefore an
essential part of the initialization and operation software. In general, the software will
configure an MC_ME mode to make certain peripherals, clocks, and memory active and
then switch to that mode.

Chapter 6: Clock Description, includes a graphic of the clock architecture of the MCU. This
can be used to determine how to configure the MC_CGM module. In general software will
configure the module to enable the required clocks and PLLs and route these to the active
modules.

After these steps are complete it is possible to configure the input/output pins and the
modules for the application.

1.8.4 Other features

The MC_ME module manages low power modes and so it is likely that it will be used to
switch into different configurations (module sets, clocks) depending on the application
requirements.

The MCU includes two other features to improve the integrity of the application:

● It is possible to enable a software watchdog (SWT) immediately at reset or afterwards
to help detect code runaway.

● Individual register settings can be protected from unintended writes using the features
of the Register Protection module. The protected registers are shown in Chapter 29:
Register Protection.

Other integration functionality is provided by the System Status and Configuration Module
(SSCM).

Doc ID 16886 Rev 6 48/868

Introduction RM0045
2 Introduction

2.1 The SPC560D30/40 microcontroller family
The SPC560D30/40 is a Power Architecture® based microcontroller that targets automotive
vehicle body applications such as:

● Central body electronics

● Vehicle body controllers

● Smart junction boxes

● Front modules

● Body peripherals

● Door control

● Seat control

The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It
provides the scalability needed to implement platform approaches and delivers the
performance required through the use of increasingly sophisticated software architectures.
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive
controller complies with the Power Architecture specification, and only implements the VLE
(variable-length encoding) APU, providing improved code density. It operates at speeds of
up to 48 MHz and offers high performance processing optimized for low power consumption.
It also capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.

This document describes the features of the SPC560D30/40 and options available within
the family members, and highlights important electrical and physical characteristics of the
device.

2.2 SPC560D30/40 device comparison
Table 3 summarizes the SPC560D30/40 family of microcontrollers.

Table 3. SPC560D30/40 device comparison

Feature
Device

SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3

CPU e200z0

Execution speed Static – up to 48 MHz

Code Flash 128 KB 256 KB

Data Flash 64 KB (4 × 16 KB)

SRAM 12 KB 16 KB

eDMA 16 ch

ADC 16 ch, 12-bit 33 ch, 12-bit 16 ch, 12-bit 33 ch, 12-bit
49/868 Doc ID 16886 Rev 6

RM0045 Introduction

CTU 16 ch

Total timer I/O(1)

eMIOS
14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit

– Type X(2) 2 ch 5 ch 2 ch 5 ch

– Type Y(3) — 9 ch — 9 ch

– Type G(4) 7 ch 7 ch 7 ch 7 ch

– Type H(5) 4 ch 7 ch 4 ch 7 ch

SCI (LINFlex) 3

SPI (DSPI) 2

CAN (FlexCAN) 1

GPIO(6) 45 79 45 79

Debug JTAG

Package LQFP64 LQFP100 LQFP64 LQFP100

1. Refer to eMIOS section of device reference manual for information on the channel configuration and functions.

2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC

3. Type Y = OPWMT + OPWMB + SAIC + SAOC

4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC

5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC

6. I/O count based on multiplexing with peripherals

Table 3. SPC560D30/40 device comparison (continued)

Feature
Device

SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
Doc ID 16886 Rev 6 50/868

Introduction RM0045
2.3 Block diagram
Figure 2 shows a top-level block diagram of the SPC560D30/40.

Figure 2. SPC560D30/40 series block diagram

2 x
DSPI

FMPLL

Nexus 1

SRAM

 SIUL
Reset Control

16 KB

External

IMUX

GPIO &

 JTAG

Pad Control

JTAG Port

e200z0h

Interrupt requests

64
-b

it
3

x
3

C
ro

ss
ba

r
S

w
itc

h

1 x
FlexCAN

Peripheral Bridge

Interrupt
Request

Interrupt
Request

I/O

Clocks

Instructions

Data

Voltage
Regulator

NMI

SWT PITSTM

NMI

SIUL

.

INTC

3 x
LINFlex

1 x
eMIOS

33 ch.
ADC

CMU

SRAM Flash

Code Flash
256 KB

Data Flash
64 KB

MC_PCUMC_MEMC_CGMMC_RGM BAM

CTU

RTC SSCM

(Master)

(Master)

(Slave)

(Slave)

(Slave)

ControllerController

Legend:

ADC Analog-to-Digital Converter
BAM Boot Assist Module
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DSPI Deserial Serial Peripheral Interface
ECSM Error Correction Status Module
eDMA Enhanced Direct Memory Access
eMIOS Enhanced Modular Input Output System
Flash Flash memory
FlexCAN Controller Area Network (FlexCAN)
FMPLL Frequency-Modulated Phase-Locked Loop
IMUX Internal Multiplexer
INTC Interrupt Controller
JTAG JTAG controller
LINFlex Serial Communication Interface (LIN support)

MC_CGM Clock Generation Module
MC_ME Mode Entry Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
NMI Non-Maskable Interrupt
PIT Periodic Interrupt Timer
RTC Real-Time Clock
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Timer Module
SWT Software Watchdog Timer
WKPU Wakeup Unit
XBAR Crossbar switch

eDMA

ECSM

from peripheral
blocks

WKPU

Request

Interrupt
Request

(Master)
51/868 Doc ID 16886 Rev 6

RM0045 Introduction
2.4 Feature summary
● Single issue, 32-bit CPU core complex (e200z0h)

– Compliant with the Power Architecture® embedded category

– Includes an instruction set enhancement allowing variable length encoding (VLE)
for code size footprint reduction. With the optional encoding of mixed 16-bit and
32-bit instructions, it is possible to achieve significant code size footprint reduction.

● Up to 256 KB on-chip Code Flash supported with Flash controller and ECC

● 64 KB on-chip Data Flash with ECC

● Up to 16 KB on-chip SRAM with ECC

● Interrupt controller (INTC) with multiple interrupt vectors, including 20 external interrupt
sources and 18 external interrupt/wakeup sources

● Frequency modulated phase-locked loop (FMPLL)

● Crossbar switch architecture for concurrent access to peripherals, Flash, or SRAM
from multiple bus masters

● Boot assist module (BAM) supports internal Flash programming via a serial link (CAN
or SCI)

● Timer supports input/output channels providing a range of 16-bit input capture, output
compare, and pulse width modulation functions (eMIOS-lite)

● Up to 33 channel 12-bit analog-to-digital converter (ADC)

● 2 serial peripheral interface (DSPI) modules

● 3 serial communication interface (LINFlex) modules

– LINFlex 1 and 2: Master capable

– LINFlex 0: Master capable and slave capable; connected to eDMA

● 1 enhanced full CAN (FlexCAN) module with configurable buffers

● Up to 79 configurable general purpose pins supporting input and output operations
(package dependent)

● Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC
oscillator supporting autonomous wakeup with 1 ms resolution with max timeout of 2
seconds

● Up to 4 periodic interrupt timers (PIT) with 32-bit counter resolution

● 1 System Timer Module (STM)

● Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class 1 standard

● Device/board boundary Scan testing supported with per Joint Test Action Group
(JTAG) of IEEE (IEEE 1149.1)

● On-chip voltage regulator (VREG) for regulation of input supply for all internal levels

Doc ID 16886 Rev 6 52/868

Memory Map RM0045
3 Memory Map

Table 4 shows the memory map for the SPC560D30/40. All addresses on the device,
including those that are reserved, are identified in the table. The addresses represent the
physical addresses assigned to each IP block.

Table 4. SPC560D30/40 memory map

Start address End address Size (KB) Region name

0x0000_0000 0x0000_7FFF 32 Code Flash Array 0

0x0000_8000 0x0000_BFFF 16 Code Flash Array 0

0x0000_C000 0x0000_FFFF 16 Code Flash Array 0

0x0001_0000 0x0001_7FFF 32 Code Flash Array 0

0x0001_8000 0x0001_FFFF 32 Code Flash Array 0

0x0002_0000 0x0003_FFFF 128 Code Flash Array 0

0x0004_0000 0x001F_FFFF 512 Reserved

0x0020_0000 0x0020_3FFF 16 Flash Shadow Array

0x0020_4000 0x003F_FFFF 2032 Reserved

0x0040_0000 0x0040_3FFF 16 Code Flash Array 0 Test Sector

0x0040_4000 0x007F_FFFF 4080 Reserved

0x0080_0000 0x0080_3FFF 16 Data Flash Array 0

0x0080_4000 0x0080_7FFF 16 Data Flash Array 0

0x0080_8000 0x0080_BFFF 16 Data Flash Array 0

0x0080_C000 0x0080_FFFF 16 Data Flash Array 0

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_2000 0x00C0_3FFF 8 Test Sector Data Flash Array 0

0x00C0_4000 0x00FF_FFFF 4080 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Flash Emulation Mapping

0x2000_0000 0x3FFF_FFFF 524288 Reserved for External Bus Interface

0x4000_0000 0x4000_3FFF 16 SRAM

0x4000_4000 0xBFFF_FFFF 2097136 Reserved

Off-platform peripherals PBRIDGE_1

0xC000_0000 0xC3F8_7FFF 65056 Reserved

0xC3F8_8000 0xC3F8_BFFF 16 Code Flash 0 Configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data Flash 0 Configuration

0xC3F9_0000 0xC3F9_3FFF 16 SIUL

0xC3F9_4000 0xC3F9_7FFF 16 WKPU

0xC3F9_8000 0xC3F9_FFFF 32 Reserved
53/868 Doc ID 16886 Rev 6

RM0045 Memory Map
0xC3FA_0000 0xC3FA_3FFF 16 eMIOS_0

0xC3FA_4000 0xC3FD_7FFF 208 Reserved

0xC3FD_8000 0xC3FD_BFFF 16 SSCM

0xC3FD_C000 0xC3FD_FFFF 16 MC_ME

0xC3FE_0000 0xC3FE_3FFF 16 MC_CGM

0xC3FE_4000 0xC3FE_7FFF 16 MC_RGM

0xC3FE_8000 0xC3FE_BFFF 16 MC_PCU

0xC3FE_C000 0xC3FE_FFFF 16 RTC/API

0xC3FF_0000 0xC3FF_3FFF 16 PIT

0xC3FF_4000 0xDFFF_FFFF 458800 Reserved

Off-platform peripherals PBRIDGE_0

0xE000_0000 0xFFE0_3FFF 522256 Reserved

0xFFE0_4000 0xFFE0_7FFF 16 ADC_1

0xFFE0_8000 0xFFE3_FFFF 224 Reserved

0xFFE4_0000 0xFFE4_3FFF 16 LINFlex_0

0xFFE4_4000 0xFFE4_7FFF 16 LINFlex_1

0xFFE4_8000 0xFFE4_BFFF 16 LINFlex_2

0xFFE4_C000 0xFFE6_3FFF 96 Reserved

0xFFE6_4000 0xFFE6_7FFF 16 CTU

0xFFE6_8000 0xFFE7_FFFF 96 Reserved

0xFFE8_0000 0xFFEF_FFFF 512
Mirrored range 0x3F80000–
0xC3FFFFFF

0xFFF0_0000 0xFFF3_7FFF 224 Reserved

0xFFF3_8000 0xFFF3_BFFF 16 SWT

0xFFF3_C000 0xFFF3_FFFF 16 STM

0xFFF4_0000 0xFFF4_3FFF 16 ECSM

0xFFF4_4000 0xFFF4_7FFF 16 eDMA

0xFFF4_8000 0xFFF4_BFFF 16 INTC

0xFFF4_C000 0xFFF8_FFFF 272 Reserved

0xFFF9_0000 0xFFF9_3FFF 16 DSPI_0

0xFFF9_4000 0xFFF9_7FFF 16 DSPI_1

0xFFF9_8000 0xFFFB_FFFF 160 Reserved

0xFFFC_0000 0xFFFC_3FFF 16 FlexCAN_0

Table 4. SPC560D30/40 memory map (continued)

Start address End address Size (KB) Region name
Doc ID 16886 Rev 6 54/868

Memory Map RM0045

0xFFFC_4000 0xFFFD_BFFF 96 Reserved

0xFFFD_C000 0xFFFD_FFFF 16 DMA_MUX

0xFFFE_0000 0xFFFF_BFFF 144 Reserved

0xFFFF_C000 0xFFFF_FFFF 16 BAM

Table 4. SPC560D30/40 memory map (continued)

Start address End address Size (KB) Region name
55/868 Doc ID 16886 Rev 6

RM0045 Signal Description
4 Signal Description

4.1 Package pinouts
Figure 3 and Figure 4 show the location of the signals on the packages that this device is
available in.

For more information on pin multiplexing on this device, see Table 5 through Table 7.

Figure 3. LQFP64 pin configuration (top view)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49

PB[3]
PC[9]
PA[2]
PA[1]
PA[0]

VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PC[10]
PB[0]
PB[1]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PA[3]
PB[15]
PB[14]
PB[13]
PB[12]
PB[11]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC

 P
C

[7
]

PA
[1

5]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[4
]

P
C

[5
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA

[6
]

PA
[5

]
P

C
[2

]
P

C
[3

]

LQFP64
Doc ID 16886 Rev 6 56/868

Signal Description RM0045

Figure 4. LQFP100 pin configuration (top view)

4.2 Pad configuration during reset phases
All pads have a fixed configuration under reset.

During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

● PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.

● PA[8] (ABS[0]) is pull-up.

● RESET pad is driven low. This is pull-up only after PHASE2 reset completion.

● JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.

● Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).

● Main oscillator pads (EXTAL, XTAL) are tristate.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

PB[3]
PC[9]

PC[14]
PC[15]

PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]

PE[10]
PA[0]

PE[11]
VSS_HV
VDD_HV
VSS_HV

RESET
VSS_LV
VDD_LV
VDD_BV

PC[11]
PC[10]

PB[0]
PB[1]
PC[6]

PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
VDD_HV
VSS_HV
PA[3]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC
VSS_HV_ADC

P
C

[7
]

PA
[1

5]
PA

[1
4]

PA
[4

]
PA

[1
3]

PA
[1

2]
V

D
D

_L
V

V
S

S
_L

V
X

TA
L

V
S

S
_H

V
E

X
TA

L
V

D
D

_H
V

P
B

[9
]

P
B

[8
]

P
B

[1
0]

P
D

[0
]

P
D

[1
]

P
D

[2
]

P
D

[3
]

P
D

[4
]

P
D

[5
]

P
D

[6
]

P
D

[7
]

P
D

[8
]

P
B

[4
]

P
B

[2
]

P
C

[8
]

P
C

[1
3]

P
C

[1
2]

P
E

[7
]

P
E

[6
]

P
E

[5
]

P
E

[4
]

P
C

[4
]

P
C

[5
]

P
E

[3
]

P
E

[2
]

P
H

[9
]

P
C

[0
]

V
S

S
_L

V
V

D
D

_L
V

V
D

D
_H

V
V

S
S

_H
V

P
C

[1
]

P
H

[1
0]

PA
[6

]
PA

[5
]

P
C

[2
]

P
C

[3
]

P
E

[1
2]

LQFP100
57/868 Doc ID 16886 Rev 6

RM0045 Signal Description
4.3 Voltage supply pins
Voltage supply pins are used to provide power to the device. Two dedicated pins are used
for 1.2 V regulator stabilization.

4.4 Pad types
In the device the following types of pads are available for system pins and functional port
pins:

S = Slow(a)

M = Medium(a) (b)

F = Fast(a) (b)

I = Input only with analog feature(a)

J = Input/Output with analog feature

X = Oscillator

4.5 System pins
The system pins are listed in Table 6.

Table 5. Voltage supply pin descriptions

Port pin Function
Pin number

LQFP64 LQFP100

VDD_HV Digital supply voltage 7, 28, 34, 56 15, 37, 52, 70, 84

VSS_HV Digital ground 6, 8, 26, 33, 55
14, 16, 35, 51, 69,

83

VDD_LV
1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VSS_LV pin.(1)

1. A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to
ensure stable voltage (see the recommended operating conditions in the device datasheet for
details).

11, 23, 57 19, 32, 85

VSS_LV
1.2V decoupling pins. Decoupling
capacitor must be connected between
these pins and the nearest VDD_LV pin.1

10, 24, 58 18, 33, 86

VDD_BV Internal regulator supply voltage 12 20

a. See the I/O pad electrical characteristics in the device datasheet for details.

b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see the PCR[SRC] description in the device reference manual).
Doc ID 16886 Rev 6 58/868

Signal Description RM0045

4.6 Functional ports
The functional port pins are listed in Table 7.

Table 6. System pin descriptions

Port pin Function
I/O

direction
Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100

RESET
Bidirectional reset with Schmitt-Trigger
characteristics and noise filter.

I/O M

Input, weak
pull-up only

after
PHASE2

9 17

EXTAL

Analog output of the oscillator amplifier circuit,
when the oscillator is not in bypass mode.
Analog input for the clock generator when the
oscillator is in bypass mode. (1)

1. Refer to the relevant section of the device datasheet.

I/O X Tristate 27 36

XTAL
Analog input of the oscillator amplifier circuit.
Needs to be grounded if oscillator is used in
bypass mode. 1

I X Tristate 25 34

Table 7. Functional port pin descriptions

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100

Port A

PA[0] PCR[0]

AF0

AF1
AF2

AF3

—

GPIO[0]

E0UC[0]
CLKOUT

E0UC[13]

WKUP[19](3)

SIUL

eMIOS_0
CGL

eMIOS_0

WKPU

I/O

I/O
O

I/O

I

M Tristate 5 12

PA[1] PCR[1]

AF0

AF1
AF2

AF3

—
—

GPIO[1]

E0UC[1]
—

—

NMI(4)

WKUP[2](3)

SIUL

eMIOS_0
—

—

WKPU
WKPU

I/O

I/O
—

—

I
I

S Tristate 4 7

PA[2] PCR[2]

AF0
AF1

AF2

AF3
—

GPIO[2]
E0UC[2]

—

MA[2]
WKUP3

SIUL
eMIOS_0

—

ADC
WKPU

I/O
I/O

—

O
I

S Tristate 3 5
59/868 Doc ID 16886 Rev 6

RM0045 Signal Description
PA[3] PCR[3]

AF0

AF1

AF2
AF3

—

—

GPIO[3]

E0UC[3]

—
CS4_0

EIRQ[0]

ADC1_S[0]

SIUL

eMIOS_0

—
DSPI_0

SIUL

ADC

I/O

I/O

—
I/O

I

I

S Tristate 43 68

PA[4] PCR[4]

AF0

AF1
AF2

AF3

—

GPIO[4]

E0UC[4]
—

CS0_1

WKUP[9](3)

SIUL

eMIOS_0
—

DSPI_1

WKPU

I/O

I/O
—

I/O

I

S Tristate 20 29

PA[5] PCR[5]

AF0

AF1
AF2

AF3

GPIO[5]

E0UC[5]
—

—

SIUL

eMIOS_0
—

—

I/O

I/O
—

—

M Tristate 51 79

PA[6] PCR[6]

AF0

AF1

AF2
AF3

—

GPIO[6]

E0UC[6]

—
CS1_1

EIRQ[1]

SIUL

eMIOS_0

—
DSPI_1

SIUL

I/O

I/O

—
I/O

I

S Tristate 52 80

PA[7] PCR[7]

AF0

AF1

AF2
AF3

—

—

GPIO[7]

E0UC[7]

—
—

EIRQ[2]

ADC1_S[1]

SIUL

eMIOS_0

—
—

SIUL

ADC

I/O

I/O

—
—

I

I

S Tristate 44 71

PA[8] PCR[8]

AF0

AF1
AF2

AF3

—

N/A(5)

GPIO[8]

E0UC[8]
E0UC[14]

—

EIRQ[3]

ABS[0]

SIUL

eMIOS_0
eMIOS_0

—

SIUL

BAM

I/O

I/O
—

—

I

I

S
Input,
weak

pull-up
45 72

PA[9] PCR[9]

AF0

AF1
AF2

AF3

N/A(5)

GPIO[9]

E0UC[9]
—

CS2_1

FAB

SIUL

eMIOS_0
—

DSPI_1

BAM

I/O

I/O
—

I/O

I

S
Pull-
down

46 73

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 60/868

Signal Description RM0045
PA[10] PCR[10]

AF0

AF1

AF2
AF3

—

GPIO[10]

E0UC[10]

—
LIN2TX

ADC1_S[2]

SIUL

eMIOS_0

—
LINFlex_2

ADC

I/O

I/O

—
O

I

S Tristate 47 74

PA[11] PCR[11]

AF0

AF1

AF2
AF3

—

—
—

GPIO[11]

E0UC[11]

—
—

EIRQ[16]

ADC1_S[3]
LIN2RX

SIUL

eMIOS_0

—
—

SIUL

ADC
LINFlex_2

I/O

I/O

—
—

I

I
I

S Tristate 48 75

PA[12] PCR[12]

AF0
AF1

AF2

AF3
—

—

GPIO[12]
—

—

—
EIRQ[17]

SIN_0

SIUL
—

—

—
SIUL

DSPI_0

I/O
—

—

—
I

I

S Tristate 22 31

PA[13] PCR[13]

AF0

AF1

AF2
AF3

GPIO[13]

SOUT_0

—
CS3_1

SIUL

DSPI_0

—
DSPI_1

I/O

O

—
I/O

M Tristate 21 30

PA[14] PCR[14]

AF0
AF1

AF2

AF3
—

GPIO[14]
SCK_0

CS0_0

E0UC[0]
EIRQ[4]

SIUL
DSPI_0

DSPI_0

eMIOS_0
SIUL

I/O
I/O

I/O

I/O
I

M Tristate 19 28

PA[15] PCR[15]

AF0
AF1

AF2

AF3

—

GPIO[15]
CS0_0

SCK_0

E0UC[1]

WKUP[10](3)

SIUL
DSPI_0

DSPI_0

eMIOS_0

WKPU

I/O
I/O

I/O

I/O

I

M Tristate 18 27

Port B

PB[0] PCR[16]

AF0

AF1
AF2

AF3

GPIO[16]

CAN0TX
—

LIN2TX

SIUL

FlexCAN_0
—

LINFlex_2

I/O

O
—

O

M Tristate 14 23

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
61/868 Doc ID 16886 Rev 6

RM0045 Signal Description
PB[1] PCR[17]

AF0

AF1

AF2
AF3

—

—

GPIO[17]

—

—
LIN0RX

WKUP[4](3)

CAN0RX

SIUL

—

—
LINFlex_0

WKPU

FlexCAN_0

I/O

—

—
I

I

I

S Tristate 15 24

PB[2] PCR[18]

AF0

AF1
AF2

AF3

GPIO[18]

LIN0TX
—

—

SIUL

LINFlex_0
—

—

I/O

O
—

—

M Tristate 64 100

PB[3] PCR[19]

AF0

AF1

AF2
AF3

—

—

GPIO[19]

—

—
—

WKUP[11](3)

LIN0RX

SIUL

—

—
—

WKPU

LINFlex_0

I/O

—

—
—

I

I

S Tristate 1 1

PB[4] PCR[20]

AF0

AF1
AF2

AF3

—

GPIO[20]

—
—

—

ADC1_P[0]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 32 50

PB[5] PCR[21]

AF0

AF1
AF2

AF3

—

GPIO[21]

—
—

—

ADC1_P[1]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 35 53

PB[6] PCR[22]

AF0

AF1
AF2

AF3

—

GPIO[22]

—
—

—

ADC1_P[2]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate 36 54

PB[7] PCR[23]

AF0

AF1

AF2
AF3

—

GPIO[23]

—

—
—

ADC1_P[3]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate 37 55

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 62/868

Signal Description RM0045
PB[8] PCR[24]

AF0

AF1

AF2
AF3

—

—

GPIO[24]

—

—
—

ADC1_S[4]

WKUP[25](3)

SIUL

—

—
—

ADC

WKPU

I

—

—
—

I

I

I Tristate 30 39

PB[9] PCR[25]

AF0

AF1
AF2

AF3

—
—

GPIO[25]

—
—

—

ADC1_S[5]
WKUP[26](3)

SIUL

—
—

—

ADC
WKPU

I

—
—

—

I
I

I Tristate 29 38

PB[10] PCR[26]

AF0
AF1

AF2

AF3
—

—

GPIO[26]
—

—

—
ADC1_S[6]

WKUP[8](3)

SIUL
—

—

—
ADC

WKPU

I/O
—

—

—
I

I

J Tristate 31 40

PB[11] PCR[27]

AF0

AF1

AF2
AF3

—

GPIO[27]

E0UC[3]

—
CS0_0

ADC1_S[12]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
I/O

I

J Tristate 38 59

PB[12] PCR[28]

AF0

AF1

AF2
AF3

—

GPIO[28]

E0UC[4]

—
CS1_0

ADC1_X[0]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
O

I

J Tristate 39 61

PB[13] PCR[29]

AF0

AF1

AF2

AF3
—

GPIO[29]

E0UC[5]

—

CS2_0
ADC1_X[1]

SIUL

eMIOS_0

—

DSPI_0
ADC

I/O

I/O

—

O
I

J Tristate 40 63

PB[14] PCR[30]

AF0
AF1

AF2

AF3
—

GPIO[30]
E0UC[6]

—

CS3_0
ADC1_X[2]

SIUL
eMIOS_0

—

DSPI_0
ADC

I/O
I/O

—

O
I

J Tristate 41 65

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
63/868 Doc ID 16886 Rev 6

RM0045 Signal Description
PB[15] PCR[31]

AF0

AF1

AF2
AF3

—

GPIO[31]

E0UC[7]

—
CS4_0

ADC1_X[3]

SIUL

eMIOS_0

—
DSPI_0

ADC

I/O

I/O

—
O

I

J Tristate 42 67

Port C

PC[0](6) PCR[32]

AF0

AF1

AF2
AF3

GPIO[32]

—

TDI
—

SIUL

—

JTAGC
—

I/O

—

I
—

M
Input,
weak

pull-up
59 87

PC[1]6 PCR[33]

AF0
AF1

AF2

AF3

GPIO[33]
—

TDO

—

SIUL
—

JTAGC

—

I/O
—

O

—

F Tristate 54 82

PC[2] PCR[34]

AF0

AF1
AF2

AF3

—

GPIO[34]

SCK_1
—

—

EIRQ[5]

SIUL

DSPI_1
—

—

SIUL

I/O

I/O
—

—

I

M Tristate 50 78

PC[3] PCR[35]

AF0

AF1
AF2

AF3

—

GPIO[35]

CS0_1
MA[0]

—

EIRQ[6]

SIUL

DSPI_1
ADC

—

SIUL

I/O

I/O
O

—

I

S Tristate 49 77

PC[4] PCR[36]

AF0

AF1
AF2

AF3

—

—

GPIO[36]

—
—

—

SIN_1

EIRQ[18]

SIUL

—
—

—

DSPI_1

SIUL

I/O

—
—

—

I

I

M Tristate 62 92

PC[5] PCR[37]

AF0

AF1
AF2

AF3

—

GPIO[37]

SOUT_1
—

—

EIRQ[7]

SIUL

DSPI_1
—

—

SIUL

I/O

O
—

—

I

M Tristate 61 91

PC[6] PCR[38]

AF0

AF1
AF2

AF3

GPIO[38]

LIN1TX
—

—

SIUL

LINFlex_1
—

—

I/O

O
—

—

S Tristate 16 25

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 64/868

Signal Description RM0045
PC[7] PCR[39]

AF0

AF1

AF2
AF3

—

—

GPIO[39]

—

—
—

LIN1RX

WKUP[12](3)

SIUL

—

—
—

LINFlex_1

WKPU

I/O

—

—
—

I

I

S Tristate 17 26

PC[8] PCR[40]

AF0

AF1
AF2

AF3

GPIO[40]

LIN2TX
E0UC[3]

—

SIUL

LINFlex_2
eMIOS_0

—

I/O

O
I/O

—

S Tristate 63 99

PC[9] PCR[41]

AF0

AF1

AF2
AF3

—

—

GPIO[41]

—

E0UC[7]
—

LIN2RX

WKUP[13](3)

SIUL

—

eMIOS_0
—

LINFlex_2

WKPU

I/O

—

I/O
—

I

I

S Tristate 2 2

PC[10] PCR[42]

AF0

AF1
AF2

AF3

GPIO[42]

—
—

MA[1]

SIUL

—
—

ADC

I/O

—
—

O

M Tristate 13 22

PC[11] PCR[43]

AF0

AF1

AF2
AF3

—

GPIO[43]

—

—
MA[2]

WKUP[5](3)

SIUL

—

—
ADC

WKPU

I/O

—

—
O

I

S Tristate — 21

PC[12] PCR[44]

AF0

AF1

AF2
AF3

—

GPIO[44]

E0UC[12]

—
—

EIRQ[19]

SIUL

eMIOS_0

—
—

SIUL

I/O

I/O

—
—

I

M Tristate — 97

PC[13] PCR[45]

AF0
AF1

AF2

AF3

GPIO[45]
E0UC[13]

—

—

SIUL
eMIOS_0

—

—

I/O
I/O

—

—

S Tristate — 98

PC[14] PCR[46]

AF0

AF1
AF2

AF3

—

GPIO[46]

E0UC[14]
—

—

EIRQ[8]

SIUL

eMIOS_0
—

—

SIUL

I/O

I/O
—

—

I

S Tristate — 3

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
65/868 Doc ID 16886 Rev 6

RM0045 Signal Description
PC[15] PCR[47]

AF0

AF1

AF2
AF3

—

GPIO[47]

E0UC[15]

—
—

EIRQ[20]

SIUL

eMIOS_0

—
—

SIUL

I/O

I/O

—
—

I

M Tristate — 4

Port D

PD[0] PCR[48]

AF0

AF1

AF2
AF3

—

—

GPIO[48]

—

—
—

WKUP[27](3)

ADC1_P[4]

SIUL

—

—
—

WKPU

ADC

I

—

—
—

I

I

I Tristate — 41

PD[1] PCR[49]

AF0

AF1
AF2

AF3

—
—

GPIO[49]

—
—

—

WKUP[28](3)

ADC1_P[5]

SIUL

—
—

—

WKPU
ADC

I

—
—

—

I
I

I Tristate — 42

PD[2] PCR[50]

AF0
AF1

AF2

AF3
—

GPIO[50]
—

—

—
ADC1_P[6]

SIUL
—

—

—
ADC

I
—

—

—
I

I Tristate — 43

PD[3] PCR[51]

AF0
AF1

AF2

AF3
—

GPIO[51]
—

—

—
ADC1_P[7]

SIUL
—

—

—
ADC

I
—

—

—
I

I Tristate — 44

PD[4] PCR[52]

AF0

AF1
AF2

AF3

—

GPIO[52]

—
—

—

ADC1_P[8]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate — 45

PD[5] PCR[53]

AF0

AF1
AF2

AF3

—

GPIO[53]

—
—

—

ADC1_P[9]

SIUL

—
—

—

ADC

I

—
—

—

I

I Tristate — 46

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 66/868

Signal Description RM0045
PD[6] PCR[54]

AF0

AF1

AF2
AF3

—

GPIO[54]

—

—
—

ADC1_P[10]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 47

PD[7] PCR[55]

AF0

AF1

AF2
AF3

—

GPIO[55]

—

—
—

ADC1_P[11]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 48

PD[8] PCR[56]

AF0

AF1

AF2
AF3

—

GPIO[56]

—

—
—

ADC1_P[12]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 49

PD[9] PCR[57]

AF0

AF1

AF2
AF3

—

GPIO[57]

—

—
—

ADC1_P[13]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 56

PD[10] PCR[58]

AF0

AF1

AF2
AF3

—

GPIO[58]

—

—
—

ADC1_P[14]

SIUL

—

—
—

ADC

I

—

—
—

I

I Tristate — 57

PD[11] PCR[59]

AF0

AF1

AF2
AF3

—

GPIO[59]

—

—
—

ADC1_P[15]

SIUL

—
—
—

ADC

I

—

—
—

I

I Tristate — 58

PD[12] PCR[60]

AF0
AF1

AF2

AF3
—

GPIO[60]
CS5_0

E0UC[24]

—
ADC1_S[8]

SIUL
DSPI_0

eMIOS_0

—
ADC

I/O
O

I/O

—
I

J Tristate — 60

PD[13] PCR[61]

AF0
AF1

AF2

AF3
—

GPIO[61]
CS0_1

E0UC[25]

—
ADC1_S[9]

SIUL
DSPI_1

eMIOS_0

—
ADC

I/O
I/O

I/O

—
I

J Tristate — 62

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
67/868 Doc ID 16886 Rev 6

RM0045 Signal Description
PD[14] PCR[62]

AF0

AF1

AF2
AF3

—

GPIO[62]

CS1_1

E0UC[26]
—

ADC1_S[10]

SIUL

DSPI_1

eMIOS_0
—

ADC

I/O

O

I/O
—

I

J Tristate — 64

PD[15] PCR[63]

AF0

AF1

AF2
AF3

—

GPIO[63]

CS2_1

E0UC[27]
—

ADC1_S[11]

SIUL

DSPI_1

eMIOS_0
—

ADC

I/O

O

I/O
—

I

J Tristate — 66

Port E

PE[0] PCR[64]

AF0

AF1

AF2
AF3

—

GPIO[64]

E0UC[16]

—
—

WKUP[6](3)

SIUL

eMIOS_0

—
—

WKPU

I/O

I/O

—
—

I

S Tristate — 6

PE[1] PCR[65]

AF0

AF1

AF2
AF3

GPIO[65]

E0UC[17]

—
—

SIUL

eMIOS_0

—
—

I/O

I/O

—
—

M Tristate — 8

PE[2] PCR[66]

AF0
AF1

AF2

AF3
—

—

GPIO[66]
E0UC[18]

—

—
EIRQ[21]

SIN_1

SIUL
eMIOS_0

—

—
SIUL

DSPI_1

I/O
I/O

—

—
I

I

M Tristate — 89

PE[3] PCR[67]

AF0

AF1

AF2

AF3

GPIO[67]

E0UC[19]

SOUT_1

—

SIUL

eMIOS_0

DSPI_1

—

I/O

I/O

O

—

M Tristate — 90

PE[4] PCR[68]

AF0

AF1
AF2

AF3

—

GPIO[68]

E0UC[20]
SCK_1

—

EIRQ[9]

SIUL

eMIOS_0
DSPI_1

—

SIUL

I/O

I/O
I/O

—

I

M Tristate — 93

PE[5] PCR[69]

AF0

AF1
AF2

AF3

GPIO[69]

E0UC[21]
CS0_1

MA[2]

SIUL

eMIOS_0
DSPI_1

ADC

I/O

I/O
I/O

O

M Tristate — 94

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 68/868

Signal Description RM0045
PE[6] PCR[70]

AF0

AF1

AF2
AF3

—

GPIO[70]

E0UC[22]

CS3_0
MA[1]

EIRQ[22]

SIUL

eMIOS_0

DSPI_0
ADC

SIUL

I/O

I/O

O
O

I

M Tristate — 95

PE[7] PCR[71]

AF0

AF1

AF2
AF3

—

GPIO[71]

E0UC[23]

CS2_0
MA[0]

EIRQ[23]

SIUL

eMIOS_0

DSPI_0
ADC

SIUL

I/O

I/O

O
O

I

M Tristate — 96

PE[8] PCR[72]

AF0

AF1

AF2
AF3

GPIO[72]

—

E0UC[22]
—

SIUL

—

eMIOS_0
—

I/O

—

I/O
—

M Tristate — 9

PE[9] PCR[73]

AF0
AF1

AF2

AF3
—

GPIO[73]
—

E0UC[23]

—
WKUP[7](3)

SIUL
—

eMIOS_0

—
WKPU

I/O
—

I/O

—
I

S Tristate — 10

PE[10] PCR[74]

AF0
AF1

AF2

AF3
—

GPIO[74]
—

CS3_1

—
EIRQ[10]

SIUL
—

DSPI_1

—
SIUL

I/O
—

O

—
I

S Tristate — 11

PE[11] PCR[75]

AF0
AF1

AF2

AF3
—

GPIO[75]
E0UC[24]

CS4_1

—
WKUP[14](3)

SIUL
eMIOS_0

DSPI_1

—
WKPU

I/O
I/O

O

—
I

S Tristate — 13

PE[12] PCR[76]

AF0

AF1
AF2

AF3

—
—

GPIO[76]

—
—

—

ADC1_S[7]
EIRQ[11]

SIUL

—
—

—

ADC
SIUL

I/O

—
—

—

I
I

S Tristate — 76

Port H

PH[9](6) PCR[121]

AF0
AF1

AF2

AF3

GPIO[121]
—

TCK

—

SIUL
—

JTAGC

—

I/O
—

I

—

S
Input,
weak

pull-up
60 88

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
69/868 Doc ID 16886 Rev 6

RM0045 Signal Description

PH[10](6) PCR[122]

AF0

AF1

AF2
AF3

GPIO[122]

—

TMS
—

SIUL

—

JTAGC
—

I/O

—

I
—

S
Input,
weak

pull-up
53 81

1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00  AF0;
PCR.PA = 01  AF1; PCR.PA = 10  AF2; PCR.PA = 11  AF3. This is intended to select the output functions; to use
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields.
For this reason, the value corresponding to an input only function is reported as “—”.

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELx bitfields inside the SIUL module.

3. All WKUP pins also support external interrupt capability. See “wakeup unit” chapter for further details.

4. NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.

5. “Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the
device reference manual for details.

6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.

Table 7. Functional port pin descriptions (continued)

Port
pin

PCR
register

Alternate
function(1) Function Peripheral

I/O
direction(2)

Pad
type

RESET
config.

Pin number

LQFP
64

LQFP
100
Doc ID 16886 Rev 6 70/868

Microcontroller Boot RM0045
5 Microcontroller Boot

This chapter explains the process of booting the microcontroller. The following entities are
involved in the boot process:

● Boot Assist Module (BAM)

● System Status and Configuration Module (SSCM)

● Flash memory boot sectors (see Chapter 27, Flash Memory)

● Memory Management Unit (MMU)

5.1 Boot mechanism
This section describes the configuration required by the user, and the steps performed by
the microcontroller, in order to achieve a successful boot from flash memory or serial
download modes.

There are 2 external pins on the microcontroller that are latched during reset and used to
determine whether the microcontroller will boot from flash memory or attempt a serial
download via FlexCAN or LINFlex (RS232):

● FAB (Force Alternate Boot mode) on pin PA[9]

● ABS (Alternate Boot Select) on pin PA[8]

Table 8 describes the configuration options.

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means
that if nothing external is connected to these pins, the microcontroller will enter flash
memory boot mode by default. In order to change the boot behavior, you should use
external pullup or pulldown resistors on PA[9] and PA[8]. If there is any external circuitry
connected to either pin, you must ensure that this does not interfere with the expected value
applied to the pin at reset. Otherwise, the microcontroller may boot into an unexpected
mode after reset.

The SSCM preforms a lot of the automated boot activity including reading the latched value
of the FAB (PA[9]) pin to determine whether to boot from flash memory or serial boot mode.
This is illustrated in Figure 5.

Table 8. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])

Flash memory boot (default mode) 0 X

Serial boot (LINFlex) 1 0

Serial boot (FlexCAN) 1 1
71/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot

Figure 5. Boot mode selection

5.1.1 Flash memory boot

In order to sucessfully boot from flash memory, you must program two 32-bit fields into one
of 5 possible boot blocks as detailed below. The entities to program are:

● 16-bit Reset Configuration Half Word (RCHW), which contains:

– A BOOT_ID field that must be correctly set to 0x5A in order to "validate" the boot
sector

● 32-bit reset vector (this is the start address of the user code)

The location and structure of the boot sectors in flash memory are shown in Figure 6.

FAB (PA[9]) value?
FAB = 0

Boot from
ABS (PA[8]) value?

Serial boot
(FlexCAN)

SSCM reads latched
values of PA[8] and

PA[9] pins

flash memory

Serial boot
(LINFlex)

FAB = 1

ABS = 0 ABS = 1
Doc ID 16886 Rev 6 72/868

Microcontroller Boot RM0045

Figure 6. Boot sector structure

The RCHW fields are described in Table 9.

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid
BOOT_ID within the RCHW. If a valid BOOT_ID is found, the SSCM reads the boot vector
address. If a valid BOOT_ID is not found, the SSCM starts the process of putting the
microcontroller into static mode.

Finally, the SSCM sets the e200z0h core instruction pointer to the reset vector address and
starts the core running.

Static mode

If no valid BOOT_ID within the RCHW was found, the SSCM sets the CPU core instruction
pointer to the BAM address and the core starts to execute the code to enter static mode as
follows:

● The core executes the "wait" instruction which halts the core.

32 KB

Boot sector 0

16 KB

16 KB

32 KB

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

Code flash memory

32 KB

0x0001_8000

Boot sector 1

Boot sector 2

Boot sector 3

Boot sector 4

Boot sector structure

Bit 0 Bit 31

Reserved Reserved

7 8 15 16

BOOT_ID
(0x5A)

0x0
(RCHW)

0x4 32-bit reset vector (points to start address of application code)

0x8 Application code (from offset 0x8 and onward)

Table 9. RCHW field descriptions

Field Description

BOOT_ID
Boot identifier.

If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.
73/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
The sequence is illustrated in Figure 7.

Figure 7. Flash memory boot mode sequence

Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be
erased and reprogrammed in the field. When an alternate boot is needed, you can create
two bootable sectors:

● The valid boot sector located at the lowest address is the main boot sector.

● The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector
is erased.

5.1.2 Serial boot mode

Serial boot provides a mechanism to download and then execute code into the
microcontroller SRAM. Code may be downloaded using either FlexCAN or LINFlex (RS232).
After the SSCM has detected that serial boot mode has been requested, execution is
transferred to the BAM which handles all of the serial boot mode tasks. See Section 5.2,
Boot Assist Module (BAM), for more details.

SSCM searches flash
boot sectors for valid

Valid
BOOT_ID found?

SSCM reads reset
vector address

Yes No

BOOT_ID (0x5A)

SSCM transfers
execution to e200z0h core

which runs BAM code

BAM code executes
wait instruction

System in static mode

e200z0h core starts
executing code at

vector address

(requires reset to recover)
Doc ID 16886 Rev 6 74/868

Microcontroller Boot RM0045
5.1.3 Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or
modified. In order to achieve this, the censorship mechanism controls access to the:

● JTAG / Nexus debug interface

● Serial boot mode (which could otherwise be used to download and execute code to
query or modify the flash memory)

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be
correctly entered.

Caution: When censorship has been enabled, the only way to regain access is with the password. If
this is forgotten or not correctly configured, then there is no way back into the device.

There are two 64-bit values stored in the shadow flash which control the censorship (see
Table 373 for a full description):

● Nonvolatile Private Censorship Password registers, NVPWD0 and NVPWD1

● Nonvolatile System Censorship Control registers, NVSCC0 and NVSCC1

Censorship password registers (NVPWD0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be
programmed to a value known only by you. After factory test these registers are
programmed as shown below:

● NVPWD0 = 0xFEED_FACE

● NVPWD1 = 0xCAFE_BEEF

This means that even if censorship was inadvertently enabled by writing to the censorship
control registers, there is an opportunity to get back into the microcontroller using the default
private password of 0xFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1"
and one "0". Some examples of legal and illegal passwords are shown in Table 10:

In uncensored devices it is possible to download code via LINFlex or FlexCAN (Serial Boot
Mode) into internal SRAM even if the 64-bit private password stored in the flash and
provided during the boot sequence is a password that does not conform to the password
rules.

Nonvolatile System Censorship Control registers (NVSCC0 and NVSCC1)

These registers are used together to define the censorship configuration. After factory test
these registers are programmed as shown below which disables censorship:

● NVSCC0 = 0x55AA_55AA

● NVSCC1 = 0x55AA_55AA

Table 10. Examples of legal and illegal passwords

Legal (valid) passwords Illegal (invalid) passwords

0x0001_0001_0001_0001
0xFFFE_FFFE_FFFE_FFFE
0x1XXX_X2XX_XX4X_XXX8

0x0000_XXXX_XXXX_XXXX
0xFFFF_XXXX_XXXX_XXXX
75/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC
field) are used to control serial boot mode censorship. The lower 16 bits (the CW field) are
used to control flash memory boot censorship.

Caution: If the contents of the shadow flash memory are erased and the NVSCC0,1 registers are not
re-programmed to a valid value, the microcontroller will be permanently censored with no
way for you to regain access. A microcontroller in this state cannot be debugged or re-
flashed.

Censorship configuration

The steps to configuring censorship are:

1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and
configure the NVSCC0,1 values.

3. Re-program the shadow flash memory and NVPWD0,1 and NVSCC0,1 registers with
your new values. A POR is required before these will take effect.

Caution: If
(NVSCC0 and NVSCC1 do not match)

or
(Either NVSCC0 or NVSCC1 is not set to 0x55AA)

then the microcontroller will be permanently censored with no way to get back in.

Table 11 shows all the possible modes of censorship. The red shaded areas are to be
avoided as these show the configuration for a device that is permanently locked out. If you
wish to enable censorship with a private password there is only one valid configuration — to
modify the CW field in both NVSCC0,1 registers so they match but do not equal 0x55AA.
This will allow you to enter the private password in both serial and flash boot modes.

Table 11. Censorship configuration and truth table

Boot configuration Serial
censorship

control word
(NVSCCn[SC])

Censorship
control word

(NVSCCn[CW])

Internal
flash

memory
state

Nexus
state

Serial
password

JTAG
passwordFAB pin

state
Control options

0 (flash
memory
boot)

Uncensored
0xXXXX AND
NVSCC0 ==

NVSCC1

0x55AA AND
NVSCC0 ==

NVSCC1
Enabled Enabled N/A

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1
Enabled

Enabled
with

password

NVPWD1,0
(SSCM reads

flash
memory(1))

Censored with no
password access
(lockout)

!0x55AA !0X55AA

Enabled Disabled N/AOR
NVSCC0 != NVSCC1
Doc ID 16886 Rev 6 76/868

Microcontroller Boot RM0045
The flow charts in Figure 8 and Figure 9 provide a way to quickly check what will happen
with different configurations of the NVSCC0,1 registers as well as detailing the correct way
to enter the serial password. In the password examples, assume the 64-bit password has
been programmed into the shadow flash memory in the order {NVPWD0, NWPWD1} and
has a value of 0x01234567_89ABCDEF.

1 (serial
boot)

Private flash
memory password
and uncensored

0x55AA AND
NVSCC0 == NVSCC1

Enabled Enabled

NVPWD0,1
(BAM reads

flash
memory(1))

Private flash
memory password
and censored

0x55AA AND
NVSCC0 ==

NVSCC1

!0x55AA AND
NVSCC0 ==

NVSCC1
Enabled Disabled

NVPWD1,0
(SSCM reads

flash
memory(1))

Public password
and uncensored

!0x55AA AND
NVSCC0 !=

NVSCC1

0X55AA AND
NVSCC0 !=

NVSCC1
Enabled Enabled

Public
(0xFEED_FA
CE_CAFE_B

EEF)

Public password
and censored
(lockout)

!0x55AA

Disabled Disabled

Public
(0xFEED_FA
CE_CAFE_B

EEF)
OR NVSCC0 != NVSCC1

= Microcontroller permanently locked out

= Not applicable

1. When the SSCM reads the passwords from flash memory, the NVPWD0 and NVPWD1 password order is swapped, so you
have to submit the 64-bit password as {NVPWD1, NVPWD0}.

Table 11. Censorship configuration and truth table (continued)

Boot configuration Serial
censorship

control word
(NVSCCn[SC])

Censorship
control word

(NVSCCn[CW])

Internal
flash

memory
state

Nexus
state

Serial
password

JTAG
passwordFAB pin

state
Control options
77/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot

Figure 8. Censorship control in flash memory boot mode

FAB = 0
(Flash boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

JTAG password details:

Enter password as
{NVPWD1, NVPWD0}

False

False

False

Both
SC and CW !=

0x55AA

CW != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True Censored with
private password

over JTAG

Uncensored

example –
0x89ABCDEF_01234567

Note:
SC = 0x55AA
Doc ID 16886 Rev 6 78/868

Microcontroller Boot RM0045

Figure 9. Censorship control in serial boot mode

5.2 Boot Assist Module (BAM)
The BAM consits of a block of ROM at address 0xFFFF_C000 containing VLE firmware.
The BAM provides 2 main functions:

● Manages the serial download (FlexCAN or LINFlex protocols supported) including
support for a serial password if censorship is enabled

● Places the microcontroller into static mode if flash memory boot mode is selected and a
valid BOOT_ID is not located in one of the boot sectors by the SSCM

5.2.1 BAM software flow

Figure 10 illustrates the BAM logic flow.

FAB = 1
(Serial boot mode)

NVSCC0 !=
NVSCC1

?

True Censored with no
password access

(Locked out)

Serial password details:

Enter public password
0xFEEDFACE_CAFEBEEF

False

False

False

Both
SC and CW !=

0x55AA

SC != 0x55AA
?

?

True Censored with no
password access

(Locked out)

True
Note:
CW = 0x55AA

False

CW != 0x55AA
?

True
Note:
SC = 0x55AA

Public password,
Uncensored

Flash
(private) password,

Censored

Flash
(private) password,

Uncensored

Enter password as
{NVPWD1, NVPWD0}
example –
0x89ABCDEF_01234567

Enter password as
{NVPWD0, NVPWD1}
example –
0x01234567_89ABCDEF
79/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot

Figure 10. BAM logic flow

The initial (reset) device configuration is saved including the mode and clock configuration.
This means that the serial download software running in the BAM can make changes to the
modes and clocking and then restore these to the default values before running the newly
downloaded application code from the SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see
Table 12). This field is only updated during reset.

There are 2 conditions where the boot mode is not considered valid and the BAM pushes
the microcontroller into static mode after restoring the default configuration:

● BMODE = 011 (flash memory boot mode). This means that the SSCM has been unable
to find a valid BOOT_ID in the boot sectors so has called the BAM

● BMODE = reserved

In static mode a wait instruction is executed to halt the core.

For the FlexCAN and LINFlex serial boot modes, the respective area of BAM code is
executed to download the code to SRAM.

No Restore default
configuration

configuration

Save default

BAM Entry
0xFFFF_C000

Boot mode valid?

Download new
code and save in

SRAM

Restore default

configuration
Execute new

code

STATIC mode

Yes

Check boot
mode at

SSCM_STATUS[BMODE]
Doc ID 16886 Rev 6 80/868

Microcontroller Boot RM0045

After the code has been downloaded to SRAM, the BAM code restores the initial device
configuration and then transfers execution to the start address of the downloaded code.

BAM resources

The BAM uses/initializes the following MCU resources:

● MC_ME and MC_CGM to initialize mode and clock sources

● FlexCAN_0, LINFlex _0 and the respective I/O pins when performing serial boot mode

● SSCM during password check

● SSCM to check the boot mode (see Table 12)

● 4–16 MHz fast external crystal oscillator

The system clock is selected directly from the 4–16 MHz fast external crystal oscillator.
Thus, the external oscillator frequency defines the baud rates used for serial download (see
Table 13).

Download and execute the new code

From a high level perspective, the download protocol follows these steps:

1. Send the 64-bit password.

2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit(c).

3. Download the code.

Each step must be completed before the next step starts. After the download is complete
(the specified number of bytes is downloaded), the code executes from the start address.

Table 12. SSCM_STATUS[BMODE] values as used by BAM

BMODE value Corresponding boot mode

000 Reserved

001 FlexCAN_0 serial boot loader

010 LINFlex_0 (RS232 /UART) serial boot loader

011 Flash memory boot mode

100–111 Reserved

Table 13. Serial boot mode – baud rates

FXOSC frequency

(MHz)

LINFlex baud rate

(baud)

CAN bit rate

(bit/s)

fFXOSC fFXOSC/833 fFXOSC/40

8 9600 200K

12 14400 300K

16 19200 400K

c. Since the device supports only VLE code and not Book E code, this flag is used only for backward
compatibility.
81/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
The communication is done in half duplex manner, whereby the transmission from the host
is followed by the microcontroller transmission mirroring the transmission back to the host:

● Host sends data to the microcontroller and waits for a response.

● MCU echoes to host the data received.

● Host verifies if echo is correct:

– If data is correct, the host can continue to send data.

– If data is not correct, the host stops transmission and the microcontroller enters
static mode.

All multi-byte data structures are sent with MSB first.

A more detailed description of these steps follows.

Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which
censorship mode the microcontroller is in and which password to use. It does this by reading
the PUB and SEC fields in the SSCM Status Register (see Section , System Status Register
(SSCM_STATUS)) as shown in Table 14.

When censorship is enabled, the flash memory cannot be read by application code running
in the BAM or in the SRAM. This means that the private password in the shadow flash
memory cannot be read by the BAM code. In this case the SSCM is used to obtain the
private password from the flash memory of the censored device. When the SSCM reads the
private password it inverts the order of {NVPWD0, NWPWD1} so the password entered over
the serial download needs to be {NVPWD1, NVPWD0}.

Table 14. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison

PUB SEC

1 0 Uncensored, public password 0xFEED_FACE_CAFE_BEEF

0 0 Uncensored, private password NVPWD0,1 from flash memory via BAM

0 1 Censored, private password NVPWD1,0 from flash memory via SSCM
Doc ID 16886 Rev 6 82/868

Microcontroller Boot RM0045

Figure 11. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the
stored password, then the BAM code pushes the microcontroller into static mode.

The way the password is compared with either the public or private password (depending on
mode) varies depending on whether censorship is enabled as described in the following
subsections.

Censorship disabled (private or public passwords):

1. If the public password is used, the BAM code does a direct comparison between the
serial password and 0xFEED_FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the
serial password and the private password in flash memory, {NVPWD0, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download
and pushes the microcontroller into static mode.

Yes

BAM code is being
executed

(serial boot mode)

No

No

PUB = 1
?

Yes

Start serial download
with password

SSCM_STATUS register
PUB and SEC
bits are read

SEC = 1
?

Public password,
Uncensored,

BAM can directly
 check password

Private password,
Censored,

SSCM needed to
 check password

Private password,
Uncensored,

BAM can directly
 check password

Public password
mode

Is censorship
enabled

BAM tasks Applicable password

?

?

83/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
Censorship enabled (private password)

1. Since the flash is secured, the SSCM is required to read the private password.

2. The BAM code writes the serial password to the SSCM_PWCMPH and
SSCM_PWCMPL registers.

3. The BAM code then continues with the serial download (start address, data size and
data) until all the data has been copied to the SRAM.

4. In the meantime the SSCM has compared the private password in flash with the serial
download password the BAM code wrote into SSCM_PWCMPH and
SSCM_PWCMPL.

5. If the SSCM obtains a match in the passwords, the censorship is temporarily disabled
(until the next reset).

6. The SSCM updates the status of the security (SEC) bit to reflect whether the
passwords matched (SEC = 0) or not (SEC = 1)

7. Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in the
SRAM. If SEC = 1, the BAM code forces the microcontroller into static mode.

Figure 12 shows this in more detail.
Doc ID 16886 Rev 6 84/868

Microcontroller Boot RM0045

Figure 12. BAM serial boot mode flow for censorship enabled and private password

With LINFlex, any receive error will result in static mode. With FlexCAN, the host will re-
transmit data if there has been no acknowledgment from the microcontroller. However there

Censorship enabled,
private password,

BAM running

Yes

BAM reads
SSCM_STATUS[SEC]

Serial password
received

Is SEC bit
cleared

BAM tasks SSCM tasks

serial boot mode

BAM writes received
password to SSCM

registers

Upper 32-bits to
SSCM_PWCMPH
Lower 32-bits to

SSCM_PWCMPL

Start address
and data

Data download
received

and copied to SRAM

?

BAM code pushes
microcontroller into

static mode

If any frame
is received
incorrectly,
BAM code

pushes
device into

static mode
If passwords match,

un-censor device
until next POR

Update SSCM_STATUS[SEC]
bit with

censorship state

SSCM compares
registers to private
password in flash

SSCM_PWCMPH to NVPWD1
SSCM_PWCMPL to NVPWD0

No

BAM code transfers
execution to user

code in SRAM

length received
85/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
could be a situation where the receiver configuration has an error which would result in
static mode entry.

Note: In a censored device booting with serial boot mode, it is possible to read the content of the
four 32-bit flash memory locations that make up the boot sector. For example, if the RCHW
is stored at address 0x0000_0000, the reads at address 0x0000_0000, 0x0000_0004,
0x0000_0008 and 0x0000_000C will return a correct value. No other flash memory
locations can be read.

Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE
mode bit and a 31-bit code Length as shown in Figure 13.

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be
downloaded is Book VLE or Book III-E. This device family supports only VLE = 1; the bit is
used for backward compatibility.

The Start Address defines where the received data will be stored and where the MCU will
branch after the download is finished. The start address is 32-bit word aligned and the 2
least significant bits are ignored by the BAM code.

Note: The start address is configurable, but most not lie within the 0x4000_0000 to 0x4000_00FF
address range.

The Length defines how many data bytes have to be loaded.

Download data

Each byte of data received is stored in the microcontroller’s SRAM, starting from the
address specified in the previous protocol step.

The address increments until the number of bytes of data received matches the number of
bytes specified by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code
always writes bytes into SRAM grouped into 32-bit words. If the last byte received does not
fall onto a 32-bit boundary, the BAM code fills any additional bytes with 0x0.

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have
just been downloaded), an additional dummy word of 0x0000_0000 is written at the end of
the downloaded data block to avoid any ECC errors during core prefetch.

Figure 13. Start address, VLE bit and download size in bytes

START_ADDRESS[31:16]

START_ADDRESS[15:0]

VLE CODE_LENGTH[30:16]

CODE_LENGTH[15:0]
Doc ID 16886 Rev 6 86/868

Microcontroller Boot RM0045
Execute code

The BAM code waits for the last data byte to be received. If the operating mode is censored
with a private password, then the BAM reads the SSCM status register to determine
whether the serial password matched the private password. If there was a password match
then the BAM code restores the initial configuration and transfers execution to the
downloaded code start address in SRAM. If the passwords did not match, the BAM code
forces a static mode entry.

Note: The watchdog is disabled at the start of BAM code execution. In the case of an unexpected
issue during BAM code execution, the microcontroller may be stalled and an external reset
required to recover the microcontroller.

5.2.2 LINFlex (RS232) boot

Configuration

Boot according to the LINFlex boot mode download protocol (see Section , Protocol) is
performed by the LINFlex_0 module in UART (RS232) mode. Pins used are:

● LIN0TX mapped on PB[2]

● LIN0RX mapped on PB[3]

Boot from LINFlex uses the system clock driven by the 4–16 MHz external crystal oscillator
(FXOSC).

The LINFlex controller is configured to operate at a baud rate = system clock frequency/833,
using an 8-bit data frame without parity bit and 1 stop bit.

Figure 14. LINFlex bit timing in UART mode

Protocol

Table 15 summarizes the protocol and BAM action during this boot mode.

D1 D2 D3 D4 D5 D6 D7D0

Byte field

Start
bit

Stop
bit

Table 15. UART boot mode download protocol

Protocol
step

Host sent message
BAM response

message
Action

1
64-bit password (MSB
first)

64-bit password
Password checked for validity and compared against
stored password.

2 32-bit store address 32-bit store address Load address is stored for future use.

3
VLE bit + 31-bit
number of bytes (MSB
first)

VLE bit + 31-bit
number of bytes (MSB
first)

Size of download are stored for future use.
Verify if VLE bit is set to 1
87/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
5.2.3 FlexCAN boot

Configuration

Boot according to the FlexCAN boot mode download protocol (see Section , Protocol) is
performed by the FlexCAN_0 module. Pins used are:

● CAN0TX mapped on PB[0]

● CAN0RX mapped on PB[1]

Note: When the serial download via FlexCAN is selected and the device is part of a CAN network,
the serial download may stop unexpectedly if there is any other traffic on the network. To
avoid this situation, ensure that no other CAN device on the network is active during the
serial download process.

Boot from FlexCAN uses the system clock driven by the 4–16 MHz fast external crystal
oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40
(see Table 13 for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2
time quanta before the end, as shown in Figure 15.

4
8 bits of raw binary
data

8 bits of raw binary
data

8-bit data are packed into a 32-bit word. This word is
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code

Table 15. UART boot mode download protocol

Protocol
step

Host sent message
BAM response

message
Action
Doc ID 16886 Rev 6 88/868

Microcontroller Boot RM0045

Figure 15. FlexCAN bit timing

Protocol

Table 16 summarizes the protocol and BAM action during this boot mode. All data are
transmitted byte wise.

SYNC_SEG Time segment 1 Time segment 2

Sample point

NRZ signal

Transmit point

1
time quantum time quanta time quanta

7 2

1 bit time

1 time quantum = 4 system clock periods

Table 16. FlexCAN boot mode download protocol

Protocol
step

Host sent message
BAM response

message
Action

1
CAN ID 0x011 +

64-bit password

CAN ID 0x001 +

64-bit password
Password checked for validity and compared against stored
password

2

CAN ID 0x012 + 32-
bit store address +
VLE bit + 31-bit
number of bytes

CAN ID 0x002 + 32-
bit store address +
VLE bit + 31-bit
number of bytes

Load address is stored for future use.

Size of download are stored for future use.

Verify if VLE bit is set to 1

3
CAN ID 0x013 +

8 to 64 bits of raw
binary data

CAN ID 0x003 +

8 to 64 bits of raw
binary data

8-bit data are packed into 32-bit words. These words are
saved into SRAM starting from the “Load address”.

“Load address” increments until the number of data
received and stored matches the size as specified in the
previous step.

5 None None Branch to downloaded code
89/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
5.3 System Status and Configuration Module (SSCM)

5.3.1 Introduction

The primary purpose of the SSCM is to provide information about the current state and
configuration of the system that may be useful for configuring application software and for
debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is
part of that domain.

Figure 16. SSCM block diagram

5.3.2 Features

The SSCM includes these features:

● System Configuration and Status

– Memory sizes/status

– Microcontroller Mode and Security Status (including censorship and serial boot
information)

– Search Code Flash for bootable sector

– Determine boot vector

● Device identification information (MCU ID Registers)

● Debug Status Port enable and selection

● Bus and peripheral abort enable/disable

Bus

System Status and Configuration Module

Interface

Password
Comparator

RevID
Hardmacro

Core
Logic

System
Status

Peripheral

Interface
Bus
Doc ID 16886 Rev 6 90/868

Microcontroller Boot RM0045
5.3.3 Modes of operation

The SSCM operates identically in all system modes.

5.3.4 Memory map and register description

Table 17 shows the memory map for the SSCM. Note that all addresses are offsets; the
absolute address may be calculated by adding the specified offset to the base address of
the SSCM.

All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses
must be aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit
boundaries. As an example, the SSCM_STATUS register is accessible by a 16-bit read/write
to address ‘Base + 0x0002’, but performing a 16-bit access to ‘Base + 0x0003’ is illegal.

System Status Register (SSCM_STATUS)

The System Status register is a read-only register that reflects the current state of the
system.

Table 17. SSCM memory map

Address offset Register Location

0x00 System Status Register (SSCM_STATUS) on page 5-91

0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 5-92

0x04 Reserved

0x06 Error Configuration (SSCM_ERROR) on page 5-93

0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 5-94

0x0A Reserved

0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 5-96

0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 5-96

Figure 17. System Status Register (SSCM_STATUS)

Offset:0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

N
X

E
N

PUB SEC 0 BMODE 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0/1 0/1 0/1 0 0 0 0 0

Table 18. SSCM_STATUS allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Not allowed
91/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot

System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory
configuration of the system.

Table 19. SSCM_STATUS field descriptions

Field Description

NXEN Nexus enabled

PUB

Public Serial Access Status. This bit indicates whether serial boot mode with public password is
allowed.
1 Serial boot mode with public password is allowed
0 Serial boot mode with private flash memory password is allowed

SEC
Security Status. This bit reflects the current security state of the flash memory.
1 The flash memory is secured.
0 The flash memory is not secured.

BMODE

Device Boot Mode
000 Reserved
001 FlexCAN_0 Serial Boot Loader
010 LINFlex_0 Serial Boot Loader
011 Single Chip
100 Reserved
101 Reserved
110 Reserved
111 Reserved
This field is only updated during reset.

Figure 18. System Memory Configuration Register (SSCM_MEMCONFIG)

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 PRSZ PVLB DTSZ DVLD

W

Reset x x x x x x x x x x 1 x x x x 1

Table 20. SSCM_MEMCONFIG field descriptions

Field Description

PRSZ
Code Flash Size
10000 128 KB
10001 256 KB

PVLB

Code Flash Available
This bit identifies whether or not the on-chip code Flash is available in the system memory map. The
Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Code Flash is available
0 Code Flash is not available
Doc ID 16886 Rev 6 92/868

Microcontroller Boot RM0045

Error Configuration (SSCM_ERROR)

The Error Configuration register is a read-write register that controls the error handling of
the system.

DTSZ
Data Flash Size
0000 No Data Flash
0011 64 KB

DVLD

Data Flash Valid

This bit identifies whether or not the on-chip Data Flash is visible in the system memory map. The
Flash may not be accessible due to security limitations, or because there is no Flash in the system.

1 Data Flash is visible
0 Data Flash is not visible

Table 21. SSCM_MEMCONFIG allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed
Allowed

(also reads SSCM_STATUS
register)

Write Not allowed Not allowed Not allowed

Table 20. SSCM_MEMCONFIG field descriptions (continued)

Field Description

Figure 19. Error Configuration (SSCM_ERROR)

Offset: 0x06 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAE RAE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot

Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

Table 22. SSCM_ERROR field descriptions

Field Description

PAE

Peripheral Bus Abort Enable

This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This
feature is intended to aid in debugging when developing application code.

1 Illegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception

RAE

Register Bus Abort Enable

This bit enables bus aborts on illegal accesses to off-platform peripherals. Illegal accesses are defined
as reads or writes to reserved addresses within the address space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.
1 Illegal accesses to peripherals produce a Prefetch or Data Abort exception
0 Illegal accesses to peripherals do not produce a Prefetch or Data Abort exception
Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

Table 23. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed

Write Allowed Allowed Not allowed

Figure 20. Debug Status Port Register (SSCM_DEBUGPORT)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0
DEBUG_MODE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 94/868

Microcontroller Boot RM0045

PIN[0..7] referred to in Table 25 equates to PC[2..9] (Pad 34..41).

Table 24. SSCM_DEBUGPORT field descriptions

Field Description

DEBUG_MODE

Debug Status Port Mode

This field selects the alternate debug functionality for the Debug Status Port.

000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected

Table 25 describes the functionality of the Debug Status Port in each mode.

Table 25. Debug status port modes

Pin
(1)

1. All signals are active high, unless otherwise noted

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

0
SSCM_STATUS

[0]
SSCM_STATUS

[8]
SSCM_MEMCONFI

G[0]
SSCM_MEMCONFI

G[8]
Reserved Reserved Reserved

1
SSCM_STATUS

[1]
SSCM_STATUS

[9]
SSCM_MEMCONFI

G[1]
SSCM_MEMCONFI

G[9]
Reserved Reserved Reserved

2
SSCM_STATUS

[2]
SSCM_STATUS

[10]
SSCM_MEMCONFI

G[2]
SSCM_MEMCONFI

G[10]
Reserved Reserved Reserved

3
SSCM_STATUS

[3]
SSCM_STATUS

[11]
SSCM_MEMCONFI

G[3]
SSCM_MEMCONFI

G[11]
Reserved Reserved Reserved

4
SSCM_STATUS

[4]
SSCM_STATUS

[12]
SSCM_MEMCONFI

G[4]
SSCM_MEMCONFI

G[12]
Reserved Reserved Reserved

5
SSCM_STATUS

[5]
SSCM_STATUS

[13]
SSCM_MEMCONFI

G[5]
SSCM_MEMCONFI

G[13]
Reserved Reserved Reserved

6
SSCM_STATUS

[6]
SSCM_STATUS

[14]
SSCM_MEMCONFI

G[6]
SSCM_MEMCONFI

G[14]
Reserved Reserved Reserved

7
SSCM_STATUS

[7]
SSCM_STATUS

[15]
SSCM_MEMCONFI

G[7]
SSCM_MEMCONFI

G[15]
Reserved Reserved Reserved

Table 26. SSCM_DEBUGPORT allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Not allowed

Write Allowed Allowed Not allowed
95/868 Doc ID 16886 Rev 6

RM0045 Microcontroller Boot
Password comparison registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if
the password has been provided via serial download.

Figure 21. Password Comparison Register High Word (SSCM_PWCMPH)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22. Password Comparison Register Low Word (SSCM_PWCMPL)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_LO[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 27. Password Comparison Register field descriptions

Field Description

PWD_HI Upper 32 bits of the password

PWD_LO Lower 32 bits of the password
Doc ID 16886 Rev 6 96/868

Microcontroller Boot RM0045

In order to unsecure the device, the password needs to be written as follows: first the upper
word to the SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL
register. The SSCM compares the 64-bit password entered into the SSCM_PWCMPH /
SSCM_PWCMPL registers with the NVPWM[1,0] private password stored in the shadow
flash. If the passwords match then the SSCM temporarily uncensors the microcontroller.

Table 28. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit(1)

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

Read Allowed Allowed Allowed

Write Not allowed Not allowed Allowed
97/868 Doc ID 16886 Rev 6

RM0045 Clock Description
6 Clock Description

This chapter describes the clock architectural implementation for SPC560D30/40.

6.1 Clock architecture
System clocks are generated from three sources:

● Fast external crystal oscillator 4-16 MHz (FXOSC)

● Fast internal RC oscillator 16 MHz (FIRC)

● Frequency modulated phase locked loop (FMPLL)

Additionally, there is a slow internal RC oscillator 128 kHz (SIRC).

The clock architecture is shown in Figure 23.

Figure 23. SPC560D30/40 system clock generation

FXOSC

FIRC

Clock Monitor
Unit

SIRC

Reset

System

Clock

Selector

FMPLL

FXOSC_clk_div

FIRC_clk_div

FMPLL_clk

(e.g. 48 MHz)

(e.g. 8 MHz)

(e.g. 16 MHz)

sys_clk Core

Platform

Peripheral

Set 1

Peripheral

Set 2

Watchdog

API/RTC

/1 to /16

/1 to /16

SIRC_clk_div

SIRC_clk

SIRC_clk

FIRC_clk

FXOSC_clk

CLKOUT/1, /2, /4, /8

FMPLL_clk

(e.g. 48 MHz)

FIRC_clk

FXOSC_clk

CLKOUT

Selector

Peripheral

Set 3
/1 to /16

/1 to /32

/1 to /32

FIRC_clk

/1 to /32
SIRC_clk_div

(128 kHz)

DMA

sys_clk

 rtc_clk

rtc_clk

(4–16 MHz)

(16 MHz)

Safe
Interrupt
Doc ID 16886 Rev 6 98/868

Clock Description RM0045
6.2 Clock gating
The SPC560D30/40 provides the user with the possibility of gating the clock to the
peripherals. Table 29 describes for each peripheral the associated gating register address.
See the ME_PCTLn section in this reference manual.

Additionally, peripheral set (1, 2 or 3) frequency can be configured to be an integer (1 to 16)
divided version of the main system clock. See the CGM_SC_DC0 section in this reference
manual for details.

6.3 Fast external crystal oscillator (FXOSC) digital interface
The FXOSC digital interface controls the operation of the 4–16 MHz fast external crystal
oscillator (FXOSC). It holds control and status registers accessible for application.

6.3.1 Main features

● Oscillator powerdown control and status reporting through MC_ME block

● Oscillator clock available interrupt

● Oscillator bypass mode

● Output clock division factors ranging from 1, 2, 3....32

6.3.2 Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It
provides an output clock that can be provided to the FMPLL or used as a reference clock to
specific modules depending on system needs.

Table 29. SPC560D30/40 — Peripheral clock sources

Peripheral
Register gating address offset

(base = 0xC3FDC0C0)(1)

1. See the ME_PCTL section in this reference manual for details.

Peripheral set(2)

2. “—” means undivided system clock.

RPP_Z0H Platform none (managed through ME mode) —

DSPI_n 4+n (n = 0..1) 2

FlexCAN 16 2

ADC 32 3

LINFLEX_n 48+n(n = 0..2) 1

CTU 57 3

SIUL 68 —

WKUP 69 —

eMIOS 72 3

RTC/API 91 —

PIT 92 —

CMU 104 —
99/868 Doc ID 16886 Rev 6

RM0045 Clock Description
The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit
controls the powerdown of the oscillator based on the current device mode while
ME_GS[S_XOSC] register provides the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on
when required. Whenever the crystal oscillator is switched on from the off state, the
OSCCNT counter starts and when it reaches the value EOCV[7:0]×512, the oscillator clock
is made available to the system. Also, an interrupt pending FXOSC_CTL[I_OSC] bit is set.
An interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only
be set by software. A system reset is needed to reset this bit. In this bypass mode, the
output clock has the same polarity as the external clock applied on the EXTAL pin and the
oscillator status is forced to ‘1’. The bypass configuration is independent of the powerdown
mode of the oscillator.

Table 30 shows the truth table of different oscillator configurations.

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
FXOSC_CTL[OSCDIV] field.

Table 30. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON] FXOSC_CTL[OSCBYP] XTAL EXTAL FXOSC Oscillator mode

0 0
No crystal,

High Z
No crystal,

High Z
0 Powerdown, IDDQ

x 1 x Ext clock EXTAL
Bypass, OSC

disabled

1 0

Crystal Crystal EXTAL
Normal, OSC

enabled

Gnd Ext clock EXTAL
Normal, OSC

enabled
Doc ID 16886 Rev 6 100/868

Clock Description RM0045
6.3.3 Register description

Figure 24. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

Address: 0xC3FE_0000 Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
S

C
B

Y
P

(1
)

1. You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

EOCV
W

RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

M
_O

S
C 0 0

OSCDIV

I_
O

S
C

(2
)

2. You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no effect
on the field value.

0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 31. FXOSC_CTL field descriptions

Field Description

OSCBYP

Crystal Oscillator bypass.

This bit specifies whether the oscillator should be bypassed or not.

0 Oscillator output is used as root clock
1 EXTAL is used as root clock

EOCV

End of Count Value.

These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on
the FXOSC). This counting period ensures that external oscillator clock signal is stable before it
can be selected by the system. When oscillator counter reaches the value EOCV × 512, the
crystal oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept
under reset if oscillator bypass mode is selected.

M_OSC
Crystal oscillator clock interrupt mask.

0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.

OSCDIV
Crystal oscillator clock division factor.
This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV+1.

I_OSC

Crystal oscillator clock interrupt.

This bit is set by hardware when OSCCNT counter reaches the count value EOCV × 512.
0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.
101/868 Doc ID 16886 Rev 6

RM0045 Clock Description
6.4 Slow internal RC oscillator (SIRC) digital interface

6.4.1 Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds
control and status registers accessible for application.

6.4.2 Functional description

The SIRC provides a low frequency (fSIRC) clock of 128 kHz requiring very low current
consumption. This clock can be used as the reference clock when a fixed base time is
required for specific modules.

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is
controlled by SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in
SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to
32 to generate the divided clock to match system requirements. This division factor is
specified by SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM]. After a power-on
reset, the SIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at SIRC_CTL[SIRCTRIM]
and this field shows a value of zero. Therefore, be aware that the SIRC_CTL[SIRCTRIM]
does not reflect the current trim value until you have written to this field. Pay particular
attention to this feature when you initiate a read-modify-write operation on SIRC_CTL,
because a SIRCTRIM value of zero may be unintentionally written back and this may alter
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure
that you only write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from –16 to 15. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.
Doc ID 16886 Rev 6 102/868

Clock Description RM0045
6.4.3 Register description

6.5 Fast internal RC oscillator (FIRC) digital interface

6.5.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds
control and status registers accessible for application.

Figure 25. Low Power RC Control Register (SIRC_CTL)

Address: 0xC3FE_0080 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0
SIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

SIRCDIV

0 0 0

S
_S

IR
C

0 0 0

S
IR

C
O

N
_S

T
D

B
Y

W

RESET: 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

Table 32. SIRC_CTL field descriptions

Field Description

SIRCTRIM

SIRC trimming bits.

This field corresponds (via two’s complement) to a trim factor of –16 to +15.

A +1 change in SIRCTRIM decreases the current frequency by SIRCTRIM (see the device
data sheet).

A –1 change in SIRCTRIM increases the current frequency by SIRCTRIM (see the device data
sheet).

SIRCDIV
SIRC clock division factor.

This field specifies the SIRC oscillator output clock division factor. The output clock is divided
by the factor SIRCDIV+1.

S_SIRC
SIRC clock status.

0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRCON_STDBY
SIRC control in STANDBY mode.

0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.
103/868 Doc ID 16886 Rev 6

RM0045 Clock Description
6.5.2 Functional description

The FIRC provides a high frequency (fFIRC) clock of 16 MHz. This clock can be used to
accelerate the exit from reset and wakeup sequence from low power modes of the system. It
is controlled by the MC_ME module based on the current device mode. The clock source
status is updated in ME_GS[S_RC]. Please refer to the MC_ME chapter for further details.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM]. After a power-on
reset, the FIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at FIRC_CTL[FIRCTRIM],
and this field will show a value of zero. Therefore, be aware that the FIRC_CTL[FIRCTRIM]
field does not reflect the current trim value until you have written to it. Pay particular
attention to this feature when you initiate a read-modify-write operation on FIRC_CTL,
because a FIRCTRIM value of zero may be unintentionally written back and this may alter
the FIRC frequency. In this case, you should calibrate the FIRC using the CMU or ensure
that you write only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from –32 to 31. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.

During STANDBY mode entry process, the FIRC is controlled based on
ME_STANDBY_MC[RCON] bit. This is the last step in the standby entry sequence. On any
system wake-up event, the device exits STANDBY mode and switches on the FIRC. The
actual powerdown status of the FIRC when the device is in standby is provided by
RC_CTL[FIRCON_STDBY] bit.
Doc ID 16886 Rev 6 104/868

Clock Description RM0045
6.5.3 Register description

6.6 Frequency-modulated phase-locked loop (FMPLL)

6.6.1 Introduction

This section describes the features and functions of the FMPLL module implemented in the
device.

Figure 26. FIRC Oscillator Control Register (FIRC_CTL)

Address: 0xC3FE_0060 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0
FIRCTRIM

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

FIRCDIV

0 0

F
IR

C
O

N
_S

T
D

B
Y 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 33. FIRC_CTL field descriptions

Field Description

FIRCTRIM

FIRC trimming bits.

This field corresponds (via two’s complement) to a trim factor of –16 to +15.
A +1 change in FIRCTRIM decreases the current frequency by FIRCTRIM (see the device data
sheet).
A –1 change in SIRCTRIM increases the current frequency by FIRCTRIM (see the device data
sheet).

FIRCDIV
FIRC clock division factor.

This field specifies the FIRC oscillator output clock division factor. The output clock is divided by
the factor FIRCDIV+1.

FIRCON_STDB
Y

FIRC control in STANDBY mode.

0 FIRC is switched off in STANDBY mode.
1 FIRC is in STANDBY mode.
105/868 Doc ID 16886 Rev 6

RM0045 Clock Description
6.6.2 Overview

The FMPLL enables the generation of high speed system clocks from a common 4–16 MHz
input clock. Further, the FMPLL supports programmable frequency modulation of the
system clock. The FMPLL multiplication factor and output clock divider ratio are all software
configurable.

SPC560D30/40 has one FMPLL that can generate the system clock and takes advantage of
the FM mode.

Note: The user must take care not to program device with a frequency higher than allowed (no
hardware check).

The FMPLL block diagram is shown in Figure 27.

Figure 27. FMPLL block diagram

6.6.3 Features

The FMPLL has the following major features:

● Input clock frequency 4 MHz – 16 MHz

● Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

● Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to
relock

● Frequency modulated FMPLL

– Modulation enabled/disabled through software

– Triangle wave modulation

● Programmable modulation depth

– ±0.25% to ±4% deviation from center spread frequency(d)

– 0.5% to +8% deviation from down spread frequency

– Programmable modulation frequency dependent on reference frequency

● Self-clocked mode (SCM) operation

● 4 available modes

– Normal mode

– Progressive clock switching

– Normal mode with frequency modulation

– Powerdown mode

BUFFER

Charge
Pump
Low Pass
Filter

VCOIDF

NDIV
Loop
Frequency
Divider

ODF
PHIFXOSC

d. Spread spectrum should be programmed in line with maximum datasheet frequency figures.
Doc ID 16886 Rev 6 106/868

Clock Description RM0045
6.6.4 Memory map(e)

Table 34 shows the memory map of the FMPLL.

6.6.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and
written in supervisor mode only.

Control Register (CR)

e. FMPLL_x are mapped through the ME_CGM register slot

Table 34. FMPLL memory map

Base address: 0xC3FE_00A0

Address offset Register Location

0x0 Control Register (CR) on page 6-107

0x4 Modulation Register (MR) on page 6-109

Figure 28. Control Register (CR)

Offset: 0x0 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
IDF ODF

0
NDIV

W

Reset 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

E
N

_P
LL

_S
W

0

U
N

LO
C

K
_O

N
C

E

0

I_
LO

C
K

S
_L

O
C

K

P
LL

_F
A

IL
_M

A
S

K

P
LL

_F
A

IL
_F

LA
G

1

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 35. CR field descriptions

Field Description

IDF The value of this field sets the FMPLL input division factor as described in Table 36.

ODF The value of this field sets the FMPLL output division factor as described in Table 37.

NDIV The value of this field sets the FMPLL loop division factor as described in Table 38.
107/868 Doc ID 16886 Rev 6

RM0045 Clock Description

EN_PLL_SW

This bit is used to enable progressive clock switching. After the PLL locks, the PLL output
initially is divided by 8, and then progressively decreases until it reaches divide-by-1.

0 Progressive clock switching disabled.
1 Progressive clock switching enabled.
Note: Note: Progressive clock switching should not be used if a non-changing clock is needed,

such as for serial communications, until the division has finished.

UNLOCK_ONCE
This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when
the FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set.
Only a power-on reset clears this bit.

I_LOCK This bit is set by hardware whenever there is a lock/unlock event.

S_LOCK

This bit is an indication of whether the FMPLL has acquired lock.

0: FMPLL unlocked

1: FMPLL locked
Note:

PLL_FAIL_MASK
This bit is used to mask the pll_fail output.

0 pll_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG
This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL
is switched on. It is cleared by software writing ‘1’.

Table 36. Input divide ratios

IDF[3:0] Input divide ratios

0000 Divide by 1

0001 Divide by 2

0010 Divide by 3

0011 Divide by 4

0100 Divide by 5

0101 Divide by 6

0110 Divide by 7

0111 Divide by 8

1000 Divide by 9

1001 Divide by 10

1010 Divide by 11

1011 Divide by 12

1100 Divide by 13

1101 Divide by 14

1110 Divide by 15

1111 Clock Inhibit

Table 35. CR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 108/868

Clock Description RM0045

Modulation Register (MR)

Table 37. Output divide ratios

ODF[1:0] Output divide ratios

00 Divide by 2

01 Divide by 4

10 Divide by 8

11 Divide by 16

Table 38. Loop divide ratios

NDIV[6:0] Loop divide ratios

0000000–0011111 —

0100000 Divide by 32

0100001 Divide by 33

0100010 Divide by 34

... ...

1011111 Divide by 95

1100000 Divide by 96

1100001–1111111 —

Figure 29. Modulation Register (MR)

Offset: 0x4 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
T

R
B

_B
Y

PA
S

S 0

S
P

R
D

_S
E

L

MOD_PERIOD
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

F
M

_E
N

INC_STEP
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109/868 Doc ID 16886 Rev 6

RM0045 Clock Description

6.6.6 Functional description

Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL
is in lock state, the FMPLL output clock (PHI) is derived by the reference clock () through this
relation:

Table 39. MR field descriptions

Field Description

STRB_BYPASS

Strobe bypass.

The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the
correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).

0 Strobe is used to latch FMPLL modulation control bits
1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed

only when FMPLL is in powerdown mode.

SPRD_SEL

Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.

0 Center SPREAD
1 Down SPREAD

MOD_PERIOD

Modulation period.

The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:

where:

fref: represents the frequency of the feedback divider
fmod: represents the modulation frequency

FM_EN
Frequency Modulation Enable. The FM_EN enables the frequency modulation.

0 Frequency modulation disabled
1 Frequency modulation enabled

INC_STEP

Increment step.

The INC_STEP field is the binary equivalent of the value incstep derived from following formula:

where:

md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md,
Downspread -- pk-pk=-2×md)

MDF: represents the nominal value of loop divider (CR[NDIV])

modperiod
fref

4 fmod
---------------------=

incstep round 215 1–  md MDF
100 5 MODPERIOD
--- 
 =
Doc ID 16886 Rev 6 110/868

Clock Description RM0045

where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 36,
Table 37 and Table 38.

Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock
stepping through different division factors. This means that the current consumption
gradually increases and, in turn, voltage regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the
system clock is switched to divided PHI. The FMPLL_clk divider is then progressively
decreased to the target divider as shown in Table 41.

Figure 30. FMPLL output clock division flow during progressive switching

phi clkin NDIV
IDF ODF

---------------------------------=

Table 40. FMPLL lookup table

Crystal frequency
(MHz)

FMPLL output
frequency (MHz)

CR field values
VCO frequency (MHz)

IDF ODF NDIV

8

32 0 2 32 256

64 0 2 64 512

80 0 1 40 320

16

32 1 2 32 256

64 1 2 64 512

80 1 1 40 320

40

32 4 2 32 256

64 4 2 64 512

80 3 1 32 320

Table 41. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles
FMPLL_clk frequency

(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2

onward FMPLL output clock frequency

FMPLL output clock FMPLL_clkDivision factors of 8, 4, 2 or 1
111/868 Doc ID 16886 Rev 6

RM0045 Clock Description
Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency
modulation is enabled, however, two parameters must be set to generate the desired level of
modulation: the PERIOD, and the STEP. The modulation waveform is always a triangle wave
and its shape is not programmable.

FM mode is activated in two steps:

1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to ‘1’. FM mode can only
be enabled when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit
STRB_BYPASS in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when
the strobe signal goes high for at least two cycles of CLKIN clock. The strobe signal is
automatically generated in the FMPLL digital interface when the modulation is enabled
(FM_EN goes high) if the FMPLL is locked (S_LOCK = 1) or when the modulation has been
enabled (FM_EN = 1) and FMPLL enters lock state (S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits
(MOD_PERIOD[12:0], INC_STEP[14:0], SPREAD_CONTROL) need to be static or
hardwired to constant values. The control bits must be changed only when the FMPLL is in
powerdown mode.

The modulation depth in % is

Note: The user must ensure that the product of INCTEP and MODPERIOD is less than (215-1).

Figure 31. Frequency modulation

ModulationDepth 100 5 INCSTEPxMODPERIOD

215 1–  MDF
--- 
 =
Doc ID 16886 Rev 6 112/868

Clock Description RM0045
Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming
the registers ME_x_MC on the MC_ME module.

6.6.7 Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these
guidelines:

● The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is
required when programming the multiplication and division factors to respect this
requirement.

● The user must change the multiplication, division factors only when the FMPLL output
clock is not selected as system clock. Use progressive clock switching if system clock
changes are required while the PLL is being used as the system clock source.
MOD_PERIOD, INC_STEP, SPREAD_SEL bits should be modified before activating
the FM mode. Then strobe has to be generated to enable the new settings. If
STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP and SPREAD_SEL can be
modified only when FMPLL is in powerdown mode.

● Use progressive clock switching (FMPLL output clock can be changed when it is the
system clock, but only when using progressive clock switching).

6.7 Clock monitor unit (CMU)

6.7.1 Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault
Detector, serves two purposes. The main task is to permanently supervise the integrity of
the various clock sources, for example a crystal oscillator or FMPLL. In case the FMPLL
leaves an upper or lower frequency boundary or the crystal oscillator fails it can detect and
forward these kind of events towards the MC_ME and MC_CGM. The clock management
unit in turn can then switch to a SAFE mode where it uses the default safe clock source
(FIRC), reset the device or generate the interrupt according to the system needs.

It can also monitor the external crystal oscillator clock, which must be greater than the
internal RC clock divided by a division factor given by CMU_CSR[RCDIV], and generates a
system clock transition request or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the
frequency of one clock source vs. a reference clock. This is useful to allow the calibration of
the on-chip RC oscillator(s), as well as being able to correct/calculate the time deviation of a
counter which is clocked by the RC oscillator.

6.7.2 Main features

● FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference
clock

● External oscillator clock monitoring with respect to FIRC_clk/n clock

● FMPLL clock frequency monitoring for a high and low frequency range with FIRC as
reference clock

● Event generation for various failures detected inside monitoring unit
113/868 Doc ID 16886 Rev 6

RM0045 Clock Description
6.7.3 Block diagram

Figure 32. Clock Monitor Unit diagram

CMU_MDR

XOSC Supervisor
FXOSC < FIRC / n

CMU_HFREFR

CMU_LFREFR

Frequency Meter CMU_FDR

FMPLL Supervisor

OLR_evt

FHH_FLL_OR_evt_a

FXOSC ON/OFF
From MC_ME

FMPLL ON/OFF
From MC_ME

MUX1

CKSEL1[1:0]

00

01

10

11

FIRC_clk

FIRC_clk

SIRC_clk

reserved

FXOSC_clk

FMPLL

FMPLL > hfref
OR
FMPLL < lfref

OLR_evt : It is the event signalling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt
or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a : It is the event signalling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR
configuration, if the FMPLL is greater than hign frequency range or less than the low frequency range configuration, this signal is
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.
Doc ID 16886 Rev 6 114/868

Clock Description RM0045
6.7.4 Functional description

The clock and frequency names referenced in this block are defined as follows:

● FXOSC_clk: clock coming from the fast external crystal oscillator

● SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator

● FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator

● FMPLL_clk: clock coming from the FMPLL

● fFXOSC_clk: frequency of fast external crystal oscillator clock

● fSIRC_clk: frequency of slow (low frequency) internal RC oscillator

● fFIRC_clk: frequency of fast (high frequency) internal RC oscillator

● fFMPLL_clk: frequency of FMPLL clock

Crystal clock monitor

If fFXOSC_clk is less than fFIRC_clk divided by 2RCDIV bits of the CMU_CSR and the
FXOSC_clk is ‘ON’ as signalled by the MC_ME then:

● An event pending bit OLRI in CMU_ISR is set.

● A failure event OLR is signalled to the MC_RGM which in turn can automatically switch
to a safe fallback clock and generate an interrupt or reset.

FMPLL clock monitor

The fFMPLL_clk can be monitored by programming bit CME of the CMU_CSR register to ‘1’.
The FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at
any time by writing bit CME to ‘0’.

If fFMPLL_clk is greater than a reference value determined by bits HFREF[11:0] of the
CMU_HFREFR and the FMPLL_clk is ‘ON’, as signalled by the MC_ME, then:

● An event pending bit FHHI in CMU_ISR is set.

● A failure event is signalled to the MC_RGM which in turn can generate an interrupt or
safe mode request or functional reset depending on the programming model.

If fFMPLL_clk is less than a reference value determined by bits LFREF[11:0] of the
CMU_LFREFR and the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

● An event pending bit FLLI in CMU_ISR is set.

● A failure event FLL is signalled to the MC_RGM which in turn can generate an interrupt
or safe mode request or functional reset depending on the programming model.

Note: The internal RC oscillator is used as reliable reference clock for the clock supervision. In
order to avoid false events, proper programming of the dividers is required. These have to
take into account the accuracy and frequency deviation of the internal RC oscillator.

Note: If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh event. It takes
approximately 5 s to generate this event.

Frequency meter

The purpose of the frequency meter is twofold:

● to measure the frequency of the oscillators SIRC or FIRC

● to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency
115/868 Doc ID 16886 Rev 6

RM0045 Clock Description
Hint: This value can then be stored into the flash so that application software can reuse it
later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value
of frequencies fFIRC_clk or fSIRC_clk according to CKSEL1 bit value. The measure starts
when bit SFM (Start Frequency Measure) in the CMU_CSR is set to ‘1’. The measurement
duration is given by the CMU_MDR in numbers of clock cycles of the selected clock source
with a width of 20 bits. Bit SFM is reset to ‘0’ by hardware once the frequency measurement
is done and the count is loaded in the CMU_FDR. The frequency fx

(f) can be derived from
the value loaded in the CMU_FDR as follows:

Equation 1 fx = (fFXOSC × MD) / n

where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates fFIRC_clk, but software can swap to fSIRC_clk or
fSXOSC_clk by programming the CKSEL bits in the CMU_CSR.

6.7.5 Memory map and register description

The memory map of the CMU is shown in Table 42.

f. x = FIRC or SIRC

Table 42. CMU memory map

Base address: 0xC3FE_0100

Register name Address offset Reset value Location

Control Status Register (CMU_CSR) 0x00 0x00000006
on page 6-

117

Frequency Display Register (CMU_FDR) 0x04 0x00000000
on page 6-

118

High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 0x00000FFF
on page 6-

118

Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000
on page 6-

119

Interrupt Status Register (CMU_ISR) 0x10 0x00000000
on page 6-

119

Reserved 0x14 0x00000000 —

Measurement Duration Register (CMU_MDR) 0x18 0x00000000
on page 6-

120
Doc ID 16886 Rev 6 116/868

Clock Description RM0045
Control Status Register (CMU_CSR)

Figure 33. Control Status Register (CMU_CSR)

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

S
F

M
(1

)

1. You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
CKSEL1

0 0 0 0 0
RCDIV

C
M

E
_A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Table 43. CMU_CSR field descriptions

Field Description

SFM

Start frequency measure.

The software can only set this bit to start a clock frequency measure. It is reset by hardware when
the measure is ready in the CMU_FDR register.

0 Frequency measurement completed or not yet started.
1 Frequency measurement not completed.

CKSEL1

Clock oscillator selection bit.
CKSEL1 selects the clock to be measured by the frequency meter.

00 FIRC_clk selected.
01 SIRC_clk selected.
10 reserved.
11 FIRC_clk selected.

RCDIV

RC clock division factor .

These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor
2RCDIV. This output clock is used to compare with FXOSC_clk for crystal clock monitor feature.The
clock division coding is as follows.
00 Clock divided by 1 (No division)
01 Clock divided by 2
10 Clock divided by 4
11 Clock divided by 8

CME_A
FMPLL_0 clock monitor enable.
0 FMPLL_0 monitor disabled.
1 FMPLL_0 monitor enabled.
117/868 Doc ID 16886 Rev 6

RM0045 Clock Description
Frequency Display Register (CMU_FDR)

 .

High Frequency Reference Register FMPLL (CMU_HFREFR)

Figure 34. Frequency Display Register (CMU_FDR)

Offset: 0x04 Access: Read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 FD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 44. CMU_FDR field descriptions

Field Description

FD

Measured frequency bits.

This register displays the measured frequency fx with respect to fFXOSC. The measured value is
given by the following formula: fx = (fFXOSC × MD) / n, where n is the value in CMU_FDR register.

Note: x = FIRC or SIRC.

Figure 35. High Frequency Reference Register FMPLL (CMU_HFREFR)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
HFREF

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 45. CMU_HFREFR field descriptions

Field Description

HFREF
High Frequency reference value.

This field determines the high reference value for the FMPLL clock. The reference value is given
by: (HFREF  16) × (fFIRC  4).
Doc ID 16886 Rev 6 118/868

Clock Description RM0045
Low Frequency Reference Register FMPLL (CMU_LFREFR)

Interrupt Status Register (CMU_ISR)

Figure 36. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
LFREF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 46. CMU_LFREFR field descriptions

Field Description

LFREF
Low Frequency reference value.

This field determines the low reference value for the FMPLL. The reference value is given by:
(LFREF  16) × (fFIRC  4).

Figure 37. Interrupt status register (CMU_ISR)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0

F
H

H
I

F
LL

I

O
LR

I
W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 47. CMU_ISR field descriptions

Field Description

FHHI

FMPLL clock frequency higher than high reference interrupt.

This bit is set by hardware when fFMPLL_clk becomes higher than HFREF value and FMPLL_clk is
‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No FHH event.
1 FHH event is pending.
119/868 Doc ID 16886 Rev 6

RM0045 Clock Description
Measurement Duration Register (CMU_MDR)

FLLI

FMPLL clock frequency lower than low reference event.

This bit is set by hardware when fFMPLL_clk becomes lower than LFREF value and FMPLL_clk is ‘ON’
as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No FLL event.
1 FLL event is pending.

OLRI

Oscillator frequency lower than RC frequency event.

This bit is set by hardware when fFXOSC_clk is lower than FIRC_clk/2RCDIV frequency and FXOSC_clk
is ‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No OLR event.
1 OLR event is pending.

Table 47. CMU_ISR field descriptions (continued)

Figure 38. Measurement Duration Register (CMU_MDR)

Offset: 0x18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0
MD[19:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MD[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 48. CMU_MDR field descriptions

Field Description

MD

Measurement duration bits.
This field displays the measurement duration in numbers of clock cycles of the selected clock
source. This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the
downcounter starts counting.
Doc ID 16886 Rev 6 120/868

Clock Generation Module (MC_CGM) RM0045
7 Clock Generation Module (MC_CGM)

7.1 Introduction
This document serves as the block guide for the Clock Generation Module (MC_CGM)
which includes, but is not limited to, the funtionality, pin description, and registers of the
MC_CGM module.

7.1.1 Overview

The clock generation module (MC_CGM) generates reference clocks for all the SoC blocks.
The MC_CGM selects one of the system clock sources to supply the system clock. The
MC_ME controls the system clock selection (see the MC_ME chapter for more details). A
set of MC_CGM registers controls the clock dividers which are used for divided system and
peripheral clock generation. The memory spaces of system and peripheral clock sources
which have addressable memory spaces are accessed through the MC_CGM memory
space. The MC_CGM also selects and generates an output clock.

Figure 39 depicts the MC_CGM block diagram.
121/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)

Output Clock
Selector/Divider

Registers

Platform Interface

core

MC_CGM

Figure 39. MC_CGM block diagram

MC_ME

System Clock
Multiplexer/Divider

FXOSC

FMPLL

FIRC

M
ap

pe
d

M
od

ul
es

 In
te

rf
ac

e

mapped
peripherals

peripherals

PA[0]

MC_RGM
Doc ID 16886 Rev 6 122/868

Clock Generation Module (MC_CGM) RM0045
7.1.2 Features

The MC_CGM includes the following features:

● generates system and peripheral clocks

● selects and enables/disables the system clock supply from system clock sources
according to MC_ME control

● contains a set of registers to control clock dividers for divided clock generation

● supports multiple clock sources and maps their address spaces to its memory map

● generates an output clock

● guarantees glitch-less clock transitions when changing the system clock selection

● supports 8, 16 and 32-bit wide read/write accesses

7.2 External Signal Description
The MC_CGM delivers an output clock to the PA[0] pin for off-chip use and/or observation.

7.3 Memory Map and Register Definition

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

Table 49. MC_CGM Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE
_0370

CGM_OC_EN Output Clock Enable word read read/write read/write
on page 7-

128

0xC3FE
_0374

CGM_OCDS_SC
Output Clock Division
Select

byte read read/write read/write
on page 7-

128

0xC3FE
_0378

CGM_SC_SS
System Clock Select
Status

byte read read read
on page 7-

129

0xC3FE
_037C

CGM_SC_DC0
System Clock Divider
Configuration 0

byte read read/write read/write
on page 7-

130

0xC3FE
_037D

CGM_SC_DC1
System Clock Divider
Configuration 1

byte read read/write read/write
on page 7-

130

0xC3FE
_037E

CGM_SC_DC2
System Clock Divider
Configuration 2

byte read read/write read/write
on page 7-

130
123/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)

Table 50. MC_CGM Memory Map

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE
_0000

…
0xC3FE
_001C

FXOSC registers

0xC3FE
_0020

…
0xC3FE
_003C

reserved

0xC3FE
_0040

…
0xC3FE
_005C

SXOSC registers

0xC3FE
_0060

…
0xC3FE
_007C

FIRC registers

0xC3FE
_0080

…
0xC3FE
_009C

SIRC registers

0xC3FE
_00A0

…
0xC3FE
_00BC

FMPLL registers

0xC3FE
_00C0

…
0xC3FE
_00DC

reserved

0xC3FE
_00E0

…
0xC3FE
_00FC

reserved

0xC3FE
_0100

…
0xC3FE
_011C

CMU registers
Doc ID 16886 Rev 6 124/868

Clock Generation Module (MC_CGM) RM0045
0xC3FE
_0120

…
0xC3FE
_013C

reserved

0xC3FE
_0140

…
0xC3FE
_015C

reserved

0xC3FE
_0160

…
0xC3FE
_017C

reserved

0xC3FE
_0180

…
0xC3FE
_019C

reserved

0xC3FE
_01A0

…
0xC3FE
_01BC

reserved

0xC3FE
_01C0

…
0xC3FE
_01DC

reserved

0xC3FE
_01E0

…
0xC3FE
_01FC

reserved

0xC3FE
_0200

…
0xC3FE
_021C

reserved

0xC3FE
_0220

…
0xC3FE
_023C

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
125/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)
0xC3FE
_0240

…
0xC3FE
_025C

reserved

0xC3FE
_0260

…
0xC3FD
_C27C

reserved

0xC3FE
_0280

…
0xC3FE
_029C

reserved

0xC3FE
_02A0

…
0xC3FE
_02BC

reserved

0xC3FE
_02C0

…
0xC3FE
_02DC

reserved

0xC3FE
_02E0

…
0xC3FE
_02FC

reserved

0xC3FE
_0300

…
0xC3FE
_031C

reserved

0xC3FE
_0320

…
0xC3FE
_033C

reserved

0xC3FE
_0340

…
0xC3FE
_035C

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Doc ID 16886 Rev 6 126/868

Clock Generation Module (MC_CGM) RM0045
7.3.1 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the CGM_OC_EN register may be
accessed as a word at address 0xC3FE_0370, as a half-word at address 0xC3FE_0372, or
as a byte at address 0xC3FE_0373.

0xC3FE
_0360

…
0xC3FE
_036C

reserved

0xC3FE
_0370

CGM_OC_EN R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

0xC3FE
_0374

CGM_OCDS_
SC

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_0378

CGM_SC_SS R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE
_037C

CGM_SC_DC
0…2

R

D
E

0 0 0 0
DIV0

D
E

1 0 0 0
DIV1

W

R

D
E

2 0 0 0
DIV2

0 0 0 0 0 0 0 0

W

0xC3FE
_0380

…
0xC3FE
_3FFC

reserved

Table 50. MC_CGM Memory Map (continued)

Address Name
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
127/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)
Output Clock Enable Register (CGM_OC_EN)

This register is used to enable and disable the output clock.

Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is
divided before being delivered at the output clock.

Address 0xC3FE_0370 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 40. Output Clock Enable Register (CGM_OC_EN)

Table 51. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

EN

Output Clock Enable control

0 Output Clock is disabled

1 Output Clock is enabled

Address 0xC3FE_0374 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0
SELDIV SELCTL

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 41. Output Clock Division Select Register (CGM_OCDS_SC)
Doc ID 16886 Rev 6 128/868

Clock Generation Module (MC_CGM) RM0045

System Clock Select Status Register (CGM_SC_SS)

This register provides the current system clock source selection.

Table 52. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

SELDIV

Output Clock Division Select

00 output selected Output Clock without division
01 output selected Output Clock divided by 2
10 output selected Output Clock divided by 4
11 output selected Output Clock divided by 8

SELCTL

Output Clock Source Selection Control — This value selects the current source for the output clock.

0000 4-16 MHz ext. xtal osc.
0001 16 MHz int. RC osc.
0010 freq. mod. PLL
0011 system clock
0100 RTC clock
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 reserved

Address 0xC3FE_0378 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 SELSTAT 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 42. System Clock Select Status Register (CGM_SC_SS)
129/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)

System Clock Divider Configuration Registers (CGM_SC_DC0…2)

These registers control the system clock dividers.

Table 53. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field Description

SELSTAT

System Clock Source Selection Status — This value indicates the current source for the system
clock.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Address 0xC3FE_037C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DE0

0 0 0
DIV0 DE1

0 0 0
DIV1

W

Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DE2

0 0 0
DIV2

0 0 0 0 0 0 0 0

W

Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43. System Clock Divider Configuration Registers (CGM_SC_DC0…2)

Table 54. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions

Field Description

DE0
Divider 0 Enable
0 Disable system clock divider 0
1 Enable system clock divider 0

DIV0
Divider 0 Division Value — The resultant peripheral set 1 clock will have a period DIV0 + 1 times that of
the system clock. If the DE0 is set to ‘0’ (Divider 0 is disabled), any write access to the DIV0 field is
ignored and the peripheral set 1 clock remains disabled.

DE1
Divider 1 Enable

0 Disable system clock divider 1
1 Enable system clock divider 1
Doc ID 16886 Rev 6 130/868

Clock Generation Module (MC_CGM) RM0045
7.4 Functional Description

7.4.1 System Clock Generation

Figure 44 shows the block diagram of the system clock generation logic. The MC_ME
provides the system clock select and switch mask (see MC_ME chapter for more details),
and the MC_RGM provides the safe clock request (see MC_RGM chapter for more details).
The safe clock request forces the selector to select the 16 MHz int. RC osc. as the system
clock and to ignore the system clock select.

DIV1
Divider 1 Division Value — The resultant peripheral set 2 clock will have a period DIV1 + 1 times that of
the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is
ignored and the peripheral set 2 clock remains disabled.

DE2
Divider 2 Enable
0 Disable system clock divider 2
1 Enable system clock divider 2

DIV2
Divider 2 Division Value — The resultant peripheral set 3 clock will have a period DIV2 + 1 times that of
the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is
ignored and the peripheral set 3 clock remains disabled.

Table 54. System Clock Divider Configuration Registers (CGM_SC_DC0…2) Field Descriptions

Field Description
131/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)

System Clock Source Selection

During normal operation, the system clock selection is controlled

● on a SAFE mode or reset event, by the MC_RGM

● otherwise, by the MC_ME

Figure 44. MC_CGM System Clock Generation Overview

4-16 MHz ext. xtal osc. 2
div. ext. xtal osc. 3

freq. mod. PLL 4

div. 16 MHz int. RC osc. 1

system clock

’0’

CGM_SC_SS Register

MC_RGM SAFE mode request

ME_<current mode>
_MC.SYSCLK

CGM_SC_DC0 Register

clock divider peripheral set 1 clock

CGM_SC_DC1 Register

clock divider peripheral set 2 clock

CGM_SC_DC2 Register

clock divider peripheral set 3 clock

system clock is disabled if
ME_<current mode>_MC.SYSCLK = “1111”

“0000” 1

0

16 MHz int. RC osc. 0
Doc ID 16886 Rev 6 132/868

Clock Generation Module (MC_CGM) RM0045
System Clock Disable

During the STOP0 and TEST modes, the system clock can be disabled by the MC_ME.

System Clock Dividers

The MC_CGM generates the following derived clocks from the system clock:

● peripheral set 1 clock - controlled by the CGM_SC_DC0 register

● peripheral set 2 clock - controlled by the CGM_SC_DC1 register

● peripheral set 3 clock - controlled by the CGM_SC_DC2 register

7.4.2 Dividers Functional Description

Dividers are used for the generation of divided system and peripheral clocks. The MC_CGM
has the following control registers for built-in dividers:

● Section : System Clock Divider Configuration Registers (CGM_SC_DC0…2)

The reset value of all counters is ‘1’. If a divider has its DE bit in the respective configuration
register set to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

7.4.3 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can
then be used as output clock sources. The selection is done via the CGM_OCDS_SC
register.

7.4.4 Output Clock Division Selection

The MC_CGM provides the following output signals for the output clock generation:

● PA[0] (see Figure 45). This signal is generated by using one of the 3-stage ripple
counter outputs or the selected signal without division. The non-divided signal is not
guaranteed to be 50% duty cycle by the MC_CGM.

Figure 45. MC_CGM Output Clock Multiplexer and PA[0] Generation

CGM_OCDS_SC.SELCTL
CGM_OCDS_SC.SELDIV

0

1

2

3

Register
Register

4-16 MHz ext. xtal osc. 0
16 MHz int. RC osc. 1

freq. mod. PLL 2
system clock 3

RTC clock 4

PA[0]

’0’

CGM_OC_EN Register
133/868 Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)
The MC_CGM also has an output clock enable register (see Section : Output Clock Enable
Register (CGM_OC_EN)) which contains the output clock enable/disable control bit.

Doc ID 16886 Rev 6 134/868

Mode Entry Module (MC_ME) RM0045
8 Mode Entry Module (MC_ME)

8.1 Introduction

8.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states.
It also contains configuration, control and status registers accessible for the application.

Figure 46 depicts the MC_ME block diagram.
135/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Registers

Platform Interface

core

MC_ME

Figure 46. MC_ME Block Diagram

MC_RGM

FXOSC

FMPLL

FIRC

MC_CGM

MC_PCU

peripherals

Flashes

VREG

Device
Mode
State

Machine

WKPU
Doc ID 16886 Rev 6 136/868

Mode Entry Module (MC_ME) RM0045
8.1.2 Features

The MC_ME includes the following features:

● control of the available modes by the ME_ME register

● definition of various device mode configurations by the ME_<mode>_MC registers

● control of the actual device mode by the ME_MCTL register

● capture of the current mode and various resource status within the contents of the
ME_GS register

● optional generation of various mode transition interrupts

● status bits for each cause of invalid mode transitions

● peripheral clock gating control based on the ME_RUN_PC0…7, ME_LP_PC0…7, and
ME_PCTL0…143 registers

● capture of current peripheral clock gated/enabled status

8.1.3 Modes of Operation

The MC_ME is based on several device modes corresponding to different usage models of
the device. Each mode is configurable and can define a policy for energy and processing
power management to fit particular system requirements. An application can easily switch
from one mode to another depending on the current needs of the system. The operating
modes controlled by the MC_ME are divided into system and user modes. The system
modes are modes such as RESET, DRUN, SAFE, and TEST. These modes aim to ease the
configuration and monitoring of the system. The user modes are modes such as RUN0…3,
HALT, STOP, and STANDBY which can be configured to meet the application requirements
in terms of energy management and available processing power. The modes DRUN, SAFE,
TEST, and RUN0…3 are the device software running modes.

Table 55 describes the MC_ME modes.

Table 55. MC_ME Mode Descriptions

Name Description Entry Exit

RESET This is a chip-wide virtual mode during which the application
is not active. The system remains in this mode until all
resources are available for the embedded software to take
control of the device. It manages hardware initialization of
chip configuration, voltage regulators, clock sources, and
flash modules.

system reset
assertion from
MC_RGM

system reset
deassertion from
MC_RGM

DRUN This is the entry mode for the embedded software. It
provides full accessibility to the system and enables the
configuration of the system at startup. It provides the unique
gate to enter user modes. BAM when present is executed in
DRUN mode.

system reset
deassertion from
MC_RGM, software
request from SAFE,
TEST and
RUN0…3, wakeup
request from
STANDBY

system reset
assertion,
RUN0…3, TEST,
STANDBY via
software, SAFE via
software or
hardware failure.

SAFE This is a chip-wide service mode which may be entered on
the detection of a recoverable error. It forces the system into
a pre-defined safe configuration from which the system may
try to recover.

hardware failure,
software request
from DRUN, TEST,
and RUN0…3

system reset
assertion, DRUN
via software
137/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
8.2 External Signal Description
The MC_ME has no connections to any external pins.

8.3 Memory Map and Register Definition
The MC_ME contains registers for:

● mode selection and status reporting

● mode configuration

● mode transition interrupts status and mask control

● scalable number of peripheral sub-mode selection and status reporting

TEST This is a chip-wide service mode which is intended to
provide a control environment for device software teting.

software request
from DRUN

system reset
assertion, DRUN
via software

RUN0…3 These are software running modes where most processing
activity is done. These various run modes allow to enable
different clock & power configurations of the system with
respect to each other.

software request
from DRUN or other
RUN0…3, interrupt
event from HALT,
interrupt or wakeup
event from STOP

system reset
assertion, SAFE via
software or
hardware failure,
other RUN0…3
modes, HALT,
STOP, STANDBY
via software

HALT This is a reduced-activity low-power mode during which the
clock to the core is disabled. It can be configured to switch
off analog peripherals like clock sources, flash, main
regulator, etc. for efficient power management at the cost of
higher wakeup latency.

software request
from RUN0…3

system reset
assertion, SAFE on
hardware failure,
RUN0…3 on
interrupt event

STOP This is an advanced low-power mode during which the clock
to the core is disabled. It may be configured to switch off
most of the peripherals including clock sources for efficient
power management at the cost of higher wakeup latency.

software request
from RUN0…3

system reset
assertion, SAFE on
hardware failure,
RUN0…3 on
interrupt event or
wakeup event

STANDBY This is a reduced-leakage low-power mode during which
power supply is cut off from most of the device. Wakeup
from this mode takes a relatively long time, and content is
lost or must be restored from backup.

software request
from RUN0…3,
DRUN modes

system reset
assertion, DRUN on
wakeup event

Table 55. MC_ME Mode Descriptions (continued)

Name Description Entry Exit
Doc ID 16886 Rev 6 138/868

Mode Entry Module (MC_ME) RM0045
8.3.1 Memory Map

Table 56. MC_ME Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FD_C000 ME_GS Global Status word read read read
on page 8-

146

0xC3FD_C004 ME_MCTL Mode Control word read read/write read/write
on page 8-

148

0xC3FD_C008 ME_ME Mode Enable word read read/write read/write
on page 8-

150

0xC3FD_C00C ME_IS Interrupt Status word read read/write read/write
on page 8-

151

0xC3FD_C010 ME_IM Interrupt Mask word read read/write read/write
on page 8-

152

0xC3FD_C014 ME_IMTS
Invalid Mode Transition
Status

word read read/write read/write on page 8-
153

0xC3FD_C018 ME_DMTS
Debug Mode Transition
Status

word read read read on page 8-
154

0xC3FD_C020 ME_RESET_MC
RESET Mode
Configuration

word read read read
on page 8-

157

0xC3FD_C024 ME_TEST_MC
TEST Mode
Configuration

word read read/write read/write
on page 8-

158

0xC3FD_C028 ME_SAFE_MC
SAFE Mode
Configuration

word read read/write read/write
on page 8-

158

0xC3FD_C02C ME_DRUN_MC
DRUN Mode
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C030 ME_RUN0_MC
RUN0 Mode
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C034 ME_RUN1_MC
RUN1 Mode
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C038 ME_RUN2_MC
RUN2 Mode
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C03C ME_RUN3_MC
RUN3 Mode
Configuration

word read read/write read/write
on page 8-

159

0xC3FD_C040 ME_HALT_MC
HALT Mode
Configuration

word read read/write read/write
on page 8-

160

0xC3FD_C048 ME_STOP_MC
STOP Mode
Configuration

word read read/write read/write
on page 8-

160

0xC3FD_C054 ME_STANDBY_MC
STANDBY Mode
Configuration

word read read/write read/write
on page 8-

161

0xC3FD_C060 ME_PS0 Peripheral Status 0 word read read read
on page 8-

163
139/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
0xC3FD_C064 ME_PS1 Peripheral Status 1 word read read read
on page 8-

163

0xC3FD_C068 ME_PS2 Peripheral Status 2 word read read read
on page 8-

164

0xC3FD_C06C ME_PS3 Peripheral Status 3 word read read read
on page 8-

164

0xC3FD_C080 ME_RUN_PC0
Run Peripheral
Configuration 0

word read read/write read/write
on page 8-

165

0xC3FD_C084 ME_RUN_PC1
Run Peripheral
Configuration 1

word read read/write read/write
on page 8-

165

…

0xC3FD_C09C ME_RUN_PC7
Run Peripheral
Configuration 7

word read read/write read/write
on page 8-

165

0xC3FD_C0A0 ME_LP_PC0
Low-Power Peripheral
Configuration 0

word read read/write read/write
on page 8-

166

0xC3FD_C0A4 ME_LP_PC1
Low-Power Peripheral
Configuration 1

word read read/write read/write
on page 8-

166

…

0xC3FD_C0BC ME_LP_PC7
Low-Power Peripheral
Configuration 7

word read read/write read/write
on page 8-

166

0xC3FD_C0C4 ME_PCTL4 DSPI0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0C5 ME_PCTL5 DSPI1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0D0 ME_PCTL16 FlexCAN0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0D7 ME_PCTL23 DMA_CH_MUX Control byte read read/write read/write
on page 8-

167

0xC3FD_C0E1 ME_PCTL33 ADC1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F0 ME_PCTL48 LINFlex0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F1 ME_PCTL49 LINFlex1 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F2 ME_PCTL50 LINFlex2 Control byte read read/write read/write
on page 8-

167

0xC3FD_C0F9 ME_PCTL57 CTUL Control byte read read/write read/write
on page 8-

167

0xC3FD_C104 ME_PCTL68 SIUL Control byte read read/write read/write
on page 8-

167

Table 56. MC_ME Register Description (continued)

Address Name Description Size
Access

Location
User Supervisor Test
Doc ID 16886 Rev 6 140/868

Mode Entry Module (MC_ME) RM0045
Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

0xC3FD_C105 ME_PCTL69 WKPU Control byte read read/write read/write
on page 8-

167

0xC3FD_C108 ME_PCTL72 eMIOS0 Control byte read read/write read/write
on page 8-

167

0xC3FD_C11B ME_PCTL91 RTC_API Control byte read read/write read/write
on page 8-

167

0xC3FD_C11C ME_PCTL92 PIT_RTI Control byte read read/write read/write
on page 8-

167

0xC3FD_C128 ME_PCTL104 CMU Control byte read read/write read/write
on page 8-

167

Table 56. MC_ME Register Description (continued)

Address Name Description Size
Access

Location
User Supervisor Test

Table 57. MC_ME Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FD_
C000

ME_GS

R S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

R 0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

0xC3FD_
C004

ME_MCTL R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

0xC3FD_
C008

ME_ME R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y

0 0

S
TO

P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

141/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
0xC3FD_
C00C

ME_IS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

0xC3FD_
C010

ME_IM R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

0xC3FD_
C014

ME_IMTS R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

0xC3FD_
C018

ME_DMTS

R PREVIOUS_MODE 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

R 0

V
R

E
G

_C
S

R
C

_S
C

C
S

R
C

_C
S

R
C

_S
C

F
IR

C
_S

C

S
C

S
R

C
_S

C

S
Y

S
C

LK
_S

W

D
F

LA
S

H
_S

C

C
F

LA
S

H
_S

C

C
D

P
_P

R
P

H
_0

_1
43

0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

0xC3FD_
C01C

reserved

0xC3FD_
C020

ME_RESET
_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Doc ID 16886 Rev 6 142/868

Mode Entry Module (MC_ME) RM0045
0xC3FD_
C024

ME_TEST_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD_
C028

ME_SAFE_
MC R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C02C

ME_DRUN_
MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N
SYSCLK

W

0xC3FD_
C030

…
0xC3FD_

C03C

ME_RUN0
…3_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C040

ME_HALT_
MC

R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

0xC3FD_
C044

reserved

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
143/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
0xC3FD_
C048

ME_STOP_
MC

R 0 0 0 0 0 0 0 0

P
D

O 0 0

M
V

R
O

N DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

0xC3FD_
C04C

…
0xC3FD_

C050

reserved

0xC3FD_
C054

ME_STAND
BY_MC R 0 0 0 0 0 0 0 0

P
D

O

0 0

M
V

R
O

N

DFLAON CFLAON

W

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

0xC3FD_
C058

…
0xC3FD_

C05C

reserved

0xC3FD_
C060

ME_PS0

R 0 0 0 0 0 0 0 0

S
_D

M
A

_C
H

_M
U

X

0 0 0 0 0 0

S
_F

le
xC

A
N

0

W

R 0 0 0 0 0 0 0 0 0 0

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Doc ID 16886 Rev 6 144/868

Mode Entry Module (MC_ME) RM0045
0xC3FD_
C064

ME_PS1

R 0 0 0 0 0 0

S
_C

T
U

L

0 0 0 0 0 0

S
_L

IN
F

le
x2

S
_L

IN
F

le
x1

S
_L

IN
F

le
x0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

1

0

W

0xC3FD_
C068

ME_PS2

R 0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

_A
P

I

0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

0xC3FD_
C06C

ME_PS3 R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

0xC3FD_
C070

reserved

0xC3FD_
C074

…
0xC3FD_

C07C

reserved

0xC3FD_
C080

…
0xC3FD_

C09C

ME_RUN_P
C0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
145/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
8.3.2 Register Description

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the ME_RUN_PC0
register may be accessed as a word at address 0xC3FD_C080, as a half-word at address
0xC3FD_C082, or as a byte at address 0xC3FD_C083.

Global Status Register (ME_GS)

0xC3FD_
C0A0

…
0xC3FD_

C0BC

ME_LP_PC
0…7

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P 0

H
A

LT

0 0 0 0 0 0 0 0

W

0xC3FD_
C0C0

…
0xC3FD_

C14C

ME_PCTL0
…143

R 0

D
B

G
_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

R 0
D

B
G

_F

LP_CFG RUN_CFG
0

D
B

G
_F

LP_CFG RUN_CFG
W

0xC3FD_
C150

…
0xC3FD_

FFFC

reserved

Table 57. MC_ME Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 47. Global Status Register (ME_GS)

Address 0xC3FD_C000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R S_CURRENT_MODE

S
_M

T
R

A
N

S

S
_D

C

0 0

S
_P

D
O

0 0

S
_M

V
R

S_DFLA S_CFLA

W

Reset 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

S
_F

M
P

LL

S
_F

X
O

S
C

S
_F

IR
C

S_SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Doc ID 16886 Rev 6 146/868

Mode Entry Module (MC_ME) RM0045
This register contains global mode status.

Table 58. Global Status Register (ME_GS) Field Descriptions

Field Description

S_CURRENT
_MODE

Current device mode status
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

S_MTRANS
Mode transition status
0 Mode transition process is not active
1 Mode transition is ongoing

S_DC

Device current consumption status
0 Device consumption is low enough to allow powering down of main voltage regulator
1 Device consumption requires main voltage regulator to remain powered regardless of mode

configuration

S_PDO

Output power-down status — This bit specifies output power-down status of I/Os. This bit is
asserted whenever outputs of pads are forced to high impedance state or the pads power sequence
driver is switched off.
0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and the pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode, the
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup lines configuration remains unchanged

S_MVR
Main voltage regulator status
0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

S_DFLA

Data flash availability status
00 Data flash is not available
01 Data flash is in power-down mode
10 Data flash is not available
11 Data flash is in normal mode and available for use

S_CFLA

Code flash availability status
00 Code flash is not available
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode and available for use
147/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Mode Control Register (ME_MCTL)

This register is used to trigger software-controlled mode changes. Depending on the modes
as enabled by ME_ME register bits, configurations corresponding to unavailable modes are

S_FMPLL
frequency modulated phase locked loop status
0 frequency modulated phase locked loop is not stable
1 frequency modulated phase locked loop is providing a stable clock

S_FXOSC
fast external crystal oscillator (4-16 MHz) status
0 fast external crystal oscillator (4-16 MHz) is not stable
1 fast external crystal oscillator (4-16 MHz) is providing a stable clock

S_FIRC
fast internal RC oscillator (16 MHz) status
0 fast internal RC oscillator (16 MHz) is not stable
1 fast internal RC oscillator (16 MHz) is providing a stable clock

S_SYSCLK

System clock switch status — These bits specify the system clock currently used by the system.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Table 58. Global Status Register (ME_GS) Field Descriptions (continued)

Field Description

Figure 48. Mode Control Register (ME_MCTL)

Address 0xC3FD_C004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TARGET_MODE

0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1

W KEY

Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
Doc ID 16886 Rev 6 148/868

Mode Entry Module (MC_ME) RM0045
reserved and access to ME_<mode>_MC registers must respect this for successful mode
requests.

Note: Byte and half-word write accesses are not allowed for this register as a predefined key is
required to change its value.

Table 59. Mode Control Register (ME_MCTL) Field Descriptions

Field Description

TARGET_MODE

Target device mode — These bits provide the target device mode to be entered by software
programming. The mechanism to enter into any mode by software requires the write operation
twice: first time with key, and second time with inverted key. These bits are automatically updated
by hardware while entering SAFE on hardware request. Also, while exiting from the HALT and
STOP modes on hardware exit events, these are updated with the appropriate RUN0…3 mode
value.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

KEY

Control key — These bits enable write access to this register. Any write access to the register
with a value different from the keys is ignored. Read access will always return inverted key.

KEY:0101101011110000 (0x5AF0)
INVERTED KEY:1010010100001111 (0xA50F)
149/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Mode Enable Register (ME_ME)

This register allows a way to disable the device modes which are not required for a given
device. RESET, SAFE, DRUN, and RUN0 modes are always enabled.

Figure 49. Mode Enable Register (ME_ME)

Address 0xC3FD_C008 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
TA

N
D

B
Y

0 0
S

TO
P 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

Table 60. Mode Enable Register (ME_ME) Field Descriptions

Field Description

STANDBY
STANDBY mode enable
0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP
STOP mode enable
0 STOP mode is disabled
1 STOP mode is enabled

HALT
HALT mode enable
0 HALT mode is disabled
1 HALT mode is enabled

RUN3
RUN3 mode enable
0 RUN3 mode is disabled
1 RUN3 mode is enabled

RUN2
RUN2 mode enable
0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1
RUN1 mode enable
0 RUN1 mode is disabled
1 RUN1 mode is enabled

RUN0
RUN0 mode enable
0 RUN0 mode is disabled
1 RUN0 mode is enabled
Doc ID 16886 Rev 6 150/868

Mode Entry Module (MC_ME) RM0045
Interrupt Status Register (ME_IS)

This register provides the current interrupt status.

DRUN
DRUN mode enable
0 DRUN mode is disabled
1 DRUN mode is enabled

SAFE
SAFE mode enable
0 SAFE mode is disabled
1 SAFE mode is enabled

TEST
TEST mode enable
0 TEST mode is disabled
1 TEST mode is enabled

RESET
RESET mode enable
0 RESET mode is disabled
1 RESET mode is enabled

Table 60. Mode Enable Register (ME_ME) Field Descriptions (continued)

Field Description

Figure 50. Interrupt Status Register (ME_IS)

Address 0xC3FD_C00C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0

I_
IC

O
N

F

I_
IM

O
D

E

I_
S

A
F

E

I_
M

T
C

W w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
151/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Interrupt Mask Register (ME_IM)

This register controls whether an event generates an interrupt or not.

Table 61. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

I_ICONF

Invalid mode configuration interrupt — This bit is set whenever a write operation to
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’
to this bit.

0 No invalid mode configuration interrupt occurred
1 Invalid mode configuration interrupt is pending

I_IMODE

Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is
cleared by writing a ‘1’ to this bit.
0 No invalid mode interrupt occurred
1 Invalid mode interrupt is pending

I_SAFE

SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware
requests generated in the system. It is cleared by writing a ‘1’ to this bit.

0 No SAFE mode interrupt occurred
1 SAFE mode interrupt is pending

I_MTC

Mode transition complete interrupt — This bit is set whenever the mode transition process
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode
transition interrupt bit will not be set while entering low-power modes HALT, STOP, or STANDBY.

0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

Figure 51. Interrupt Mask Register (ME_IM)

Address 0xC3FD_C010 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0

M
_I

C
O

N
F

M
_I

M
O

D
E

M
_S

A
F

E

M
_M

T
C

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 152/868

Mode Entry Module (MC_ME) RM0045

Invalid Mode Transition Status Register (ME_IMTS)

This register provides the status bits for the possible causes of an invalid mode interrupt.

Table 62. Interrupt Mask Register (ME_IM) Field Descriptions

Field Description

M_ICONF
Invalid mode configuration interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_IMODE
Invalid mode interrupt mask
0 Invalid mode interrupt is masked
1 Invalid mode interrupt is enabled

M_SAFE
SAFE mode interrupt mask
0 SAFE mode interrupt is masked
1 SAFE mode interrupt is enabled

M_MTC
Mode transition complete interrupt mask
0 Mode transition complete interrupt is masked
1 Mode transition complete interrupt is enabled

Figure 52. Invalid Mode Transition Status Register (ME_IMTS)

Address 0xC3FD_C014 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

S
_M

T
I

S
_M

R
I

S
_D

M
A

S
_N

M
A

S
_S

E
A

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions

Field Description

S_MTI

Mode Transition Illegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5 Mode
Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal

S_MRI

Mode Request Illegal status — This bit is set whenever the target mode requested is not a valid
mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode
153/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Debug Mode Transition Status Register (ME_DMTS)

This register provides the status of different factors which influence mode transitions. It is
used to give an indication of why a mode transition indicated by ME_GS.S_MTRANS may
be taking longer than expected.

Note: The ME_DMTS register does not indicate whether a mode transition is ongoing. Therefore,
some ME_DMTS bits may still be asserted after the mode transition has completed.

S_DMA

Disabled Mode Access status — This bit is set whenever the target mode requested is one of those
disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode

S_NMA

Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.

0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode

S_SEA

SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit is
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to
this bit.

0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending

Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions (continued)

Field Description

Figure 53. Debug Mode Transition Status Register (ME_DMTS)

Address 0xC3FD_C018 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PREVIOUS_MODE 0 0 0 0

M
P

H
_B

U
S

Y

0 0

P
M

C
_P

R
O

G

C
O

R
E

_D
B

G

0 0

S
M

R

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

V
R

E
G

_C
S

R
C

_S
C

C
S

R
C

_C
S

R
C

_S
C

F
IR

C
_S

C

S
C

S
R

C
_S

C

S
Y

S
C

LK
_S

W

D
F

LA
S

H
_S

C

C
F

LA
S

H
_S

C

C
D

P
_P

R
P

H
_0

_1
43

0 0 0

C
D

P
_P

R
P

H
_9

6_
12

7

C
D

P
_P

R
P

H
_6

4_
95

C
D

P
_P

R
P

H
_3

2_
63

C
D

P
_P

R
P

H
_0

_3
1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 154/868

Mode Entry Module (MC_ME) RM0045

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field Description

PREVIOUS_MODE

Previous device mode — These bits show the mode in which the device was prior to the
latest change to the current mode.
0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUN0
0101 RUN1
0110 RUN2
0111 RUN3
1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

MPH_BUSY

MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested
a mode change from the MC_PCU and the MC_PCU has not yet responded. It is cleared
when the MC_PCU has responded.

0 Handshake is not busy
1 Handshake is busy

PMC_PROG

MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the
process of powering up or down power domains. It is cleared when all power-up/down
processes have completed.

0 Power-up/down transition is not in progress
1 Power-up/down transition is in progress

CORE_DBG

Processor is in Debug mode indicator — This bit is set while the processor is in debug
mode.

0 The processor is not in debug mode
1 The processor is in debug mode

SMR

SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE
mode request has been triggered. It is cleared when the hardware SAFE mode request has
been cleared.

0 A SAFE mode request is not active
1 A SAFE mode request is active

VREG_CSRC_SC

Main VREG dependent Clock Source State Change during mode transition indicator — This
bit is set when a clock source which depends on the main voltage regulator to be powered-
up is requested to change its power up/down state. It is cleared when the clock source has
completed its state change.
0 No state change is taking place
1 A state change is taking place

CSRC_CSRC_SC

(Other) Clock Source dependent Clock Source State Change during mode transition
indicator — This bit is set when a clock source which depends on another clock source to
be powered-up is requested to change its power up/down state. It is cleared when the clock
source has completed its state change.

0 No state change is taking place
1 A state change is taking place
155/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
FIRC_SC

FIRC State Change during mode transition indicator — This bit is set when the fast internal
RC oscillator (16 MHz) is requested to change its power up/down state. It is cleared when
the fast internal RC oscillator (16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place

SYSCLK_SW
System Clock Switching pending status —

0 No system clock source switching is pending
1 A system clock source switching is pending

DFLASH_SC

DFLASH State Change during mode transition indicator — This bit is set when the DFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
completed its state change.

0 No state change is taking place
1 A state change is taking place

CFLASH_SC

CFLASH State Change during mode transition indicator — This bit is set when the CFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
completed its state change.

0 No state change is taking place
1 A state change is taking place

CDP_PRPH_0_143

Clock Disable Process Pending status for Peripherals 0…143 — This bit is set when any
peripheral has been requested to have its clock disabled. It is cleared when all the
peripherals which have been requested to have their clocks disabled have entered the state
in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_96_127

Clock Disable Process Pending status for Peripherals 96…127 — This bit is set when any
peripheral appearing in ME_PS3 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.
0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_64_95

Clock Disable Process Pending status for Peripherals 64…95 — This bit is set when any
peripheral appearing in ME_PS2 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description
Doc ID 16886 Rev 6 156/868

Mode Entry Module (MC_ME) RM0045
RESET Mode Configuration Register (ME_RESET_MC)

This register configures system behavior during RESET mode. Please refer to Table 65 for
details.

CDP_PRPH_32_63

Clock Disable Process Pending status for Peripherals 32…63 — This bit is set when any
peripheral appearing in ME_PS1 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_0_31

Clock Disable Process Pending status for Peripherals 0…31 — This bit is set when any
peripheral appearing in ME_PS0 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description

Figure 54. RESET Mode Configuration Register (ME_RESET_MC)

Address 0xC3FD_C020 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
157/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
TEST Mode Configuration Register (ME_TEST_MC)

This register configures system behavior during TEST mode. Please see Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

SAFE Mode Configuration Register (ME_SAFE_MC)

This register configures system behavior during SAFE mode. Please see Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

Figure 55. TEST Mode Configuration Register (ME_TEST_MC)

Address 0xC3FD_C024 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
PDO

0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 56. SAFE Mode Configuration Register (ME_SAFE_MC)

Address 0xC3FD_C028 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
PDO

0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Doc ID 16886 Rev 6 158/868

Mode Entry Module (MC_ME) RM0045
DRUN Mode Configuration Register (ME_DRUN_MC)

This register configures system behavior during DRUN mode. Please see Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

Note: The clock source and flash configuration values are retained through STANDBY mode.

RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

This register configures system behavior during RUN0…3 modes. Please see Table 65 for
details.

Figure 57. DRUN Mode Configuration Register (ME_DRUN_MC)

Address 0xC3FD_C02C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 58. RUN0…3 Mode Configuration Registers (ME_RUN0…3_MC)

Address 0xC3FD_C030 - 0xC3FD_C03C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
159/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Note: Byte write accesses are not allowed to this register.

HALT Mode Configuration Register (ME_HALT_MC)

This register configures system behavior during HALT mode. Please refer to Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

STOP Mode Configuration Register (ME_STOP_MC)

This register configures system behavior during STOP mode. Please refer to Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

Figure 59. HALT Mode Configuration Register (ME_HALT_MC)

Address 0xC3FD_C040 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK
W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

Figure 60. STOP Mode Configuration Register (ME_STOP_MC)

Address 0xC3FD_C048 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
PDO

0 0

M
V

R
O

N DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N

SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Doc ID 16886 Rev 6 160/868

Mode Entry Module (MC_ME) RM0045
STANDBY Mode Configuration Register (ME_STANDBY_MC)

This register configures system behavior during STANDBY mode. Please see Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

Figure 61. STANDBY Mode Configuration Register (ME_STANDBY_MC)

Address 0xC3FD_C054 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 PDO 0 0

M
V

R
O

N

DFLAON CFLAON

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0

F
M

P
LL

O
N

F
X

O
S

C
O

N

F
IR

C
O

N SYSCLK

W

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions

Field Description

PDO

I/O output power-down control — This bit controls the output power-down of I/Os.

0 No automatic safe gating of I/Os used and pads power sequence driver is enabled
1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power

sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode,
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup line configuration remains unchanged

MVRON

Main voltage regulator control — This bit specifies whether main voltage regulator is switched off
or not while entering this mode.

0 Main voltage regulator is switched off
1 Main voltage regulator is switched on

DFLAON Data flash power-down control — This bit specifies the operating mode of the data flash after
entering this mode.

00 reserved
01 Data flash is in power-down mode
10 reserved
11 Data flash is in normal mode
Note: If the flash memory is to be powered down in any mode, then your software must ensure that

reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.6,
Functional Event Short Sequence Register (RGM_FESS)).
161/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
CFLAON Code flash power-down control — This bit specifies the operating mode of the code flash after
entering this mode.

00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode

FMPLLON
frequency modulated phase locked loop control
0 frequency modulated phase locked loop is switched off
1 frequency modulated phase locked loop is switched on

FXOSCON
fast external crystal oscillator (4-16 MHz) control
0 fast external crystal oscillator (4-16 MHz) is switched off
1 fast external crystal oscillator (4-16 MHz) is switched on

FIRCON
fast internal RC oscillator (16 MHz) control
0 fast internal RC oscillator (16 MHz) is switched off
1 fast internal RC oscillator (16 MHz) is switched on

SYSCLK

System clock switch control — These bits specify the system clock to be used by the system.

0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled in STOP and TEST modes, reserved in all other modes

Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions (continued)

Field Description
Doc ID 16886 Rev 6 162/868

Mode Entry Module (MC_ME) RM0045
Peripheral Status Register 0 (ME_PS0)

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 1 (ME_PS1)

This register provides the status of the peripherals. Please see Table 66 for details.

Figure 62. Peripheral Status Register 0 (ME_PS0)

Address 0xC3FD_C060 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

S
_D

M
A

_C
H

_M
U

X

0 0 0 0 0 0

S
_F

le
xC

A
N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

S
_D

S
P

I1

S
_D

S
P

I0

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 63. Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C064 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0

S
_C

T
U

L

0 0 0 0 0 0

S
_L

IN
F

le
x2

S
_L

IN
F

le
x1

S
_L

IN
F

le
x0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S
_A

D
C

1

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
163/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Peripheral Status Register 2 (ME_PS2)

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 3 (ME_PS3)

This register provides the status of the peripherals. Please see Table 66 for details.

Figure 64. Peripheral Status Register 2 (ME_PS2)

Address 0xC3FD_C068 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0

S
_P

IT
_R

T
I

S
_R

T
C

_A
P

I

0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

S
_e

M
IO

S
0

0 0

S
_W

K
P

U

S
_S

IU
L

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 65. Peripheral Status Register 3 (ME_PS3)

Address 0xC3FD_C06C Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

S
_C

M
U

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 164/868

Mode Entry Module (MC_ME) RM0045

Run Peripheral Configuration Registers (ME_RUN_PC0…7)

These registers configure eight different types of peripheral behavior during run modes.

Table 66. Peripheral Status Registers 0…4 (ME_PS0…4) Field Descriptions

Field Description

S_<periph>

Peripheral status — These bits specify the current status of the peripherals in the system. If no
peripheral is mapped on a particular position (i.e., the corresponding MODS bit is ‘0’), the
corresponding bit is always read as ‘0’.

0 Peripheral is frozen
1 Peripheral is active

Figure 66. Run Peripheral Configuration Registers (ME_RUN_PC0…7)

Address 0xC3FD_C080 - 0xC3FD_C09C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
E

S
E

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 67. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions

Field Description

RUN3
Peripheral control during RUN3
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2
Peripheral control during RUN2

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1
Peripheral control during RUN1
0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN0
Peripheral control during RUN0

0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN
Peripheral control during DRUN

0 Peripheral is frozen with clock gated
1 Peripheral is active
165/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

These registers configure eight different types of peripheral behavior during non-run modes.

SAFE
Peripheral control during SAFE

0 Peripheral is frozen with clock gated
1 Peripheral is active

TEST
Peripheral control during TEST

0 Peripheral is frozen with clock gated
1 Peripheral is active

RESET
Peripheral control during RESET
0 Peripheral is frozen with clock gated
1 Peripheral is active

Table 67. Run Peripheral Configuration Registers (ME_RUN_PC0…7) Field Descriptions

Field Description

Figure 67. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7)

Address 0xC3FD_C0A0 - 0xC3FD_C0BC Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
TA

N
D

B
Y 0 0

S
TO

P 0

H
A

LT

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 68. Low-Power Peripheral Configuration Registers (ME_LP_PC0…7) Field Descriptions

Field Description

STANDBY
Peripheral control during STANDBY
0 Peripheral is frozen with clock gated
1 Peripheral is active

STOP
Peripheral control during STOP

0 Peripheral is frozen with clock gated
1 Peripheral is active

HALT
Peripheral control during HALT

0 Peripheral is frozen with clock gated
1 Peripheral is active
Doc ID 16886 Rev 6 166/868

Mode Entry Module (MC_ME) RM0045
Peripheral Control Registers (ME_PCTL0…143)

These registers select the configurations during run and non-run modes for each peripheral.

Figure 68. Peripheral Control Registers (ME_PCTL0…143)

Address 0xC3FD_C0C0 - 0xC3FD_C14F Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7

R 0
DBG_F LP_CFG RUN_CFG

W

Reset 0 0 0 0 0 0 0 0

Table 69. Peripheral Control Registers (ME_PCTL0…143) Field Descriptions

Field Description

DBG_F

Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode

0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode
1 Peripheral is frozen if not already frozen in device modes.
Note: This feature is useful to freeze the peripheral state while entering debug. For example, this

may be used to prevent a reference timer from running while making a debug accesses.

LP_CFG

Peripheral configuration select for non-run modes — These bits associate a configuration as
defined in the ME_LP_PC0…7 registers to the peripheral.

000 Selects ME_LP_PC0 configuration
001 Selects ME_LP_PC1 configuration
010 Selects ME_LP_PC2 configuration
011 Selects ME_LP_PC3 configuration
100 Selects ME_LP_PC4 configuration
101 Selects ME_LP_PC5 configuration
110 Selects ME_LP_PC6 configuration
111 Selects ME_LP_PC7 configuration

RUN_CFG

Peripheral configuration select for run modes — These bits associate a configuration as defined
in the ME_RUN_PC0…7 registers to the peripheral.
000 Selects ME_RUN_PC0 configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
011 Selects ME_RUN_PC3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC7 configuration

Table 70. Peripheral control registers by peripheral

Peripheral ME_PCTLn

DSPI_0 4

DSPI_1 5

FlexCAN_0 16

DMA_MUX 23
167/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
8.4 Functional Description

8.4.1 Mode Transition Request

The transition from one mode to another mode is normally handled by software by
accessing the mode control register ME_MCTL. But the in case of special events, the mode
transition can be automatically managed by hardware. In order to switch from one mode to
another, the application should access the ME_MCTL register twice by writing

● the first time with the value of the key (0x5AF0) into the KEY bit field and the required
target mode into the TARGET_MODE bit field,

● and the second time with the inverted value of the key (0xA50F) into the KEY bit field
and the required target mode into the TARGET_MODE bit field.

Once a valid mode transition request is detected, the target mode configuration information
is loaded from the corresponding ME_<mode>_MC register. The mode transition request
may require a number of cycles depending on the programmed configuration, and software
should check the S_CURRENT_MODE bit field and the S_MTRANS bit of the global status
register ME_GS to verify when the mode has been correctly entered and the transition
process has completed. For a description of valid mode requests, please refer to
Section 8.4.5 Mode Transition Interrupts.

Any modification of the mode configuration register of the currently selected mode will not
be taken into account immediately but on the next request to enter this mode. This means
that transition requests such as RUN0…3  RUN0…3, DRUN  DRUN, SAFE  SAFE,
and TEST  TEST are considered valid mode transition requests. As soon as the mode
request is accepted as valid, the S_MTRANS bit is set till the status in the ME_GS register
matches the configuration programmed in the respective ME_<mode>_MC register.

Note: It is recommended that software poll the S_MTRANS bit in the ME_GS register after
requesting a transition to HALT, STOP, or STANDBY modes.

ADC_1 33

I2C 44

LINFlex_0 48

LINFlex_1 49

LINFlex_2 50

CTU 57

CAN sampler 60

SIUL 68

WKPU 69

eMIOS_0 72

RTC/API 91

PIT 92

CMU 104

Table 70. Peripheral control registers by peripheral (continued)

Peripheral ME_PCTLn
Doc ID 16886 Rev 6 168/868

Mode Entry Module (MC_ME) RM0045

8.4.2 Modes Details

RESET Mode

The device enters this mode on the following events:

● from SAFE, DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0000”

● from any mode due to a system reset by the MC_RGM because of some non-
recoverable hardware failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset
sequence is finished. The mode configuration information for this mode is provided by the
ME_RESET_MC register. This mode has a pre-defined configuration, and the 16 MHz int.
RC osc. is selected as the system clock. All power domains are made active in this mode.

SAFE

DRUN

TEST

RESET

RUN0

RUN1

HALT

STOP

SYSTEM MODES USER MODES

software
request

non-recoverable
failure

RUN2

RUN3

recoverable
hardware failure

Figure 69. MC_ME Mode Diagram

STANDBY
169/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
DRUN Mode

The device enters this mode on the following events:

● automatically from RESET mode after completion of the reset sequence

● from RUN0…3, SAFE, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0011”

● from the STANDBY mode after an external wakeup event or internal wakeup alarm
(e.g., RTC/API event)

As soon as any of the above events has occurred, a DRUN mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_DRUN_MC register. In this mode, the flashes, all clock sources, and the system clock
configuration can be controlled by software as required. After system reset, the software
execution starts with the default configuration selecting the 16 MHz int. RC osc. as the
system clock.

This mode is intended to be used by software

● to initialize all registers as per the system needs

● to execute small routines in a ‘ping-pong’ with the STANDBY mode

When this mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC
register content is restored to its pre-STANDBY values, and the mode starts in that
configuration.

All power domains are active when this mode is entered due to a system reset sequence
initiated by a destructive reset event. the exit from STANDBY after a wakeup event,

Note: Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

SAFE Mode

The device enters this mode on the following events:

● from DRUN, RUN0…3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0010”

● from any mode except RESET due to a SAFE mode request generated by the
MC_RGM because of some potentially recoverable hardware failure in the system (see
the MC_RGM chapter for details)

As soon as any of the above events has occurred, a SAFE mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_SAFE_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC
osc. is selected as the system clock. All power domains are made active in this mode.

If the SAFE mode is requested by software while some other mode transition process is
ongoing, the new target mode becomes the SAFE mode regardless of other pending
requests or new requests during the mode transition. No new mode request made during a
transition to the SAFE mode will cause an invalid mode interrupt.

Note: If software requests to change to the SAFE mode and then requests to change back to the
parent mode before the mode transition is completed, the device’s final mode after mode
transition will be the SAFE mode.

As long as a SAFE event is active, the system remains in the SAFE mode, and any software
mode request during this time is ignored and lost.
Doc ID 16886 Rev 6 170/868

Mode Entry Module (MC_ME) RM0045
This mode is intended to be used by software

● to assess the severity of the cause of failure and then to either

– re-initialize the device via the DRUN mode, or

– completely reset the device via the RESET mode.

If the outputs of the system I/Os need to be forced to a high impedance state upon entering
this mode, the PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’
power sequence driver cell is also disabled. The input levels remain unchanged.

TEST Mode

The device enters this mode on the following events:

● from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is
written with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_TEST_MC register. Except for the main voltage regulator, all resources of the system
are configurable in this mode. The system clock to the whole system can be stopped by
programming the SYSCLK bit field to “1111”, and in this case, the only way to exit this mode
is via a device reset.

This mode is intended to be used by software

● to execute software test routines

Note: Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

RUN0…3 Modes

The device enters one of these modes on the following events:

● from the DRUN, SAFE, or another RUN0…3 mode when the TARGET_MODE bit field
of the ME_MCTL register is written with “0100…0111”

● from the HALT mode due to an interrupt event

● from the STOP mode due to an interrupt or wakeup event

As soon as any of the above events has occurred, a RUN0…3 mode transition request is
generated. The mode configuration information for these modes is provided by the
ME_RUN0…3_MC registers. In these modes, the flashes, all clock sources, and the system
clock configuration can be controlled by software as required.

These modes are intended to be used by software

● to execute application routines

Note: Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

HALT Mode

The device enters this mode on the following events:

● from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1000”.

As soon as any of the above events has occurred, a HALT mode transition request is
generated. The mode configuration information for this mode is provided by ME_HALT_MC
171/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
register. This mode is quite configurable, and the ME_HALT_MC register should be
programmed according to the system needs. The main voltage regulator and the flashes
can be put in low-power or power-down mode as needed. If there is a HALT mode request
while an interrupt request is active, the transition to HALT is aborted with the resultant mode
being the current mode, SAFE (on SAFE mode request), or DRUN (on reset), and an invalid
mode interrupt is not generated.

This mode is intended as a first-level low-power mode with

● the core clock frozen

● only a few peripherals running

and to be used by software

● to wait until it is required to do something and then to react quickly (i.e., within a few
system clock cycles of an interrupt event)

STOP Mode

The device enters this mode on the following events:

● from one of the RUN0…3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1010”.

As soon as any of the above events has occurred, a STOP mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_STOP_MC register. This mode is fully configurable, and the ME_STOP_MC register
should be programmed according to the system needs.

The main voltage regulator and the flashes can be put in power-down mode as needed. If
there is a STOP mode request while any interrupt or wakeup event is active, the transition to
STOP is aborted with the resultant mode being the current mode, SAFE (on SAFE mode
request), or DRUN (on reset), and an invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all
peripherals stopped.

This mode is intended as an advanced low-power mode with

● the system clock frozen

● almost all peripherals stopped

and to be used by software

● to wait until it is required to do something with no need to react quickly (e.g., allow for
system clock source to be re-started)

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the
PDO bit of the ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources and thus preserve the device status. When
exiting the STOP mode, the fast internal RC oscillator (16 MHz) clock is selected as the
system clock until the target clock is available.

STANDBY Mode

The device enters this mode on the following events:

● from the DRUN or one of the RUN0…3 modes when the TARGET_MODE bit field of
the ME_MCTL register is written with “1101”.
Doc ID 16886 Rev 6 172/868

Mode Entry Module (MC_ME) RM0045
As soon as any of the above events occur, a STANDBY mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_STANDBY_MC register. In this mode, the power supply is turned off for most of the
device. The only parts of the device that are still powered during this mode are pads
mapped on wakeup lines and power domain #0 which contains the MC_RGM, MC_PCU,
WKPU, 8K RAM, RTC_API, SIRC, FIRC, and device and user option bits. The FIRC can be
optionally switched off. This is the lowest power consumption mode possible on the device.

This mode is intended as an extreme low-power mode with

● the core, the flashes, and almost all peripherals and memories powered down

and to be used by software

● to wait until it is required to do something with no need to react quickly (i.e., allow for
system power-up and system clock source to be re-started)

The exit sequence of this mode is similar to the reset sequence. However, in addition to
booting from the default location, the device can also be configured to boot from the backup
RAM (see the RGM_STDBY register description in the MC_RGM chapter for details). In the
case of booting from backup RAM, it is also possible to keep the flashes disabled by writing
“01” to the CFLAON and DFLAON fileds in the ME_DRUN_MC register prior to STANDBY
entry.

If there is a STANDBY mode request while any wakeup event is active, the device mode
does not change.

All power domains except power domain #0 are configurable in this mode in order to reduce
leakage consumption.

8.4.3 Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner
depending on the current device mode and the requested target mode. In many cases of
mode transition, not all steps need to be executed based on the mode control information,
and some steps may not be applicable according to the mode definition itself.

Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys.
This mode transition request by software must be a valid request satisfying a set of pre-
defined rules to initiate the process. If the request fails to satisfy these rules, it is ignored,
and the TARGET_MODE bit field is not updated. An optional interrupt can be generated for
invalid mode requests. Refer to Section 8.4.5 Mode Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a
SAFE mode request, or interrupt requests and wakeup events to exit from low-power
modes, the TARGET_MODE bit field of the ME_MCTL register is automatically updated with
the appropriate target mode. The mode change process start is indicated by the setting of
the mode transition status bit S_MTRANS of the ME_GS register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which
generates a global system reset and initiates the reset sequence. The RESET mode
request has the highest priority, and the MC_ME is kept in the RESET mode during the
entire reset sequence.

The SAFE mode request has the next highest priority after reset. It can be generated either
by software via the ME_MCTL register from all software running modes including DRUN,
173/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
RUN0…3, and TEST or by the MC_RGM after the detection of system hardware failures,
which may occur in any mode.

Target Mode Configuration Loading

On completion of the Target Mode Request step, the target mode configuration from the
ME_<target mode>_MC register is loaded to start the resources (voltage sources, clock
sources, flashes, pads, etc.) control process.

An overview of resource control possibilities for each mode is shown in Table 71. A ‘’
indicates that a given resource is configurable for a given mode.

Peripheral Clocks Disable

On completion of the Target Mode Request step, the MC_ME requests each peripheral to
enter its stop mode when:

● the peripheral is configured to be disabled via the target mode, the peripheral
configuration registers ME_RUN_PC0…7 and ME_LP_PC0…7, and the peripheral
control registers ME_PCTL0…143

Caution: The MC_ME does not automatically request peripherals to enter their stop modes if the
power domains in which they are residing are to be turned off due to a mode change.
Therefore, it is software’s responsibility to ensure that those peripherals that are to be
powered down are configured in the MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The
MC_ME then disables the corresponding clock(s) to this peripheral.

Table 71. MC_ME Resource Control Overview

Resource
Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

FIRC
   

on on on on on on on on

FXOSC
    

off off off off off off off off

FMPLL
   

off off off off off off off off

CFLASH

    

normal normal normal normal normal low-power
power-
down

power-
down

DFLASH

    

normal normal normal normal normal low-power
power-
down

power-
down

MVREG
 

on on on on on on on off

PDO
  

off off on off off off off on
Doc ID 16886 Rev 6 174/868

Mode Entry Module (MC_ME) RM0045
In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals
to acknowledge the stop requests. The SAFE mode clock gating configuration is applied
immediately regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6 Peripheral Clock Gating for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected
ensures that these outputs are forced to a safe or recessive state when the device enters
the SAFE mode.

Processor Low-Power Mode Entry

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the HALT
mode, the MC_ME requests the processor to enter its halted state. The processor
acknowledges its halt state request after completing all outstanding bus transactions.

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the STOP or
STANDBY mode, the MC_ME requests the processor to enter its stopped state. The
processor acknowledges its stop state request after completing all outstanding bus
transactions.

Processor and System Memory Clock Disable

If, on completion of the Processor Low-Power Mode Entry step, the mode transition is to the
HALT, STOP, or STANDBY mode and the processor is in its appropriate halted or stopped
state, the MC_ME disables the processor and system memory clocks to achieve further
power saving.

The clocks to the processor and system memory are unaffected while transitioning between
software running modes such as DRUN, RUN0…3, and SAFE.

Caution: Clocks to the whole device including the processor and system memory can be disabled in
TEST mode.

Clock Sources (Main Voltage Regulator Independent) Switch-On

On completion of the Processor Low-Power Mode Entry step, the MC_ME switches on all
clock sources, which do not need the main voltage regulator to be on, based on the
<clock source>ON bits of the ME_<current mode>_MC and ME_<target mode>_MC
registers. The following clock sources are switched on at this step:

Note: Clock sources which need the main voltage regulator to be stable are not controlled by this
step.

The clock sources that are required by the target mode are switched on. The duration
required for the output clocks to be stable depends on the type of source, and all further
steps of mode transition depending on one or more of these clocks waits for the stable
status of the respective clocks. The availability status of these clocks is updated in the
S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order
to not disturb the system clock which might require one of these clocks before switching to a
different target clock.

Main Voltage Regulator Switch-On

On completion of the Target Mode Request step, if the main voltage regulator needs to be
switched on from its off state based on the MVRON bit of the ME_<current mode>_MC and
175/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
ME_<target mode>_MC registers, the MC_ME requests the MC_PCU to power-up the
regulator and waits for the output voltage stable status in order to update the S_MVR bit of
the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this
step, the fast internal RC oscillator (16 MHz) is switched on regardless of the target mode
configuration, as the main voltage regulator requires the 16 MHz int. RC osc. during power-
up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the
main voltage regulator, and the MC_ME is kept in RESET or shut off (depending on the
power domain #1 status).

Flash Modules Switch-On

On completion of the Main Voltage Regulator Switch-On step, if one or more of the flashes
needs to be switched to normal mode from its low-power or power-down mode based on the
CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, the MC_ME requests the flash to exit from its low-
power/power-down mode. When the flashes are available for access, the S_CFLA and
S_DFLA bit fields of the ME_GS register are updated to “11” by hardware.

If the main regulator is also off in device low-power modes, then during the exit sequence,
the flash is kept in its low-power state and is switched on only when the Main Voltage
Regulator Switch-On process has completed.

Caution: It is illegal to switch the flashes from low-power mode to power-down mode and from power-
down mode to low-power mode. The MC_ME, however, does not prevent this nor does it flag
it.

Clock Sources (Main Voltage Regulator Dependent) Switch-On

On completion of the Clock Sources (Main Voltage Regulator Independent) Switch-On and
Main Voltage Regulator Switch-On, the MC_ME controls all clock sources, which need the
main voltage regulator to be on, based on the <clock source>ON bits of the
ME_<current mode>_MC and ME_<target mode>_MC registers. The following clock
sources are switched on at this step:

Pad Outputs-On

On completion of the Main Voltage Regulator Switch-On step, if the PDO bit of the
ME_<target mode>_MC register is cleared, then

● all pad outputs are enabled to return to their previous state

● the I/O pads power sequence driver is switched on

Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers
ME_RUN_PC0…7, ME_LP_PC0…7, and the peripheral control registers ME_PCTL0…143,
the MC_ME enables the clocks for selected modules as required. This step is executed only
after the Main Voltage Regulator Switch-On process is completed.

Also, if a mode change translates to a power up of one or more power domains, the
MC_PCU indicates the MC_ME after completing the power-up sequence upon which the
MC_ME may assert the peripheral clock enables of the peripherals residing in those power
domains.
Doc ID 16886 Rev 6 176/868

Mode Entry Module (MC_ME) RM0045
Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALT or STOP to RUN0…3, the
clocks to the processor and system memory are enabled. The process of enabling these
clocks is executed only after the Flash Modules Switch-On process is completed.

Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALT, STOP, or STANDBY to
RUN0…3, the MC_ME requests the processor to exit from its halted or stopped state. This
step is executed only after the Processor and Memory Clock Enable process is completed.

System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if the target and current system clock configurations
differ, the following method is implemented for clock switching:

● The target clock configuration for the 16 MHz int. RC osc. takes effect only after the
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator
(16 MHz) has stabilized).

● The target clock configuration for the div. 16 MHz int. RC osc. takes effect only after the
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator
(16 MHz) has stabilized).

● The target clock configuration for the 4-16 MHz ext. xtal osc. takes effect only after the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

● The target clock configuration for the div. ext. xtal osc. takes effect only after the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

● The target clock configuration for the freq. mod. PLL takes effect only after the
S_FMPLL bit of the ME_GS register is set by hardware (i.e., the frequency modulated
phase locked loop has stabilized).

● If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”.
This is possible only in the STOP and TEST modes. In the STANDBY mode, the clock
configuration is fixed, and the system clock is automatically forced to ‘0’.

The current system clock configuration can be observed by reading the S_SYSCLK bit field
of the ME_GS register, which is updated after every system clock switching. Until the target
clock is available, the system uses the previous clock configuration.

System clock switching starts only after

● the Peripheral Clocks Disable process has completed in order not to change the
system clock frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in
Table 72. A ‘’ indicates that a given clock source is selectable for a given mode.
177/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then

● the outputs of the pads are forced to the high impedance state if the target mode is
SAFE or TEST

● I/O pads power sequence driver is switched off if the target mode is one of SAFE,
TEST, or STOP modes

In STANDBY mode, the power sequence driver and all pads except the external reset and
those mapped on wakeup lines are not powered and therefore high impedance. The wakeup
line configuration remains unchanged.

This step is executed only after the Peripheral Clocks Disable process has completed.

Clock Sources Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC
registers, if a given clock source is to be switched off, the MC_ME requests the clock source
to power down and updates its availability status bit S_<clock source> of the ME_GS
register to ‘0’. The following clock sources switched off at this step:

This step is executed only after the System Clock Switching process has completed.

Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flashes is to be put in its low-power or power-
down mode, the MC_ME requests the flash to enter the corresponding power mode and
waits for the flash to acknowledge. The exact power mode status of the flashes is updated in

Table 72. MC_ME System Clock Selection Overview

System
Clock

Source

Mode

RESET TEST SAFE DRUN RUN0…3 HALT STOP STANDBY

16 MHz int.
RC osc.


(default)


(default)


(default)


(default)


(default)


(default)


(default)

div. 16
MHz int.
RC osc.

    

4-16 MHz
ext. xtal

osc.
    

div. ext.
xtal osc.

    

freq. mod.
PLL

   

system
clock is
disabled



1. disabling the system clock during TEST mode will require a reset in order to exit TEST mode

 
(default)
Doc ID 16886 Rev 6 178/868

Mode Entry Module (MC_ME) RM0045
the S_CFLA and S_DFLA bit fields of the ME_GS register. This step is executed only when
the Processor and System Memory Clock Disable process has completed.

Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, if the main voltage regulator is to be switched off, the MC_ME requests it to power
down and clears the availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This
step is executed only after completing the following processes:

● Clock Sources Switch-Off

● Flash Switch-Off

● the device consumption is less than the pre-defined threshold value (i.e., the S_DC bit
of the ME_GS register is ‘0’).

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME
and the STANDBY request is asserted after the above processes have completed upon
which the MC_PCU takes control of the main regulator. As the MC_PCU needs the 16 MHz
int. RC osc., the fast internal RC oscillator (16 MHz) remains active until all the STANDBY
steps are executed by the MC_PCU after which it may be switched off depending on the
FIRCON bit of the ME_STANDBY_MC register.

Current Mode Update

The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated
with the target mode bit field TARGET_MODE of the ME_MCTL register when:

● all the updated status bits in the ME_GS register match the configuration specified in
the ME_<target mode>_MC register

● power sequences are done

● clock disable/enable process is finished

● processor low-power mode (halt/stop) entry and exit processes are finished

Software can monitor the mode transition status by reading the S_MTRANS bit of the
ME_GS register. The mode transition latency can differ from one mode to another
depending on the resources’ availability before the new mode request and the target mode’s
requirements.

If a mode transition is taking longer to complete than is expected, the ME_DMTS register
can indicate which process is still in progress.
179/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Target
STANDBY0

STANDBY0
Request

N YMain VREG
Switch-Off

End

Target Mode Request
Write ME_MCTL register
SAFE mode request
interrupt/wakeup event

Peripheral Clocks
Disable

Clock Sources
Switch-On

System Clock
Switching

FLASH
Switch-On

Pad

Processor
Low-Power

Processor &

PAD

Peripheral Clocks
Enable

FLASH
Switch-Off

S
_M

T
R

A
N

S
 =

 ‘1
’

A
N

A
L

O
G

 O
N

D
IG

IT
A

L
 C

O
N

T
R

O
L

A
N

A
L

O
G

 O
F

F

Current Mode Update

Start

S_MTRANS = ‘0’

Outputs On

Outputs Off

Entry
Processor

Low-Power
Exit

Clock Disable
Memory

Processor &

Clock Enable
Memory

Figure 70. MC_ME Transition Diagram

Clock Sources Without
Dependencies Switch-Off

Clock Sources With
Dependencies Switch-Off

Power Domain
Switch-On

Power Domain
Switch-Off

Main VREG
Dependent

Clock Sources
Switch-On
Doc ID 16886 Rev 6 180/868

Mode Entry Module (MC_ME) RM0045

8.4.4 Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules
must be respected. Otherwise, the write operation is ignored and an invalid mode
configuration interrupt may be generated.

● If the 16 MHz int. RC osc. is selected as the system clock, FIRC must be on.

● If the div. 16 MHz int. RC osc. clock is selected as the system clock, RC must be on.

● If the 4-16 MHz ext. xtal osc. clock is selected as the system clock, OSC must be on.

● If the div. ext. xtal osc. clock is selected as the system clock, OSC must be on.

● If the freq. mod. PLL clock is selected as the system clock, PLL must be on.

Note: Software must ensure that clock sources with dependencies other than those mentioned
above are swithced on as needed. There is no automatic protection mechanism to check
this in the MC_ME.

● Configuration “00” for the CFLAON and DFLAON bit fields is reserved.

● Configuration “10” for the DFLAON bit field is reserved.

● If the DFLAON bit field is set to “11”, the CFLAON field must also be set to “11”.

● MVREG must be on if any of the following is active:

– CFLASH

– DFLASH

● System clock configurations marked as ‘reserved’ may not be selected.

● Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST
modes, and only in this case may all system clock sources be turned off.

Caution: If the system clock is stopped during TEST mode, the device can exit only via a system
reset.

8.4.5 Mode Transition Interrupts

The MC_ME provides interrupts for incorrectly configuring a mode, requesting an invalid
mode transition, indicating a SAFE mode transition not due to a software request, and
indicating when a mode transition has completed.

Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the
protection rules mentioned in the Section 8.4.4 Protection of Mode Configuration Registers,
the interrupt pending bit I_ICONF of the ME_IS register is set and an interrupt request is
generated if the mask bit M_ICONF of ME_IM register is ‘1’.

Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

● If the system is in the SAFE mode and the SAFE mode request from MC_RGM is
active, and if the target mode requested is other than RESET or SAFE, then this new
mode request is considered to be invalid, and the S_SEA bit of the ME_IMTS register is
set.

● If the TARGET_MODE bit field of the ME_MCTL register is written with a value different
from the specified mode values (i.e., a non-existing mode), an invalid mode transition
event is generated. When such a non existing mode is requested, the S_NMA bit of the
181/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)
ME_IMTS register is set. This condition is detected regardless of whether the proper
key mechanism is followed while writing the ME_MCTL register.

● If some of the device modes are disabled as programmed in the ME_ME register, their
respective configurations are considered reserved, and any access to the ME_MCTL
register with those values results in an invalid mode transition request. When such a
disabled mode is requested, the S_DMA bit of the ME_IMTS register is set. This
condition is detected regardless of whether the proper key mechanism is followed while
writing the ME_MCTL register.

● If the target mode is not a valid mode with respect to the current mode, the mode
request illegal status bit S_MRI of the ME_IMTS register is set. This condition is
detected only when the proper key mechanism is followed while writing the ME_MCTL
register. Otherwise, the write operation is ignored.

● If further new mode requests occur while a mode transition is in progress (the
S_MTRANS bit of the ME_GS register is ‘1’), the mode transition illegal status bit
S_MTI of the ME_IMTS register is set. This condition is detected only when the proper
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write
operation is ignored.

Note: As the causes of invalid mode transitions may overlap at the same time, the priority
implemented for invalid mode transition status bits of the ME_IMTS register in the order
from highest to lowest is S_SEA, S_NMA, S_DMA, S_MRI, and S_MTI.

As an exception, the mode transition request is not considered as invalid under the following
conditions:

● A new request is allowed to enter the RESET or SAFE mode irrespective of the mode
transition status.

● As the exit of HALT and STOP modes depends on the interrupts of the system which
can occur at any instant, these requests to return to RUN0…3 modes are always valid.

● In order to avoid any unwanted lockup of the device modes, software can abort a mode
transition by requesting the parent mode if, for example, the mode transition has not
completed after a software determined ‘reasonable’ amount of time for whatever
reason. The parent mode is the device mode before a valid mode request was made.

● Self-transition requests (e.g., RUN0  RUN0) are not considered as invalid even when
the mode transition process is active (i.e., S_MTRANS is ‘1’). During the low-power
mode exit process, if the system is not able to enter the respective RUN0…3 mode
properly (i.e., all status bits of the ME_GS register match with configuration bits in the
ME_<mode>_MC register), then software can only request the SAFE or RESET mode.
It is not possible to request any other mode or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the
ME_IS register is set, and an interrupt request is generated if the mask bit M_IMODE of the
ME_IM register is ‘1’.

SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the
MC_RGM due to a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register
is set, and an interrupt is generated if the mask bit M_SAFE of ME_IM register is ‘1’.

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is
deasserted by the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE
mode request). If the system is already in SAFE mode, any new SAFE mode request by the
MC_RGM also sets the interrupt pending bit I_SAFE. However, the SAFE mode interrupt
Doc ID 16886 Rev 6 182/868

Mode Entry Module (MC_ME) RM0045
pending bit is not set when the SAFE mode is entered by a software request (i.e.,
programming of ME_MCTL register).

Mode Transition Complete interrupt

Whenever the system fully completes a mode transition (i.e., the S_MTRANS bit of ME_GS
register transits from ‘1’ to ‘0’), the interrupt pending bit I_MTC of the ME_IS register is set,
and an interrupt request is generated if the mask bit M_MTC of the ME_IM register is ‘1’.
The interrupt bit I_MTC is not set when entering low-power modes HALT and STOP in order
to avoid the same event requesting the immediate exit of these low-power modes.

8.4.6 Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating
policy determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PC0…7 are chosen only during the
software running modes DRUN, TEST, SAFE, and RUN0…3. All configurations are
programmable by software according to the needs of the application. Each configuration
register contains a mode bit which determines whether or not a peripheral clock is to be
gated. Run configuration selection for each peripheral is done by the RUN_CFG bit field of
the ME_PCTL0…143 registers.

The low-power peripheral configuration registers ME_LP_PC0…7 are chosen only during
the low-power modes HALT, STOP, and STANDBY. All configurations are programmable by
software according to the needs of the application. Each configuration register contains a
mode bit which determines whether or not a peripheral clock is to be gated. Low-power
configuration selection for each peripheral is done by the LP_CFG bit field of the
ME_PCTL0…143 registers.

Any modifications to the ME_RUN_PC0…7, ME_LP_PC0…7, and ME_PCTL0…143
registers do not affect the clock gating behavior until a new mode transition request is
generated.

Whenever the processor enters a debug session during any mode, the following occurs for
each peripheral:

● The clock is gated if the DBG_F bit of the associated ME_PCTL0…143 register is set.
Otherwise, the peripheral clock gating status depends on the RUN_CFG and LP_CFG
bits. Any further modifications of the ME_RUN_PC0…7, ME_LP_PC0…7, and
ME_PCTL0…143 registers during a debug session will take affect immediately without
requiring any new mode request.

8.4.7 Application Example

Figure 71 shows an example application flow for requesting a mode change and then
waiting until the mode transition has completed.
183/868 Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Figure 71. MC_ME Application Example Flow Diagram

START of mode change

config
for target mode

okay?

write ME_<target mode>_MC,
ME_RUN_PC0…7, ME_LP_PC0…7,

and ME_PCTL0…143 registers

N

Y

write ME_MCTL with target mode
and key

write ME_MCTL with target mode
and inverted key

start timer

S_MTRANS
cleared?

Y
timer

expired?

N

Y

N

write ME_MCTL with current or
SAFE mode and key

write ME_MCTL with current or
SAFE mode and inverted key

stop timer

mode change DONE
Doc ID 16886 Rev 6 184/868

Reset Generation Module (MC_RGM) RM0045
9 Reset Generation Module (MC_RGM)

9.1 Introduction

9.1.1 Overview

The reset generation module (MC_RGM) centralizes the different reset sources and
manages the reset sequence of the device. It provides a register interface and the reset
sequencer. Various registers are available to monitor and control the device reset sequence.
The reset sequencer is a state machine which controls the different phases (PHASE0,
PHASE1, PHASE2, PHASE3, and IDLE) of the reset sequence and controls the reset
signals generated in the system.

Figure 72 depicts the MC_RGM block diagram.
185/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)

PA[9:8]

RESET

Registers

Platform Interface

core

MC_RGM

Figure 72. MC_RGM block diagram

MC_ME

power-on

1.2V low-voltage detected
(power domain #0)

1.2V low-voltage detected
(power domain #1)

software watchdog timer
2.7V low-voltage detected
2.7V low-voltage detected

(VREG)

JTAG initiated reset
debug control core reset

software reset
checkstop reset

FMPLL fail
FXOSC frequency lower than

reference
CMU clock frequency

higher/lower than reference
4.5V low-voltage detected

code or data flash fatal error

F
un

ct
io

na
l

R
es

et
 F

ilt
er

Boot Mode
Capture

D
es

tr
uc

tiv
e

R
es

et
 F

ilt
er

Reset
State

Machine

SSCM

peripherals

MC_CGM
Doc ID 16886 Rev 6 186/868

Reset Generation Module (MC_RGM) RM0045
9.1.2 Features

The MC_RGM contains the functionality for the following features:

● ‘destructive’ resets management

● ‘functional’ resets management

● signalling of reset events after each reset sequence (reset status flags)

● conversion of reset events to SAFE mode or interrupt request events

● short reset sequence configuration

● bidirectional reset behavior configuration

● selection of alternate boot via the backup RAM on STANDBY mode exit

● boot mode capture on RESET deassertion

9.1.3 Reset sources

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

● A ‘destructive’ reset source is associated with an event related to a critical - usually
hardware - error or dysfunction. When a ‘destructive’ reset event occurs, the full reset
sequence is applied to the device starting from PHASE0. This resets the full device
ensuring a safe start-up state for both digital and analog modules. ‘Destructive’ resets
are

– power-on reset

– 1.2V low-voltage detected (power domain #0)

– 1.2V low-voltage detected (power domain #1)

– software watchdog timer

– 2.7V low-voltage detected

– 2.7V low-voltage detected (VREG)

● A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial
reset sequence is applied to the device starting from PHASE1. In this case, most digital
modules are reset normally, while analog modules or specific digital modules’ (e.g.,
debug modules, flash modules) state is preserved. ‘Functional’ resets are

– external reset

– JTAG initiated reset

– debug control core reset

– software reset

– checkstop reset

– FMPLL fail

– FXOSC frequency lower than reference

– CMU clock frequency higher/lower than reference

– 4.5V low-voltage detected

– code or data flash fatal error

When a reset is triggered, the MC_RGM state machine is activated and proceeds through
the different phases (i.e., PHASEn states). Each phase is associated with a particular
device reset being provided to the system. A phase is completed when all corresponding
phase completion gates from either the system or internal to the MC_RGM are
acknowledged. The device reset associated with the phase is then released, and the state
187/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
machine proceeds to the next phase up to entering the IDLE phase. During this entire
process, the MC_ME state machine is held in RESET mode. Only at the end of the reset
sequence, when the IDLE phase is reached, does the MC_ME enter the DRUN mode.

Alternatively, it is possible for software to configure some reset source events to be
converted from a reset to either a SAFE mode request issued to the MC_ME or to an
interrupt issued to the core (see Section Functional Event Reset Disable Register
(RGM_FERD) and Section Functional Event Alternate Request Register (RGM_FEAR) for
‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins
PA[9:8].

9.3 Memory map and register definition

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

Table 73. MC_RGM register description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE_
4000

RGM_FES Functional Event Status half-word read read/write(1) read/write(1) on page 9-
191

0xC3FE_
4002

RGM_DES Destructive Event Status half-word read read/write(1)

1. individual bits cleared on writing ‘1’

read/write(1) on page 9-
192

0xC3FE_
4004

RGM_FERD
Functional Event Reset
Disable

half-word read read/write(2)

2. write once: ‘0’ = enable, ‘1’ = disable.

read/write(2) on page 9-
193

0xC3FE_
4006

RGM_DERD
Destructive Event Reset
Disable

half-word read read read
on page 9-

195

0xC3FE_
4018

RGM_FESS
Functional Event Short
Sequence

half-word read read/write read/write
on page 9-

196

0xC3FE_
401A

RGM_STDBY STANDBY Reset Sequence half-word read read/write read/write
on page 9-

198

0xC3FE_
401C

RGM_FBRE
Functional Bidirectional
Reset Enable

half-word read read/write read/write
on page 9-

198
Doc ID 16886 Rev 6 188/868

Reset Generation Module (MC_RGM) RM0045

Table 74. MC_RGM memory map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE_
4000

RGM_F
ES /

RGM_D
ES

R

F
_E

X
R

0 0 0 0 0 0

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T

F
_C

O
R

E

F
_J

TA
G

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

R

F
_P

O
R

0 0 0 0 0 0 0 0 0 0

F
_L

V
D

27
_V

R
E

G

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c w1c w1c w1c w1c w1c

0xC3FE_
4004

RGM_F
ERD /

RGM_D
ERD

R

D
_E

X
R 0 0 0 0 0 0

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T

D
_C

O
R

E

D
_J

TA
G

W

R 0 0 0 0 0 0 0 0 0 0 0

D
_L

V
D

27
_V

R
E

G

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

0xC3FE_
4008

…
0xC3FE_

400C

reserved

0xC3FE_
4010

RGM_F
EAR

R 0 0 0 0 0 0 0 0

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

0 0

A
R

_C
O

R
E

A
R

_J
TA

G

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE_
4014

reserved
189/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
9.3.1 Register descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the
RGM_DES[8:15] register bits may be accessed as a word at address 0xC3FE_4000, as a
half-word at address 0xC3FE_4002, or as a byte at address 0xC3FE_4004.

0xC3FE_
4018

RGM_F
ESS /
RGM_S
TDBY

R

S
S

_E
X

R

0 0 0 0 0 0

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

S
S

_C
O

R
E

S
S

_J
TA

G

W

R 0 0 0 0 0 0 0 0

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

0xC3FE_
401C

RGM_F
BRE

R

B
E

_E
X

R

0 0 0 0 0 0
B

E
_F

LA
S

H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

B
E

_C
O

R
E

B
E

_J
TA

G

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

0xC3FE_
4020

…
0xC3FE_

7FFC

reserved

Table 74. MC_RGM memory map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Doc ID 16886 Rev 6 190/868

Reset Generation Module (MC_RGM) RM0045
Functional Event Status Register (RGM_FES)

This register contains the status of the last asserted functional reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1’.

Figure 73. Functional Event Status Register (RGM_FES)

Address 0xC3FE_4000 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_E

X
R

0 0 0 0 0 0

F
_F

LA
S

H

F
_L

V
D

45

F
_C

M
U

_F
H

L

F
_C

M
U

_O
LR

F
_F

M
P

LL

F
_C

H
K

S
TO

P

F
_S

O
F

T

F
_C

O
R

E

F
_J

TA
G

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 75. Functional Event Status Register (RGM_FES) Field Descriptions

Field Description

F_EXR

Flag for External Reset
0 No external reset event has occurred since either the last clear or the last destructive reset

assertion
1 An external reset event has occurred

F_FLASH

Flag for code or data flash fatal error
0 No code or data flash fatal error event has occurred since either the last clear or the last

destructive reset assertion
1 A code or data flash fatal error event has occurred

F_LVD45

Flag for 4.5V low-voltage detected
0 No 4.5V low-voltage detected event has occurred since either the last clear or the last

destructive reset assertion
1 A 4.5V low-voltage detected event has occurred

F_CMU_FHL

Flag for CMU clock frequency higher/lower than reference
0 No CMU clock frequency higher/lower than reference event has occurred since either the last

clear or the last destructive reset assertion
1 A CMU clock frequency higher/lower than reference event has occurred

F_CMU_OLR

Flag for FXOSC frequency lower than reference
0 No FXOSC frequency lower than reference event has occurred since either the last clear or the

last destructive reset assertion
1 A FXOSC frequency lower than reference event has occurred

F_FMPLL

Flag for FMPLL fail
0 No FMPLL fail event has occurred since either the last clear or the last destructive reset

assertion
1 A FMPLL fail event has occurred
191/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
Destructive Event Status Register (RGM_DES)

This register contains the status of the last asserted destructive reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1’.

F_CHKSTOP

Flag for checkstop reset
0 No checkstop reset event has occurred since either the last clear or the last destructive reset

assertion
1 A checkstop reset event has occurred

F_SOFT

Flag for software reset
0 No software reset event has occurred since either the last clear or the last destructive reset

assertion
1 A software reset event has occurred

F_CORE

Flag for debug control core reset
0 No debug control core reset event has occurred since either the last clear or the last destructive

reset assertion
1 A debug control core reset event has occurred; this event can only be asserted when the

DBCR0[RST] field is set by an external debugger. See the "Debug Support" chapter of the core
reference manual for more details.

F_JTAG

Flag for JTAG initiated reset
0 No JTAG initiated reset event has occurred since either the last clear or the last destructive

reset assertion
1 A JTAG initiated reset event has occurred

Table 75. Functional Event Status Register (RGM_FES) Field Descriptions (continued)

Field Description

Figure 74. Destructive Event Status Register (RGM_DES)

Address 0xC3FE_4002 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_P

O
R

0 0 0 0 0 0 0 0 0 0

F
_L

V
D

27
_V

R
E

G

F
_L

V
D

27

F
_S

W
T

F
_L

V
D

12
_P

D
1

F
_L

V
D

12
_P

D
0

W w1c w1c w1c w1c w1c w1c

POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 192/868

Reset Generation Module (MC_RGM) RM0045

Note: The F_POR flag is automatically cleared on a 1.2V low-voltage detected (power domain #0
or #1) or a 2.7V low-voltage detected. This means that if the power-up sequence is not
monotonic (i.e., the voltage rises and then drops enough to trigger a low-voltage detection),
the F_POR flag may not be set but instead the <register>F_LVD12_PD0,
<register>F_LVD12_PD1, or <register>F_LVD27 flag is set on exiting the reset sequence.
Therefore, if the F_POR, <register>F_LVD12_PD0, <register>F_LVD12_PD1, or
<register>F_LVD27 flags are set on reset exit, software should interpret the reset cause as
power-on.

Functional Event Reset Disable Register (RGM_FERD)

Table 76. Destructive Event Status Register (RGM_DES) Field Descriptions

Field Description

F_POR
Flag for Power-On reset
0 No power-on event has occurred since the last clear
1 A power-on event has occurred

F_LVD27_VREG

Flag for 2.7V low-voltage detected (VREG)
0 No 2.7V low-voltage detected (VREG) event has occurred since either the last clear or the

last power-on reset assertion
1 A 2.7V low-voltage detected (VREG) event has occurred

F_LVD27

Flag for 2.7V low-voltage detected
0 No 2.7V low-voltage detected event has occurred since either the last clear or the last power-

on reset assertion
1 A 2.7V low-voltage detected event has occurred

F_SWT

Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-

on reset assertion
1 A software watchdog timer event has occurred

F_LVD12_PD1

Flag for 1.2V low-voltage detected (power domain #1)
0 No 1.2V low-voltage detected (power domain #1) event has occurred since either the last

clear or the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #1) event has occurred

F_LVD12_PD0

Flag for 1.2V low-voltage detected (power domain #0)
0 No 1.2V low-voltage detected (power domain #0) event has occurred since either the last

clear or the last power-on reset assertion
1 A 1.2V low-voltage detected (power domain #0) event has occurred

Figure 75. Functional Event Reset Disable Register (RGM_FERD)

Address 0xC3FE_4004 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

D
_E

X
R 0 0 0 0 0 0

D
_F

LA
S

H

D
_L

V
D

45

D
_C

M
U

_F
H

L

D
_C

M
U

_O
LR

D
_F

M
P

LL

D
_C

H
K

S
TO

P

D
_S

O
F

T

D
_C

O
R

E

D
_J

TA
G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
193/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
This register provides dedicated bits to disable functional reset sources.When a functional
reset source is disabled, the associated functional event will trigger either a SAFE mode
request or an interrupt request (see Section Functional Event Alternate Request Register
(RGM_FEAR)). It can be accessed in read/write in either supervisor mode or test mode. It
can be accessed in read only in user mode. Each byte can be written only once after power-
on reset.

Table 77. Functional Event Reset Disable Register (RGM_FERD) Field Descriptions

Field Description

D_EXR
Disable External Reset
0 An external reset event triggers a reset sequence

D_FLASH
Disable code or data flash fatal error
0 A code or data flash fatal error event triggers a reset sequence

D_LVD45

Disable 4.5V low-voltage detected
0 A 4.5V low-voltage detected event triggers a reset sequence
1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_LVD45

D_CMU_FHL

Disable CMU clock frequency higher/lower than reference
0 A CMU clock frequency higher/lower than reference event triggers a reset sequence
1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or

an interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL

D_CMU_OLR

Disable FXOSC frequency lower than reference
0 A FXOSC frequency lower than reference event triggers a reset sequence
1 A FXOSC frequency lower than reference event generates either a SAFE mode or an

interrupt request depending on the value of RGM_FEAR.AR_CMU_OLR

D_FMPLL

Disable FMPLL fail
0 A FMPLL fail event triggers a reset sequence
1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the

value of RGM_FEAR.AR_FMPLL

D_CHKSTOP
Disable checkstop reset
0 A checkstop reset event triggers a reset sequence

D_SOFT
Disable software reset
0 A software reset event triggers a reset sequence

D_CORE

Disable debug control core reset
0 A debug control core reset event triggers a reset sequence
1 A debug control core reset event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_CORE

D_JTAG

Disable JTAG initiated reset
0 A JTAG initiated reset event triggers a reset sequence
1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request

depending on the value of RGM_FEAR.AR_JTAG
Doc ID 16886 Rev 6 194/868

Reset Generation Module (MC_RGM) RM0045
Destructive Event Reset Disable Register (RGM_DERD)

This register provides dedicated bits to disable particular destructive reset sources.

Functional Event Alternate Request Register (RGM_FEAR)

Figure 76. Destructive Event Reset Disable Register (RGM_DERD)

Address 0xC3FE_4006 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0

D
_L

V
D

27
_V

R
E

G

D
_L

V
D

27

D
_S

W
T

D
_L

V
D

12
_P

D
1

D
_L

V
D

12
_P

D
0

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 78. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions

Field Description

D_LVD27_VREG
Disable 2.7V low-voltage detected (VREG)
0 A 2.7V low-voltage detected (VREG) event triggers a reset sequence

D_LVD27
Disable 2.7V low-voltage detected
0 A 2.7V low-voltage detected event triggers a reset sequence

D_SWT
Disable software watchdog timer
0 A software watchdog timer event triggers a reset sequence

D_LVD12_PD1
Disable 1.2V low-voltage detected (power domain #1)
0 A 1.2V low-voltage detected (power domain #1) event triggers a reset sequence

D_LVD12_PD0
Disable 1.2V low-voltage detected (power domain #0)
0 A 1.2V low-voltage detected (power domain #0) event triggers a reset sequence

Figure 77. Functional Event Alternate Request Register (RGM_FEAR)

Address 0xC3FE_4010 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

A
R

_L
V

D
45

A
R

_C
M

U
_F

H
L

A
R

_C
M

U
_O

LR

A
R

_F
M

P
LL

0 0

A
R

_C
O

R
E

A
R

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
195/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
This register defines an alternate request to be generated when a reset on a functional
event has been disabled. The alternate request can be either a SAFE mode request to
MC_ME or an interrupt request to the system. It can be accessed in read/write in either
supervisor mode or test mode. It can be accessed in read only in user mode.

Functional Event Short Sequence Register (RGM_FESS)

Table 79. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions

Field Description

AR_LVD45
Alternate Request for 4.5V low-voltage detected
0 Generate a SAFE mode request on a 4.5V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 4.5V low-voltage detected event if the reset is disabled

AR_CMU_FHL

Alternate Request for CMU clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference

event if the reset is disabled
1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event

if the reset is disabled

AR_CMU_OLR

Alternate Request for FXOSC frequency lower than reference
0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the

reset is disabled
1 Generate an interrupt request on a FXOSC frequency lower than reference event if the reset

is disabled
For the case when RGM_FERD[D_CMU_OLR] = 1 & RGM_FEAR[AR_CMU_OLR] = 1, an

RGM interrupt will not be generated for an FXOSC failure when the system clock = FXOSC
as there will be no system clock to execute the interrupt service routine. However, the
interrupt service routine will be executed if the FXOSC recovers at some point. The
recommended use case for this feature is when the system clock = FIRC or FMPLL.

AR_FMPLL
Alternate Request for FMPLL fail
0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled

AR_CORE
Alternate Request for debug control core reset
0 Generate a SAFE mode request on a debug control core reset event if the reset is disabled
1 Generate an interrupt request on a debug control core reset event if the reset is disabled

AR_JTAG
Alternate Request for JTAG initiated reset
0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled
1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

Figure 78. Functional Event Short Sequence Register (RGM_FESS)

Address 0xC3FE_4018 Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

S
S

_E
X

R

0 0 0 0 0 0

S
S

_F
LA

S
H

S
S

_L
V

D
45

S
S

_C
M

U
_F

H
L

S
S

_C
M

U
_O

LR

S
S

_F
M

P
LL

S
S

_C
H

K
S

TO
P

S
S

_S
O

F
T

S
S

_C
O

R
E

S
S

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 196/868

Reset Generation Module (MC_RGM) RM0045
This register defines which reset sequence will be done when a functional reset sequence is
triggered. The functional reset sequence can either start from PHASE1 or from PHASE3,
skipping PHASE1 and PHASE2.

Note: This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed
in read in user mode.

Table 80. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions

Field Description

SS_EXR
Short Sequence for External Reset
0 The reset sequence triggered by an external reset event will start from PHASE1

SS_FLASH
Short Sequence for code or data flash fatal error
0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1

SS_LVD45

Short Sequence for 4.5V low-voltage detected
0 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE1
1 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_CMU_FHL

Short Sequence for CMU clock frequency higher/lower than reference
0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event

will start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event

will start from PHASE3, skipping PHASE1 and PHASE2

SS_CMU_OLR

Short Sequence for FXOSC frequency lower than reference
0 The reset sequence triggered by a FXOSC frequency lower than reference event will start

from PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start

from PHASE3, skipping PHASE1 and PHASE2

SS_FMPLL

Short Sequence for FMPLL fail
0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
1 The reset sequence triggered by a FMPLL fail event will start from PHASE3, skipping

PHASE1 and PHASE2

SS_CHKSTOP
Short Sequence for checkstop reset
0 The reset sequence triggered by a checkstop reset event will start from PHASE1

SS_SOFT
Short Sequence for software reset
0 The reset sequence triggered by a software reset event will start from PHASE1

SS_CORE

Short Sequence for debug control core reset
0 The reset sequence triggered by a debug control core reset event will start from PHASE1
1 The reset sequence triggered by a debug control core reset event will start from PHASE3,

skipping PHASE1 and PHASE2

SS_JTAG

Short Sequence for JTAG initiated reset
0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
1 The reset sequence triggered by a JTAG initiated reset event will start from PHASE3,

skipping PHASE1 and PHASE2
197/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
STANDBY Reset Sequence Register (RGM_STDBY)

This register defines reset sequence to be applied on STANDBY mode exit. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read
only in user mode.

Note: This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

Functional Bidirectional Reset Enable Register (RGM_FBRE)

This register enables the generation of an external reset on functional reset. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read in
user mode.

Figure 79. STANDBY Reset Sequence Register (RGM_STDBY)

Address 0xC3FE_401A Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0

B
O

O
T

_F
R

O
M

_B
K

P
_R

A
M

0 0 0 0 0 0 0

W

reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 81. STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions

Field Description

BOOT_
FROM_

BKP_RAM

Boot from Backup RAM indicator — This bit indicates whether the system will boot from backup
RAM or flash out of STANDBY exit.
0 Boot from flash on STANDBY exit
1 Boot from backup RAM on STANDBY exit

Figure 80. Functional Bidirectional Reset Enable Register (RGM_FBRE)

Address 0xC3FE_401C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

B
E

_E
X

R

0 0 0 0 0 0

B
E

_F
LA

S
H

B
E

_L
V

D
45

B
E

_C
M

U
_F

H
L

B
E

_C
M

U
_O

LR

B
E

_F
M

P
LL

B
E

_C
H

K
S

TO
P

B
E

_S
O

F
T

B
E

_C
O

R
E

B
E

_J
TA

G

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 198/868

Reset Generation Module (MC_RGM) RM0045

9.4 Functional description

9.4.1 Reset State Machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the
correct parts of the device are reset based on the reset source event. This is summarized in
Table 83.

Table 82. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field Description

BE_EXR
Bidirectional Reset Enable for External Reset
0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_FLASH
Bidirectional Reset Enable for code or data flash fatal error
0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45
Bidirectional Reset Enable for 4.5V low-voltage detected
0 RESET is asserted on a 4.5V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5V low-voltage detected event

BE_CMU_FHL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference
0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset

is enabled
1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_OLR
Bidirectional Reset Enable for FXOSC frequency lower than reference
0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL
Bidirectional Reset Enable for FMPLL fail
0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKSTOP
Bidirectional Reset Enable for checkstop reset
0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT
Bidirectional Reset Enable for software reset
0 RESET is asserted on a software reset event if the reset is enabled
1 RESET is not asserted on a software reset event

BE_CORE
Bidirectional Reset Enable for debug control core reset
0 RESET is asserted on a debug control core reset event if the reset is enabled
1 RESET is not asserted on a debug control core reset event

BE_JTAG
Bidirectional Reset Enable for JTAG initiated reset
0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event
199/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)

Note: JTAG logic has its own independent reset control and is not controlled by the MC_RGM in
any way.

The reset sequence is comprised of five phases managed by a state machine, which
ensures that all phases are correctly processed through waiting for a minimum duration and
until all processes that need to occur during that phase have been completed before
proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 81.

Table 83. MC_RGM Reset Implications

Source What Gets Reset
External Reset

Assertion(1)

1. ‘external reset assertion’ means that the RESET pin is asserted by the MC_RGM until the end of reset PHASE3

Boot Mode
Capture

power-on reset all yes yes

‘destructive’ resets all except some clock/reset management yes yes

external reset
all except some clock/reset management and
debug

programmable(2)

2. the assertion of the external reset is controlled via the RGM_FBRE register

yes

‘functional’ resets
all except some clock/reset management and
debug

programmable(2) programmable(3)

3. the boot mode is captured if the external reset is asserted

shortened ‘functional’ resets(4)

4. the short sequence is enabled via the RGM_FESS register

flip-flops except some clock/reset
management

programmable(2) programmable(3)
Doc ID 16886 Rev 6 200/868

Reset Generation Module (MC_RGM) RM0045

Figure 81. MC_RGM State Machine

PHASE0

PHASE1

PHASE2

PHASE3

IDLE

duration  3 fast internal RC oscillator (16 MHz) clock cycles

FIRC stable, VREG voltage okay done

duration  10 fast internal RC oscillator (16 MHz) clock cycles

duration fast internal RC oscillator (16 MHz) clock cycles

code and data flash initialization done

duration 40fast internal RC oscillator (16 MHz) clock cycles

power-on
or enabled

‘destructive’
reset

enabled non-
shortened
external or
‘functional’

reset1

enabled
shortened
external or
‘functional’

reset

code and data flash initialization done

RESET released
201/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
PHASE0 Phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’
reset event. The reset state machine exits PHASE0 and enters PHASE1 on verification of
the following:

● all enabled ‘destructive’ resets have been processed

● all processes that need to be done in PHASE0 are completed

– FIRC stable, VREG voltage okay

● a minimum of 3 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
power-up completion and the last enabled ‘destructive’ reset event

PHASE1 Phase

This phase is entered either on exit from PHASE0 or immediately from PHASE2, PHASE3,
or IDLE on a non-masked external or ‘functional’ reset event if it has not been configured to
trigger a ‘short’ sequence. The reset state machine exits PHASE1 and enters PHASE2 on
verification of the following:

● all enabled, non-shortened ‘functional’ resets have been processed

● a minimum of 10 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
the last enabled external or non-shortened ‘functional’ reset event

PHASE2 Phase

This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and
enters PHASE3 on verification of the following:

● all processes that need to be done in PHASE2 are completed

– code and data flash initialization

● a minimum of 8 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
entering PHASE2

PHASE3 Phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an
enabled, shortened ‘functional’ reset event. The reset state machine exits PHASE3 and
enters IDLE on verification of the following:

● all processes that need to be done in PHASE3 are completed

– code and data flash initialization

● a minimum of 40 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
the last enabled, shortened ‘functional’ reset event

IDLE Phase
This is the final phase and is entered on exit from PHASE3. When this phase is reached, the
MC_RGM releases control of the system to the platform and waits for new reset events that
can trigger a reset sequence.

9.4.2 Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or
memory content can no longer be guaranteed.
Doc ID 16886 Rev 6 202/868

Reset Generation Module (MC_RGM) RM0045
The status flag associated with a given ‘destructive’ reset event
(RGM_DES.F_<destructive reset> bit) is set when the ‘destructive’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

The device’s low-voltage detector threshold ensures that, when 1.2V low-voltage detected
(power domain #0) is enabled, the supply is sufficient to have the destructive event correctly
propagated through the digital logic. Therefore, if a given ‘destructive’ reset is enabled, the
MC_RGM ensures that the associated reset event will be correctly triggered to the full
system. However, if the given ‘destructive’ reset is disabled and the voltage goes below the
digital functional threshold, functionality can no longer be ensured, and the reset may or
may not be asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of
PHASE0.

9.4.3 External Reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling
edge on RESET will start the reset sequence from the beginning of PHASE1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit)
is set when the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.

Note: The RGM_FERD register can be written only once between two power-on reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning
of PHASE1. Nevertheless, the RGM_FESS register enables the further configuring of the
reset sequence triggered by the external reset. When RGM_FESS.SS_EXR is set, the
external reset will trigger a reset sequence starting directly from the beginning of PHASE3,
skipping PHASE1 and PHASE2. This can be useful especially when an external reset
should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by
one of the following:

● a power-on reset

● a ‘destructive’ reset event

● an external reset event

● a ‘functional’ reset event configured via the RGM_FBRE register to assert the external
reset

In this case, the external reset is asserted until the end of PHASE3.

9.4.4 Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed
that critical register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event
(RGM_FES.F_<functional reset> bit) is set when the ‘functional’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.
203/868 Doc ID 16886 Rev 6

RM0045 Reset Generation Module (MC_RGM)
The ‘functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

Note: The RGM_FERD register can be written only once between two power-on reset events.

An enabled functional reset will normally trigger a reset sequence starting from the
beginning of PHASE1. Nevertheless, the RGM_FESS register enables the further
configuring of the reset sequence triggered by a functional reset. When
RGM_FESS.SS_<functional reset> is set, the associated ‘functional’ reset will trigger a
reset sequence starting directly from the beginning of PHASE3, skipping PHASE1 and
PHASE2. This can be useful especially in case a functional reset should not reset the flash
module.

9.4.5 STANDBY Entry Sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry,
the MC_RGM moves to PHASE1. The minimum duration counter in PHASE1 does not start
until STANDBY mode is exited. On entry to PHASE1 due to STANDBY mode entry, the
resets for all power domains except power domain #0 are asserted. During this time,
RESET is not asserted as the external reset can act as a wakeup for the device.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit
by configuring the DRUN mode before STANDBY entry so that the flash is in power-down or
low-power mode. If the flash is to be inaccessible, the PHASE2 and PHASE3 states do not
wait for the flash to complete initialization before exiting, and the reset to the flash remains
asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

9.4.6 Alternate Event Generation

The MC_RGM provides alternative events to be generated on reset source assertion. When
a reset source is asserted, the MC_RGM normally enters the reset sequence. Alternatively,
it is possible for some reset source events to be converted from a reset to either a SAFE
mode request issued to the MC_ME or to an interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_FERD and
RGM_FEAR registers as shown in Table 84.

The alternate event is cleared by deasserting the source of the request (i.e., at the reset
source that caused the alternate request) and also clearing the appropriate RGM_FES
status bit.

Note: Alternate requests (SAFE mode as well as interrupt requests) are generated regardless of
whether the system clock is running.

Table 84. MC_RGM Alternate Event Selection

RGM_FERD
Bit Value

RGM_FEAR
Bit Value

Generated Event

0 X reset

1 0 SAFE mode request

1 1 interrupt request
Doc ID 16886 Rev 6 204/868

Reset Generation Module (MC_RGM) RM0045
Note: If a masked ‘functional’ reset event which is configured to generate a SAFE mode/interrupt
request occurs during PHASE1, it is ignored, and the MC_RGM will not send any safe
mode/interrupt request to the MC_ME.

9.4.7 Boot Mode Capturing

The MC_RGM provides sampling of the boot mode PA[9:8] for use by the system. This
sampling is done five fast internal RC oscillator (16 MHz) clock cycles before the rising edge
of RESET. The result of the sampling is then provided to the system. For each bit, a value of
‘1’ is produced only if each of the oldest three of the five samples have the value ‘1’,
otherwise a value of ‘0’ is produced.

Note: In order to ensure that the boot mode is correctly captured, the application needs to apply
the valid boot mode value to the device at least five fast internal RC oscillator (16 MHz) clock
periods before the external reset deassertion crosses the VIH threshold.

Note: RESET can be low as a consequence of the internal reset generation. This will force re-
sampling of the boot mode pins. (See Table 83 for details.)

205/868 Doc ID 16886 Rev 6

RM0045 Power Control Unit (MC_PCU)
10 Power Control Unit (MC_PCU)

10.1 Introduction

10.1.1 Overview

The power control unit (MC_PCU) is used to reduce the overall SoC power consumption.
Power can be saved by disconnecting parts of the SoC from the power supply via a power
switching device. The SoC is grouped into multiple parts having this capability which are
called “power domains”.

When a power domain is disconnected from the supply, the power consumption is reduced
to zero in that domain. Any status information of such a power domain is lost. When re-
connecting a power domain to the supply voltage, the domain draws an increased current
until the power domain reaches its operational voltage.

Power domains are controlled on a device mode basis. For each mode, software can
configure whether a power domain is connected to the supply voltage (power-up state) or
disconnected (power-down state). Maximum power saving is reached by entering the
STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the
power domain configuration registers and initiates a power-down or a power-up sequence
for each individual power domain. The power-up/down sequences are handled by finite state
machines to ensure a smooth and safe transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power
domains other than power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU
address space.

Figure 82 depicts the MC_PCU block diagram.
Doc ID 16886 Rev 6 206/868

Power Control Unit (MC_PCU) RM0045

10.1.2 Features

The MC_PCU includes the following features:

● support for 2 power domains

● support for device modes RESET, DRUN, SAFE, TEST, RUN0…3, HALT, HALT, and
STANDBY (for further mode details, please see the MC_ME chapter)

● power states updating on each mode change and on system wakeup

● a handshake mechanism for power state changes thus guaranteeing operable voltage

● maps the VREG registers to the MC_PCU address space

10.2 External Signal Description
The MC_PCU has no connections to any external pins.

MC_ME

FIRC

VREG

WKPUpower
domains

Power Domain
State Machines

Registers

Platform Interface

MC_PCU

Figure 82. MC_PCU Block Diagram

M
ap

pe
d

M
od

ul
e

In
te

rf
ac

e
mapped

peripheral

core
207/868 Doc ID 16886 Rev 6

RM0045 Power Control Unit (MC_PCU)
10.3 Memory Map and Register Definition

10.3.1 Memory Map

Note: Any access to unused registers as well as write accesses to read-only registers will:

– not change register content

– cause a transfer error

Table 85. MC_PCU Register Description

Address Name Description Size
Access

Location
User Supervisor Test

0xC3FE_
8000

PCU_PCONF0
Power Domain #0
Configuration

word read read read
on page 10-

209

0xC3FE_
8004

PCU_PCONF1
Power Domain #1
Configuration

word read read read
on page 10-

211

0xC3FE_
8040

PCU_PSTAT
Power Domain Status
Register

word read read read
on page 10-

211

Table 86. MC_PCU Memory Map

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0xC3FE_
8000

PCU_PCONF0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE_
8004

PCU_PCONF1

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

0xC3FE_
8008

…
0xC3FE_

803C

reserved

0xC3FE_
8040

PCU_PSTAT

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P
D

1

P
D

0

W

Doc ID 16886 Rev 6 208/868

Power Control Unit (MC_PCU) RM0045
10.3.2 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the PD0 field of the PCU_PSTAT register
may be accessed as a word at address 0xC3FE_8040, as a half-word at address
0xC3FE_8042, or as a byte at address 0xC3FE_8043.

Power Domain #0 Configuration Register (PCU_PCONF0)

This register defines for power domain #0 whether it is on or off in each device mode. As
power domain #0 is the always-on power domain (and includes the MC_PCU), none of its
bits are programmable. This register is available for completeness reasons.

0x044

…
0x07C

reserved

0xC3FE_
8080

…
0xC3FE_

80FC

VREG registers

0xC3FE_
8100

…
0xC3FE_

BFFC

reserved

Table 86. MC_PCU Memory Map (continued)

Address Name
0 1 2 3 27 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 83. Power Domain #0 Configuration Register (PCU_PCONF0)

Address 0xC3FE_8000 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1
209/868 Doc ID 16886 Rev 6

RM0045 Power Control Unit (MC_PCU)

Table 87. Power Domain Configuration Register Field Descriptions

Field Description

RST
Power domain control during RESET mode

0 Power domain off
1 Power domain on

TEST
Power domain control during TEST mode

0 Power domain off
1 Power domain on

SAFE
Power domain control during SAFE mode

0 Power domain off
1 Power domain on

DRUN
Power domain control during DRUN mode

0 Power domain off
1 Power domain on

RUN0
Power domain control during RUN0 mode

0 Power domain off
1 Power domain on

RUN1
Power domain control during RUN1 mode

0 Power domain off
1 Power domain on

RUN2
Power domain control during RUN2 mode

0 Power domain off
1 Power domain on

RUN3
Power domain control during RUN3 mode

0 Power domain off
1 Power domain on

HALT
Power domain control during HALT mode

0 Power domain off
1 Power domain on

HALT
Power domain control during HALT mode

0 Power domain off
1 Power domain on

STBY0
Power domain control during STANDBY mode
0 Power domain off
1 Power domain on
Doc ID 16886 Rev 6 210/868

Power Control Unit (MC_PCU) RM0045
Power Domain #1 Configuration Register (PCU_PCONF1)

This register defines for power domain #1 whether it is on or off in each device mode. The
bit field description is the same as in Table 87. As the platform, clock generation, and mode
control reside in power domain #1, this power domain is only powered down during the
STANDBY mode. Therefore, none of the bits is programmable. This register is available for
completeness reasons.

The difference between PCU_PCONF0 and PCU_PCONF1 is the reset value of the STBY0
bit: During the STANDBY mode, power domain #1 is disconnected from the power supply,
and therefore PCU_PCONF1.STBY0 is always ‘0’. Power domain #0 is always on, and
therefore PCU_PCONF0.STBY0 is ‘1’.

For further details about STANDBY mode, please refer to Section STANDBY Mode
Transition.

Power Domain Status Register (PCU_PSTAT)

This register reflects the power status of all available power domains.

Figure 84. Power Domain #1 Configuration Register (PCU_PCONF1)

Address 0xC3FE_8004 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

S
T

B
Y

0

0 0

H
A

LT 0

H
A

LT

R
U

N
3

R
U

N
2

R
U

N
1

R
U

N
0

D
R

U
N

S
A

F
E

T
E

S
T

R
S

T

W

Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

Figure 85. Power Domain Status Register (PCU_PSTAT)

Address 0xC3FE_8040 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P
D

1

P
D

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
211/868 Doc ID 16886 Rev 6

RM0045 Power Control Unit (MC_PCU)

10.4 Functional Description

10.4.1 General

The MC_PCU controls all available power domains on a device mode basis. The
PCU_PCONFn registers specify during which system/user modes a power domain is
powered up. The power state for each individual power domain is reflected by the bits in the
PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power
state. The power state is controlled by a state machine (FSM) for each individual power
domain which ensures a clean and safe state transition.

10.4.2 Reset / Power-On Reset

After any reset, the SoC will transition to the RESET mode during which all power domains
are powered up (see the MC_ME chapter). Once the reset sequence has been completed,
the DRUN mode is entered and software can begin the MC_PCU configuration.

10.4.3 MC_PCU Configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can
change the configuration for each power domain on a mode basis by programming the
PCU_PCONFn registers.

Each power domain which is powered down is held in a reset state. Read/write accesses to
peripherals in those power domains will result in a transfer error.

10.4.4 Mode Transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power
configurations for all power domains. It compares the settings in the PCU_PCONFn
registers for the new mode with the settings for the current mode. If the configuration for a
power domain differs between the modes, a power state change request is generated.
These requests are handled by a finite state machine to ensure a smooth and safe transition
from one power state to another.

STANDBY Mode Transition

STANDBY offers the maximum power saving. The level of power saving is software-
controllable via the settings in the PCU_PCONFn registers for power domain #2 onwards.
Power domain #0 stays connected to the power supply while power domain #1 is
disconnected from the power supply. Amongst others power domain #1 contains the
platform and the MC_ME. Therefore this mode differs from all other user/system modes.

Table 88. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

PDn
Power status for power domain #n

0 Power domain is inoperable
1 Power domain is operable
Doc ID 16886 Rev 6 212/868

Power Control Unit (MC_PCU) RM0045
Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY
mode, all power domains are powered up according to the settings in the PCU_PCONFn
registers, and the DRUN mode is entered. In DRUN mode, at least power domains #0 and
#1 are powered.

Figure 86 shows an example for a mode transition from RUN0 to STANDBY to DRUN. All
power domains which have PCU_PCONFn.STBY0 cleared will enter power-down phase. In
this example only power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the
power down phase for power domain #1. During the power down phase, clocks are disabled
and reset is asserted resulting in a loss of all information for this power domain. Then the
power domain is disconnected from the power supply (power-down state).

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The
power domain is re-connected to the power supply and the voltage in power domain #1 will
increase slowly. Once the voltage is in an operable range, clocks are enabled and the reset
is be deasserted (power-up state).

Note: It is possible that due to a wakeup request, power-up is requested before a power domain
completed its power-down sequence. In this case, the information in that power domain is
lost.

Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a
power saving state. No software configuration is required to enable this power saving state.
While a memory is residing in this state an increased power saving is achieved. Data in the
memories is retained.

Figure 86. MC_PCU Events During Power Sequences (STANDBY mode)

new mode

power-down

RUN0

voltage in

PSTAT.PD1

STANDBY

Notes:

Not drawn to scale; PCONF1.RUN0 = 1; PCONF1.STBY0 = 0

current mode

power-up phase

power domain #1

RUN0 STANDBY DRUN

requested by ME

power-down state power-up statepower-up state
phase

Mode set due to reset being asserted to power domain #1

wakeup request
213/868 Doc ID 16886 Rev 6

RM0045 Power Control Unit (MC_PCU)
10.5 Initialization Information
To initialize the MC_PCU, the registers PCU_PCONF2 should be programmed. After
programming is done, those registers should no longer be changed.

10.6 Application Information

10.6.1 STANDBY Mode Considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time
a power domain is disconnected from the supply. Increased power is required when a power
domain is re-connected to the power supply. Additional power is required during restoring
the information (e.g., in the platform). Care should be taken that the time during which the
SoC is operating in STANDBY mode is significantly longer than the required time for
restoring the information.

Doc ID 16886 Rev 6 214/868

Voltage Regulators and Power Supplies RM0045
11 Voltage Regulators and Power Supplies

11.1 Voltage regulators
The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main
supply is (3.3 V–5 V ± 10%) and digital/regulated output supply is (1.2 V ± 10%). The
voltage regulator used in SPC560D30/40 comprises three regulators.

● High power regulator (HPREG)

● Low power regulator (LPREG)

● Ultra low power regulator (ULPREG)

The HPREG and LPREG regulators are switched off during STANDBY mode to save
consumption from the regulator itself. In STANDBY mode, the supply is provided by the
ULPREG regulator.

In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME
chapter). In this case, when current is low enough to be handled by LPREG alone, the
HPREG regulator is switch-off and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to
the device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins.

The regulator has two digital domains, one for the high power regulator (HPREG) and the
low power regulator (LPREG) called “High Power domain” and another one for the ultra low
power regulator (ULPREG) called “Standby domain.” For each domain there is a low voltage
detector for the 1.2 V output voltage. Additionally there are two low voltage detectors for the
main/input supply with different thresholds, one at the 3.3 V level and the other one at the
5 V level.

11.1.1 High power regulator (HPREG)

The HPREG converts the 3.3 V–5 V input supply to a 1.2 V digital supply. For more
information, see the voltage regulator electrical characteristics section of the datasheet.

The regulator can be switched off by software. Refer to the main voltage regulator control bit
(MVRON) of the mode configuration registers in the mode entry module chapter of the
reference manuals.

11.1.2 Low power regulator (LPREG)

The LPREG generates power for the device in the STOP mode, providing the output supply
of 1.2 V. It always sees the minimum external capacitance. The control part of the regulator
can be used to disable the low power regulator. It is managed by MC_ME.

11.1.3 Ultra low power regulator (ULPREG)

The ULPREG generates power for the standby domain as well as a part of the main domain
and might or might not see the external capacitance. The control circuit of ULPREG can be
used to disable the ultra low power regulator by software: This action is managed by
MC_ME.
215/868 Doc ID 16886 Rev 6

RM0045 Voltage Regulators and Power Supplies
11.1.4 LVDs and POR

There are three kinds of LVD available:

1. LVD_MAIN for the 3.3 V–5 V input supply with thresholds at approximately 3 V level(g)

2. LVD_MAIN5 for the 3.3 V–5 V input supply with threshold at approximately 4.5 V levelg

3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAIN5 sense the 3.3 V–5 V power supply for CORE, shared with
IO ring supply and indicate when the 3.3 V–5 V supply is stabilized.

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power
domain and senses the HPREG/LPREG output notifying that the 1.2 V output is stable. The
other LVD_DIG is placed in the standby domain and senses the standby 1.2 V supply level
notifying that the 1.2 V output is stable. The reference voltage used for all LVDs is generated
by the low power reference generator and is trimmed for LVD_DIG, using the bits LP[4:7].
Therefore, during the pre-trimming period, LVD_DIG exhibits higher thresholds, whereas
during post trimming, the thresholds come in the desired range. Power-down pins are
provided for LVDs. When LVDs are power-down, their outputs are pulled high.

POR is required to initialize the device during supply rise. POR works only on the rising
edge of the main supply. To ensure its functioning during the following rising edge of the
supply, it is reset by the output of the LVD_MAIN block when main supply reaches below the
lower voltage threshold of the LVD_MAIN.

POR is asserted on power-up when Vdd supply is above VPORUP min (refer to datasheet for
details). It will be released only after Vdd supply is above VPORH (refer to datasheet for
details). Vdd above VPORH ensures power management module including internal LVDs
modules are fully functional.

11.1.5 VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up
and at exit from low-power modes. A signal, indicating that Ultra Low Power domain is
powered, is used at power-up to release reset to temporization counter. At exit from low-
power modes, the power-down for high power regulator request signal is monitored by the
digital interface and used to release reset to the temporization counter. In both cases, on
completion of the delay counter, a end-of-count signal is released, it is gated with an other
signal indicating main domain voltage fine in order to release the VREGOK signal. This is
used by MC_RGM to release the reset to the device. It manages other specific
requirements, like the transition between high power/low power mode to ultra low power
mode avoiding a voltage drop below the permissible threshold limit of 1.08 V.

The VREG digital interface also holds control register to mask 5 V LVD status coming from
the voltage regulator at the power-up.

11.1.6 Register description

The VREG_CTL register is mapped to the MC_PCU address space as described in 10,
Power Control Unit (MC_PCU).

g. See section “Voltage monitor electrical characteristics” of the datasheet for detailed information about this
voltage value.
Doc ID 16886 Rev 6 216/868

Voltage Regulators and Power Supplies RM0045

11.2 Power supply strategy
From a power-routing perspective, the device is organized as follows.

The device provides four dedicated supply domains at package level:

1. HV (high voltage external power supply for I/Os and most analog module) — This must
be provided externally through VDD_HV/VSS_HV power pins. Voltage values should
be aligned with VDD/VSS. Refer to datasheet for details.

2. ADC (high voltage external power supply for ADC module) — This must be provided
externally through VDD_HV_ADC/VSS_HV_ADC power pins. Voltage values should
be aligned with VDD_HV_ADC/VSS_HV_ADC. Refer to datasheet for details.

3. BV (high voltage external power supply for voltage regulator module) — This must be
provided externally through VDD_BV_/VSS_BV power pins. Voltage values should be
aligned with VDD/VSS. Refer to datasheet for details.

4. LV (low voltage internal power supply for core, FMPLL and Flash digital logic) — This is
generated internally by embedded voltage regulator and provided to the core, FMPLL
and Flash. Three VDD_LV/VSS_LV pins pairs are provided to connect the three
decoupling capacitances. This is generated internally by internal voltage regulator but
provided outside to connect stability capacitor. Refer to datasheet for details.

Figure 87. Voltage Regulator Control Register (VREG_CTL)

Address: 0xC3FE_8080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5V
_L

V
D

_M
A

S
K

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 89. VREG_CTL field descriptions

Field Description

5V_LVD_MASK

Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘1’ by software to generate LVD
functional reset request to MC_RGM for 5 V trip.
1: 5 V LVD is masked
0: 5 V LVD is not masked.
217/868 Doc ID 16886 Rev 6

RM0045 Voltage Regulators and Power Supplies
The four dedicated supply domains are further divided within the package in order to reduce
as much as possible EMC and noise issues.

● HV_IO: High voltage pad supply

● HV_FLAn: High voltage Flash supply

● HV_OSC0REG(h): High voltage external oscillator and regulator supply

● HV_ADR: High voltage reference for ADC module. Supplies are further star routed to
reduce impact of ADC resistive reference on ADC capacitive reference accuracy.

● HV_ADV: High voltage supply for ADC module

● BV: High voltage supply for voltage regulator ballast. These two ballast pads are used
to supply core and Flash. Each pad contains two ballasts to supply 80 mA and 20 mA
respectively. Core is hence supplied through two ballasts of 80 mA capability and
CFlash and DFlash through two 20 mA ballasts. The HV supply for both ballasts is
shorted through double bonding.

● LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL
through double bonding.

● LV_FLAn: Low voltage supply for Flash module n. It is supplied with dedicated ballast
and shorted to LV_COR through double bonding.

● LV_PLL(i): Low voltage supply for FMPLL

11.3 Power domain organization
Based on stringent requirements for current consumption in different operational modes, the
device is partitioned into different power domains. Organization into these power domains
primarily means separate power supplies which are separated from each other by use of
power switches (switch SW1 for power domain No. 1 and switch SW2 for power domain No.
2). These different separated power supplies are hence enabling to switch off power to
certain regions of the device to avoid even leakage current consumption in logic supplied by
the corresponding power supply.

This device employs three primary power domains, namely PD0, PD1 and PD2.As PCU
supports dynamic power down of domains based on different device mode, such a possible
domain is depicted below in dotted periphery.

h. Regulator ground is separated from oscillator ground and shorted to the LV ground through star routing

i. During production test, it is also possible to provide the VDD_LV externally through pins by configuring
regulator in bypass mode.
Doc ID 16886 Rev 6 218/868

Wakeup Unit (WKPU) RM0045
12 Wakeup Unit (WKPU)

12.1 Overview
The Wakeup Unit supports 2 internal sources and up to 18(j) external sources that can
generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt
requests or wakeup events. Figure 88 is the block diagram of the Wakeup Unit and its
interfaces to other system components.

The wakeup vector mapping is shown in Table 90. All unused WKPU pins must use a pull
resistor — either pullup (internal or external) or pulldown (external) — to ensure no leakage
from floating inputs.

j. Up to 18 external sources in 100-pin LQFP; up to 12 external sources in 64-pin LQFP

Table 90. Wakeup vector mapping

Wakeup
number

Port
SIU

PCR#

Port input
function(1) (can

be used in
conjunction
with WKPU
function)

WKPU IRQ to
INTC

IRQ# WISR
Register(2)
bit position

Package

64
-p

in
 Q

F
P

10
0-

p
in

 Q
F

P

WKPU0 API n/a(3) —

WakeUp_IRQ_0 46

EIF0 31 (3) (3)

WKPU1 RTC n/a(3) — EIF1 30 (3) (3)

WKPU2 PA1 PCR1 NMI EIF2 29  

WKPU3 PA2 PCR2 — EIF3 28  

WKPU4 PB1 PCR17
LIN0-RX, CAN0-

RX
EIF4 27  

WKPU5 PC11 PCR43 — EIF5 26 x(4) 

WKPU6 PE0 PCR64 — EIF6 25 x4 

WKPU7 PE9 PCR73 — EIF7 24 x4 

WKPU8 PB10 PCR26 —

WakeUp_IRQ_1 47

EIF8 23  

WKPU9 PA4 PCR4 — EIF9 22  

WKPU10 PA15 PCR15 — EIF10 21  

WKPU11 PB3 PCR19 LIN0-RX EIF11 20  

WKPU12 PC7 PCR39 LIN1-RX EIF12 19  

WKPU13 PC9 PCR41 LIN2-RX EIF13 18  

WKPU14 PE11 PCR75 — EIF14 17 x(4) 

WKPU15

RESERVED
WKPU16

WKPU17

WKPU18
219/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)

WKPU19 PA0 PCR0 — WakeUp_IRQ_2 48 EIF19 12  

WKPU20

RESERVED

WKPU21

WKPU22

WKPU23

WKPU24

WKPU25 PB8 PCR24 —

WakeUp_IRQ_3 49

EIF25 6  

WKPU26 PB9 PCR25 — EIF26 5  

WKPU27 PD0 PCR48 — EIF27 4 x(4) 

WKPU28 PD1 PCR49 — EIF28 3 x(4) 

1. This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication
functions (such as CAN and LINFlex Rx) that could be used to wake up the microcontroller. DSPI pins are not included
because DSPI would typically be used in master mode.

2. WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER

3. Port not required to use timer functions.

4. Unavailable WKPU pins must use internal pullup enabled using WIPUER.

Table 90. Wakeup vector mapping (continued)

Wakeup
number

Port
SIU

PCR#

Port input
function(1) (can

be used in
conjunction
with WKPU
function)

WKPU IRQ to
INTC

IRQ# WISR
Register(2)
bit position

Package

64
-p

in
 Q

F
P

10
0-

p
in

 Q
F

P

Doc ID 16886 Rev 6 220/868

Wakeup Unit (WKPU) RM0045

Figure 88. WKPU block diagram

IPS
BUS

PADS

Interrupt
Controller

AIPS

Mode /
Power Ctl

IRQs

sys wakeup

wakeup

0-19

PLATFORM

0-3

NMI / Wakeup
- Configuration

IRQ / Wakeup
- Configuration

Wakeup Unit

IOMUX

RTC, etc.
0-19

filter

filter

filter bypass

filter bypass

NMI enable
221/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)
12.2 Features
The Wakeup Unit supports these distinctive features:

● Non-maskable interrupt support with

– 1 NMI source with bypassable glitch filter

– Independent interrupt destination: non-maskable interrupt, critical interrupt, or
machine check request

– Edge detection

● External wakeup/interrupt support with

– 4 system interrupt vectors for up to 18 interrupt sources

– Analog glitch filter per each wakeup line

– Independent interrupt mask

– Edge detection

– Configurable system wakeup triggering from all interrupt sources

– Configurable pullup

● On-chip wakeup support

– 2 wakeup sources

– Wakeup status mapped to same register as external wakeup/interrupt status

12.3 External signal description
The Wakeup Unit has 18 signal inputs that can be used as external interrupt sources in
normal RUN mode or as system wakeup sources in all power down modes.

The 18 external signal inputs include one signal input that can be used as a non-maskable
interrupt source in normal RUN, HALT or STOP modes or a system wakeup source in STOP
or STANDBY modes.

Note: The user should be aware that the Wake-up pins are enabled in ALL modes, therefore, the
Wake-up pins should be correctly terminated to ensure minimal current consumption. Any
unused Wake-up signal input should be terminated by using an external pull-up or pull-
down, or by internal pull-up enabled at WKPU_WIPUER. Also, care has to be taken on
packages where the Wake-up signal inputs are not bonded. For these packages the user
must ensure the internal pull-up are enabled for those signals not bonded.

12.4 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

12.4.1 Memory map

Table 91 gives an overview on the WKPU registers implemented.
Doc ID 16886 Rev 6 222/868

Wakeup Unit (WKPU) RM0045

Note: Reserved registers will read as 0, writes will have no effect. If SSCM_ERROR[RAE] is
enabled, a transfer error will be issued when trying to access completely reserved register
space.

12.4.2 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

Table 91. WKPU memory map

Base address: 0xC3F9_4000

Address offset Register name Location

0x00 NMI Status Flag Register (NSR) on page 12-223

0x04 – 0x07 Reserved

0x08 NMI Configuration Register (NCR) on page 12-224

0x0C – 0x13 Reserved

0x14 Wakeup/Interrupt Status Flag Register (WISR) on page 12-225

0x18 Interrupt Request Enable Register (IRER) on page 12-226

0x1C Wakeup Request Enable Register (WRER) on page 12-226

0x20 – 0x27 Reserved

0x28 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) on page 12-227

0x2C Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) on page 12-227

0x30 Wakeup/Interrupt Filter Enable Register (WIFER) on page 12-228

0x34 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 12-228

Figure 89. NMI Status Flag Register (NSR)

Offset: 0x00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R NIF0

N
O

V
F

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
223/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)

12.4.3 NMI Configuration Register (NCR)

This register holds the configuration bits for the non-maskable interrupt settings.

Table 92. NSR field descriptions

Field Description

NIF0

NMI Status Flag

If enabled (NREE0 or NFEE0 set), NIF0 causes an interrupt request.

1 An event as defined by NREE0 and NFEE0 has occurred
0 No event has occurred on the pad

NOVF0

NMI Overrun Status Flag

It will be a copy of the current NIF0 value whenever an NMI event occurs, thereby indicating to the
software that an NMI occurred while the last one was not yet serviced. If enabled (NREE0 or NFEE0
set), NOVF0 causes an interrupt request.
1 An overrun has occurred on NMI input
0 No overrun has occurred on NMI input

Figure 90. NMI Configuration Register (NCR)

Offset: 0x08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

N
LO

C
K

0

NDSS0

N
W

R
E

0 0

N
R

E
E

0

N
F

E
E

0

NFE0
0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 93. NCR field descriptions

Field Description

NLOCK0
NMI Configuration Lock Register

Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.

NDSS0

NMI Destination Source Select
00 Non-maskable interrupt
01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated
Doc ID 16886 Rev 6 224/868

Wakeup Unit (WKPU) RM0045
Note: Writing a ‘0’ to both NREE0 and NFEE0 disables the NMI functionality completely (that is,
no system wakeup or interrupt will be generated on any pad activity)!

12.4.4 Wakeup/Interrupt Status Flag Register (WISR)

This register holds the wakeup/interrupt flags.

Note: Status bits associated with on-chip wakeup sources are located to the left of the external
wakeup/interrupt status bits and are read only. The wakeup for these sources must be

NWRE0

NMI Wakeup Request Enable

1 A set NIF0 bit or set NOVF0 bit causes a system wakeup request
0 System wakeup requests from the corresponding NIF0 bit are disabled
Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured.

This should be noted when booting from RESET or STANDBY mode as all registers will have
been cleared to their reset state.

NREE0
NMI Rising-edge Events Enable

1 Rising-edge event is enabled
0 Rising-edge event is disabled

NFEE0
NMI Falling-edge Events Enable

1 Falling-edge event is enabled
0 Falling-edge event is disabled

NFE0

NMI Filter Enable
Enable analog glitch filter on the NMI pad input.

1 Filter is enabled
0 Filter is disabled

Table 93. NCR field descriptions (continued)

Field Description

Figure 91. Wakeup/Interrupt Status Flag Register (WISR)

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 EIF[28:25] 0 0 0 0 0

E
IF

[1
9]

0 0 0 0 EIF[14:0]

W w1c w
1c w1c

Reset 0

Table 94. WISR field descriptions

Field Description

EIF[x]

External Wakeup/Interrupt WKPU[x] Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRER[x]), EIF[x]
causes an interrupt request.
1 An event as defined by WIREER and WIFEER has occurred
0 No event has occurred on the pad
225/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)
configured and cleared at the on-chip wakeup source. Also, the configuration registers for
the external interrupts/wakeups do not have corresponding bits.

12.4.5 Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to
the interrupt controller.

12.4.6 Wakeup Request Enable Register (WRER)

This register is used to enable the system wakeup messaging from the wakeup/interrupt
pads to the mode entry and power control modules.

Figure 92. Interrupt Request Enable Register (IRER)

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 EIRE[28:25] 0 0 0 0 0

E
IR

E
[1

9]

0 0 0 0 EIRE[14:0]

W w1c w
1c w1c

Reset 0

Table 95. IRER field descriptions

Field Description

EIRE[x]
External Interrupt Request Enable x
1 A set EIF[x] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled

Figure 93. Wakeup Request Enable Register (WRER)

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 WRE[28:25] 0 0 0 0 0

W
R

E
[1

9]

0 0 0 0 WRE[14:0]

W w1c w
1c w1c

Reset 0

Table 96. WRER field descriptions

Field Description

WRE[x]
External Wakeup Request Enable x

1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled
Doc ID 16886 Rev 6 226/868

Wakeup Unit (WKPU) RM0045
12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding
wakeup/interrupt pads.

Note: The RTC_API can only be configured on the rising edge.

 .

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

This register is used to enable falling-edge triggered events on the corresponding
wakeup/interrupt pads.

Figure 94. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IREE[28:25] 0 0 0 0 0

IR
E

E
[1

9]

0 0 0 0 IREE[14:0]

W w1c w
1c w1c

Reset 0

Table 97. WIREER field descriptions

Field Description

IREE[x]
External Interrupt Rising-edge Events Enable x

1 Rising-edge event is enabled
0 Rising-edge event is disabled

Figure 95. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IFEE[28:25] 0 0 0 0 0

IF
E

E
[1

9]

0 0 0 0 IFEE[14:0]

W w1c w
1c w1c

Reset 0

Table 98. WIFEER field descriptions

Field Description

IFEEx
External Interrupt Falling-edge Events Enable x

1 Falling-edge event is enabled
0 Falling-edge event is disabled
227/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)
12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter
out glitches on the inputs.

Note: There is no analog filter for the RTC_API.

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pullup on the corresponding interrupt pads to pull an
unconnected wakeup/interrupt input to a value of ‘1’.

Figure 96. Wakeup/Interrupt Filter Enable Register (WIFER)

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IFE[28:25] 0 0 0 0 0

IF
E

[1
9]

0 0 0 0 IFE[14:0]

W w1c w
1c w1c

Reset 0

Table 99. WIFER field descriptions

Field Description

IFE[x]

External Interrupt Filter Enable x
Enable analog glitch filter on the external interrupt pad input.

1 Filter is enabled
0 Filter is disabled

Figure 97. Wakeup/Interrupt Pullup Enable Register (WIPUER)

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 IPUE[28:25] 0 0 0 0 0

IP
U

E
[1

9]

0 0 0 0 IPUE[14:0]

W w1c w
1c w1c

Reset 0

Table 100. WIPUER field descriptions

Field Description

IPUE[x]
External Interrupt Pullup Enable x
1 Pullup is enabled
0 Pullup is disabled
Doc ID 16886 Rev 6 228/868

Wakeup Unit (WKPU) RM0045
12.5 Functional description

12.5.1 General

This section provides a complete functional description of the Wakeup Unit.

12.5.2 Non-maskable interrupts

The Wakeup Unit supports one non-maskable interrupt which is allocated to the following
pins:

● 64-pin LQFP: Pin 4

● 100-pin LQFP: Pin 7

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The
Wakeup Unit supports the capturing of a second event per NMI input before the interrupt is
cleared, thus reducing the chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

Note: Glitch filter control and pad configuration should be done while the NMI is disabled in order
to avoid erroneous triggering by glitches caused by the configuration process itself.

Figure 98. NMI pad diagram

Glitch Filter

Edge Detect

Flag Overrun

Destination

N
M

I

cr
it

ic
al

 IR
Q

m
ac

h
in

e
ch

ec
k

CPU

Mode/
Pwr Ctl

N
D

S
S

0

N
W

R
E

0

N
R

E
E

0

N
F

E
E

0

N
F

E
0

NMI Configuration Register (NCR)

Wakeup Enable
229/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)
NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all
configuration bits for an NMI in a single byte (see Figure 90). The pad defined as an NMI
can be configured by the user to recognize interrupts with an active rising edge, an active
falling edge or both edges being active. A setting of having both edge events disabled
results in no interrupt being detected and should not be configured.

The active NMI edge is controlled by the user through the configuration of the NREE0 and
NFEE0 bits.

Note: After reset, NREE0 and NFEE0 are set to ‘0’, therefore the NMI functionality is disabled after
reset and must be enabled explicitly by software.

Once the pad’s NMI functionality has been enabled, the pad cannot be reconfigured in the
IOMUX to override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the
NDSS0 field. See Table 93 for details.

An NMI supports a status flag and an overrun flag which are located in the NSR register
(see Figure 89). The NIF0 and NOVF0 fields in this register are cleared by writing a ‘1’ to
them; this prevents inadvertent overwriting of other flags in the register. The status flag is set
whenever an NMI event is detected. The overrun flag is set whenever an NMI event is
detected and the status flag is set (that is, has not yet been cleared).

Note: The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in the NSR register.
If the status bit is cleared and the overrun bit is still set, the pending interrupt will not be
cleared.

12.5.3 External wakeups/interrupts

The Wakeup Unit supports up to 18 external wakeup/interrupts which can be allocated to
any pad necessary at the SoC level. This allocation is fixed per SoC.

The Wakeup Unit supports up to four interrupt vectors to the interrupt controller of the SoC.
Each interrupt vector can support up to the number of external interrupt sources from the
device pads with the total across all vectors being equal to the number of external interrupt
sources. Each external interrupt source is assigned to exactly one interrupt vector. The
interrupt vector assignment is sequential so that one interrupt vector is for external interrupt
sources 0 through N-1, the next is for N through N+M-1, and so forth.

See Figure 99 for an overview of the external interrupt implementation for the example of
four interrupt vectors with up to eight external interrupt sources each.
Doc ID 16886 Rev 6 230/868

Wakeup Unit (WKPU) RM0045

Figure 99. External interrupt pad diagram

All of the external interrupt pads within a single group have equal priority. It is the
responsibility of the user software to search through the group of sources in the most
appropriate way for their application.

Note: Glitch filter control and pad configuration should be done while the external interrupt line is
disabled in order to avoid erroneous triggering by glitches caused by the configuration
process itself.

External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed
using a single rolled up register (Figure 92). A pad defined as an external interrupt can be
configured by the user to recognize external interrupts with an active rising edge, an active
falling edge or both edges being active.

Note: Writing a ‘0’ to both IREE[x] and IFEE[x] disables the external interrupt functionality for that
pad completely (that is, no system wakeup or interrupt will be generated on any activity on
that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers
WIREER and WIFEER.

Each external interrupt supports an individual flag which is held in the flag register (WISR).
The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.

OR

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Interrupt

Pads

WIREER[28:0]

Interrupt edge enable

WIFEER[28:0]
Falling

Rising
Edge detection

Analog glitch filterWIFER[28:0]
Glitch filter enable

Interrupt enable

OR

IRQ_19

IRQ_14_08

IRQ_07_00

Flag[19] Flag[14:8] WISR[28:0]Flag[7:0]

WRER[28:0]

Wakeup enable

Mode/

IRER[28:0]

RTC API

Flag[28:25]

IRQ_28_25

Power Ctl

Vectors

OR
231/868 Doc ID 16886 Rev 6

RM0045 Wakeup Unit (WKPU)
12.5.4 On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups
with the external ones to generate a single wakeup to the system.

On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups
are reported along with external wakeups in the WISR register (see Figure 91 for details).
Enabling and clearing of these wakeups are done via the on-chip wakeup source’s own
registers.
Doc ID 16886 Rev 6 232/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045
13 Real Time Clock / Autonomous Periodic Interrupt
(RTC/API)

13.1 Overview
The RTC/API is a free running counter used for time keeping applications. The RTC may be
configured to generate an interrupt at a predefined interval independent of the mode of
operation (run mode or low power mode). If in a low power mode when the RTC interval is
reached, the RTC first generates a wakeup and then assert the interrupt request. The RTC
also supports an autonomous periodic interrupt (API) function used to generate a periodic
wakeup request to exit a low power mode or an interrupt request.

13.2 Features
Features of the RTC/API include:

● 2 selectable counter clock sources

– SIRC (128 kHz)

– FIRC (16 MHz)

● Optional 512 prescaler and optional 32 prescaler

● 32-bit counter

– Supports times up to 1.5 months with 1 ms resolution

– Runs in all modes of operation

– Reset when disabled by software and by POR

● 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s
resolution

● RTC compare value changeable while counter is running

● RTC status and control register are reset only by POR

● Autonomous periodic interrupt (API)

– 10-bit compare value to support wakeup intervals of 1.0 ms to 1 s

– Compare value changeable while counter is running

● Configurable interrupt for RTC match, API match, and RTC rollover

● Configurable wakeup event for RTC match, API match, and RTC rollover
233/868 Doc ID 16886 Rev 6

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

Figure 100. RTC/API block diagram

0
1

2
C

LK
S

E
L[

0:
1]

3

SIRC

FIRC

Reserved

==

C
N

T
E

N

RTCCNT

RTCVAL

10:21

RTCF

RTCIE
RTC interrupt

offset reg

==
22:31

API wakeup

+

load

22:31

APIVAL

APIEN

reset

reset

32-bit counter

sync

sync

RTC wakeup

APIF

APIIE
API

sync

interrupt

ROVRF

sync

Reserved

di
v5

12

di
v3

2

di
v3

2e
n

di
v5

12
en

RTCIE

ROVREN
Doc ID 16886 Rev 6 234/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045

Figure 101. Clock gating for RTC clocks

13.3 Device-specific information
For SPC560D30/40, the device specific information is the following:

● FIRC and SIRC clocks are provided as counter clocks for the RTC. Default clock on
reset is SIRC divided by 4.

● The RTC will be reset on destructive reset, with the exception of software watchdog
reset.

● The RTC provides a configurable divider by 512 to be optionally used when FIRC
source is selected.

13.4 Modes of operation

13.4.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power
mode. In normal operation, all RTC registers can read or written and the input isolation is

32-bit counter

CELL
C.G.

en

 SIRC

(cnten & clksel== 2’b00)

CELL

en

Reserved

(cnten & clksel== 2’b01)

CELL

en

FIRC

(cnten & clksel== 2’b10)

CELL
C.G.

en

Reserved

(cnten & clksel== 2’b11)

C.G.

C.G.

0
1

2
C

LK
S

E
L[

0:
1]

3

CELL
C.G.

en

1

0

div 512

CELL
C.G.

en

1

0

div 32

div512en

div32en

C
N

T
E

N

235/868 Doc ID 16886 Rev 6

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
disabled. The RTC/API and associated interrupts are optionally enabled. In low power
mode, the bus interface is disabled and the input isolation is enabled. The RTC/API is
enabled if enabled prior to entry into low power mode.

13.4.2 Debug mode

On entering into the debug mode the RTC counter freezes on the last valid count if the
RTCC[FRZEN] is set. On exit from debug mode counter continues from the frozen value.

13.5 Register descriptions
Table 101 lists the RTC/API registers.

13.5.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are
accessible in supervisor mode or user mode.

Note: RTCSUPV register is accessible only in supervisor mode.

Table 101. RTC/API register map

Base address: 0xC3FE_C000

Address offset Register Location

0x0 RTC Supervisor Control Register (RTCSUPV) on page 13-236

0x4 RTC Control Register (RTCC) on page 13-237

0x8 RTC Status Register (RTCS) on page 13-239

0xC RTC Counter Register (RTCCNT) on page 13-240

Figure 102. RTC Supervisor Control Register (RTCSUPV)

Offset: 0x0 Access: Read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

S
U

P
V

W

Reset 1 0

Table 102. RTCSUPV field descriptions

Field Description

SUPV

RTC Supervisor Bit

0 All registers are accessible in both user as well as supervisor mode.
1 All other registers are accessible in supervisor mode only.
Doc ID 16886 Rev 6 236/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045
13.5.2 RTC Control Register (RTCC)

The RTCC register contains:

● RTC counter enable

● RTC interrupt enable

● RTC clock source select

● RTC compare value

● API enable

● API interrupt enable

● API compare value

Figure 103. RTC Control Register (RTCC)

Offset: 0x4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
N

T
E

N

R
T

C
IE

F
R

Z
E

N

R
O

V
R

E
N

RTCVAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
P

IE
N

A
P

IIE CLKSEL

D
IV

51
2E

N

D
IV

32
E

N

APIVAL
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 103. RTCC field descriptions

Field Description

CNTEN

Counter Enable

The CNTEN field enables the RTC counter. Making CNTEN bit 1’b0 has the effect of
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for
the RTC configuration and clock source selection to be updated without causing synchronization
issues.

1 Counter enabled
0 Counter disabled

RTCIE

RTC Interrupt Enable

The RTCIE field enables interrupts requests to the system if RTCF is asserted.

1 RTC interrupts enabled
0 RTC interrupts disabled

FRZEN

Freeze Enable

The counter freezes on entering the debug mode on the last valid count value if the FRZEN bit is
set. After coming out of the debug mode, the counter starts from the frozen value.

0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.
237/868 Doc ID 16886 Rev 6

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
ROVREN

Counter Roll Over Wakeup/Interrupt Enable

The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from
0xFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt
from a counter rollover.

1 RTC rollover wakeup/interrupt enabled
0 RTC rollover wakeup/interrupt disabled

RTCVAL
Note: RTC Compare Value

The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF.
RTCVAL can be updated when the counter is running.

APIEN

Autonomous Periodic Interrupt Enable
The APIEN bit enables the autonomous periodic interrupt function.

1 API enabled
0 API disabled

APIIE

API Interrupt Enable
The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 API interrupts enabled
0 API interrupts disabled

CLKSEL

Clock Select
This field selects the clock source for the RTC. CLKSEL may only be updated when CNTEN is 0.
The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 Reserved
01 SIRC
10 FIRC
11 Reserved

DIV512EN

Divide by 512 enable
The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is
0.

0 Divide by 512 is disabled.

1 Divide by 512 is enabled.

DIV32EN

Divide by 32 enable
The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.

0 Divide by 32 is disabled.

1 Divide by 32 is enabled.

APIVAL

API Compare Value
The APIVAL field is compared with bits 22:31 of the RTC counter and if match asserts an
interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or API function is
undefined.

Note: API functionality starts only when APIVAL is non zero. The first API interrupt takes two more
cycles because of synchronization of APIVAL to the RTC clock. After that interrupts are
periodic in nature. The minimum supported value of APIVAL is 4.

Table 103. RTCC field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 238/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045
13.5.3 RTC Status Register (RTCS)

The RTCS register contains:

● RTC interrupt flag

● API interrupt flag

● ROLLOVR Flag

Figure 104. RTC Status Register (RTCS)

Offset: 0x8 Access: User read/write

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

R
T

C
F 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

A
P

IF 0 0

R
O

V
R

F 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 104. RTCS field descriptions

Field Description

RTCF

RTC Interrupt Flag

The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL.
RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.

1 RTC counter matches RTCVAL
0 RTC counter is not equal to RTCVAL

APIF

API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset
value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
1 API interrupt
0 No API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’b1 RTC counts

ROVRF

Counter Roll Over Interrupt Flag

The ROVRF bit indicates that the RTC has rolled over from 0xffff_ffff to 0x0000_0000. ROVRF is
cleared by writing a 1 to ROVRF.

1 RTC has rolled over
0 RTC has not rolled over
239/868 Doc ID 16886 Rev 6

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
13.5.4 RTC Counter Register (RTCCNT)

The RTCCNT register contains the current value of the RTC counter.

13.6 RTC functional description
The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit
(CNTEN when negated asynchronously resets the counter and synchronously enables the
counter when enabled). The value of the counter may be read via the RTCCNT register.
Note that due to the clock synchronization, the RTCCNT value may actually represent a
previous counter value. The difference between the counter and the read value depends on
ratio of counter clock and system clock. Maximum possible difference between the two is 6
count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives the
options for clocking the RTC/API. The output of the clock mux can be optionally divided by
combination of 512 and 32 to give a 1 ms RTC/API count period for different clock sources.
Note that the RTCC[CNTEN] bit must be disabled when the RTC/API clock source is
switched.

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL]
field, then the RTCS[RTCF] interrupt flag bit is set (after proper clock synchronization). If the
RTCC[RTCIE] interrupt enable bit is set, then the RTC interrupt request is generated. The
RTC supports interrupt requests in the range of 1 s to 4096 s (> 1 hr) with a 1 s resolution. If
there is a match while in low power mode then the RTC will first generate a wakeup request
to force a wakeup to run mode, then the RTCF flag will be set.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count
of 0xFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the
RTCC[ROVREN] bit. An RTC counter rollover with this bit will cause a wakeup from low
power mode. An interrupt request is generated for an RTC counter rollover when both the
RTCC[ROVREN] and RTCC[RTCIE] bits are set.

All the flags and counter values are synchronized with the system clock. It is assumed that
the system clock frequency is always more than or equal to the rtc_clk used to run the
counter.

Figure 105. RTC Counter Register (RTCCNT)

Offset: 0xC Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RTCCNT

W

Reset 0

Table 105. RTCCNTfield descriptions

Field Description

RTCCNT
RTC Counter Value
Due to the clock synchronization, the RTCCNT value may actually represent a previous counter
value.
Doc ID 16886 Rev 6 240/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045
13.7 API functional description
Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit
RTCC[APIVAL] field selects the time interval for triggering an interrupt and/or wakeup event.
Since the RTC is a free running counter, the APIVAL is added to the current count to
calculate an offset. When the counter reaches the offset count, a interrupt and/or wakeup
request is generated. Then the offset value is recalculated and again re-triggers a new
request when the new value is reached. APIVAL may only be updated when APIEN is
disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper
clock synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the API interrupt
request is generated. If there is a match while in low power mode, then the API will first
generate a wakeup request to force a wakeup into normal operation, then the APIF flag will
be set.

241/868 Doc ID 16886 Rev 6

RM0045 e200z0h Core
14 e200z0h Core

14.1 Overview
The e200 processor family is a set of CPU cores that implement cost-efficient versions of
the Power Architecture®. e200 processors are designed for deeply embedded control
applications which require low cost solutions rather than maximum performance.

The e200z0h processors integrate an integer execution unit, branch control unit, instruction
fetch and load/store units, and a multi-ported register file capable of sustaining three read
and two write operations per clock. Most integer instructions execute in a single clock cycle.
Branch target prefetching is performed by the branch unit to allow single-cycle branches in
some cases.

The e200z0h core is a single-issue, 32-bit Power Architecture technology VLE-only design
with 32-bit general purpose registers (GPRs). All arithmetic instructions that execute in the
core operate on data in the general purpose registers (GPRs).

Instead of the base Power Architecture technology support, the e200z0h core only
implements the VLE (variable-length encoding) APU, providing improved code density.

14.2 Microarchitecture summary
The e200z0h processor utilizes a four stage pipeline for instruction execution. The
Instruction Fetch (stage 1), Instruction Decode/Register file Read/Effective Address
Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback (stage 4)
stages operate in an overlapped fashion, allowing single clock instruction execution for most
instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-
bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation
Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result
feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the
divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to
minimize delays during change of flow operations. Sequential prefetching is performed to
ensure a supply of instructions into the execution pipeline. Branch target prefetching from
the BTB is performed to accelerate certain taken branches in the e200z0h. Prefetched
instructions are placed into an instruction buffer with 4entries in e200z0h, each capable of
holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with
successful target prefetching have an effective execution time of one clock on e200z0h. All
other taken branches have an execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data
with automatic zero or sign extension of byte and halfword load data as well as optional byte
reversal of data. These instructions can be pipelined to allow effective single cycle
throughput. Load and store multiple word instructions allow low overhead context save and
restore operations. The load/store unit contains a dedicated effective address adder to allow
Doc ID 16886 Rev 6 242/868

e200z0h Core RM0045
effective address generation to be optimized. Also, a load-to-use dependency does not incur
any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register
operations defined by the Power Architecture platform. The condition register consists of
eight 4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a mechanism for
testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with
no software overhead.
243/19 Doc ID 16886 Rev 6

RM0045 e200z0h Core
14.3 Block diagram

Figure 106. e200z0h block diagram

CPU

CONTROL LOGIC

LOAD/

DATAADDRESS

STORE
UNIT

INSTRUCTION UNIT

BRANCH
UNIT

PC
UNIT

INSTRUCTION BUFFER

GPRCRSPR

MULTIPLY
UNIT

DATA BUS INTERFACE UNIT

CONTROL

32 32 N

OnCE/NEXUS

CONTROL LOGIC

INTERFACE

CONTROL

DATA

(MTSPR/MFSPR)

INTEGER
EXECUTION

UNIT

EXTERNAL
SPR

CTR
XER

LR

D
A

T
A

A
D

D
R

E
S

S

IN
S

T
R

U
C

T
IO

N
 B

U
S

 IN
T

E
R

F
A

C
E

 U
N

IT

C
O

N
T

R
O

L

32
32

N

Doc ID 16886 Rev 6 244/868

e200z0h Core RM0045
14.4 Features
The following is a list of some of the key features of the e200z0h core:

● 32-bit Power Architecture VLE-only programmer’s model

● Single issue, 32-bit CPU

● Implements the VLE APU for reduced code footprint

● In-order execution and retirement

● Precise exception handling

● Branch processing unit

– Dedicated branch address calculation adder

– Branch acceleration using Branch Target Buffer

● Supports independent instruction and data accesses to different memory subsystems,
such as SRAM and Flash memory via independent Instruction and Data bus interface
units (BIUs) (e200z0h only).

● Load/store unit

– 1 cycle load latency

– Fully pipelined

– Big-endian support only

– Misaligned access support

– Zero load-to-use pipeline bubbles for aligned transfers

● Power management

– Low power design

– Power saving modes: nap, sleep, and wait

– Dynamic power management of execution units

● Testability

– Synthesizeable, full MuxD scan design

– ABIST/MBIST for optional memory arrays

14.4.1 Instruction unit features

The features of the e200 Instruction unit are:

● 32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up
to two 16-bit VLE instructions per clock

● Instruction buffer with 4 entries in e200z0h, each holding a single 32-bit instruction, or a
pair of 16-bit instructions

● Dedicated PC incrementer supporting instruction prefetches

● Branch unit with dedicated branch address adder supporting single cycle of execution
of certain branches, two cycles for all others
245/19 Doc ID 16886 Rev 6

RM0045 e200z0h Core
14.4.2 Integer unit features

The e200 integer unit supports single cycle execution of most integer instructions:

● 32-bit AU for arithmetic and comparison operations

● 32-bit LU for logical operations

● 32-bit priority encoder for count leading zero’s function

● 32-bit single cycle barrel shifter for shifts and rotates

● 32-bit mask unit for data masking and insertion

● Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution
timing

● 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)

14.4.3 Load/Store unit features

The e200 load/store unit supports load, store, and the load multiple / store multiple
instructions:

● 32-bit effective address adder for data memory address calculations

● Pipelined operation supports throughput of one load or store operation per cycle

● 32-bit interface to memory (dedicated memory interface on e200z0h)

14.4.4 e200z0h system bus features

The features of the e200z0h system bus interface are as follows:

● Independent instruction and data buses

● AMBA(k) AHB(l) Lite Rev 2.0 specification with support for ARM v6 AMBA extensions

– Exclusive access monitor

– Byte lane strobes

– Cache allocate support

● 32-bit address bus plus attributes and control on each bus

● 32-bit read data bus for instruction interface

● Separate uni-directional 32-bit read data bus and 32-bit write data bus for data interface

● Overlapped, in-order accesses

14.5 Core registers and programmer’s model
This section describes the registers implemented in the e200z0h cores. It includes an
overview of registers defined by the Power Architecture platform, highlighting differences in
how these registers are implemented in the e200 core, and provides a detailed description
of e200-specific registers. Full descriptions of the architecture-defined register set are
provided in the Power Architecture specification.

The Power Architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or

k. Advanced Microcontroller Bus Architecture

l. Advanced High Performance Bus
Doc ID 16886 Rev 6 246/868

e200z0h Core RM0045
are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions. Data is transferred between
memory and registers with explicit load and store instructions only.

Figure 107, and Figure 106 show the e200 register set including the registers which are
accessible while in supervisor mode, and the registers which are accessible in user mode.
The number to the right of the special-purpose registers (SPRs) is the decimal number used
in the instruction syntax to access the register (for example, the integer exception register
(XER) is SPR 1).

Note: e200z0h is a 32-bit implementation of the Power Architecture specification. In this
document, register bits are sometimes numbered from bit 0 (Most Significant Bit) to 31
(Least Significant Bit), rather than the Book E numbering scheme of 32:63, thus register bit
numbers for some registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in parentheses.
247/19 Doc ID 16886 Rev 6

RM0045 e200z0h Core
Figure 107. e200z0 SUPERVISOR Mode Program Model SPRs

SPR General

Exception Handling/Control Registers
Save and Restore

Machine State
MSR

PVR

Processor Control Registers

SPRG0

SPRG1

SPR 272

SPR 273

SRR0

SRR1

CSRR0

CSRR1

DSRR01

DSRR11

SPR 26

SPR 27

SPR 58

SPR 59

SPR 574

SPR 575

Processor ID

PIR SPR 286

Interrupt Vector Prefix

IVPR SPR 63

Debug Registers2

Debug Control

DBCR0

DBCR1

DBCR2

 DBCR31

SPR 308

SPR 309

SPR 310

SPR 561

Instruction Address
Compare

IAC1

IAC2

IAC3

IAC4

SPR 312

SPR 313

SPR 314

SPR 315

Data Address Compare

DAC1

DAC2

SPR 316

SPR 317

1 - These e200-specific registers may not be supported by other
Power Architecture processors.

2 - Optional registers defined by the Power Architecture technology

3 - Read-only registers

Processor Version

Hardware Implementation
Dependent1

HID0

HID1

SPR 1008

SPR 1009

Cache Registers

SPR 9

General-Purpose
Registers

Count Register

CTR

SPR 8

Link Register

LR

Condition Register

CR
GPR0

GPR1

GPR31

SPR 515

Cache Configuration
(Read-only)

L1CFG0

SPR 1

XER

XER

General Registers

SPR 287

Debug Status

DBSR SPR 304

System Version1

SVR SPR 1023

ESR SPR 62

Exception Syndrome

Data Exception Address

DEAR SPR 61

Machine Check
Syndrome Register

MCSR SPR 572

BTB Control1

SPR 1013BUCSR

BTB Register

Memory Management Registers
Process ID

PID0 SPR 48

Configuration (read only)

SPR 1015MMUCFG

DVC1

DVC2

SPR 318

SPR 319
Doc ID 16886 Rev 6 248/868

Enhanced Direct Memory Access (eDMA) RM0045
15 Enhanced Direct Memory Access (eDMA)

15.1 Device-specific features
● 16 programmable channels to support independent 8, 16 or 32-bit single value or block

transfers

● Support of variable sized queues and circular queues

● Source and destination address registers independently configured to post-
incrementor remain constant

● Each transfer initiated by peripheral, CPU, periodic timer interrupt or eDMA channel
request

● Peripheral eDMA request sources possible from:

– DSPI

– 12-bit ADC

– eMIOS

● Each eDMA channel able to optionally send interrupt request to CPU on completion of
single value or block transfer

● DMA transfers possible between system memories and all accessible memory mapped
locations including peripheral and registers

● Programmable eDMA Channel Mux allows assignment of any eDMA source to any
available eDMA channel with total of up to 32 request sources

● DMA supports the following functionality:

– Scatter Gather

– Channel Linking

– Inner Loop Offset

– Arbitration

Fixed Group, fixed channel

Round Robin Group, fixed channel

Round Robin Group, Round Robin Channel

Fixed Group, Round Robin Channel

– Channel preemption

– Cancel channel transfer

● Interrupts – The eDMA has a single interrupt request for each implemented channel
and a combined eDMA Error interrupt to flag transfer errors to the system. Each
channel eDMA interrupt can be enabled or disabled and provides notification of a
completed transfer. Refer to the Interrupt Vector table of in the Interrupts chapter of the
reference manual for the allocation of these interrupts.

15.1.1 Registers unavailable on this device

The following registers are unavailable on this device:

● DMA Channel 16–63 Priority (DCHPRI16–DCHPRI63)

● Transfer Control Descriptors 16–63 (TCD16–TCD63)
249/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
15.2 Introduction
The enhanced direct memory access controller (eDMA) is a second-generation platform
block capable of performing complex data movements through 16 programmable channels,
with minimal intervention from the host processor. The hardware microarchitecture includes
a DMA engine that performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels. This implementation minimizes the overall block
size.

Figure 108 is a block diagram of the eDMA module.

Figure 108. eDMA block diagram

S
la

ve
 in

te
rf

a
ce

eDMA

eDMA Done

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA Peripheral

Bus read data

channel arbitration

Request

path

SRAM
transfer control descriptor

(TCD)

SRAM

*n = 16 channels
Doc ID 16886 Rev 6 250/868

Enhanced Direct Memory Access (eDMA) RM0045
15.2.1 Features

The eDMA module supports the following features:

● All data movement via dual-address transfers: read from source, write to destination

– Programmable source, destination addresses, transfer size, plus support for
enhanced addressing modes

● Transfer control descriptor organized to support two-deep, nested transfer operations

– An inner data transfer loop defined by a “minor” byte transfer count

– An outer data transfer loop defined by a “major” iteration count

● Channel service request via one of three methods:

– Explicit software initiation

– Initiation via a channel-to-channel linking mechanism for continuous transfers
 – Independent channel linking at end of minor loop and/or major loop

– Peripheral-paced hardware requests (one per channel)

– For all three methods, one service request per execution of the minor loop is
required

● Support for fixed-priority and round-robin channel arbitration

● Channel completion reported via optional interrupt requests

– One interrupt per channel, optionally asserted at completion of major iteration
count

– Error terminations are optionally enabled per channel, and logically summed
together to form a small number of error interrupt outputs

● Support for scatter/gather eDMA processing

● Support for complex data structures

● Support to cancel transfers via software or hardware

15.3 Memory map and register definition

15.3.1 Memory map

The eDMA memory map is shown in Table 106. The eDMA base address is 0xFFF4_4000.
The address of each register is given as an offset to the eDMA base address. Registers are
listed in address order, identified by complete name and mnemonic, and list the type of
accesses allowed.

The eDMA’s programming model is partitioned into two regions—the first region defines a
number of registers providing control functions; the second region corresponds to the local
transfer control descriptor memory.

Table 106. eDMA memory map

Base address: 0xFFF4_4000

Address offset Register Location

0x0000 EDMA_CR — eDMA control register on page 15-253

0x0004 EDMA_ESR — eDMA error status register on page 15-255

0x0008 Reserved
251/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
0x000C EDMA_ERQRL — eDMA enable request low register (channels 15–00) on page 15-257

0x0010 Reserved

0x0014 EDMA_EEIRL — eDMA enable error interrupt low register (channels 15–00) on page 15-258

0x0018 EDMA_SERQR — eDMA set enable request register on page 15-259

0x0019 EDMA_CERQR — eDMA clear enable request register on page 15-260

0x001A EDMA_SEEIR — eDMA set enable error interrupt register on page 15-260

0x001B EDMA_CEEIR — eDMA clear enable error interrupt register on page 15-261

0x001C EDMA_CIRQR — eDMA clear interrupt request register on page 15-261

0x001D EDMA_CER — eDMA clear error register on page 15-262

0x001E EDMA_SSBR — eDMA set start bit register on page 15-262

0x001F EDMA_CDSBR — eDMA clear done status bit register on page 15-263

0x0020 Reserved

0x0024 EDMA_IRQRL — eDMA interrupt request low register on page 15-263

0x0028 Reserved

0x002C EDMA_ERL — eDMA error low register on page 15-264

0x0030 Reserved

0x0034 EDMA_HRSL — eDMA hardware request status register on page 15-265

0x0038 – 0x01FC Reserved

0x0100 EDMA_CPR0 — eDMA channel 0 priority register on page 15-265

0x0101 EDMA_CPR1 — eDMA channel 1 priority register on page 15-265

0x0102 EDMA_CPR2 — eDMA channel 2 priority register on page 15-265

0x0103 EDMA_CPR3 — eDMA channel 3 priority register on page 15-265

0x0104 EDMA_CPR4 — eDMA channel 4 priority register on page 15-265

0x0105 EDMA_CPR5 — eDMA channel 5 priority register on page 15-265

0x0106 EDMA_CPR6 — eDMA channel 6 priority register on page 15-265

0x0107 EDMA_CPR7 — eDMA channel 7 priority register on page 15-265

0x0108 EDMA_CPR8 — eDMA channel 8 priority register on page 15-265

0x0109 EDMA_CPR9 — eDMA channel 9 priority register on page 15-265

0x010A EDMA_CPR10 — eDMA channel 10 priority register on page 15-265

0x010B EDMA_CPR11 — eDMA channel 11 priority register on page 15-265

0x010C EDMA_CPR12 — eDMA channel 12 priority register on page 15-265

0x010D EDMA_CPR13 — eDMA channel 13 priority register on page 15-265

0x010E EDMA_CPR14 — eDMA channel 14 priority register on page 15-265

Table 106. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location
Doc ID 16886 Rev 6 252/868

Enhanced Direct Memory Access (eDMA) RM0045

15.3.2 Register descriptions

DMA Control Register (EDMA_CR)

The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

Arbitration among the channels can be configured to use a fixed priority or a round robin. In
fixed-priority arbitration, the highest priority channel requesting service is selected to
execute. The priorities are assigned by the channel priority registers (see Section DMA
Channel n Priority (EDMA_CPRn)”). In round-robin arbitration mode, the channel priorities
are ignored and the channels are cycled through, from channel 15 down to channel 0,
without regard to priority.

See Figure 109 and Table 107 for the EDMA_CR definition.

0x010F EDMA_CPR15 — eDMA channel 15 priority register on page 15-265

0x0110 Reserved

0x1000 TCD00 — eDMA transfer control descriptor 00 on page 15-267

0x1020 TCD01 — eDMA transfer control descriptor 01 on page 15-267

0x1040 TCD02 — eDMA transfer control descriptor 02 on page 15-267

0x1060 TCD03 — eDMA transfer control descriptor 03 on page 15-267

0x1080 TCD04 — eDMA transfer control descriptor 04 on page 15-267

0x10A0 TCD05 — eDMA transfer control descriptor 05 on page 15-267

0x10C0 TCD06 — eDMA transfer control descriptor 06 on page 15-267

0x10E0 TCD07 — eDMA transfer control descriptor 07 on page 15-267

0x1100 TCD08 — eDMA transfer control descriptor 08 on page 15-267

0x1120 TCD09 — eDMA transfer control descriptor 09 on page 15-267

0x1140 TCD10 — eDMA transfer control descriptor 10 on page 15-267

0x1160 TCD11 — eDMA transfer control descriptor 11 on page 15-267

0x1180 TCD12 — eDMA transfer control descriptor 12 on page 15-267

0x11A0 TCD13 — eDMA transfer control descriptor 13 on page 15-267

0x11C0 TCD14 — eDMA transfer control descriptor 14 on page 15-267

0x11E0 TCD15 — eDMA transfer control descriptor 15 on page 15-267

0x1200 Reserved

Table 106. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset Register Location
253/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

Figure 109. DMA Control Register (EDMA_CR)

Offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CX ECX

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
GRP0PRI

E
M

LM

C
LM

H
A

LT

H
O

E

E
R

G
A

E
R

C
A

E
D

B
G

E
B

W

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 107. EDMA_CR field descriptions

Field Description

CX

Cancel Transfer

0 Normal operation.
1 Cancel the remaining data transfer. Stop the executing channel and force the minor loop

to be finished. The cancel takes effect after the last write of the current read/write
sequence. The CXFR bit clears itself after the cancel has been honored. This cancel
retires the channel normally as if the minor loop was completed.

ECX

Error Cancel Transfer

0 Normal operation.
1 Cancel the remaining data transfer in the same fashion as the CX cancel transfer. Stop

the executing channel and force the minor loop to be finished. The cancel takes effect
after the last write of the current read/write sequence. The ECX bit clears itself after the
cancel has been honored. In addition to cancelling the transfer, the ECX treats the cancel
as an error condition; thus updating the EDMA_ESR register and generating an optional
error interrupt (see Section DMA Error Status (EDMA_ESR)).

GRP0PRI
Channel Group 0 Priority

Group 0 priority level when fixed priority group arbitration is enabled.

EMLM

Enable Minor Loop Mapping

0 Minor loop mapping disabled. TCDn.word2 is defined as a 32-bit nbytes field.
1 Minor loop mapping enabled. When set,
 TCDn.word2 is redefined to include individual enable fields, an offset field and the nbytes

field. The individual enable fields allow the minor loop offset to be applied to the source
address, the destination address, or both. The nbytes field is reduced when either offset
is enabled.

CLM

Continuous Link Mode

0 A minor loop channel link made to itself will go through channel arbitration before being
activated again.

1 A minor loop channel link made to itself will not go through channel arbitration before
being activated again. Upon minor loop completion the channel will active again if that
channel has a minor loop channel link enabled and the link channel is itself. This
effectively applies the minor loop offsets and restarts the next minor loop.
Doc ID 16886 Rev 6 254/868

Enhanced Direct Memory Access (eDMA) RM0045
DMA Error Status (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors
can be caused by a configuration error (an illegal setting in the transfer control descriptor or
an illegal priority register setting in fixed-arbitration mode) or an error termination to a bus
master read or write cycle.

A configuration error is caused when the starting source or destination address, source or
destination offsets, minor loop byte count, and the transfer size represent an inconsistent
state. The addresses and offsets must be aligned on 0-modulo-transfer_size boundaries,
and the minor loop byte count must be a multiple of the source and destination transfer
sizes. All source reads and destination writes must be configured to the natural boundary of
the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority
levels are equal and any channel is activated. The ERRCHN field is undefined for this type
of error. All channel priority levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is
reported if the scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary.
If minor loop channel linking is enabled on channel completion, a configuration error is
reported when the link is attempted if the TCD.CITER.E_LINK bit is not equal to the
TCD.BITER.E_LINK bit. All configuration error conditions except scatter-gather and minor
loop link error are reported as the channel is activated and assert an error interrupt request
if enabled. When properly enabled, a scatter-gather configuration error is reported when the

HALT

Halt DMA Operations

0 Normal operation.
1 Stall the start of any new channels. Executing channels are allowed to complete. Channel

execution will resume when the HALT bit is cleared.

HOE

Halt On Error
0 Normal operation.
1 Any error will cause the HALT bit to be set. Subsequently, all service requests will be

ignored until the HALT bit is cleared.

ERGA
Enable Round Robin Group Arbitration

0 Fixed priority arbitration is used for selection among the groups.
1 Round robin arbitration is used for selection among the groups.

ERCA
Enable Round Robin Channel Arbitration
0 Fixed priority arbitration is used for channel selection within each group.
1 Round robin arbitration is used for channel selection within each group.

EDBG

Enable Debug

0 The assertion of the device debug mode is ignored.
1 The assertion of the device debug mode causes the eDMA to stall the start of a new

channel. Executing channels are allowed to complete. Channel execution will resume
when either the device comes out of debug mode or the EDBG bit is cleared.

EBW
0 The bufferable write signal (hprot[2]) is not asserted during AMBA AHB writes.
1 The bufferable write signal (hprot[2]) is asserted on all AMBA AHB writes except for the

last write sequence.

Table 107. EDMA_CR field descriptions (continued)

Field Description
255/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
scatter-gather operation begins at major loop completion. A minor loop channel link
configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately
stopped and the appropriate bus error flag is set. In this case, the state of the channel’s
transfer control descriptor is updated by the DMA engine with the current source address,
destination address, and minor loop byte count at the point of the fault. If a bus error occurs
on the last read prior to beginning the write sequence, the write will execute using the data
captured during the bus error. If a bus error occurs on the last write prior to switching to the
next read sequence, the read sequence will execute before the channel is terminated due to
the destination bus error.

The occurrence of any type of error causes the DMA engine to stop the active channel and
the appropriate channel bit in the eDMA error register to be asserted. At the same time, the
details of the error condition are loaded into the EDMA_ESR. The major loop complete
indicators, setting the transfer control descriptor DONE flag and the possible assertion of an
interrupt request, are not affected when an error is detected. After the error status has been
updated, the DMA engine continues to operate by servicing the next appropriate channel. A
channel that experiences an error condition is not automatically disabled. If a channel is
terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Figure 110. DMA Error Status (EDMA_ESR) Register

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R VLD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 CPE ERRCHN[0:5] SAE SOE DAE DOE NCE SGE SBE DBE

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 108. EDMA_ESR field descriptions

Field Description

VLD
Logical OR of all EDMA_ERL status bits.

0 No EDMA_ERL bits are set.
1 At least one EDMA_ERL bit is set indicating a valid error exists that has not been cleared.

CPE

Channel Priority Error

0 No channel priority error.
1 The last recorded error was a configuration error in the channel priorities within a group.

All channel priorities within a group are not unique.

ERRCHN[0:5]
Error Channel Number or Cancelled Channel Number

The channel number of the last recorded error (excluding GPE and CPE errors) or last
recorded transfer that was error cancelled.
Doc ID 16886 Rev 6 256/868

Enhanced Direct Memory Access (eDMA) RM0045
DMA Enable Request (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 16 channels to enable the request signal for
each channel. EDMA_ERQRL maps to channels 15–0.

The state of any given channel enable is directly affected by writes to this register; the state
is also affected by writes to the EDMA_SERQR, and EDMA_CERQR registers. The
EDMA_CERQR and EDMA_SERQR registers are provided so the request enable for a
single channel can be modified without performing a read-modify-write sequence to the
EDMA_ERQRL register.

Both the eDMA request input signal and this enable request flag must be asserted before a
channel’s hardware service request is accepted. The state of the eDMA enable request flag
does not affect a channel service request made through software or a linked channel
request.

SAE

Source Address Error

0 No source address configuration error.
1 The last recorded error was a configuration error detected in the TCD.saddr field.

TCD.saddr is inconsistent with TCD.ssize.

SOE

Source Offset Error
0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.soff field. TCD.soff

is inconsistent with TCD.ssize.

DAE

Destination Address Error

0 No destination address configuration error.
1 The last recorded error was a configuration error detected in the TCD.daddr field.

TCD.daddr is inconsistent with TCD.dsize.

DOE

Destination Offset Error

0 No destination offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.doff field. TCD.doff

is inconsistent with TCD.dsize.

NCE

Nbytes/Citer Configuration Error
0 No nbytes/citer configuration error.
1 The last recorded error was a configuration error detected in the TCD.nbytes or TCD.citer

fields. TCD.nbytes is not a multiple of TCD.ssize and TCD.dsize, or TCD.citer is equal to
zero, or TCD.citer.e_link is not equal to TCD.biter.e_link.

SGE

Scatter/Gather Configuration Error
0 No scatter/gather configuration error.
1 The last recorded error was a configuration error detected in the TCD.dlast_sga field.

This field is checked at the beginning of a scatter/gather operation after major loop
completion if TCD.e_sg is enabled. TCD.dlast_sga is not on a 32 byte boundary.

SBE
Source Bus Error
0 No source bus error.
1 The last recorded error was a bus error on a source read.

DBE
Destination Bus Error

0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

Table 108. EDMA_ESR field descriptions (continued)

Field Description
257/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

As a given channel completes the processing of its major iteration count, there is a flag in
the transfer control descriptor that may affect the ending state of the EDMA_ERQRL bit for
that channel. If the TCD.d_req bit is set, then the corresponding EDMA_ERQRL bit is
cleared, disabling the eDMA request; else if the d_req bit is cleared, the state of the
EDMA_ERQRL bit is unaffected.

DMA Enable Error Interrupt (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 16 channels to enable the error interrupt signal
for each channel. EDMA_EEIRL maps to channels 15–0.

The state of any given channel’s error interrupt enable is directly affected by writes to these
registers; it is also affected by writes to the EDMA_SEEIR and EDMA_CEEIR registers. The
EDMA_SEEIR and EDMA_CEEIR registers are provided so that the error interrupt enable
for a single channel can be modified without the performing a read-modify-write sequence to
the EDMA_EEIRL register.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before
an error interrupt request for a given channel is asserted. See Figure 112 and Table 110 for
the EDMA_EEIRL definition.

Figure 111. DMA Enable Request (EDMA_ERQRL) Registers

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

Q
15

E
R

Q
14

E
R

Q
13

E
R

Q
12

E
R

Q
11

E
R

Q
10

E
R

Q
09

E
R

Q
08

E
R

Q
07

E
R

Q
06

E
R

Q
05

E
R

Q
04

E
R

Q
03

E
R

Q
02

E
R

Q
01

E
R

Q
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 109. EDMA_ERQRL field descriptions

Field Description

ERQn
Enable eDMA Request n

0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.
Doc ID 16886 Rev 6 258/868

Enhanced Direct Memory Access (eDMA) RM0045

DMA Set Enable Request (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the
EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a
register write causes the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1
(SERQ[0]) provides a global set function, forcing the entire contents of EDMA_ERQRL to be
asserted. Reads of this register return all zeroes.

Figure 112. DMA Enable Error Interrupt (EDMA_EEIRL) Register

Offset: 0x0014 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
E

I1
5

E
E

I1
4

E
E

I1
3

E
E

I1
2

E
E

I1
1

E
E

I1
0

E
E

I0
9

E
E

I0
8

E
E

I0
7

E
E

I0
6

E
E

I0
5

E
E

I0
4

E
E

I0
3

E
E

I0
2

E
E

I0
1

E
E

I0
0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 110. EDMA_EEIRL field descriptions

Field Description

EEIn
Enable Error Interrupt n

0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

Figure 113. DMA Set Enable Request (EDMA_SERQR) Register

Offset: 0x0018 Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SERQ

RESET: 0 0 0 0 0 0 0 0

Table 111. EDMA_SERQR field descriptions

Field Description

SERQ
Set Enable Request
0- Set the corresponding bit in EDMA_ERQRL

64-127 Set all bits in EDMA_ERQRL
259/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
DMA Clear Enable Request (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in
the EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a
register write causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1
(CERQ[0]) provides a global clear function, forcing the entire contents of the EDMA_ERQRL
to be zeroed, disabling all eDMA request inputs. Reads of this register return all zeroes. See
Figure 114 and Table 112 for the EDMA_CERQR definition.

DMA Set Enable Error Interrupt (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the
EDMA_EEIRL to enable the error interrupt for a given channel. The data value on a register
write causes the corresponding bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0])
provides a global set function, forcing the entire contents of EDMA_EEIRL to be asserted.
Reads of this register return all zeroes. See Figure 115 and Table 113 for the EDMA_SEEIR
definition.

Figure 114. DMA Clear Enable Request (EDMA_CERQR) Register

Offset: 0x0019 Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERQ

RESET: 0 0 0 0 0 0 0 0

Table 112. EDMA_CERQR field descriptions

Field Description

CERQ

Clear Enable Request

0-63 Clear corresponding bit in EDMA_ERQRL
64-127 Clear all bits in EDMA_ERQRL

Figure 115. DMA Set Enable Error Interrupt (EDMA_SEEIR) Register

Offset: 0x001A Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SEEI

RESET: 0 0 0 0 0 0 0 0

Table 113. EDMA_SEEIR field descriptions

Name Description

SEEI
Set Enable Error Interrupt
0-63 Set the corresponding bit in EDMA_EEIRL

64-127 Set all bits in EDMA_EEIRL
Doc ID 16886 Rev 6 260/868

Enhanced Direct Memory Access (eDMA) RM0045
DMA Clear Enable Error Interrupt (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the
EDMA_EEIRL to disable the error interrupt for a given channel. The data value on a register
write causes the corresponding bit in the EDMA_EEIRL to be cleared. Setting bit 1
(CEEI[0]) provides a global clear function, forcing the entire contents of the EDMA_EEIRL to
be zeroed, disabling error interrupts for all channels. Reads of this register returns all
zeroes. See Figure 116 and Table 114 for the EDMA_CEEIR definition.

DMA Clear Interrupt Request (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the
EDMA_IRQRL to disable the interrupt request for a given channel. The given value on a
register write causes the corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1
(CINT[0]) provides a global clear function, forcing the entire contents of the EDMA_IRQRL
to be zeroed, disabling all eDMA interrupt requests. Reads of this register return all zeroes.
See Figure 117 and Table 115 for the EDMA_CIRQR definition.

Figure 116. DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register

Offset: 0x001B Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CEEI[0:6]

RESET: 0 0 0 0 0 0 0 0

Table 114. EDMA_CEEIR field descriptions

Field Description

CEEI

Clear Enable Error Interrupt

0-63 Clear corresponding bit in EDMA_EEIRL
64-127 Clear all bits in EDMA_EEIRL

Figure 117. DMA Clear Interrupt Request (EDMA_CIRQR) Fields

Offset: 0x001C Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CINT

RESET: 0 0 0 0 0 0 0 0

Table 115. EDMA_CIRQR field descriptions

Field Description

CINT[0:6]
Clear Interrupt Request
0-63 Clear the corresponding bit in EDMA_IRQRL

64-127 Clear all bits in EDMA_IRQRL
261/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
DMA Clear Error (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the
EDMA_ERL to disable the error condition flag for a given channel. The given value on a
register write causes the corresponding bit in the EDMA_ERL to be cleared. Setting bit 1
(CERR[0]) provides a global clear function, forcing the entire contents of the EDMA_ERL to
be zeroed, clearing all channel error indicators. Reads of this register return all zeroes. See
Figure 118 and Table 116 for the EDMA_CER definition.

DMA Set START Bit (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD
of the given channel. The data value on a register write causes the START bit in the
corresponding transfer control descriptor to be set. Setting bit 1 (SSB[0]) provides a global
set function, forcing all START bits to be set. Reads of this register return all zeroes. See
Table 124 for the TCD START bit definition.

Figure 118. DMA Clear Error (EDMA_CER) Register

Offset: 0x001D Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CERR

RESET: 0 0 0 0 0 0 0 0

Table 116. EDMA_CER field descriptions

Field Description

CERR
Clear Error Indicator
0-63 Clear corresponding bit in EDMA_ERL

64-127 Clear all bits in EDMA_ERL

Figure 119. DMA Set START Bit (EDMA_SSBR) Register

Offset: 0x001E Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W SSRT

RESET: 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 262/868

Enhanced Direct Memory Access (eDMA) RM0045

DMA Clear DONE Status (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the
TCD of the given channel. The data value on a register write causes the DONE bit in the
corresponding transfer control descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a
global clear function, forcing all DONE bits to be cleared. See Table 124 for the TCD DONE
bit definition.

DMA Interrupt Request (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 16 channels signaling the presence of an
interrupt request for each channel. EDMA_IRQRL maps to channels 15–0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a
data transfer as defined in the transfer control descriptor by setting the appropriate bit in this
register. The outputs of this register are directly routed to the interrupt controller (INTC).
During the execution of the interrupt service routine associated with any given channel,
software must clear the appropriate bit, negating the interrupt request. Typically, a write to
the EDMA_CIRQR in the interrupt service routine is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this
register; it is also affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a
1 in any bit position clears the corresponding channel’s interrupt request. A 0 in any bit
position has no affect on the corresponding channel’s current interrupt status. The
EDMA_CIRQR is provided so the interrupt request for a single channel can be cleared
without performing a read-modify-write sequence to the EDMA_IRQRL. See Figure 121 and
Table 119 for the EDMA_IRQL definition.

Table 117. EDMA_SSBR field descriptions

Field Description

SSRT

Set START Bit (Channel Service Request)

0-63 Set the corresponding channel’s TCD.start

64-127 Set all TCD.start bits

Figure 120. DMA Clear DONE Status (EDMA_CDSBR) Register

Offset: 0x001F Access: Write

0 1 2 3 4 5 6 7

R 0 0 0 0 0 0 0 0

W CDNE[0:6]

RESET: 0 0 0 0 0 0 0 0

Table 118. EDMA_CDSBR field descriptions

Field Description

CDNE[0:6]
Clear DONE Status Bit
0-63 Clear the corresponding channel’s DONE bit 64-127 Clear all TCD DONE bits
263/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

DMA Error (EDMA_ERL)

The EDMA_ERL provides a bit map for the 16 channels signaling the presence of an error
for each channel. EDMA_ERL maps to channels 15-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in
this register. The outputs of this register are enabled by the contents of the EDMA_EEIR,
then logically summed across 16 channels to form an error interrupt request, which is then
routed to the interrupt controller. During the execution of the interrupt service routine
associated with any eDMA errors, it is software’s responsibility to clear the appropriate bit,
negating the error interrupt request. Typically, a write to the EDMA_CER in the interrupt
service routine is used for this purpose. The normal eDMA channel completion indicators,
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt
request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence
of a channel error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bit is a
logical OR of all bits in this register and it provides a single bit indication of any errors. The
state of any given channel’s error indicators is affected by writes to this register; it is also
affected by writes to the EDMA_CER. On writes to EDMA_ERL, a 1 in any bit position clears
the corresponding channel’s error status. A 0 in any bit position has no affect on the
corresponding channel’s current error status. The EDMA_CER is provided so the error
indicator for a single channel can be cleared. See Figure 122 and Table 120 for the
EDMA_ERL definition.

Figure 121. DMA Interrupt Request (EDMA_IRQRL) Registers

Offset: 0x0024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
T

15

IN
T

14

IN
T

13

IN
T

12

IN
T

11

IN
T

10

IN
T

09

IN
T

08

IN
T

07

IN
T

06

IN
T

05

IN
T

04

IN
T

03

IN
T

02

IN
T

01

IN
T

00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 119. EDMA_IRQRL field descriptions

Field Description

INTn
DMA Interrupt Request n

0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.
Doc ID 16886 Rev 6 264/868

Enhanced Direct Memory Access (eDMA) RM0045

DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL register provides a bit map for the implemented channels to show the
current hardware request status for each channel. This view into the hardware request
signals may be used for debug purposes.

See Figure 123 and Figure 121 for the EDMA_HRSL definition.

Figure 122. DMA Error (EDMA_ERL) Registers

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
R

R
15

E
R

R
14

E
R

R
13

E
R

R
12

E
R

R
11

E
R

R
10

E
R

R
09

E
R

R
08

E
R

R
07

E
R

R
06

E
R

R
05

E
R

R
04

E
R

R
03

E
R

R
02

E
R

R
01

E
R

R
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 120. EDMA_ERL field descriptions

Field Description

ERRn
DMA Error n

0 An error in channel n has not occurred.
1 An error in channel n has occurred.

Figure 123. DMA Hardware Request Status (EDMA_HRSL) Register

Offset: 0x0034 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

H
R

S
15

H
R

S
14

H
R

S
13

H
R

S
12

H
R

S
11

H
R

S
10

H
R

S
09

H
R

S
08

H
R

S
07

H
R

S
06

H
R

S
05

H
R

S
04

H
R

S
03

H
R

S
02

H
R

S
01

H
R

S
00

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
265/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

DMA Channel n Priority (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the
contents of these registers define the unique priorities associated with each channel. The
channel priorities are evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next
higher priority, then 2, 3, etc. If software modifies channel priority values, then the software
must ensure that the channel priorities contain unique values, otherwise a configuration
error will be reported. The range of the priority value is limited to the values of 0 through 15.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the
EDMA_CPRn register. Channel preemption allows the executing channel’s data transfers to
be temporarily suspended in favor of starting a higher priority channel. After the preempting
channel has completed all its minor loop data transfers, the preempted channel is restored
and resumes execution. After the restored channel completes one read/write sequence, it is
again eligible for preemption. If any higher priority channel requests service, the restored
channel will be suspended and the higher priority channel will be serviced. Nested
preemption (attempting to preempt a preempting channel) is not supported. After a
preempting channel begins execution, it cannot be preempted. Preemption is available only
when fixed arbitration is selected for channel arbitration mode

A channel’s ability to preempt another channel can be disabled by setting the DPA bit in the
EDMA_CPRn register. When a channel’s preempt ability is disabled, that channel cannot
suspend a lower priority channel’s data transfer; regardless of the lower priority channel’s
ECP setting. This allows for a pool of low priority, large data moving channels to be defined.
These low priority channels can be configured to not preempt each other, thus preventing a
low priority channel from consuming the preempt slot normally available a true, high priority
channel. See Figure 124 and Table 122 for the EDMA_CPRn definition.

Table 121. EDMA_HRSL field descriptions

Field Description

HRSn

DMA Hardware Request Status n

0 A hardware service request for channel n is not present.
1 A hardware service request for channel n is present.

Note: The hardware request status reflects the state of the request as seen by the
arbitration logic. Therefore, this status is affected by the EDMA_ERQRL[n] bit.

Figure 124. DMA Channel n Priority (EDMA_CPRn) Register

Offset: 0x0100 + n Access: Read/write

0 1 2 3 4 5 6 7

R
ECP DPA

GRPPRI
CHPRI

W

RESET: 0 0 * * * * * *

* = defaults to channel number (n) after reset
Doc ID 16886 Rev 6 266/868

Enhanced Direct Memory Access (eDMA) RM0045

Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data
movement operation. The channel descriptors are stored in the local memory in sequential
order: channel 0, channel 1,... channel 15. The definitions of the TCD are presented as eight
32-bit values. Table 123 is a field list of the basic TCD structure.

Figure 125 and Table 124 define the fields of the TCDn structure.

Table 122. EDMA_CPRn field descriptions

Field Description

ECP

Enable Channel Preemption

0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority

channel.

DPA
Disable Preempt Ability

0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless of channel priority.

CHPRI[0:3]
Channel n Arbitration Priority

Channel priority when fixed-priority arbitration is enabled.

Table 123. TCDn 32-bit memory structure

eDMA offset TCDn field

0x1000+(32 x n)+0x0000 Source address (saddr)

0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)

0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)

0x1000+(32 x n)+0x000C Last source address adjustment (slast)

0x1000+(32 x n)+0x0010 Destination address (daddr)

0x1000+(32 x n)+0x0014 Current major iteration count (citer) Signed destination address offset (doff)

0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)

0x1000+(32 x n)+0x001c Beginning major iteration count (biter) Channel control/status
267/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

Note: The TCD structures for the eDMA channels shown in Figure 125 are implemented in
internal SRAM. These structures are not initialized at reset; therefore, all channel TCD
parameters must be initialized by the application code before activating that channel.

Figure 125. TCD structure

Word
Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0000 SADDR

0x0004 SMOD SSIZE DMOD DSIZE SOFF

0x0008 NBYTES(1)

1. The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to 0 or 1. See Table 107.

0x8

S
M

LO
E

(1
)

D
M

LO
E

(1
)

MLOFF or NBYTES (1) NBYTES(1)

0x000C SLAST

0x0010 DADDR

0x0014

C
IT

E
R

.E
_

LI
N

K

CITER or
CITER.LINKCH

CITER DOFF

0x0018 DLAST_SGA

0x001C

B
IT

E
R

.E
_

LI
N

K

BITER or
BITER.LINKCH

BITER BWC MAJOR LINKCH

D
O

N
E

A
C

T
IV

E

M
A

JO
R

.E
_L

IN
K

E
_S

G

D
_R

E
Q

IN
T

_H
A

LF

IN
T

_M
A

J

S
TA

R
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Doc ID 16886 Rev 6 268/868

Enhanced Direct Memory Access (eDMA) RM0045

Table 124. TCDn field descriptions

Bits /
Word Offset

[n:n]
Name Description

0–31 /

0x0 [0:31]

SADDR

[0:31]
Source address. Memory address pointing to the source data.
Word 0x0, bits 0–31.

32–36 /
0x4 [0:4]

SMOD

[0:4]

Source address modulo.

0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the

value after SADDR + SOFF calculation is performed or the original
register value. The setting of this field provides the ability to easily
implement a circular data queue. For data queues requiring power-of-
2 size bytes, the queue should start at a 0-modulo-size address and
the SMOD field should be set to the appropriate value for the queue,
freezing the desired number of upper address bits. The value
programmed into this field specifies the number of lower address bits
that are allowed to change. For this circular queue application, the
SOFF is typically set to the transfer size to implement post-increment
addressing with the SMOD function constraining the addresses to a
0-modulo-size range.

37–39 /
0x4 [5:7]

SSIZE
[0:2]

Source data transfer size.

000 8-bit
001 16-bit
010 32-bit
011 Reserved
100 16-byte (32-bit, 4-beat, WRAP4 burst)
101 32-byte (32-bit, 8 beat, WRAP8 burst)
110 Reserved
111 Reserved

The attempted specification of a reserved encoding causes a configuration
error.

40–44 /

0x4 [8:12]

DMOD

[0:4]
Destination address modulo. See the SMOD[0:5] definition.

45–47 /

0x4 [13:15]

DSIZE

[0:2]
Destination data transfer size. See the SSIZE[0:2] definition.

48–63 /

0x4 [16:31]

SOFF

[0:15]

Source address signed offset. Sign-extended offset applied to the current
source address to form the next-state value as each source read is
completed.

64–95 /
0x8 [0:31]

NBYTES
[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the DMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
After the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.

Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 GB transfer.
269/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
64–95 /
0x8 [0:31]

NBYTES(1)

[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.

Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 Gbyte transfer.

64
0x8 [0]

SMLOE (1)

0

Source minor loop offset enable
This flag selects whether the minor loop offset is applied to the source
address upon minor loop completion.

0 The minor loop offset is not applied to the saddr.
1 The minor loop offset is applied to the saddr.

65
0x8 [1]

DMLOE (1)

1

Destination minor loop offset enable
This flag selects whether the minor loop offset is applied to the destination
address upon minor loop completion.

0 The minor loop offset is not applied to the daddr.
1 The minor loop offset is applied to the daddr.

66–85

0x8 [2-21]

MLOFF or

NBYTES (1)

[0:19]

Inner “minor” byte transfer count or Minor loop offset
If both SMLOE and DMLOE are cleared, this field is part of the byte
transfer count.

If either SMLOE or DMLOE are set, this field represents a sign-extended
offset applied to the source or destination address to form the next-state
value after the minor loop is completed.

86–95 /

0x8 [22:31]

NBYTES (1)

Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.

Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 GByte transfer.

96–127 /

0xC [0:31]

SLAST

[0:31]

Last source address adjustment. Adjustment value added to the source
address at the completion of the outer major iteration count. This value can
be applied to “restore” the source address to the initial value, or adjust the
address to reference the next data structure.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description
Doc ID 16886 Rev 6 270/868

Enhanced Direct Memory Access (eDMA) RM0045
128–159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160 /

0x14 [0]
CITER.E_LINK

Enable channel-to-channel linking on minor loop completion. As the
channel completes the inner minor loop, this flag enables the linking to
another channel, defined by CITER.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
CITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit otherwise a
configuration error will be reported.

161–166 /
0x14 [1:6]

CITER

[0:5]
or

CITER.LINKCH

[0:5]

Current major iteration count or link channel number.

If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
– No channel-to-channel linking (or chaining) is performed after the inner

minor loop is exhausted. TCD bits [161:175] are used to form a 15-bit
CITER field.

Otherwise,
– After the minor loop is exhausted, the DMA engine initiates a channel

service request at the channel defined by CITER.LINKCH[0:5] by setting
that channel’s TCD.START bit.

167–175 /

0x14 [7:15]

CITER

[6:14]

Current major iteration count. This 9 or 15-bit count represents the current
major loop count for the channel. It is decremented each time the minor
loop is completed and updated in the transfer control descriptor memory.
After the major iteration count is exhausted, the channel performs a
number of operations (for example, final source and destination address
calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration
count (BITER) field.
Note: When the CITER field is initially loaded by software, it must be set
to the same value as that contained in the BITER field.
Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

176–191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the
current destination address to form the next-state value as each
destination write is completed.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description
271/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
192–223 /

0x18 [0:31]

DLAST_SGA

[0:31]

Last destination address adjustment or the memory address for the next
transfer control descriptor to be loaded into this channel (scatter-gather).

If scatter-gather processing for the channel is disabled (TCD.E_SG = 0)
then

– Adjustment value added to the destination address at the completion of
the outer major iteration count.

This value can be applied to restore the destination address to the initial
value, or adjust the address to reference the next data structure.

Otherwise,
– This address points to the beginning of a 0-modulo-32 byte region

containing the next transfer control descriptor to be loaded into this
channel. This channel reload is performed as the major iteration count
completes. The scatter-gather address must be 0-modulo-32 byte,
otherwise a configuration error is reported.

224 /

0x1C [0]
BITER.E_LINK

Enables channel-to-channel linking on minor loop complete. As the
channel completes the inner minor loop, this flag enables the linking to
another channel, defined by BITER.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
BITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.
Note: When the TCD is first loaded by software, this field must be set
equal to the corresponding CITER field, otherwise a configuration error will
be reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

225–230 /

0x1C [1:6]

BITER

[0:5]
or

BITER.LINKCH[0:5]

Starting major iteration count or link channel number.
If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then

– No channel-to-channel linking (or chaining) is performed after the inner
minor loop is exhausted. TCD bits [225:239] are used to form a 15-bit
BITER field.

Otherwise,

– After the minor loop is exhausted, the DMA engine initiates a channel
service request at the channel, defined by BITER.LINKCH[0:5], by
setting that channel’s TCD.START bit.

Note: When the TCD is first loaded by software, this field must be set
equal to the corresponding CITER field, otherwise a configuration error will
be reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

231–239 /
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first
loaded by software, this field must be equal to the value in the CITER field.
As the major iteration count is exhausted, the contents of this field are
reloaded into the CITER field.

Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description
Doc ID 16886 Rev 6 272/868

Enhanced Direct Memory Access (eDMA) RM0045
240–241 /
0x1C [16:17]

BWC
[0:1]

Bandwidth control. This two-bit field provides a mechanism to effectively
throttle the amount of bus bandwidth consumed by the eDMA. In general,
as the eDMA processes the inner minor loop, it continuously generates
read/write sequences until the minor count is exhausted. This field forces
the eDMA to stall after the completion of each read/write access to control
the bus request bandwidth seen by the system bus crossbar switch
(XBAR).
00 No DMA engine stalls
01 Reserved
10 DMA engine stalls for 4 cycles after each r/w
11 DMA engine stalls for 8 cycles after each r/w

242–247 /

0x1C [18:23]

MAJOR.LINKCH

[0:5]

Link channel number.
If channel-to-channel linking on major loop complete is disabled
(TCD.MAJOR.E_LINK = 0) then,
– No channel-to-channel linking (or chaining) is performed after the outer

major loop counter is exhausted.
Otherwise

– After the major loop counter is exhausted, the DMA engine initiates a
channel service request at the channel defined by MAJOR.LINKCH[0:5]
by setting that channel’s TCD.START bit.

248 /
0x1C [24]

DONE

Channel done. This flag indicates the eDMA has completed the outer
major loop. It is set by the DMA engine as the CITER count reaches zero; it
is cleared by software or hardware when the channel is activated (when
the DMA engine has begun processing the channel, not when the first data
transfer occurs).

Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /

0x1C [25]
ACTIVE

Channel active. This flag signals the channel is currently in execution. It is
set when channel service begins, and is cleared by the DMA engine as the
inner minor loop completes or if any error condition is detected.

250 /

0x1C [26]
MAJOR.E_LINK

Enable channel-to-channel linking on major loop completion. As the
channel completes the outer major loop, this flag enables the linking to
another channel, defined by MAJOR.LINKCH[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel.

NOTE: To support the dynamic linking coherency model, this field is forced
to zero when written to while the TCD.DONE bit is set.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description
273/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
15.4 Functional description
This section provides an overview of the microarchitecture and functional operation of the
eDMA block.

251 /

0x1C [27]
E_SG

Enable scatter-gather processing. As the channel completes the outer
major loop, this flag enables scatter-gather processing in the current
channel. If enabled, the DMA engine uses DLAST_SGA as a memory
pointer to a 0-modulo-32 address containing a 32-byte data structure
which is loaded as the transfer control descriptor into the local memory.

NOTE: To support the dynamic scatter-gather coherency model, this field
is forced to zero when written to while the TCD.DONE bit is set.

0 The current channel’s TCD is normal format.
1 The current channel’s TCD specifies a scatter gather format. The

DLAST_SGA field provides a memory pointer to the next TCD to be
loaded into this channel after the outer major loop completes its
execution.

252 /

0x1C [28]
D_REQ

Disable hardware request. If this flag is set, the eDMA hardware
automatically clears the corresponding EDMA_ERQRL bit when the
current major iteration count reaches zero.

0 The channel’s EDMA_ERQRL bit is not affected.
1 The channel’s EDMA_ERQRL bit is cleared when the outer major loop is

complete.

253 /

0x1C [29]
INT_HALF

Enable an interrupt when major counter is half complete. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches the
halfway point. Specifically, the comparison performed by the eDMA engine
is (CITER == (BITER >> 1)). This halfway point interrupt request is
provided to support double-buffered (aka ping-pong) schemes, or other
types of data movement where the processor needs an early indication of
the transfer’s progress. CITER = BITER = 1 with INT_HALF enabled will
generate an interrupt as it satisfies the equation (CITER == (BITER >> 1))
after a single activation.
0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254 /

0x1C [30]
INT_MAJ

Enable an interrupt when major iteration count completes. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.
1 The end-of-major loop interrupt is enabled.

255 /

0x1C [31]
START

Channel start. If this flag is set the channel is requesting service. The
eDMA hardware automatically clears this flag after the channel begins
execution.

0 The channel is not explicitly started.
1 The channel is explicitly started via a software initiated service request.

1. The fields implemented at 0x8 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 107.

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset

[n:n]
Name Description
Doc ID 16886 Rev 6 274/868

Enhanced Direct Memory Access (eDMA) RM0045
The eDMA module is partitioned into two major modules: the DMA engine and the transfer
control descriptor local memory. The DMA engine is further partitioned into four
submodules, which are detailed below.

● DMA engine

– Address path: This module implements registered versions of two channel transfer
control descriptors: channel x and channel y, and is responsible for all the master
bus address calculations. All the implemented channels provide the same
functionality. This hardware structure allows the data transfers associated with one
channel to be preempted after the completion of a read/write sequence if a higher
priority channel service request is asserted while the first channel is active. After a
channel is activated, it runs until the minor loop is completed unless preempted by
a higher priority channel. This capability provides a mechanism (optionally
enabled by EDMA_CPRn[ECP]) where a large data move operation can be
preempted to minimize the time another channel is blocked from execution.

When another channel is activated, the contents of its transfer control descriptor is
read from the local memory and loaded into the registers of the other address path
channel{x,y}. After the inner minor loop completes execution, the address path
hardware writes the new values for the TCDn.{SADDR, DADDR, CITER} back into
the local memory. If the major iteration count is exhausted, additional processing is
performed, including the final address pointer updates, reloading the TCDn.CITER
field, and a possible fetch of the next TCDn from memory as part of a scatter-
gather operation.

– Data path: This module implements the actual bus master read/write datapath. It
includes 32 bytes of register storage (matching the maximum transfer size) and
the necessary mux logic to support any required data alignment. The system read
data bus is the primary input, and the system write data bus is the primary output.

The address and data path modules directly support the two-stage pipelined
system bus. The address path module represents the 1st stage of the bus pipeline
(the address phase), while the data path module implements the second stage of
the pipeline (the data phase).

– Program model/channel arbitration: This module implements the first section of
eDMA’s programming model and also the channel arbitration logic. The
programming model registers are connected to the slave bus (not shown). The
eDMA peripheral request inputs and eDMA interrupt request outputs are also
connected to this module (via the control logic).

– Control: This module provides all the control functions for the DMA engine. For
data transfers where the source and destination sizes are equal, the DMA engine
performs a series of source read, destination write operations until the number of
bytes specified in the inner minor loop byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes)
divided by the transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)

else

transfer size = source transfer size (# of bytes)

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR,
DADDR, BWC, ACTIVE, AND START. Major loop TCD variables are DLAST,
275/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
SLAST, CITER, BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and
INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size
data are required for each reference of the larger size. For example, if the source
size references 16-bit data and the destination is 32-bit data, two reads are
performed, then one 32-bit write.

● TCD local memory

– Memory controller: This logic implements the required dual-ported controller,
handling accesses from both the DMA engine as well as references from the slave
bus. As noted earlier, in the event of simultaneous accesses, the DMA engine is
given priority and the slave transaction is stalled. The hooks to a BIST controller
for the local TCD memory are included in this module.

– Memory array: The TCD is implemented using a single-ported, synchronous
compiled RAM memory array.

15.4.1 eDMA basic data flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data
transfer can be partitioned into three segments. As shown in Figure 126, the first segment
involves the channel service request. In the diagram, this example uses the assertion of the
eDMA peripheral request signal to request service for channel n. Channel service request
via software and the TCDn.START bit follows the same basic flow as an eDMA peripheral
request. The eDMA peripheral request input signal is registered internally and then routed to
through the DMA engine, first through the control module, then into the program
model/channel arbitration module. In the next cycle, the channel arbitration is performed
using the fixed-priority or round-robin algorithm. After the arbitration is complete, the
activated channel number is sent through the address path and converted into the required
address to access the TCD local memory. Next, the TCD memory is accessed and the
required descriptor read from the local memory and loaded into the DMA engine address
path channel{x,y} registers. The TCD memory is organized 64-bits in width to minimize the
time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.
Doc ID 16886 Rev 6 276/868

Enhanced Direct Memory Access (eDMA) RM0045

Figure 126. eDMA operation, part 1

In the second part of the basic data flow as shown in Figure 127, the modules associated
with the data transfer (address path, data path, and control) sequence through the required
source reads and destination writes to perform the actual data movement. The source reads
are initiated and the fetched data is temporarily stored in the data path module until it is
gated onto the system bus during the destination write. This source read/destination write
processing continues until the inner minor byte count has been transferred. The eDMA done
handshake signal is asserted at the end of the minor byte count transfer.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA peripheral request

S
ys

te
m

 b
us

Data path Control
Address

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA interrupt request

Bus read data

channel arbitration

eDMA done handshake

path

SRAM
Transfer control descriptor

(TCD)

SRAM

*n = 16 channels
277/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

Figure 127. eDMA operation, part 2

After the inner minor byte count has been moved, the final phase of the basic data flow is
performed. In this segment, the address path logic performs the required updates to certain
fields in the channel’s TCD; for example, SADDR, DADDR, CITER. If the outer major
iteration count is exhausted, then there are additional operations performed. These include
the final address adjustments and reloading of the BITER field into the CITER. Additionally,
assertion of an optional interrupt request occurs at this time, as does a possible fetch of a
new TCD from memory using the scatter-gather address pointer included in the descriptor.
The updates to the TCD memory and the assertion of an interrupt request are shown in
Figure 128.

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA interrupt request

S
ys

te
m

 b
us

Program model/

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

channel arbitration

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Control
Address

path

eDMA done handshake

*n = 16 channels
Doc ID 16886 Rev 6 278/868

Enhanced Direct Memory Access (eDMA) RM0045

Figure 128. eDMA operation, part 3

15.5 Initialization / application information

15.5.1 eDMA initialization

A typical initialization of the eDMA has the following sequence:

1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other
than the default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.

4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL
registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware
(slave device asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the
arbitration and priority levels written into the programmer's model. The DMA engine will read

S
la

ve
 in

te
rf

ac
e

eDMA

eDMA done

S
ys

te
m

 b
us

Slave write data

Slave write address

Bus write data

Slave read data

Bus address

eDMA engine

TCD0

TCDn-1*

eDMA peripheral

Bus read data

request

SRAM
Transfer control descriptor

(TCD)

SRAM

Data path Address
path

Control

Program model/
channel arbitration

*n = 16 channels
279/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
the entire TCD, including the primary transfer control parameter shown in Table 125, for the
selected channel into its internal address path module. As the TCD is being read, the first
transfer is initiated on the system bus unless a configuration error is detected. Transfers
from the source (as defined by the source address, TCD.SADDR) to the destination (as
defined by the destination address, TCD.DADDR) continue until the specified number of
bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA
engine's local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main
TCD memory and any minor loop channel linking is performed, if enabled. If the major loop
is exhausted, further post processing is executed; for example, interrupts, major loop
channel linking, and scatter-gather operations, if enabled.

Figure 129 shows how each DMA request initiates one minor loop transfer (iteration) without
CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor
loop DMA preemption is allowed. The number of minor loops in a major loop is specified by
the beginning iteration count (biter).

Table 125. TCD primary control and status fields

TCD field name Description

START
Control bit to start channel when using a software initiated DMA service
(Automatically cleared by hardware)

ACTIVE Status bit indicating the channel is currently in execution

DONE
Status bit indicating major loop completion (cleared by software when using a
software initiated DMA service)

D_REQ
Control bit to disable DMA request at end of major loop completion when using
a hardware-initiated DMA service

BWC Control bits for throttling bandwidth control of a channel

E_SG Control bit to enable scatter-gather feature

INT_HALF Control bit to enable interrupt when major loop is half complete

INT_MAJ Control bit to enable interrupt when major loop completes
Doc ID 16886 Rev 6 280/868

Enhanced Direct Memory Access (eDMA) RM0045

Figure 129. Example of multiple loop iterations

Figure 130 lists the memory array terms and how the TCD settings interrelate.

Figure 130. Memory array terms

15.5.2 DMA programming errors

The DMA performs various tests on the transfer control descriptor to verify consistency in
the descriptor data. Most programming errors are reported on a per-channel basis with the
exception of channel-priority error, or EDMA_ESR[CPE].

For all error types other than channel-priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of
the problem channel, the error will be detected and recorded again.

DMA request

Minor loop 3

Current major loop
iteration count

(CITER)
Example memory array

•
•
•

DMA request

Minor loop 2•
•
•

DMA request

Minor loop 1•
•
•

Major loop

xADDR:
(Starting address)

xSIZE:
(Size of one data

Minor loop
(NBYTES in

minor loop, often
the same value

as xSIZE)

Offset (xOFF): Number of
bytes added to current

address after each transfer
(Often the same value

as xSIZE)

•
Minor loop

Each DMA source (S) and
destination (D) has its own:

• Address (xADDR)
• Size (xSIZE)
• Offset (xOFF)

xLAST: Number of bytes
added to current address

Peripheral queues typically
have size and offset
equal to NBYTES

•
•

after major loop
(typically used to

loop back)

transfer)

•
•
•

•
•
•

Last minor loop

• Modulo (xMOD)
• Last address adjustment
(xLAST) where x = S or D

•
•
•

281/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

If priority levels are not unique, the highest (channel) priority that has an active request is
selected, but the lowest numbered (channel) with that priority is selected by arbitration and
executed by the DMA engine. The hardware service request handshake signals, error
interrupts, and error reporting are associated with the selected channel.

15.5.3 DMA request assignments

The assignments between the DMA requests from the modules to the channels of the
eDMA are shown in Table 126. The source column is written in C language syntax. The
syntax is module_instance.register[bit].

15.5.4 DMA arbitration mode considerations

Fixed-channel crbitration

In this mode, the channel service request from the highest priority channel is selected to
execute. Preemption is available in this scenario only.

Round-robin channel arbitration

In this mode, channels are serviced starting with the highest channel number and rotating
through to the lowest channel number without regard to the assigned channel priority levels.

Table 126. DMA Request Summary for eDMA

DMA Request Channel Source Description

MA_MUX_CHCONFIG0_SOURCE 0 DMA_MUX.CHCONFIG0[SOURCE] DMA MUX channel 0 source

MA_MUX_CHCONFIG1_SOURCE 1 DMA_MUX.CHCONFIG1[SOURCE] DMA MUX channel 1 source

MA_MUX_CHCONFIG2_SOURCE 2 DMA_MUX.CHCONFIG2[SOURCE] DMA MUX channel 2 source

MA_MUX_CHCONFIG3_SOURCE 3 DMA_MUX.CHCONFIG3[SOURCE] DMA MUX channel 3 source

MA_MUX_CHCONFIG4_SOURCE 4 DMA_MUX.CHCONFIG4[SOURCE] DMA MUX channel 4 source

MA_MUX_CHCONFIG5_SOURCE 5 DMA_MUX.CHCONFIG5[SOURCE] DMA MUX channel 5 source

MA_MUX_CHCONFIG6_SOURCE 6 DMA_MUX.CHCONFIG6[SOURCE] DMA MUX channel 6 source

MA_MUX_CHCONFIG7_SOURCE 7 DMA_MUX.CHCONFIG7[SOURCE] DMA MUX channel 7 source

MA_MUX_CHCONFIG8_SOURCE 8 DMA_MUX.CHCONFIG8[SOURCE] DMA MUX channel 8 source

MA_MUX_CHCONFIG9_SOURCE 9 DMA_MUX.CHCONFIG9[SOURCE] DMA MUX channel 9 source

MA_MUX_CHCONFIG10_SOURCE 10 DMA_MUX.CHCONFIG10[SOURCE] DMA MUX channel 10 source

MA_MUX_CHCONFIG11_SOURCE 11 DMA_MUX.CHCONFIG11[SOURCE] DMA MUX channel 11 source

MA_MUX_CHCONFIG12_SOURCE 12 DMA_MUX.CHCONFIG12[SOURCE] DMA MUX channel 12 source

MA_MUX_CHCONFIG13_SOURCE 13 DMA_MUX.CHCONFIG13[SOURCE] DMA MUX channel 13 source

MA_MUX_CHCONFIG14_SOURCE 14 DMA_MUX.CHCONFIG14[SOURCE] DMA MUX channel 14 source

MA_MUX_CHCONFIG15_SOURCE 15 DMA_MUX.CHCONFIG15[SOURCE] DMA MUX channel 15 source
Doc ID 16886 Rev 6 282/868

Enhanced Direct Memory Access (eDMA) RM0045
15.5.5 DMA transfer

Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer will begin after the channel service
request is acknowledged and the channel is selected to execute. After the transfer is
complete, the TCD.DONE bit will be set and an interrupt will be generated if properly
enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The
source memory has a byte wide memory port located at 0x1000. The destination memory
has a word wide port located at 0x2000. The address offsets are programmed in increments
to match the size of the transfer; one byte for the source and four bytes for the destination.
The final source and destination addresses are adjusted to return to their beginning values.

TCD.CITER = TCD.BITER = 1

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –16

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= -16

TCD.INT_MAJ = 1

TCD.START = 1 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This would generate the following sequence of events:
283/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
1. Slave write to the TCD.START bit requests channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop  major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

8. The channel retires.

The eDMA goes idle or services the next channel.

Multiple requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware
requests. The only fields that change are the major loop iteration count and the final address
offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes
per iteration. After the channel’s hardware requests are enabled in the EDMA_ERQR,
channel service requests are initiated by the slave device (ERQR should be set after TCD).
Note that TCD.START = 0.

TCD.CITER = TCD.BITER = 2

TCD.NBYTES = 16

TCD.SADDR = 0x1000

TCD.SOFF = 1

TCD.SSIZE = 0

TCD.SLAST = –32

TCD.DADDR = 0x2000

TCD.DOFF = 4

TCD.DSIZE = 2

TCD.DLAST_SGA= –32

TCD.INT_MAJ = 1

TCD.START = 0 (Must be written last after all other fields have been initialized)

All other TCD fields = 0

This generates the following sequence of events:
Doc ID 16886 Rev 6 284/868

Enhanced Direct Memory Access (eDMA) RM0045
1. First hardware (eDMA peripheral request) request for channel service.

2. The channel is selected by arbitration for servicing.

3. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

4. eDMA engine reads: channel TCD data from local memory to internal register file.

5. The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)

b) write_word(0x2000)  first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)

d) write_word(0x2004)  second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)

f) write_word(0x2008)  third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)

h) write_word(0x200c)  last iteration of the minor loop

6. eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.

7. eDMA engine writes: TCD.ACTIVE = 0.

8. The channel retires  one iteration of the major loop.

The eDMA goes idle or services the next channel.

9. Second hardware (eDMA peripheral request) requests channel service.

10. The channel is selected by arbitration for servicing.

11. eDMA engine writes: TCD.DONE = 0, TCD.START = 0, TCD.ACTIVE = 1.

12. eDMA engine reads: channel TCD data from local memory to internal register file.

13. The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)

b) write_word(0x2010)  first iteration of the minor loop

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)

d) write_word(0x2014)  second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)

f) write_word(0x2018)  third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)

h) write_word(0x201c)  last iteration of the minor loop  major loop complete

14. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2
(TCD.BITER).

15. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.

16. The channel retires  major loop complete.

The eDMA goes idle or services the next channel.

Modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in
which the size of the queue is a power of two. MOD is a 5-bit bitfield for both the source and
destination in the TCD and specifies which lower address bits are allowed to increment from
their original value after the address + offset calculation. All upper address bits remain the
same as in the original value. A setting of 0 for this field disables the modulo feature.
285/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
Table 127 shows how the transfer addresses are specified based on the setting of the MOD
field. Here a circular buffer is created where the address wraps to the original value while
the 28 upper address bits (0x1234567x) retain their original value. In this example the
source address is set to 0x12345670, the offset is set to 4 bytes and the mod field is set to
4, allowing for a 24 byte (16-byte) size queue.

15.5.6 TCD status

Minor loop complete

There are two methods to test for minor loop completion when using software initiated
service requests. The first method is to read the TCD.CITER field and test for a change.
Another method may be extracted from the sequence below. The second method is to test
the TCD.START bit AND the TCD.ACTIVE bit. The minor loop complete condition is
indicated by both bits reading zero after the TCD.START was written to a 1. Polling the
TCD.ACTIVE bit may be inconclusive because the active status may be missed if the
channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START = 1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via
software).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor
loop and is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major
loop and is idle).

The best method to test for minor loop completion when using hardware initiated service
requests is to read the TCD.CITER field and test for a change. The hardware request and
acknowledge handshakes signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START = 0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor
loop and is idle), or

4. TCD.START = 0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major
loop and is idle).

Table 127. Modulo Feature Example

Transfer
Number

Address

1 0x12345670

2 0x12345674

3 0x12345678

4 0x1234567C

5 0x12345670

6 0x12345674
Doc ID 16886 Rev 6 286/868

Enhanced Direct Memory Access (eDMA) RM0045
For both activation types, the major loop complete status is explicitly indicated via the
TCD.DONE bit.

The TCD.START bit is cleared automatically when the channel begins execution, regardless
of how the channel was activated.

Active channel TCD reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if
read while a channel is executing. The true values of the SADDR, DADDR, and NBYTES
are the values the eDMA engine is currently using in its internal register file and not the
values in the TCD local memory for that channel. The addresses (SADDR and DADDR) and
NBYTES (decrements to zero as the transfer progresses) can give an indication of the
progress of the transfer. All other values are read back from the TCD local memory.

Preemption status

Preemption is available only when fixed arbitration is selected for channel-arbitration mode.
A preempt-able situation is one in which a preempt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed-channel
arbitration mode, the determination of the relative priority of the actively running and the
outstanding requests become undefined. Channel priorities are treated as equal (or more
exactly, constantly rotating) when round-robin arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the
preemption. The preempted channel is temporarily suspended while the preempting
channel executes one iteration of the major loop. Two TCD.ACTIVE bits set at the same time
in the overall TCD map indicates a higher priority channel is actively preempting a lower
priority channel.

15.5.7 Channel linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit
of another channel (or itself), thus initiating a service request for that channel. This operation
is automatically performed by the eDMA engine at the conclusion of the major or minor loop
when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of
the major loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop
link is requested. When enabled, the channel link is made after each iteration of the minor
loop except for the last. When the major loop is exhausted, only the major loop channel link
fields are used to determine if a channel link should be made. For example, with the initial
fields of:

TCD.CITER.E_LINK = 1

TCD.CITER.LINKCH = 0xC

TCD.CITER value = 0x4

TCD.MAJOR.E_LINK = 1

TCD.MAJOR.LINKCH = 0x7

will execute as:
287/868 Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
1. Minor loop done  set channel 12 TCD.START bit

2. Minor loop done  set channel 12 TCD.START bit

3. Minor loop done  set channel 12 TCD.START bit

4. Minor loop done, major loop done  set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a
nine bit vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a
15-bit vector to form the current iteration count. The bits associated with the
TCD.CITER.LINKCH field are concatenated onto the CITER value to increase the range of
the CITER.

Note: After configuration, the TCD.CITER.E_LINK bit and the TCD.BITER.E_LINK bit must be
equal or a configuration error will be reported. The CITER and BITER vector widths must be
equal to calculate the major loop, halfway done interrupt point.

Table 128 summarizes how a DMA channel can link to another DMA channel, i.e, use
another channel’s TCD, at the end of a loop.

15.5.8 Dynamic programming

This section provides recommended methods to change the programming model during
channel execution.

Dynamic channel linking and dynamic scatter-gather operation

Dynamic channel linking and dynamic scatter-gather operation is the process of changing
the TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read
from the TCD local memory at the end of channel execution thus allowing the user to enable
either feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency
model is needed. Consider a scenario where the user attempts to execute a dynamic
channel link by enabling the TCD.MAJOR.E_LINK bit at the same time the eDMA engine is
retiring the channel. The TCD.MAJOR.E_LINK would be set in the programmer’s model, but
it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link or
dynamic scatter-gather request:

Table 128. Channel linking parameters

Desired Link
Behavior

TCD Control Field Name Description

Link at end of
minor loop

citer.e_link
Enable channel-to-channel linking on minor loop
completion (current iteration).

citer.linkch
Link channel number when linking at end of minor loop
(current iteration).

Link at end of
major loop

major.e_link
Enable channel-to-channel linking on major loop
completion.

major.linkch
Link channel number when linking at end of major
loop.
Doc ID 16886 Rev 6 288/868

Enhanced Direct Memory Access (eDMA) RM0045
1. Set the TCD.MAJOR.E_LINK bit.

2. Read back the TCD.MAJOR.E_LINK bit

3. Test the TCD.MAJOR.E_LINK request status:

a) If the bit is set, the dynamic link attempt was successful.

b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was
already retiring.

This same coherency model is true for dynamic scatter-gather operations. For both dynamic
requests, the TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG
bits to zero on any writes to a channel’s TCD after that channel’s TCD.DONE bit is set
indicating the major loop is complete.

Note: The user must clear the TCD.DONE bit before writing the TCD.MAJOR.E_LINK or
TCD.E_SG bits. The TCD.DONE bit is cleared automatically by the eDMA engine after a
channel begins execution.

289/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)
16 eDMA Channel Multiplexer (DMA_MUX)

16.1 Introduction
The eDMA channel multiplexer (DMA_MUX) allows the routing of 16 DMA sources (slots) to
16 eDMA channels. This is illustrated in Figure 131.

Figure 131. DMA_MUX block diagram

Source #1

Source #2

Source #3

Source #63

eDMA Channel #1

eDMA Channel #15

eDMA Channel #0
DMA_MUX

Trigger #1

Trigger #2

Always enabled #2

Always enabled #1
Doc ID 16886 Rev 6 290/868

eDMA Channel Multiplexer (DMA_MUX) RM0045
16.2 Features
The DMA_MUX has these major features:

● 16 independently selectable eDMA channel routers

– 2 channels with normal or periodic triggering capability

– 12 channels with normal capability

● Capability to assign each channel router to 1 of 16 possible peripheral DMA sources, 2
always enabled sources or 1 always disabled source

● 3 modes of operation:

– Disabled

– Normal

– Periodic Trigger

16.3 Modes of operation
The following operation modes are available:

● Disabled Mode — In this mode, the eDMA channel is disabled. Since disabling and
enabling of eDMA channels is done primarily via the eDMA configuration registers, this
mode is used mainly as the reset state for a eDMA channel in the DMA_MUX. It may
also be used to temporarily suspend a eDMA channel while reconfiguration of the
system takes place (for example, changing the period of a eDMA trigger).

● Normal Mode — In this mode, a eDMA source (such as DSPI_0_TX or DSPI_0_RX
example) is routed directly to the specified eDMA channel. The operation of the
DMA_MUX in this mode is completely transparent to the system.

● Periodic Trigger Mode — In this mode, a eDMA source may only request a eDMA
transfer (such as when a transmit buffer becomes empty or a receive buffer becomes
full) periodically. The period is configured in the registers of the Periodic Interrupt Timer
(PIT).

eDMA channels 0–3 may be used in all three modes, but channels 4–15 may only be
configured to disabled or normal mode.

16.4 External signal description
The DMA_MUX has no external pins.

16.5 Memory map and register definition
Table 129 shows the memory map for the DMA_MUX. Note that all addresses are offsets;
the absolute address may be computed by adding the specified offset to the base address
of the DMA_MUX.
291/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)

All registers are accessible via 8, 16 or 32-bit accesses. However, 16-bit accesses must be
aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As
an example, CHCONFIG0 through CHCONFIG3 are accessible by a 32-bit READ/WRITE to
address ‘Base + 0x00’, but performing a 32-bit access to address ‘Base + 0x01’ is illegal.

16.5.1 Channel configuration registers (CHCONFIGn)

Each of the total of 16 eDMA channels can be independently enabled/disabled and
associated with 1 of the 28 peripheral eDMA sources + 1 of the 4 always enabled eDMA
sources in the system.

Table 129. DMA_MUX memory map

Base address: 0xFFFD_C000

Address offset Register Location

0x0 Channel #0 Configuration (CHCONFIG0) on page 16-292

0x1 Channel #1 Configuration (CHCONFIG1) on page 16-292

...

0xF Channel #15 Configuration (CHCONFIG15) on page 16-292

Figure 132. Channel Configuration Registers (CHCONFIGn)

Offset: 0x0 + n (16 registers) Access: User read/write

0 1 2 3 4 5 6 7

R
ENBL TRIG SOURCE

W

Reset 0 0 0 0 0 0 0 0

Table 130. CHCONFIGn field descriptions

Field Description

ENBL

eDMA Channel Enable

ENBL enables the eDMA channel.
0 eDMA channel is disabled. This mode is primarily used during configuration of the DMA_MUX. The

eDMA has separate channel enables/disables, which should be used to disable or reconfigure a
eDMA channel.

1 eDMA channel is enabled

TRIG

eDMA Channel Trigger Enable (for triggered channels only)

TRIG enables the periodic trigger capability for the eDMA channel.
0 Periodic triggering is disabled. If periodic triggering is disabled, and the ENBL bit is set, the

DMA_MUX will simply route the specified source to the eDMA channel.
1 Triggering is enabled

SOURCE
eDMA Channel Source (slot)

SOURCE specifies which eDMA source, if any, is routed to a particular eDMA channel. Please see
Table 132 for DMA_MUX inputs mapping.
Doc ID 16886 Rev 6 292/868

eDMA Channel Multiplexer (DMA_MUX) RM0045

Note: Setting multiple CHCONFIG registers with the same Source value results in unpredictable
behavior.

Note: Before changing the trigger or source settings a eDMA channel must be disabled via the
CHCONFIGn[ENBL] bit.

16.6 DMA_MUX inputs

16.6.1 DMA_MUX peripheral sources

Table 131. Channel and trigger enabling

ENBL TRIG Function Mode

0 X eDMA channel is disabled Disabled Mode

1 0
eDMA channel is enabled with no triggering
(transparent)

Normal Mode

1 1 eDMA channel is enabled with triggering Periodic Trigger Mode

Table 132. eDMA channel mapping

DMA_MUX channel Module eDMA requesting module DMA_MUX input #

0 — Always disabled —

1 DSPI 0 DSPI_0 TX DMA_MUX Source #1

2 DSPI 0 DSPI_0 RX DMA_MUX Source #2

3 DSPI 1 DSPI_1 TX DMA_MUX Source #3

4 DSPI 1 DSPI_1 RX DMA_MUX Source #4

5 — — DMA_MUX Source #5

6 — — DMA_MUX Source #6

7 — — DMA_MUX Source #7

8 — — DMA_MUX Source #8

9 — — DMA_MUX Source #9

10 — — DMA_MUX Source #10

11 — — DMA_MUX Source #11

12 — — DMA_MUX Source #12

13 — — DMA_MUX Source #13

14 — — DMA_MUX Source #14

15 — — DMA_MUX Source #15

16 — — DMA_MUX Source #16

17 eMIOS 0 EMIOS0_CH0 DMA_MUX Source #17

18 eMIOS 0 EMIOS0_CH1 DMA_MUX Source #18

19 eMIOS 0 EMIOS0_CH9 DMA_MUX Source #19
293/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)
20 eMIOS 0 EMIOS0_CH18 DMA_MUX Source #20

21 eMIOS 0 EMIOS0_CH25 DMA_MUX Source #21

22 eMIOS 0 EMIOS0_CH26 DMA_MUX Source #22

23 — — DMA_MUX Source #23

24 — — DMA_MUX Source #24

25 — — DMA_MUX Source #25

26 — — DMA_MUX Source #26

27 — — DMA_MUX Source #27

28 — — DMA_MUX Source #28

29 — — DMA_MUX Source #29

30 ADC 1 ADC1_EOC DMA_MUX Source #30

31 — — DMA_MUX Source #31

32 — — DMA_MUX Source #32

33 LINFLEX 0 LINFLEX0_RX DMA_MUX Source #33

34 LINFLEX 0 LINFLEX0_TX DMA_MUX Source #34

35 — — DMA_MUX Source #35

36 — — DMA_MUX Source #36

37 — — DMA_MUX Source #37

38 — — DMA_MUX Source #38

39 — — DMA_MUX Source #39

40 — — DMA_MUX Source #40

41 — — DMA_MUX Source #41

42 — — DMA_MUX Source #42

43 — — DMA_MUX Source #43

44 — — DMA_MUX Source #44

45 — — DMA_MUX Source #45

46 — — DMA_MUX Source #46

47 — — DMA_MUX Source #47

48 — — DMA_MUX Source #48

49 — — DMA_MUX Source #49

50 — — DMA_MUX Source #50

51 — — DMA_MUX Source #51

52 — — DMA_MUX Source #52

53 — — DMA_MUX Source #53

54 — — DMA_MUX Source #54

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
Doc ID 16886 Rev 6 294/868

eDMA Channel Multiplexer (DMA_MUX) RM0045
16.6.2 DMA_MUX periodic trigger inputs

16.7 Functional description
The primary purpose of the DMA_MUX is to provide flexibility in the system’s use of the
available eDMA channels. As such, configuration of the DMA_MUX is intended to be a static
procedure done during execution of the system boot code. However, if the procedure
outlined in Section 16.8.2, Enabling and configuring sources, is followed, the configuration
of the DMA_MUX may be changed during the normal operation of the system.

Functionally, the DMA_MUX channels may be divided into two classes: Channels, which
implement the normal routing functionality plus periodic triggering capability, and channels,
which implement only the normal routing functionality.

16.7.1 eDMA channels with periodic triggering capability

Besides the normal routing functionality, the first four channels of the DMA_MUX provide a
special periodic triggering capability that can be used to provide an automatic mechanism to
transmit bytes, frames or packets at fixed intervals without the need for processor
intervention. The trigger is generated by the periodic interrupt timer (PIT); as such, the
configuration of the periodic triggering interval is done via configuration registers in the PIT.
Please refer to the periodic interrupt timer chapter of the reference manual for more
information on this topic.

Note: Because of the dynamic nature of the system (such as eDMA channel priorities, bus
arbitration, or interrupt service routine lengths), the number of clock cycles between a
trigger and the actual eDMA transfer cannot be guaranteed.

55 — — DMA_MUX Source #55

56 — — DMA_MUX Source #56

57 — — DMA_MUX Source #57

58 — — DMA_MUX Source #58

59 — — DMA_MUX Source #59

60 PIT_0 ALWAYS ENABLED DMA_MUX Source #60

61 PIT_1 ALWAYS ENABLED DMA_MUX Source #61

62 — — DMA_MUX Source #62

63 — — DMA_MUX Source #63

Table 133. DMA_MUX periodic trigger inputs

DMA_MUX trigger input PIT channel

Trigger #1 PIT0

Trigger #2 PIT1

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
295/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)

Figure 133. DMA_MUX channel 0–3 block diagram

The eDMA channel triggering capability allows the system to “schedule” regular eDMA
transfers, usually on the transmit side of certain peripherals, without the intervention of the
processor. This trigger works by gating the request from the peripheral to the eDMA until a
trigger event has been seen. This is illustrated in Figure 134.

Figure 134. DMA_MUX channel triggering: Normal operation

Once the eDMA request has been serviced, the peripheral will negate its request, effectively
resetting the gating mechanism until the peripheral re-asserts its request AND the next
trigger event is seen. This means that if a trigger is seen, but the peripheral is not requesting
a transfer, that triggered will be ignored. This situation is illustrated in Figure 135.

DMA Channel #0

Trigger #4

Trigger #2

Trigger #1

Source #1

Source #2

Source #3

Source #28

Always enabled

Always enabled

DMA Channel #3

Periph Request

Trigger

DMA Request
Doc ID 16886 Rev 6 296/868

eDMA Channel Multiplexer (DMA_MUX) RM0045

Figure 135. DMA_MUX channel triggering: Ignored trigger

This triggering capability may be used with any peripheral that supports eDMA transfers,
and is most useful for periodically polling external devices on a particular bus.

As an example, the transmit side of a DSPI is assigned to a eDMA channel with a trigger, as
described above. Once set up, the SPI will request eDMA transfers (presumably from
memory) as long as its transmit buffer is empty. By using a trigger on this channel, the DSPI
transfers can be automatically performed every 5µs (as an example). On the receive side of
the SPI, the SPI and eDMA can be configured to transfer receive data into memory,
effectively implementing a method to periodically read data from external devices and
transfer the results into memory without processor intervention.

A more detailed description of the capability of each trigger (such as resolution, or range of
values) may be found in the periodic interrupt timer chapter of the reference manual.

16.7.2 eDMA channels with no triggering capability

Channels 4–15 of the DMA_MUX provide the normal routing functionality as described in
Section 16.3, Modes of operation.

Periph Request

Trigger

DMA Request
297/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)

Figure 136. DMA_MUX channel 4–15 block diagram

16.8 Initialization/Application information

16.8.1 Reset

The reset state of each individual bit is shown in Section 16.5, Memory map and register
definition. In summary, after reset, all channels are disabled and must be explicitly enabled
before use.

16.8.2 Enabling and configuring sources

Enabling a source with periodic triggering

The following describes how to enable a source with periodic triggering:

Source #1

Source #2

Source #3

Source #28

DMA Channel #4

DMA Channel #15
Always enabled

Always enabled
Doc ID 16886 Rev 6 298/868

eDMA Channel Multiplexer (DMA_MUX) RM0045
1. Determine with which eDMA channel the source will be associated. Remember that
only the first four eDMA channels have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel
may be enabled at this point.

4. In the PIT, configure the corresponding timer.

5. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 1 Configure source #3 Transmit for use with eDMA Channel 2, with periodic
triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Configure Timer 4 in the Periodic Interrupt Timer (PIT) for the desired trigger interval

4. Write 0xC3 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #4 above:
In File registers.h:

#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *)

(DMAMUX_BASE_ADDR+0x0002);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0xC3;

Enabling a source without periodic triggering

The following describes how to enable a source without periodic triggering:

1. Determine with which eDMA channel the source will be associated. Remember that
only eDMA channels 0–3 have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel
may be enabled at this point.

4. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL is set and the TRIG bit is cleared.

Example 2 Configure source #5 Transmit for use with eDMA Channel 2, without
periodic triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Write 0x85 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #3 above:
In File registers.h:

#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
299/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *)
(DMAMUX_BASE_ADDR+0x0002);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG2 = 0x00;
*CHCONFIG2 = 0x85;

Disabling a source

A particular eDMA source may be disabled by not writing the corresponding source value
into any of the CHCONFIG registers. Additionally, some module specific configuration may
be necessary. Please refer to the appropriate section for more details.

Switching the source of a eDMA channel

The following describes how to switch the source of a eDMA channel:

1. Disable the eDMA channel in the eDMA and reconfigure the channel for the new
source.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 3 Switch eDMA Channel 8 from source #5 transmit to source #7 transmit

1. In the eDMA configuration registers, disable eDMA channel 8 and re-configure it to
handle the transfers to peripheral slot 7. This example assumes channel 8 doesn’t have
triggering capability.

2. Write 0x00 to CHCONFIG8 (Base Address + 0x08)

3. Write 0x87 to CHCONFIG8 (Base Address + 0x08).

The following code example illustrates steps #2 and #3 above:
In File registers.h:

#define DMAMUX_BASE_ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *)

(DMAMUX_BASE_ADDR+0x0008);

In File main.c:
#include "registers.h"

:
:

*CHCONFIG8 = 0x00;
*CHCONFIG8 = 0x87;
Doc ID 16886 Rev 6 300/868

Interrupt Controller (INTC) RM0045
17 Interrupt Controller (INTC)

17.1 Introduction
The INTC provides priority-based preemptive scheduling of interrupt service requests
(ISRs). This scheduling scheme is suitable for statically scheduled hard real-time systems.
The INTC supports 95 interrupt requests. It is targeted to work with a Power Architecture
technology processor and automotive powertrain applications where the ISRs nest to
multiple levels, but it also can be used with other processors and applications.

For high priority interrupt requests in these target applications, the time from the assertion of
the peripheral’s interrupt request from the peripheral to when the processor is performing
useful work to service the interrupt request needs to be minimized. The INTC supports this
goal by providing a unique vector for each interrupt request source. It also provides 16
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. Since
each individual application will have different priorities for each source of interrupt request,
the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software
configurable interrupt requests. These same software configurable interrupt requests also
can be used to break the work involved in servicing an interrupt request into a high priority
portion and a low priority portion. The high priority portion is initiated by a peripheral
interrupt request, but then the ISR can assert a software configurable interrupt request to
finish the servicing in a lower priority ISR. Therefore these software configurable interrupt
requests can be used instead of the peripheral ISR scheduling a task through the RTOS.

17.2 Features
● Supports 87 peripheral and 8 software-configurable interrupt request sources

● Unique 9-bit vector per interrupt source

● Each interrupt source can be programmed to one of 16 priorities

● Preemption

– Preemptive prioritized interrupt requests to processor

– ISR at a higher priority preempts ISRs or tasks at lower priorities

– Automatic pushing or popping of preempted priority to or from a LIFO

– Ability to modify the ISR or task priority; modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.

● Low latency – 3 clocks from receipt of interrupt request from peripheral to interrupt
request to processor
301/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)

17.3 Block diagram
Figure 137 provides a block diagram of the INTC.

Table 134. Interrupt sources available

Interrupt sources (95) Number available

Software 8

ECSM 1

eDMA 17

Software Watchdog (SWT) 1

STM 4

Flash/SRAM ECC (SEC-DED) 2

Real Time Counter (RTC/API) 2

System Integration Unit Lite (SIUL) 3

WKPU 4

MC_ME 4

MC_RGM 1

FXOSC 1

PIT 4

ADC_1 2

FlexCAN_0 7

LINFlex_0 3

LINFlex_1 3

LINFlex_2 3

DSPI_0 5

DSPI_1 5

Enhanced Modular I/O Subsystem 0 (eMIOS_0) 14
Doc ID 16886 Rev 6 302/868

Interrupt Controller (INTC) RM0045

Figure 137. INTC block diagram

17.4 Modes of operation

17.4.1 Normal mode

In normal mode, the INTC has two handshaking modes with the processor: software vector
mode and hardware vector mode.

Software vector mode

In software vector mode, software, that is the interrupt exception handler, must read a
register in the INTC to obtain the vector associated with the interrupt request to the
processor. The INTC will use software vector mode for a given processor when its
associated HVEN bit in INTC_MCR is negated. The hardware vector enable signal to
processor 0 or processor 1 is driven as negated when its associated HVEN bit is negated.
The vector is read from INC_IACKR. Reading the INTC_IACKR negates the interrupt
request to the associated processor. Even if a higher priority interrupt request arrived while
waiting for this interrupt acknowledge, the interrupt request to the processor will negate for
at least one clock. The reading also pushes the PRI value in INTC_CPR onto the associated
LIFO and updates PRI in the associated INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt
acknowledge signal from the associated processor is ignored.

Hardware
Vector Enable

Software
Set/Clear
Interrupt
Registers

Flag Bits

Priority
Select

Registers

Peripheral
Interrupt
Requests

Module
Configuration

Register

Highest Priority4

Priority
Comparator

Slave
Interface

for Reads
& Writes

1Push/Update/Acknowledge

1

1

1Update Interrupt Vector

1

Interrupt
Request to
Processor

Memory Mapped Registers

Non-Memory Mapped Logic

End of
Interrupt
Register

Request
Selector

Priority
Arbitrator

Highest
Priority

Interrupt
Requests

n1 n1 Vector
Encoder

Interrupt
Vector

9
Processor 0

Interrupt
Acknowledge

Register

Interrupt
Vector

9n1

8

n1 x
4-bits

New
Priority

4

Current
Priority

4

Processor 0
Current
Priority

Register

Processor 0
Priority
LIFO

Pop

1

Lowest
Vector

Interrupt
Request

1
Vector Table

Entry Size

Pushed
Priority

4

Popped
Priority

4

Interrupt Acknowledge

Peripheral
Bus
303/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
Hardware vector mode

In hardware vector mode, the hardware is the interrupt vector signal from the INTC in
conjunction with a processor with the capability use that vector. In hardware vector mode,
this hardware causes the first instruction to be executed in handling the interrupt request to
the processor to be specific to that vector. Therefore the interrupt exception handler is
specific to a peripheral or software configurable interrupt request rather than being common
to all of them. The INTC uses hardware vector mode for a given processor when the
associated HVEN bit in the INTC_MCR is asserted. The hardware vector enable signal to
the associated processor is driven as asserted. When the interrupt request to the
associated processor asserts, the interrupt vector signal is updated. The value of that
interrupt vector is the unique vector associated with the preempting peripheral or software
configurable interrupt request. The vector value matches the value of the INTVEC field in
the INTC_IACKR field in the INTC_IACKR, depending on which processor was assigned to
handle a given interrupt source.

The processor negates the interrupt request to the processor driven by the INTC by
asserting the interrupt acknowledge signal for one clock. Even if a higher priority interrupt
request arrived while waiting for the interrupt acknowledge, the interrupt request to the
processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the
associated PRI value in the associated INTC_CPR register onto the associated LIFO and
updates the associated PRI in the associated INTC_CPR register with the new priority. This
pushing of the PRI value onto the associated LIFO and updating PRI in the associated
INTC_CPR does not occur when the associated interrupt acknowledge signal asserts and
INTC_SSCIR0_3–INTC_SSCIR4_7 is written at a time such that the PRI value in the
associated INTC_CPR register would need to be pushed and the previously last pushed
PRI value would need to be popped simultaneously. In this case, PRI in the associated
INTC_CPR is updated with the new priority, and the associated LIFO is neither pushed or
popped.

Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

Stop mode

The INTC supports STOP mode. The INTC can have its clock input disabled at any time by
the clock driver on the device. While its clocks are disabled, the INTC registers are not
accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an
interrupt request to the processor. Since the INTC is not clocked in STOP mode, peripheral
interrupt requests can not be used as a wakeup source, unless the device supports that
interrupt request as a wakeup source.

17.5 Memory map and register description

17.5.1 Module memory map

Table 135 shows the INTC memory map.
Doc ID 16886 Rev 6 304/868

Interrupt Controller (INTC) RM0045

17.5.2 Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any
combination of accessing the four bytes of a register with a single access is supported,
provided that the access does not cross a register boundary. These supported accesses
include types and sizes of eight bits, aligned 16 bits, misaligned 16 bits to the middle two
bytes, and aligned 32 bits.

Although INTC_SSCIn and INTC_PSRn are 8 bits wide, they can be accessed with a single
16-bit or 32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless
of the size of the read. In either software or hardware vector mode, the size of a write to
either INTC_SSCIR0_3–INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of
the write.

INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

Table 135. INTC memory map

Base address: 0xFFF4_8000

Address offset Register Location

0x0000 INTC Module Configuration Register (INTC_MCR) on page 17-305

0x0004 Reserved

0x0008 INTC Current Priority Register for Processor (INTC_CPR) on page 17-306

0x000C Reserved

0x0010 INTC Interrupt Acknowledge Register (INTC_IACKR) on page 17-308

0x0014 Reserved

0x0018 INTC End-of-Interrupt Register (INTC_EOIR) on page 17-309

0x001C Reserved

0x0020–0x0027
INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3–
INTC_SSCIR4_7)

on page 17-309

0x0028–0x003C Reserved

0x0040–0x00D0
INTC Priority Select Registers (INTC_PSR0_3–
INTC_PSR152_154)(1)

1. The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in Figure 139.

on page 17-311
305/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)

INTC Current Priority Register for Processor (INTC_CPR)

Figure 138. INTC Module Configuration Register (INTC_MCR)

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

V
T

E
S 0 0 0 0

H
V

E
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 136. INTC_MCR field descriptions

Field Description

VTES

Vector table entry size.
Controls the number of ‘0’s to the right of INTVEC in Section INTC Interrupt Acknowledge Register
(INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a vectortable as
in software vector mode, then the number of rightmost ‘0’s will determine the size of each vector table
entry. VTES impacts software vector mode operation but also affects INTC_IACKR[INTVEC] position
in both hardware vector mode and software vector mode.
0 4 bytes
1 8 bytes

HVEN

Hardware vector enable.

Controls whether the INTC is in hardware vector mode or software vector mode. Refer to
Section 17.4 Modes of operation, for the details of the handshaking with the processor in each mode.

0 Software vector mode
1 Hardware vector mode

Figure 139. INTC Current Priority Register (INTC_CPR)

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
PRI

W

Reset 0 1 1 1 1

Table 137. INTC_CPR field descriptions

Field Description

PRI
Priority

PRI is the priority of the currently executing ISR according to the field values defined in Table 138.
Doc ID 16886 Rev 6 306/868

Interrupt Controller (INTC) RM0045
The INTC_CPR masks any peripheral or software configurable interrupt request set at the
same or lower priority as the current value of the INTC_CPR[PRI] field from generating an
interrupt request to the processor. When the INTC interrupt acknowledge register
(INTC_IACKR) is read in software vector mode or the interrupt acknowledge signal from the
processor is asserted in hardware vector mode, the value of PRI is pushed onto the LIFO,
and PRI is updated with the priority of the preempting interrupt request. When the INTC
end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the INTC_CPR’s
PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the
PCP. Refer to Section 17.7.5 Priority ceiling protocol.

Note: A store to modify the PRI field which closely precedes or follows an access to a shared
resource can result in a non-coherent access to that resource. Refer to Section Ensuring
coherency for example code to ensure coherency.

Table 138. PRI values

PRI Meaning

1111 Priority 15—highest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority
307/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
INTC Interrupt Acknowledge Register (INTC_IACKR)

The interrupt acknowledge register provides a value which can be used to load the address
of an ISR from a vector table. The vector table can be composed of addresses of the ISRs
specific to their respective interrupt vectors.

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must
not be speculatively read while in this mode. The side effects are the same regardless of the

Figure 140. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 0

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[20:5]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[4:0]

INTVEC 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 141. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] = 1

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
VTBA[19:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
VTBA[3:0]

INTVEC 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 139. INTC_IACKR field descriptions

Field Description

VTBA
Vector Table Base Address

Can be the base address of a vector table of addresses of ISRs.

INTVEC

Interrupt Vector
It is the vector of the peripheral or software configurable interrupt request that caused the interrupt
request to the processor. When the interrupt request to the processor asserts, the INTVEC is
updated, whether the INTC is in software or hardware vector mode.
Doc ID 16886 Rev 6 308/868

Interrupt Controller (INTC) RM0045
size of the read. Reading the INTC_IACKR does not have side effects in hardware vector
mode.

INTC End-of-Interrupt Register (INTC_EOIR)

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt
request. When the INTC_EOIR is written, the priority last pushed on the LIFO is popped into
INTC_CPR. An exception to this behavior is described in Section Hardware vector mode.
The values and size of data written to the INTC_EOIR are ignored. The values and sizes
written to this register neither update the INTC_EOIR contents or affect whether the LIFO
pops. For possible future compatibility, write four bytes of all 0s to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3–
INTC_SSCIR4_7)

Figure 142. INTC End-of-Interrupt Register (INTC_EOIR)

Offset: 0x0018 Access: Write only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W See text

Reset 0

Figure 143. INTC Software Set/Clear Interrupt Register 0–3 (INTC_SSCIR[0:3])

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

0 0 0 0 0 0 0 0

C
LR

1

W SET0 SET1

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

2 0 0 0 0 0 0 0
C

LR
3

W SET2 SET3

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
309/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)

The software set/clear interrupt registers support the setting or clearing of software
configurable interrupt request. These registers contain eight independent sets of bits to set
and clear a corresponding flag bit by software. Excepting being set by software, this flag bit
behaves the same as a flag bit set within a peripheral. This flag bit generates an interrupt
request within the INTC like a peripheral interrupt request. Writing a 1 to SETx will leave
SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect. CLRx is the flag bit.
Writing a 1 to CLRx clears it. Writing a 0 to CLRx has no effect. If a 1 is written
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of
whether CLRx was asserted before the write.

Figure 144. INTC Software Set/Clear Interrupt Register 4–7 (INTC_SSCIR[4:7])

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

C
LR

4 0 0 0 0 0 0 0

C
LR

5

W SET4 SET5

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

C
LR

6 0 0 0 0 0 0 0

C
LR

7

W SET6 SET7

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 140. INTC_SSCIR[0:7] field descriptions

Field Description

SETx
Set Flag Bits
Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SETx always will be read
as a 0.

CLRx

Clear Flag Bits

CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its
corresponding SETx bit. Writing a 0 to CLRx has no effect.

0 Interrupt request not pending within INTC
1 Interrupt request pending within INTC
Doc ID 16886 Rev 6 310/868

Interrupt Controller (INTC) RM0045
INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154)

Figure 145. INTC Priority Select Register 0–3 (INTC_PSR[0:3])

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 PRI0 0 0 0 0 PRI1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 PRI2 0 0 0 0 PRI3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 146. INTC Priority Select Register 152-154 (INTC_PSR[152:154])

Offset: 0x0D8C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PRI152

0 0 0 0
PRI153

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PRI154

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 141. INTC_PSR0_3–INTC_PSR152_154 field descriptions

Field Description

PRI
Priority Select

PRIx selects the priority for interrupt requests. See Section 17.6 Functional description.

Table 142. INTC Priority Select Register address offsets

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

INTC_PSR0_3 0x0040 INTC_PSR80_83 0x0090

INTC_PSR4_7 0x0044 INTC_PSR84_87 0x0094

INTC_PSR8_11 0x0048 INTC_PSR88_91 0x0098

INTC_PSR12_15 0x004C INTC_PSR92_95 0x009C

INTC_PSR16_19 0x0050 INTC_PSR96_99 0x00A0
311/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
17.6 Functional description
The functional description involves the areas of interrupt request sources, priority
management, and handshaking with the processor.

Note: The INTC has no spurious vector support. Therefore, if an asserted peripheral or software
settable interrupt request, whose PRIn value in INTC_PSR0–INTC_PSR154 is higher than
the PRI value in INTC_CPR, negates before the interrupt request to the processor for that
peripheral or software settable interrupt request is acknowledged, the interrupt request to
the processor still can assert or will remain asserted for that peripheral or software settable
interrupt request. In this case, the interrupt vector will correspond to that peripheral or
software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral
interrupt request’s enable bit in the peripheral or, alternatively, setting its mask bit has the
same consequences as clearing its flag bit. Setting its enable bit or clearing its mask bit
while its flag bit is asserted has the same effect on the INTC as an interrupt event setting the
flag bit.

INTC_PSR20_23 0x0054 INTC_PSR100_103 0x00A4

INTC_PSR24_27 0x0058 INTC_PSR104_107 0x00A8

INTC_PSR28_31 0x005C INTC_PSR108_111 0x00AC

INTC_PSR32_35 0x0060 INTC_PSR112_115 0x00B0

INTC_PSR36_39 0x0064 INTC_PSR116_119 0x00B4

INTC_PSR40_43 0x0068 INTC_PSR120_123 0x00B8

INTC_PSR44_47 0x006C INTC_PSR124_127 0x00BC

INTC_PSR48_51 0x0070 INTC_PSR128_131 0x00C0

INTC_PSR52_55 0x0074 INTC_PSR132_135 0x00C4

INTC_PSR56_59 0x0078 INTC_PSR136_139 0x00C8

INTC_PSR60_63 0x007C INTC_PSR140_143 0x00CC

INTC_PSR64_67 0x0080 INTC_PSR144_147 0x00D0

INTC_PSR68_71 0x0084 INTC_PSR148_151 0x00D4

INTC_PSR72_75 0x0088 INTC_PSR152_154 0x00D8

INTC_PSR76_79 0x008C

Table 142. INTC Priority Select Register address offsets (continued)

INTC_PSRx_x Offset address INTC_PSRx_x Offset address

Table 143. Interrupt vector table

IRQ # Offset
Size

(bytes)
Interrupt Module

Section A (Core Section)

— 0x0000 16
Critical Input
(INTC software vector mode) / NMI

Core

— 0x0010 16 Machine check / NMI Core
Doc ID 16886 Rev 6 312/868

Interrupt Controller (INTC) RM0045
— 0x0020 16 Data Storage Core

— 0x0030 16 Instruction Storage Core

— 0x0040 16
External Input

(INTC software vector mode)
Core

— 0x0050 16 Alignment Core

— 0x0060 16 Program Core

— 0x0070 16 Reserved Core

— 0x0080 16 System call Core

— 0x0090 96 Unused Core

— 0x00F0 16 Debug Core

— 0x0100 1792 Unused Core

Section B (On-Platform Peripherals)

0 0x0800 4 Software configurable flag 0 Software

1 0x0804 4 Software configurable flag 1 Software

2 0x0808 4 Software configurable flag 2 Software

3 0x080C 4 Software configurable flag 3 Software

4 0x0810 4 Software configurable flag 4 Software

5 0x0814 4 Software configurable flag 5 Software

6 0x0818 4 Software configurable flag 6 Software

7 0x081C 4 Software configurable flag 7 Software

8 0x0820 4 Reserved

9 0x0824 4

Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |

Platform Flash Bank 1 Abort |

Platform Flash Bank 1 Stall |

ECSM

10 0x0828 4 Combined Error eDMA

11 0x082C 4 Channel 0 eDMA

12 0x0830 4 Channel 1 eDMA

13 0x0834 4 Channel 2 eDMA

14 0x0838 4 Channel 3 eDMA

15 0x083C 4 Channel 4 eDMA

16 0x0840 4 Channel 5 eDMA

17 0x0844 4 Channel 6 eDMA

18 0x0848 4 Channel 7 eDMA

19 0x084C 4 Channel 8 eDMA

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
313/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
20 0x0850 4 Channel 9 eDMA

21 0x0854 4 Channel 10 eDMA

22 0x0858 4 Channel 11 eDMA

23 0x085C 4 Channel 12 eDMA

24 0x0860 4 Channel 13 eDMA

25 0x0864 4 Channel 14 eDMA

26 0x0868 4 Channel 15 eDMA

27 0x086C 4 Reserved

28 0x0870 4 Timeout SWT

29 0x0874 4 Reserved

30 0x0878 4 Match on channel 0 STM

31 0x087C 4 Match on channel 1 STM

32 0x0880 4 Match on channel 2 STM

33 0x0884 4 Match on channel 3 STM

34 0x0888 4 Reserved

35 0x088C 4
ECC_DBD_PlatformFlash |

ECC_DBD_PlatformRAM
Platform ECC Double Bit Detection

36 0x0890 4
ECC_SBC_PlatformFlash |

ECC_SBC_PlatformRAM
Platform ECC Single Bit Correction

37 0x0894 4 Reserved

Section C

38 0x0898 4 RTC RTC/API

39 0x089C 4 API RTC/API

40 0x08A0 4 Reserved

41 0x08A4 4 SIU External IRQ_0 SIUL

42 0x08A8 4 SIU External IRQ_1 SIUL

43 0x08AC 4 SIU External IRQ_2 SIUL

44 0x08B0 4 Reserved

45 0x08B4 4 Reserved

46 0x08B8 4 WakeUp_IRQ_0 WKPU

47 0x08BC 4 WakeUp_IRQ_1 WKPU

48 0x08C0 4 WakeUp_IRQ_2 WKPU

49 0x08C4 4 WakeUp_IRQ_3 WKPU

50 0x08C8 4 Reserved

51 0x08CC 4 Safe Mode Interrupt MC_ME

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
Doc ID 16886 Rev 6 314/868

Interrupt Controller (INTC) RM0045
52 0x08D0 4 Mode Transition Interrupt MC_ME

53 0x08D4 4 Invalid Mode Interrupt MC_ME

54 0x08D8 4 Invalid Mode Config MC_ME

55 0x08DC 4 Reserved

56 0x08E0 4
Functional and destructive reset alternate
event interrupt (ipi_int)

MC_RGM

57 0x08E4 4 FXOSC counter expired (ipi_int_osc) FXOSC

58 0x08E8 4 Reserved

59 0x08EC 4 PITimer Channel 0 PIT

60 0x08F0 4 PITimer Channel 1 PIT

61 0x08F4 4 PITimer Channel 2 PIT

62 0x08F8 4 Reserved

63 0x08FC 4 Reserved

64 0x0900 4 Reserved

65 0x0904 4 FlexCAN_ESR[ERR_INT] FlexCAN_0

66 0x0908 4

FlexCAN_ESR_BOFF |

FlexCAN_Transmit_Warning |

FlexCAN_Receive_Warning

FlexCAN_0

67 0x090C 4 Reserved

68 0x0910 4 FlexCAN_BUF_00_03 FlexCAN_0

69 0x0914 4 FlexCAN_BUF_04_07 FlexCAN_0

70 0x0918 4 FlexCAN_BUF_08_11 FlexCAN_0

71 0x091C 4 FlexCAN_BUF_12_15 FlexCAN_0

72 0x0920 4 FlexCAN_BUF_16_31 FlexCAN_0

73 0x0924 4 Reserved

74 0x0928 4
DSPI_SR[TFUF]
DSPI_SR[RFOF]

DSPI_0

75 0x092C 4 DSPI_SR[EOQF] DSPI_0

76 0x0930 4 DSPI_SR[TFFF] DSPI_0

77 0x0934 4 DSPI_SR[TCF] DSPI_0

78 0x0938 4 DSPI_SR[RFDF] DSPI_0

79 0x093C 4 LINFlex_RXI LINFlex_0

80 0x0940 4 LINFlex_TXI LINFlex_0

81 0x0944 4 LINFlex_ERR LINFlex_0

82 0x0948 4 ADC_EOC ADC_1

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
315/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
83 0x094C 4 Reserved

84 0x0950 4 ADC_WD ADC_1

85 0x0954 4 Reserved

86 0x0958 4 Reserved

87 0x095C 4 Reserved

88 0x0960 4 Reserved

89 0x0964 4 Reserved

90 0x0968 4 Reserved

91 0x096C 4 Reserved

92 0x0970 4 Reserved

93 0x0974 4 Reserved

94 0x0978 4
DSPI_SR[TFUF]

DSPI_SR[RFOF]
DSPI_1

95 0x097C 4 DSPI_SR[EOQF] DSPI_1

96 0x0980 4 DSPI_SR[TFFF] DSPI_1

97 0x0984 4 DSPI_SR[TCF] DSPI_1

98 0x0988 4 DSPI_SR[RFDF] DSPI_1

99 0x098C 4 LINFlex_RXI LINFlex_1

100 0x0990 4 LINFlex_TXI LINFlex_1

101 0x0994 4 LINFlex_ERR LINFlex_1

102 0x0998 4 Reserved

103 0x099C 4 Reserved

104 0x09A0 4 Reserved

105 0x09A4 4 Reserved

106 0x09A8 4 Reserved

107 0x09AC 4 Reserved

108 0x09B0 4 Reserved

109 0x09B4 4 Reserved

110 0x09B8 4 Reserved

111 0x09BC 4 Reserved

112 0x09C0 4 Reserved

113 0x09C4 4 Reserved

114 0x09C8 4 Reserved

115 0x09CC 4 Reserved

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
Doc ID 16886 Rev 6 316/868

Interrupt Controller (INTC) RM0045
116 0x09D0 4 Reserved

117 0x09D4 4 Reserved

118 0x09D8 4 Reserved

119 0x09DC 4 LINFlex_RXI LINFlex_2

120 0x09E0 4 LINFlex_TXI LINFlex_2

121 0x09E4 4 LINFlex_ERR LINFlex_2

122 0x09E8 4 Reserved

123 0x09EC 4 Reserved

124 0x09F0 4 Reserved

125 0x09F4 4 Reserved

126 0x09F8 4 Reserved

127 0x09FC 4 PITimer Channel 3 PIT

128 0x0A00 4 Reserved

129 0x0A04 4 Reserved

130 0x0A08 4 Reserved

131 0x0A0C 4 Reserved

132 0x0A10 4 Reserved

133 0x0A14 4 Reserved

134 0x0A18 4 Reserved

135 0x0A1C 4 Reserved

136 0x0A20 4 Reserved

137 0x0A24 4 Reserved

138 0x0A28 4 Reserved

139 0x0A2C 4 Reserved

140 0x0A30 4 Reserved

141 0x0A34 4 EMIOS_GFR[F0,F1] eMIOS_0

142 0x0A38 4 EMIOS_GFR[F2,F3] eMIOS_0

143 0x0A3C 4 EMIOS_GFR[F4,F5] eMIOS_0

144 0x0A40 4 EMIOS_GFR[F6,F7] eMIOS_0

145 0x0A44 4 EMIOS_GFR[F8,F9] eMIOS_0

146 0x0A48 4 EMIOS_GFR[F10,F11] eMIOS_0

147 0x0A4C 4 EMIOS_GFR[F12,F13] eMIOS_0

148 0x0A50 4 EMIOS_GFR[F14,F15] eMIOS_0

149 0x0A54 4 EMIOS_GFR[F16,F17] eMIOS_0

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
317/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
17.6.1 Interrupt request sources

The INTC has two types of interrupt requests, peripheral and software configurable. These
interrupt requests can assert on any clock cycle.

Peripheral interrupt requests

An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral.
The interrupt request from the peripheral is driven by that flag bit.

The time from when the peripheral starts to drive its peripheral interrupt request to the INTC
to the time that the INTC starts to drive the interrupt request to the processor is three clocks.

External interrupts are handled by the SIU (see Section 19.6.3 External interrupts).

Software configurable interrupt requests

An interrupt request is triggered by software by writing a 1 to a SETx bit in
INTC_SSCIR0_3–INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRx,
resulting in the interrupt request. The interrupt request is cleared by writing a 1 to the CLRx
bit.

The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt
request to the processor is four clocks.

Unique vector for each interrupt request source

Each peripheral and software configurable interrupt request is assigned a hardwired unique
9-bit vector. Software configurable interrupts 0–7 are assigned vectors 0–7 respectively. The
peripheral interrupt requests are assigned vectors 8 to as high as needed to include all the
peripheral interrupt requests. The peripheral interrupt request input ports at the boundary of
the INTC block are assigned specific hardwired vectors within the INTC (see Table 134).

17.6.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set
in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154). The result is
compared to PRI in the associated INTC_CPR. The results of those comparisons manage
the priority of the ISR executed by the associated processor. The associated LIFO also
assists in managing that priority.

150 0x0A58 4 EMIOS_GFR[F18,F19] eMIOS_0

151 0x0A5C 4 EMIOS_GFR[F20,F21] eMIOS_0

152 0x0A60 4 EMIOS_GFR[F22,F23] eMIOS_0

153 0x0A64 4 EMIOS_GFR[F24,F25] eMIOS_0

154 0x0A68 4 EMIOS_GFR[F26,F27] eMIOS_0

Table 143. Interrupt vector table (continued)

IRQ # Offset
Size

(bytes)
Interrupt Module
Doc ID 16886 Rev 6 318/868

Interrupt Controller (INTC) RM0045
Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 137
compare the priority of the asserted interrupt requests to the current priority. If the priority of
any asserted peripheral or software configurable interrupt request is higher than the current
priority for a given processor, then the interrupt request to the processor is asserted. Also, a
unique vector for the preempting peripheral or software configurable interrupt request is
generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware vector
mode, for the interrupt vector provided to the processor.

Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the
asserted interrupt requests assigned to that processor, both peripheral and software
configurable. The output of the priority arbitrator subblock is the highest of those priorities
assigned to a given processor. Also, any interrupt requests which have this highest priority
are output as asserted interrupt requests to the associated request selector subblock.

Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then
it is passed as asserted to the associated vector encoder subblock. If multiple interrupt
requests from the associated priority arbitrator subblock are asserted, the only the one with
the lowest vector is passed as asserted to the associated vector encoder subblock. The
lower vector is chosen regardless of the time order of the assertions of the peripheral or
software configurable interrupt requests.

Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt
request from the request selector subblock for the associated processor.

Priority Comparator subblock

The priority comparator subblock compares the highest priority output from the priority
arbitrator subblock with PRI in INTC_CPR. If the priority comparator subblock detects that
this highest priority is higher than the current priority, then it asserts the interrupt request to
the associated processor. This interrupt request to the processor asserts whether this
highest priority is raised above the value of PRI in INTC_CPR or the PRI value in
INTC_CPR is lowered below this highest priority. This highest priority then becomes the new
priority which will be written to PRI in INTC_CPR when the interrupt request to the
processor is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not
cause a preemption because their PRIn will not be higher than PRI in INTC_CPR.

Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these
priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the
beginning of the interrupt exception handler the PRI value in the INTC_CPR does not need
to be loaded from the INTC_CPR and stored onto the context stack. Likewise at the end of
the interrupt exception handler, the priority does not need to be loaded from the context
stack and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in
softwarevector mode or the interrupt acknowledge signal from the processor is asserted in
319/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
hardware vector mode. The priority is popped into PRI in the INTC_CPR whenever the
INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal
to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15 priorities.
However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because
of how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is
pushed 15 or more times than it is popped, the priorities first pushed are overwritten. A
priority of 0 would be an overwritten priority. However, the LIFO will pop ‘0’s if it is popped
more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is
regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

17.6.3 Handshaking with processor

Software vector mode handshaking

This section describes handshaking in software vector mode.

Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 147. The INTC examines the peripheral and software configurable interrupt
requests. When it finds an asserted peripheral or software configurable interrupt request
with a higher priority than PRI in the associated INTC_CPR, it asserts the interrupt request
to the processor. The INTVEC field in the associated INTC_IACKR is updated with the
preempting interrupt request’s vector when the interrupt request to the processor is
asserted. The INTVEC field retains that value until the next time the interrupt request to the
processor is asserted. The rest of the handshaking is described in Section Software vector
mode.

End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register
(INTC_EOIR) must be written.When written, the associated LIFO is popped so the
preempted priority is restored into PRI of the INTC_CPR. Before it is written, the peripheral
or software configurable flag bit must be cleared so that the peripheral or software
configurable interrupt request is negated.

Note: To ensure proper operation across all Power Architecture® MCUs, execute an MBAR or
MSYNC instruction between the access to clear the flag bit and the write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or
software settable interrupt request whose ISR was preempted. Depending on how much the
ISR progressed, that interrupt request may no longer even be asserted. When PRI in
INTC_CPR is lowered to the priority of the preempted ISR, the interrupt request for the
preempted ISR or any other asserted peripheral or software settable interrupt request at or
below that priority will not cause a preemption. Instead, after the restoration of the
preempted context, the processor will return to the instruction address that it was to next
execute before it was preempted. This next instruction is part of the preempted ISR or the
interrupt exception handler’s prolog or epilog.
Doc ID 16886 Rev 6 320/868

Interrupt Controller (INTC) RM0045

Figure 147. Software vector mode handshaking timing diagram

Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 148. As in software vector mode, the INTC examines the peripheral and software
settable interrupt requests, and when it finds an asserted one with a higher priority than PRI
in INTC_CPR, it asserts the interrupt request to the processor. The INTVEC field in the
INTC_IACKR is updated with the preempting peripheral or software settable interrupt
request’s vector when the interrupt request to the processor is asserted. The INTVEC field
retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC
field in the INTC_IACKR. The rest of the handshaking is described in Section Hardware
vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the
INTC_EOIR, is the same as in software vector mode. Refer to Section End of interrupt
exception handler.

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR

Write INTC_EOIR

INTVEC in INTC_IACKR

PRI in INTC_CPR

Peripheral interrupt request 100

0 108

0

321/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)

Figure 148. Hardware vector mode handshaking timing diagram

17.7 Initialization/application information

17.7.1 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSR0–
INTC_PSR154) will be zero, and PRI in INTC current priority register (INTC_CPR) will be
15. These reset values will prevent the INTC from asserting the interrupt request to the
processor. The enable or mask bits in the peripherals are reset such that the peripheral
interrupt requests are negated. An initialization sequence for allowing the peripheral and
software settable interrupt requests to cause an interrupt request to the processor
is:interrupt_request_initialization:

interrupt_request_initialization:
configure VTES and HVEN in INTC_MCR
configure VTBA in INTC_IACKR
raise the PRIn fields in INTC_PSRn
set the enable bits or clear the mask bits for the peripheral interrupt
requests
lower PRI in INTC_CPR to zero
enable processor recognition of interrupts

17.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture™ assembly code.

0 108

010

Clock

Interrupt request to processor

Hardware vector enable

Interrupt vector

Interrupt acknowledge

Read INTC_IACKR

Write INTC_EOIR

INTVEC in INTC_IACKR

PRI in INTC_CPR

Peripheral interrupt request 100

0 108
Doc ID 16886 Rev 6 322/868

Interrupt Controller (INTC) RM0045
Software vector mode

interrupt_exception_handler:
code to create stack frame, save working register, and save SRR0 and SRR1
lis r3,INTC_IACKR@ha # form adjusted upper half of INTC_IACKR address
lwz r3,INTC_IACKR@l(r3) # load INTC_IACKR, which clears request to
processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC_IACKR contents into link register
blrl # branch to ISR; link register updated with epilog

address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth
at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower
priority

code to restore SRR0 and SRR1, restore working registers, and delete stack
frame

rfi

vector_table_base_address:
address of ISR for interrupt with vector 0
address of ISR for interrupt with vector 1
.
.
.
address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC

blr # return to epilog

Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations
which support a hardware vector. This example assumes that each
323/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
interrupt_exception_handlerx only has space for four instructions, and therefore a branch to
interrupt_exception_handler_continuedx is needed.

interrupt_exception_handlerx:
b interrupt_exception_handler_continuedx# 4 instructions available, branch
to continue
interrupt_exception_handler_continuedx:
code to create stack frame, save working register, and save SRR0 and SRR1

wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

bl ISRx # branch to ISR for interrupt with vector x

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth
at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
li r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC_EOIR@l(r3) # store to INTC_EOIR, informing INTC to lower
priority

code to restore SRR0 and SRR1, restore working registers, and delete stack
frame

rfi

ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC
blr # branch to epilog

17.7.3 ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current
priority register (INTC_CPR) having a value of 0. The RTOS will execute the tasks according
to whatever priority scheme that it may have, but that priority scheme is independent and
has a lower priority of execution than the priority scheme of the INTC. In other words, the
ISRs execute above INTC_CPR priority 0 and outside the control of the RTOS, the RTOS
executes at INTC_CPR priority 0, and while the tasks execute at different priorities under
the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared
resource, then the task’s priority can be elevated in the INTC_CPR while the shared
resource is being accessed.
Doc ID 16886 Rev 6 324/868

Interrupt Controller (INTC) RM0045
An ISR whose PRIn in INTC priority select registers (INTC_PSR0–INTC_PSR154) has a
value of 0 will not cause an interrupt request to the processor, even if its peripheral or
software settable interrupt request is asserted. For a peripheral interrupt request, not setting
its enable bit or disabling the mask bit will cause it to remain negated, which consequently
also will not cause an interrupt request to the processor. Since the ISRs are outside the
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt
exception handler, perhaps after executing another ISR.

17.7.4 Order of execution

An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the
unique vectors associated with each of their peripheral or software configurable interrupt
requests. However, if multiple peripheral or software configurable interrupt requests are
asserted, more than one has the highest priority, and that priority is high enough to cause
preemption, the INTC selects the one with the lowest unique vector regardless of the order
in time that they asserted. However, the ability to meet deadlines with this scheduling
scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.

The example in Table 144 shows the order of execution of both ISRs with different priorities
and the same priority.

Table 144. Order of ISR execution example

StepNo. Step description

Code Executing at End of Step PRI in
INTC_CPR
at End of

Step
RTOS

ISR108
(1) ISR208 ISR308 ISR408

Interrupt
exception
handler

1 RTOS at priority 0 is executing. X 0

2
Peripheral interrupt request 100 at
priority 1 asserts. Interrupt taken.

X 1

3
Peripheral interrupt request 400 at
priority 4 is asserts. Interrupt taken.

X 4

4
Peripheral interrupt request 300 at
priority 3 is asserts.

X 4

5
Peripheral interrupt request 200 at
priority 3 is asserts.

X 4

6
ISR408 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

7
Interrupt taken. ISR208 starts to
execute, even though peripheral
interrupt request 300 asserted first.

X 3

8
ISR208 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

9
Interrupt taken. ISR308 starts to
execute.

X 3
325/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
17.7.5 Priority ceiling protocol

Elevating priority

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities
of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to
that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3.
They share the same resource. Before ISR1 or ISR2 can access that resource, they must
raise the PRI value in INTC_CPR to 3, the ceiling of all of the ISR priorities. After they
release the resource, the PRI value in INTC_CPR can be lowered. If they do not raise their
priority, ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting
the shared resource. Another possible failure mechanism is deadlock if the higher priority
ISR needs the lower priority ISR to release the resource before it can continue, but the lower
priority ISR cannot release the resource until the higher priority ISR completes and
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time
when accessing a shared resource that all higher priority interrupts are blocked. For
example, while ISR3 cannot preempt ISR1 while it is accessing the shared resource, all of
the ISRs with a priority higher than 3 can preempt ISR1.

Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1
and ISR2 are both running on the same core and both share a resource. ISR1 has a lower
priority than ISR2. ISR1 is executing and writes to the INTC_CPR. The instruction following
this store is a store to a value in a shared coherent data block. Either immediately before or
at the same time as the first store, the INTC asserts the interrupt request to the processor
because the peripheral interrupt request for ISR2 has asserted. As the processor is
responding to the interrupt request from the INTC, and as it is aborting transactions and
flushing its pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that
it can access the data block coherently, but the data block has been corrupted.

10
ISR308 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 1

11
ISR108 completes. Interrupt
exception handler writes to
INTC_EOIR.

X 0

12 RTOS continues execution. X 0

1. ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt
requests.

Table 144. Order of ISR execution example (continued)

StepNo. Step description

Code Executing at End of Step PRI in
INTC_CPR
at End of

Step
RTOS

ISR108
(1) ISR208 ISR308 ISR408

Interrupt
exception
handler
Doc ID 16886 Rev 6 326/868

Interrupt Controller (INTC) RM0045
OSEK uses the GetResource and ReleaseResource system services to manage access to
a shared resource. To prevent corruption of a coherent data block, modifications to PRI in
INTC_CPR can be made by those system services with the code sequence:

disable processor recognition of interrupts
PRI modification
enable processor recognition of interrupts

17.7.6 Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling
(RMS) or a superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which
have higher request rates have higher priorities. In DMS, if the deadline is before the next
time the ISR is requested, then the ISR is assigned a priority according to the time from the
request for the ISR to the deadline, not from the time of the request for the ISR to the next
request for it.

For example, ISR1 executes every 100 µs, ISR2 executes every 200 µs, and ISR3 executes
every 300 µs. ISR1 has a higher priority than ISR2 which has a higher priority than ISR3;
however, if ISR3 has a deadline of 150 µs, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the
ISRs should be grouped with other ISRs that have similar deadlines. For example, a priority
could be allocated for every time the request rate doubles. ISRs with request rates around
1 ms would share a priority, ISRs with request rates around 500 µs would share a priority,
ISRs with request rates around 250 µs would share a priority, etc. With this approach, a
range of ISR request rates of 216 could be included, regardless of the number of ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines.
However, reducing the number of priorities can reduce the size and latency through the
interrupt controller. It also allows easier management of ISRs with similar deadlines that
share a resource. They do not need to use the PCP to access the shared resource.

17.7.7 Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to
schedule a lower priority portion of an ISR and they may also be used by processors to
interrupt other processors in a multiple processor system.

Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in the INTC Priority Select
Registers (INTC_PSR0_3–INTC_PSR152_154), which becomes the PRI value in
INTC_CPR with the interrupt acknowledge. The ISR, however, can have a portion that does
not need to be executed at this higher priority. Therefore, executing the later portion that
does not need to be executed at this higher priority can prevent the execution of ISRs which
do not have a higher priority than the earlier portion of the ISR but do have a higher priority
than what the later portion of the ISR needs. This preemptive scheduling inefficiency
reduces the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule
through the RTOS a task to execute the later lower priority portion. However, some RTOSs
can require a large amount of time for an ISR to schedule a task. Therefore, a second option
is for the ISR, after completing the higher priority portion, to set a SETx bit in
INTC_SSCIR0_3–INTC_SSCIR4_7. Writing a 1 to SETx causes a software configurable
interrupt request. This software configurable interrupt request will usually have a lower PRIx
327/868 Doc ID 16886 Rev 6

RM0045 Interrupt Controller (INTC)
value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After
generating a software settable interrupt request, the higher priority ISR completes. The
lower priority ISR is scheduled according to its priority. Execution of the higher priority ISR is
not resumed after the completion of the lower priority ISR.

Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-
processor systems can schedule ISRs on the other processors. One application is that one
processor wants to command another processor to perform a piece of work and the initiating
processor does not need to use the results of that work. If the initiating processor is
concerned that the processor executing the software configurable ISR has not completed
the work before asking it to again execute the ISR, it can check if the corresponding CLRx
bit in INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has
completed accessing a block of data and wants a second processor to then access it.
Furthermore, after the second processor has completed accessing the block of data, the
first processor again wants to access it. The accesses to the block of data must be done
coherently. To do this, the first processor writes a 1 to a SETx bit on the second processor.
After accessing the block of data, the second processor clears the corresponding CLRx bit
and then writes 1 to a SETx bit on the first processor, informing it that it can now access the
block of data.

17.7.8 Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose
work spans multiple priorities (see Section Scheduling a lower priority portion of an ISR) is
to lower the current priority. However, the INTC has a LIFO whose depth is determined by
the number of priorities.

Note: Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s corresponding PRI
value in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154) allows
more preemptions than the LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to
avoid preemptive scheduling inefficiencies.

17.7.9 Negating an interrupt request outside of its ISR

Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral
interrupt request. For example, reading a specific register can clear the flag bits and their
corresponding interrupt requests. This clearing as a side effect of servicing a peripheral
interrupt request can cause the negation of other peripheral interrupt requests besides the
peripheral interrupt request whose ISR presently is executing. This negating of a peripheral
interrupt request outside of its ISR can be a desired effect.

Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag
bits is because it serviced those flag bits, and therefore the ISRs for these flag bits do not
need to be executed.
Doc ID 16886 Rev 6 328/868

Interrupt Controller (INTC) RM0045
Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR
execution or the intentional clearing a flag bit, the priorities of the peripheral or software
configurable interrupt requests for these other flag bits must be selected properly. Their
PRIx values in the INTC Priority Select Registers (INTC_PSR0_3–INTC_PSR152_154)
must be selected to be at or lower than the priority of the ISR that cleared their flag bits.
Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to
the writing to INTC_SSCIR0_3–INTC_SSCIR4_7 as the clearing of the flag bit that caused
the present ISR to be executed (see Section End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be
cleared at any time, regardless of the peripheral interrupt request’s PRIx value in
INTC_PSRx_x.

17.7.10 Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even
know how deeply the LIFO is nested. However, if he wants to read the contents, such as in
debug mode, they are not memory mapped. The contents can be read by popping the LIFO
and reading the PRI field in either INTC_CPR. The code sequence is:

pop_lifo:
store to INTC_EOIR
load INTC_CPR, examine PRI, and store onto stack
if PRI is not zero or value when interrupts were enabled, branch to
pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push_lifo:
load stacked PRI value and store to INTC_CPR
load INTC_IACKR
if stacked PRI values are not depleted, branch to push_lifo
329/868 Doc ID 16886 Rev 6

RM0045 Crossbar Switch (XBAR)
18 Crossbar Switch (XBAR)

18.1 Introduction
This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous
connections between two master ports and three slave ports. XBAR supports a 32-bit
address bus width and a 32-bit data bus width at all master and slave ports.

18.2 Block diagram
Figure 149 shows a block diagram of the crossbar switch.

Figure 149. XBAR block diagram

Table 145 gives the crossbar switch port for each master and slave, and the assigned and
fixed ID number for each master. The table shows the master ID numbers as they relate to
the master port numbers.

CPU

Crossbar Switch

Flash

Master modules

Slave modules

CPU data /

Internal Peripheral
bridges

instructions Nexus

memory SRAM

Table 145. XBAR switch ports for SPC560D30/40

Module
Port

Physical master ID
Type Logical number

e200z0 core–CPU instructions Master 0 0

e200z0 core–CPU data / Nexus Master 0 1

Flash memory Slave 0 —

Internal SRAM Slave 2 —

Peripheral bridges Slave 7 —
Doc ID 16886 Rev 6 330/868

Crossbar Switch (XBAR) RM0045
18.3 Overview
The XBAR allows for concurrent transactions to occur from any master port to any slave
port. It is possible for all master ports and slave ports to be in use at the same time as a
result of independent master requests. If a slave port is simultaneously requested by more
than one master port, arbitration logic selects the higher priority master and grants it
ownership of the slave port. All other masters requesting that slave port are stalled until the
higher priority master completes its transactions.

Requesting masters are granted access based on a fixed priority.

18.4 Features
● 2 master ports:

– Core: e200z0 core instructions

– Core: e200z0 core data / Nexus

● 3 slave ports

– Flash (refer to the flash memory chapter for information on accessing flash
memory)

– Internal SRAM

– Peripheral bridges

● 32-bit address, 32-bit data paths

● Fully concurrent transfers between independent master and slave ports

● Fixed priority scheme and fixed parking strategy

18.5 Modes of operation

18.5.1 Normal mode

In normal mode, the XBAR provides the logic that controls crossbar switch configuration.

18.5.2 Debug mode

The XBAR operation in debug mode is identical to operation in normal mode.

18.6 Functional description
This section describes the functionality of the XBAR in more detail.

18.6.1 Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple
masters to communicate concurrently with multiple slaves. To maximize data throughput, it
is essential to keep arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves,
detailing when the XBAR stalls masters, or inserts bubbles on the slave side.
331/868 Doc ID 16886 Rev 6

RM0045 Crossbar Switch (XBAR)
18.6.2 General operation

When a master makes an access to the XBAR from an idle master state, the access is taken
immediately by the XBAR. If the targeted slave port of the access is available (that is, the
requesting master is currently granted ownership of the slave port), the access is
immediately presented on the slave port. It is possible to make single clock (zero wait state)
accesses through the XBAR by a granted master. If the targeted slave port of the access is
busy or parked on a different master port, the requesting master receives wait states until
the targeted slave port can service the master request. The latency in servicing the request
depends on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master
device has no indication that it owns the slave port it is targeting. While the master does not
have control of the slave port it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different
slave port has completed, regardless of its priority on the newly targeted slave port. This
prevents deadlock from occurring when a master has the following conditions:

● Outstanding request to slave port A that has a long response time

● Pending access to a different slave port B

● Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle
of arbitration, assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of
that slave port until it gives up the slave port by running an IDLE cycle, leaves that slave port
for its next access, or loses control of the slave port to a higher priority master with a request
to the same slave port. However, because all masters run a fixed-length burst transfer to a
slave port, it retains control of the slave port until that transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master which did the last transfer.

18.6.3 Master ports

A master access is taken if the slave port to which the access decodes is either currently
servicing the master or is parked on the master. In this case, the XBAR is completely
transparent and the master access is immediately transmitted on the slave bus and no
arbitration delays are incurred. A master access stall if the access decodes to a slave port
that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting
access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than
all other requesting masters, then the master gains control over the slave port as soon as
the data phase of the current access is completed. If the slave port is currently servicing
another master of a higher priority, then the master gains control of the slave port after the
other master releases control of the slave port if no other higher priority master is also
waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not
occupied by a slave port. This is the only time the XBAR directly responds with an error
response. All other error responses received by the master are the result of error responses
on the slave ports being passed through the XBAR.
Doc ID 16886 Rev 6 332/868

Crossbar Switch (XBAR) RM0045
18.6.4 Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when
masters are actively making requests. To do this the XBAR must not insert any bubbles onto
the slave bus unless absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a
master is actively making a request. This occurs when a handoff of bus ownership occurs
and there are no wait states from the slave port. A requesting master which does not own
the slave port is granted access after a one clock delay.

18.6.5 Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). The following
table shows the priority levels assigned to each master (the lowest has highest priority).

18.6.6 Arbitration

XBAR supports only a fixed-priority comparison algorithm.

Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority
level in the XBAR_MPR. If two masters both request access to a slave port, the master with
the highest priority in the selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new
requesting master’s priority level is higher than that of the master that currently has control
over the slave port (if any). The slave port does an arbitration check at every clock edge to
ensure that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently
has control of the slave port, the higher priority master is granted control at the termination
of any currently pending access, assuming the pending transfer is not part of a burst
transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is
granted control of the slave port. But if the new requesting master’s priority level is lower
than that of the master that currently has control of the slave port, the new requesting
master is forced to wait until the master that currently has control of the slave port is finished
accessing the current slave port.

Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port
parks always to the last master (park-on-last). When parked on the last master, the slave
port is passing that master’s signals through to the slave bus. When the master accesses

Table 146. Hardwired bus master priorities

Module
Port

Priority level
Type Number

e200z0 core–CPU instructions Master 0 7

e200z0 core–CPU data / Nexus Master 0 6
333/868 Doc ID 16886 Rev 6

RM0045 Crossbar Switch (XBAR)
the slave port again, no other arbitration penalties are incurred except that a one clock
arbitration penalty is incurred for each access request to the slave port made by another
master port. All other masters pay a one clock penalty.
Doc ID 16886 Rev 6 334/868

System Integration Unit Lite (SIUL) RM0045
19 System Integration Unit Lite (SIUL)

19.1 Introduction
This chapter describes the System Integration Unit Lite (SIUL), which is used for the
management of the pads and their configuration. It controls the multiplexing of the alternate
functions used on all pads as well as being responsible for the management of the external
interrupts to the device.

19.2 Overview
The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-
purpose input and output (GPIO) signals and external interrupts with trigger event
configuration. Figure 150 provides a block diagram of the SIUL and its interfaces to other
system components.

The module provides the capability to configure, read, and write to the device’s general-
purpose I/O pads that can be configured as either inputs or outputs.

● When a pad is configured as an input, the state of the pad (logic high or low) is
obtained by reading an associated data input register.

● When a pad is configured as an output, the value driven onto the pad is determined by
writing to an associated data output register. Enabling the input buffers when a pad is
configured as an output allows the actual state of the pad to be read.

● To enable monitoring of an output pad value, the pad can be configured as both output
and input so the actual pad value can be read back and compared with the expected
value.
335/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
Figure 150. System Integration Unit Lite block diagram

IPS
BUS

Data

Pad Input

IO

Interrupt

Interrupt
Controller

IPS
Master

- Configuration
- Glitch Filter

Pad Configuration (IOMUXC)

Pad Config (PCRs)

GPIO Functionality

79 (1)

79 (1)

79 (1)

20 (2)

3

MUX
Pads

79 (1)

SIUL Module

Interrupt Functionality

Notes:

1. Up to 45 I/O pins in 64-pin packages; up to 79 I/O pins in 100-pin packages

2. Up to 11 I/O pins in 64-pin packages; up to 20 I/O pins in 100-pin packages
Doc ID 16886 Rev 6 336/868

System Integration Unit Lite (SIUL) RM0045
19.3 Features
The System Integration Unit Lite supports these distinctive features:

● GPIO

– GPIO function on up to 79 I/O pins

– Dedicated input and output registers for most GPIO pins(m)

● External interrupts

– 3 interrupt vectors dedicated to 20 external interrupts

– 24 programmable digital glitch filters

– Independent interrupt mask

– Edge detection

● System configuration

– Pad configuration control

19.4 External signal description
Most device pads support multiple device functions. Pad configuration registers are
provided to enable selection between GPIO and other signals. These other signals, also
referred to as alternate functions, are typically peripheral functions.

GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate
configuration, all pins in a port can be read or written to in parallel with a single R/W access.

Note: In order to use GPIO port functionality, all pads in the port must be configured as GPIO
rather than as alternate functions.

Table 147 lists the external pins configurable via the SIUL.

 (

m. Some device pins, e.g., analog pins, do not have both input and output functionality.

Table 147. SIUL signal properties

GPIO[0:122](1)

category

1. GPIO[77:120] not available in SPC560D30/40; GPIO[43:120] not available in 64-pin LQFP

Name
I/O

direction
Function

System configuration

GPIO [0:19] [26:47] [60:76]
[121:122]

Input/Output General-purpose input/output

GPIO [20:25] [48:59] Input
Analog precise channels, low power oscillator
pins

External interrupt

PA[3], PA[6:8], PA[11:12],
PA[14], PC[2:5], PC[12],
PC[14:15], PE[2], PE[4],
PE[6:7], PE[10], PE[12](2)

2. PC[12], PC[14:15], PE[2], PE[4], PE[6:7], PE[10] and PE[12] not available in 64-pin

Input
Pins with External Interrupt Request
functionality. Please see the signal description
chapter of this reference manual for details.
337/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
19.4.1 Detailed signal descriptions

General-purpose I/O pins (GPIO[0:122])(n)

The GPIO pins provide general-purpose input and output function. The GPIO pins are
generally multiplexed with other I/O pin functions. Each GPIO input and output is separately
controlled by an input (GPDIn_n) or output (GPDOn_n) register.

External interrupt request input pins (EIRQ[0:23])(o)

The EIRQ[0:23] pins are connected to the SIUL inputs. Rising- or falling-edge events are
enabled by setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

n. GPIO[0–76] and GPIO[121–122] in 100-pin LQFP; GPIO[0–43] and GPIO[121–122] in 64-pin LQFP

o. EIRQ[0:11] plus EIRQ[16:23] in 100-pin LQFP; EIRQ[0:7] plus EIRQ[16:18] in 64-pin LQFP
Doc ID 16886 Rev 6 338/868

System Integration Unit Lite (SIUL) RM0045
19.5 Memory map and register description
This section provides a detailed description of all registers accessible in the SIUL module.

19.5.1 SIUL memory map

Table 148 gives an overview of the SIUL registers implemented.

Table 148. SIUL memory map

Base address: 0xC3F9_0000

Address offset Register Location

0x0000 Reserved

0x0004 MCU ID Register #1 (MIDR1) on page 19-341

0x0008 MCU ID Register #2 (MIDR2) on page 19-342

0x000C–0x0013 Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 19-343

0x0018 Interrupt Request Enable Register (IRER) on page 19-344

0x001C–0x0027 Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 19-344

0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 19-345

0x0030 Interrupt Filter Enable Register (IFER) on page 19-346

0x0034–0x003F Reserved

0x0040–0x0134 Pad Configuration Registers (PCR0–PCR122)(1) on page 19-347

0x0136–0x04FF Reserved

0x0500–0x053C
Pad Selection for Multiplexed Inputs Registers (PSMI0_3–
PSMI60_63)

on page 19-349

0x0540–0x05FF Reserved

0x0600–0x0678
GPIO Pad Data Output Registers (GPDO0_3–
GPDO120_123)(2) on page 19-352

0x067C–0x07FF Reserved

0x0800–0x0878 GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)(3) on page 19-353

0x087C–0x0BFF Reserved

0x0C00–0x0C0C Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3) on page 19-353

0x0C10–0x0C3F Reserved

0x0C40–0x0C4C Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3) on page 19-354

0x0C50–0x0C7F Reserved

0x0C80–0x0C9C
Masked Parallel GPIO Pad Data Out Register (MPGPDO0–
MPGPDO7)

on page 19-355

0x0CA0–0x0FFF Reserved
339/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
Note: A transfer error will be issued when trying to access completely reserved register space.

19.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes
using the Register Protection module. The following registers can be protected:

● Interrupt Request Enable Register (IRER)

● Interrupt Rising-Edge Event Enable Register (IREER)

● Interrupt Falling-Edge Event Enable Register (IFEER)

● Interrupt Filter Enable Register (IFER),

● Pad Configuration Registers (PCR0–PCR122). Note that only the following registers
can be protected:

– PCR[0:15] (Port A)

– PCR[16:19] (Port B[0:3])

– PCR[34:47] (Port C[2:15])

● Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI60_63)

● Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23). Note that only
IFMC[0:15] can be protected.

● Interrupt Filter Clock Prescaler Register (IFCPR)

See the “Register Under Protection” appendix for more details.

19.5.3 Register descriptions

MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

0x1000–0x105C
Interrupt Filter Maximum Counter Registers (IFMC0–
IFMC23)(4) on page 19-356

0x1060–0x107C Reserved

0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 19-357

0x1084–0x3FFF Reserved

1. PCR[0:76] and PCR[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is PCR[0:43] and
PCR[121:122], so all the remaining registers are reserved.

2. GPDO[0:76] and GPDO[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDO[0:43] and
GPDO[121:122], so all the remaining registers are reserved.

3. GPDI0[0:76] and GPDI0[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDI0[0:43] and
GPDI0[121:122], so all the remaining registers are reserved.

4. IFMC[0:11] plus IFMC[16:23] in 100-pin LQFP, while in the 64-pin LQFP package is IFMC[0:7] plus IFMC[16:18]—all
remaining registers are reserved.

Table 148. SIUL memory map (continued)

Base address: 0xC3F9_0000

Address offset Register Location
Doc ID 16886 Rev 6 340/868

System Integration Unit Lite (SIUL) RM0045

Figure 151. MCU ID Register #1 (MIDR1)

Offset: 0x0004 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PARTNUM[15:0]

W

Reset 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CSP PKG 0 0 MAJOR_MASK MINOR_MASK

W

Reset 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

Table 149. MIDR1 field descriptions

Field Description

PARTNUM[15:0]

MCU Part Number, lower 16 bits

Device part number of the MCU.
0101_0110_0000_0001:128 KB

0101_0110_0000_0010: 256 KB

For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].

CSP Always reads back 0

PKG

Package Settings

Can be read by software to determine the package type that is used for the particular
device as described below. Any values not explicitly specified are reserved.

0b00001: 64-pin LQFP

0b01001: 100-pin LQFP

MAJOR_MASK
Major Mask Revision
Counter starting at 0x0. Incremented each time there is a resynthesis.

MINOR_MASK
Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.
341/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
MCU ID Register #2 (MIDR2)

Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

Figure 152. MCU ID Register #2 (MIDR2)

Offset: 0x0008 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SF FLASH_SIZE_1 FLASH_SIZE_2 0 0 0 0 0 0 0

W

Reset 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PARTNUM[23:16] 0 0 0 EE 0 0 0 0

W

Reset 0 1 0 0 0 1 0 0 0 0 0 1 0(1)

1. Static bit fixed in hardware

0(1) 0(1) 0

Table 150. MIDR2 field descriptions

Field Description

SF
Manufacturer

0 Reserved
1 ST

FLASH_SIZE_1

Coarse granularity for Flash memory size

Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

0011 128 KB
0100 256 KB
0101 512 KB

FLASH_SIZE_2

Fine granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

0000 0 x (FLASH_SIZE_1 / 8)
0010 2 x (FLASH_SIZE_1 / 8)
0100 4 x (FLASH_SIZE_1 / 8)

PARTNUM
[23:16]

MCU Part Number, upper 8 bits containing the ASCII character within the MCU part number

0x44h: Character ‘D’

For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].

EE
Data Flash present

0 No Data Flash is present
1 Data Flash is present
Doc ID 16886 Rev 6 342/868

System Integration Unit Lite (SIUL) RM0045

Figure 153. Interrupt Status Flag Register (ISR)

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 EIF[23:16](1)

1. 20 flags in 100-pin LQFP; 11 flags in 64-pin LQFP: EIF[18:16] plus EIF[7:0] (register bits 8-12 and 20–23 reserved).

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 EIF[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 151. ISR field descriptions

Field Description

EIF[x]

External Interrupt Status Flag x

This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[x]),
EIF[x] causes an interrupt request.

0 No interrupt event has occurred on the pad
1 An interrupt event as defined by IREER[x] and IFEER[x] has occurred
343/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

Interrupt Rising-Edge Event Enable Register (IREER)

This register is used to enable rising-edge triggered events on the corresponding interrupt
pads.

Figure 154. Interrupt Request Enable Register (IRER)

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IRE[23:16](1)

1. 20 enable requests in 100-pin LQFP; 11 enable requests in 64-pin LQFP: IRE[18:16] plus IRE[7:0] (register bits 8-12 and
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IRE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 152. IRER field descriptions

Field Description

IRE[x]
External Interrupt Request Enable x

0 Interrupt requests from the corresponding ISR[EIF[x]] bit are disabled.
1 Interrupt requests from the corresponding ISR[EIF[x]] bit are enabled.

Figure 155. Interrupt Rising-Edge Event Enable Register (IREER)

Offset:0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IREE[23:16](1)

1. 20 enable events in 100-pin LQFP; 11 enable events in 64-pin LQFP: IREE[18:16] plus IREE[7:0] (register bits 8-12 and
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IREE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 344/868

System Integration Unit Lite (SIUL) RM0045

Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events on the corresponding interrupt
pads.

Note: If both the IREER[IREE] and IFEER[IFEE] bits are cleared for the same interrupt source, the
interrupt status flag for the corresponding external interrupt will never be set. If IREER[IREE]
and IFEER[IFEE] bits are set for the same source the interrupts are triggered by both rising
edge events and falling edge events.

Table 153. IREER field descriptions

Field Description

IREE[x]
Enable rising-edge events to cause the ISR[EIF[x]] bit to be set.

0 Rising-edge event is disabled
1 Rising-edge event is enabled

Figure 156. Interrupt Falling-Edge Event Enable Register (IFEER)

Offset:0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IFEE[23:16](1)

1. 20 enabling events in 100-pin LQFP; 11 enabling events in 64-pin LQFP: IFEE[18:16] plus IFEE[7:0] (register bits 8-12 and
20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IFEE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 154. IFEER field descriptions

Field Description

IFEE[x]
Enable falling-edge events to cause the ISR[EIF[x]] bit to be set.
0Falling-edge event is disabled

1Falling-edge event is enabled
345/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
Interrupt Filter Enable Register (IFER)

This register is used to enable a digital filter counter on the corresponding interrupt pads to
filter out glitches on the inputs.

Pad Configuration Registers (PCR0–PCR122)

The Pad Configuration Registers allow configuration of the static electrical and functional
characteristics associated with I/O pads. Each PCR controls the characteristics of a single
pad.

Please note that input and output peripheral muxing are separate.

● For output pads:

– Select the appropriate alternate function in Pad Config Register (PCR)

– OBE is not required for functions other than GPIO

● For INPUT pads:

– Select the feature location from PSMI register

– Set the IBE bit in the appropriate PCR

● For normal GPIO (not alternate function):

– Configure PCR

– Read from GPDI or write to GPDO

Figure 157. Interrupt Filter Enable Register (IFER)

Offset:0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0
IFE[23:16](1)

1. 20 bits in 100-pin LQFP; 11 bits in 64-pin LQFP: IFE[18:16] plus IEE[7:0] (register bits 8-12 and 20–23 reserved).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 IFE[11:0](1)

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 155. IFER field descriptions

Field Description

IFE[x]

Enable digital glitch filter on the interrupt pad input

0 Filter is disabled
1 Filter is enabled

See the IFMC field descriptions in Table 165 for details on how the filter works.
Doc ID 16886 Rev 6 346/868

System Integration Unit Lite (SIUL) RM0045

Note: 16/32-bit access is supported.

In addition to the bit map above, the following Table 156 describes the PCR depending on
the pad type (pad types are defined in the “Pad types” section of this reference manual). The
bits in shaded fields are not implemented for the particular I/O type. The PA field selecting
the number of alternate functions may or may not be present depending on the number of
alternate functions actually mapped on the pad.

Figure 158. Pad Configuration Registers (PCRx)

Offsets: Base + 0x0040 (PCR0)(registers)

Base + 0x0042 (PCR1)

...
Base + 0x0 (PCR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
SMC APC PA[1:0] OBE IBE

0 0
ODE

0 0
SRC WPE WPS

W

Reset 0 0(1)

1. SMC and PA[1] are ‘1’ for JTAG pads

0 0 0(1) 0 0(2)

2. OBE is ‘1’ for TDO

0(3)

3. IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS

0 0 0 0 0 0 0(3) 1(4)

4. WPS is ‘0’ for input only pad with analog feature and FAB

Table 156. PCRx field descriptions

Field Description

SMC

Safe Mode Control.

This bit supports the overriding of the automatic deactivation of the output buffer of the
associated pad upon entering SAFE mode of the device.

0 In SAFE mode, the output buffer of the pad is disabled.
1 In SAFE mode, the output buffer remains functional.

APC

Analog Pad Control.

This bit enables the usage of the pad as analog input.

0 Analog input path from the pad is gated and cannot be used
1 Analog input path switch can be enabled by the ADC

PA[1:0]

Pad Output Assignment

This field is used to select the function that is allowed to drive the output of a multiplexed pad.

00 Alternative Mode 0 — GPIO
01 Alternative Mode 1 — See the signal description chapter
10 Alternative Mode 2 — See the signal description chapter
11 Alternative Mode 3 — See the signal description chapter

Note: Number of bits depends on the actual number of actual alternate functions. Please see
datasheet.

OBE

Output Buffer Enable

This bit enables the output buffer of the pad in case the pad is in GPIO mode.
0 Output buffer of the pad is disabled when PA[1:0] = 00
1 Output buffer of the pad is enabled when PA[1:0] = 00
347/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
Pad Selection for Multiplexed Inputs Registers (PSMI0_3–PSMI60_63)

In some cases, a peripheral input signal can be selected from more than one pin. For
example, the CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and
PF[15]. Only one can be active at a time. To select the pad to be used as input to the
peripheral:

● Select the signal via the pad’s PCR register using the PA field.

● Specify the pad to be used via the appropriate PSMI field.

IBE

Input Buffer Enable

This bit enables the input buffer of the pad.
0 Input buffer of the pad is disabled
1 Input buffer of the pad is enabled

ODE

Open Drain Output Enable

This bit controls output driver configuration for the pads connected to this signal. Either open
drain or push/pull driver configurations can be selected. This feature applies to output pads only.

0 Pad configured for push/pull output
1 Pad configured for open drain

SRC

Slew Rate Control

This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is
the following:

0 Pad configured as slow (default)
1 Pad is configured as medium or fast (depending on the pad)
Note: PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

WPE

Weak Pull Up/Down Enable
This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
connected to this signal.
0 Weak pull device disabled for the pad
1 Weak pull device enabled for the pad

WPS

Weak Pull Up/Down Select

This bit controls whether weak pull up or weak pull down devices are used for the pads
connected to this signal when weak pull up/down devices are enabled.

0 Weak pull-down selected
1 Weak pull-up selected

Table 156. PCRx field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 348/868

System Integration Unit Lite (SIUL) RM0045

In order to multiplex different pads to the same peripheral input, the SIUL provides a register
that controls the selection between the different sources.

Figure 159. Pad Selection for Multiplexed Inputs Register (PSMI0_3)

Offsets:0x0500–0x053C (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
PADSEL0

0 0 0 0
PADSEL1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PADSEL2

0 0 0 0
PADSEL3

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 157. PSMI0_3 field descriptions

Field Description

PADSEL0–3,

PADSEL4–7,
...

PADSEL60–63

Pad Selection Bits
Each PADSEL field selects the pad currently used for a certain input function. See Table 158.

Table 158. Peripheral input pin selection

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)

PSMI0_3

PADSEL0 0x500 Reserved —

PADSEL1 0x501 Reserved —

PADSEL2 0x502 Reserved —

PADSEL3 0x503 Reserved —

PSMI4_7

PADSEL4 0x504 Reserved —

PADSEL5 0x505 SCK_0 / DSPI_0
00: PCR[14]

01: PCR[15]

PADSEL6 0x506 CS0_0 / DSPI_0
00: PCR[14]
01: PCR[15]
10: PCR[27]

PADSEL7 0x507 SCK_1 / DSPI_1
00: PCR[34]
01: PCR[68]
349/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
PSMI8_11

PADSEL8 0x508 SIN_1 / DSPI_1
00: PCR[36]
01: PCR[66]

PADSEL9 0x509 CS0_1 / DSPI_1

00: PCR[35]
01: PCR[61]
10: PCR[69]
11: PCR[4]

PADSEL10 0x50A Reserved —

PADSEL11 0x50B Reserved —

PSMI12_15

PADSEL12 0x50C Reserved —

PADSEL13 0x50D E1UC[3] / eMIOS_0

00: PCR[3]

01: PCR[27]
10: PCR[40]

PADSEL14 0x50E E0UC[4] / eMIOS_0
00: PCR[4]
01: PCR[28]

PADSEL15 0x50F E0UC[5] / eMIOS_0
00: PCR[5]
01: PCR[29]

PSMI16_19

PADSEL16 0x510 E0UC[6] / eMIOS_0
00: PCR[6]
01: PCR[30]

PADSEL17 0x511 E0UC[7] / eMIOS_0
00: PCR[7]
01: PCR[31]

10: PCR[41]

PADSEL18 0x512 Reserved —

PADSEL19 0x513 Reserved —

PSMI20_23

PADSEL20 0x514 Reserved —

PADSEL21 0x515 E0UC[13] / eMIOS_0
00: PCR[45]

10: PCR[0]

PADSEL22 0x516 E0UC[14] / eMIOS_0
00: PCR[46]

10: PCR[8]

PADSEL23 0x517 E0UC[22] / eMIOS_0
00: PCR[70]
01: PCR[72]

PSMI24_27

PADSEL24 0x518 E0UC[23] / eMIOS_0
00: PCR[71]
01: PCR[73]

PADSEL25 0x519 E0UC[24] / eMIOS_0
00: PCR[60]

10: PCR[75]

PADSEL26 0x51A Reserved —

PADSEL27 0x51B Reserved —

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)
Doc ID 16886 Rev 6 350/868

System Integration Unit Lite (SIUL) RM0045
PSMI28_31

PADSEL28 0x51C Reserved —

PADSEL29 0x51D Reserved —

PADSEL30 0x51E Reserved —

PADSEL31 0x51F Reserved —

PSMI32_35

PADSEL32 0x520 Reserved —

PADSEL33 0x521 Reserved —

PADSEL34 0x522 Reserved —

PADSEL35 0x523 Reserved —

PSMI36_39

PADSEL36 0x524 Reserved —

PADSEL37 0x525 Reserved —

PADSEL38 0x526 E0UC[0] / eMIOS_0
00: PCR[0]

01: PCR[14]

PADSEL39 0x527 E0UC[1] / eMIOS_0
00: PCR[1]

01: PCR[15]

PSMI40_43

PADSEL40 0x528 Reserved —

PADSEL41 0x529 Reserved —

PADSEL42 0x52A Reserved —

PADSEL43 0x52B Reserved —

PSMI44_47

PADSEL44 0x52C Reserved —

PADSEL45 0x52D Reserved —

PADSEL46 0x52E Reserved —

PADSEL47 0x52F Reserved —

PSMI48_51

PADSEL48 0x530 Reserved —

PADSEL49 0x531 Reserved —

PADSEL50 0x532 Reserved —

PADSEL51 0x533 Reserved —

PSMI52_55

PADSEL52 0x534 Reserved —

PADSEL53 0x535 Reserved —

PADSEL54 0x536 Reserved —

PADSEL55 0x537 Reserved —

PSMI56_59

PADSEL56 0x538 Reserved —

PADSEL57 0x539 Reserved —

PADSEL58 0x53A LIN2RX / LINFlex _2
00: PCR[41]
01: PCR[11]

PADSEL59 0x53B Reserved —

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)
351/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
GPIO Pad Data Output Registers (GPDO0_3–GPDO120_123)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled
separately with a byte access.

Caution: Toggling several IOs at the same time can significantly increase the current in a pad group.
Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

GPIO Pad Data Input Registers (GPDI0_3–GPDI120_123)

These registers are used to read the GPIO pad data with a byte access.

PSMI60_63(2)

PADSEL60 0x53C Reserved —

PADSEL61 0x53D Reserved —

PADSEL62 0x53E LIN0RX / LINFlex _0
00: PCR[19]
01: PCR[17]

1. See the signal description chapter of this reference manual for correspondence between PCR and pinout

2. PADSEL63 is not implemented

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(1)

Figure 160. Port GPIO Pad Data Output Register 0–3 (GPDO0_3)

Offsets: 0x0600–0x0678 (31 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

O
[0

]

0 0 0 0 0 0 0

P
D

O
[1

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

O
[2

]

0 0 0 0 0 0 0

P
D

O
[3

]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 159. GPDO0_3 field descriptions

Field Description

PDO[x]

Pad Data Out

This bit stores the data to be driven out on the external GPIO pad controlled by this register.
0 Logic low value is driven on the corresponding GPIO pad when the pad is configured as an

output
1 Logic high value is driven on the corresponding GPIO pad when the pad is configured as an

output
Doc ID 16886 Rev 6 352/868

System Integration Unit Lite (SIUL) RM0045

Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3)

SPC560D30/40 devices ports are constructed such that they contain 16 GPIO pins, for
example PortA[0..15]. Parallel port registers for input (PGPDI) and output (PGPDO) are
provided to allow a complete port to be written or read in one operation, dependent on the
individual pad configuration.

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is
also a masked parallel port output register allowing the user to determine which pins within
a port are written.

While very convenient and fast, this approach does have implications regarding current
consumption for the device power segment containing the port GPIO pads. Toggling several
GPIO pins simultaneously can significantly increase current consumption.

Caution: Caution must be taken to avoid exceeding maximum current thresholds when toggling
multiple GPIO pins simultaneously. Please see datasheet.

Table 161 shows the locations and structure of the PGPDOx registers.

Figure 161. Port GPIO Pad Data Input Register 0–3 (GPDI0_3)

Offsets: 0x0800–0x0878 (31 registers) Access: User read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

P
D

I[0
]

0 0 0 0 0 0 0

P
D

I[1
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

P
D

I[2
]

0 0 0 0 0 0 0

P
D

I[3
]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 160. GPDI0_3 field descriptions

Field Description

PDI[x]

Pad Data In
This bit stores the value of the external GPIO pad associated with this register.

0 Value of the data in signal for the corresponding GPIO pad is logic low
1 Value of the data in signal for the corresponding GPIO pad is logic high
353/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 161, the PGPDO0 register contains fields for Port A and Port B.

● Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

● Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

Parallel GPIO Pad Data In Registers (PGPDI0 – PGPDI3)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the
previous section (Section Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3))
but they are used to read port pins simultaneously.

Note: The port pins to be read need to be configured as inputs but even if a single pin within a port
has IBE set, then you can still read that pin using the parallel port register. However, this
does mean you need to be very careful.

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but
significantly faster since as many as two ports can be read simultaneously with a single 32-
bit read operation.

Table 162 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx
register contains two 16-bit fields, each field containing the values for a separate port.

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

Table 161. PGPDO0 – PGPDO3 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C00 PGPDO0 Port A Port B

0x0C04 PGPDO1 Port C Port D

0x0C08 PGPDO2 Port E Port F

0x0C0C PGPDO3 Port G Port H

Table 162. PGPDI0 – PGPDI3 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C40 PGPDI0 Port A Port B

0x0C44 PGPDI1 Port C Port D

0x0C48 PGPDI2 Port E Port F

0x0C4C PGPDI3 Port G Port H
Doc ID 16886 Rev 6 354/868

System Integration Unit Lite (SIUL) RM0045
For example in Table 162, the PGPDI0 register contains fields for Port A and Port B.

● Bit 0 is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

● Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

Masked Parallel GPIO Pad Data Out Register (MPGPDO0–MPGPDO7)

The MPGPDOx registers are similar in operation to the PGPDOx ports described in
Section Parallel GPIO Pad Data Out Registers (PGPDO0 – PGPDO3), but with two
significant differences:

● The MPGPDOx registers support masked port-wide changes to the data out on the
pads of the respective port. Masking effectively allows selective bitwise writes to the full
16-bit port.

● Each 32-bit MPGPDOx register is associated to only one port.

Note: The MPGPDOx registers may only be accessed with 32-bit writes. 8-bit or 16-bit writes will
not modify any bits in the register and will cause a transfer error response by the module.
Read accesses return ‘0’.

Table 163 shows the locations and structure of the MPGPDOx registers. Each 32-bit
MPGPDOx register contains two 16-bit fields (MASKx and MPPDOx). The MASK field is a
bitwise mask for its associated port. The MPPDO0 field contains the data to be written to the
port.

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 163, the MPGPDO0 register contains field MASK0, which is the
bitwise mask for Port A and field MPPDO0, which contains data to be written to Port A.

● MPGPDO0[0] is the mask bit for Port A[0], MPGPDO0[1] is the mask bit for Port A[1]
and so on, through MPGPDO0[15], which is the mask bit for Port A[15]

● MPGPDO0[16] is the data bit mapped to Port A[0], MPGPDO0[17] is mapped to Port
A[1] and so on, through MPGPDO0[31], which is mapped to Port A[15].

Table 163. MPGPDO0 – MPGPDO7 register map

Offset(1)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

Register Field

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0C80 MPGPDO0 MASK0 (Port A) MPPDO0 (Port A)

0x0C84 MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)

0x0C88 MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)

0x0C8C MPGPDO3 MASK3 (Port D) MPPDO3 (Port D)

0x0C90 MPGPDO4 MASK4 (Port E) MPPDO4 (Port E)

0x0C94 MPGPDO5 MASK5 (Port F) MPPDO5 (Port F)

0x0C98 MPGPDO6 MASK6 (Port G) MPPDO6 (Port G)

0x0C9C MPGPDO7 MASK7 (Port H) MPPDO7 (Port H)
355/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)

Caution: Toggling several IOs at the same time can significantly increase the current in a pad group.
Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

These registers are used to configure the filter counter associated with each digital glitch
filter.

Note: For the pad transition to trigger an interrupt it must be steady for at least the filter period.

Table 164. MPGPDO0..MPGPDO7 field descriptions

Field Description

MASKx

[15:0]

Mask Field

Each bit corresponds to one data bit in the MPPDOx register at the same bit location.

0 Associated bit value in the MPPDOxfield is ignored
1 Associated bit value in the MPPDOx field is written

MPPDOx

[15:0]

Masked Parallel Pad Data Out

Write the data register that stores the value to be driven on the pad in output mode.

Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data
Output Registers (GPDO0_3–GPDO120_123).

The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:

MPPDO[x][y] = PDO[(x*16)+y]

Figure 162. Interrupt Filter Maximum Counter Registers (IFMC0–IFMC23)

Offset: 0x1000–) (registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
MAXCNTx

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 356/868

System Integration Unit Lite (SIUL) RM0045

Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all
digital filter counters in the SIUL.

Table 166. IFCPR field descriptions

19.6 Functional description

19.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It
provides a consistent interface for all pads, both on a by-port and a by-bit basis. The pad
configuration registers (PCRn, see Section Pad Configuration Registers (PCR0–PCR122))

Table 165. IFMC field descriptions

Field Description

MAXCNTx

Maximum Interrupt Filter Counter setting

Filter Period = T(CK)*MAXCNTx + n*T(CK)

Where (n can be 1 to 3)
MAXCNTx can be 0 to 15

T(CK): Prescaled Filter Clock Period, which is FIRC clock prescaled to IFCP value

T(FIRC): Basic Filter Clock Period: 62.5 ns (fFIRC = 16 MHz)

Figure 163. Interrupt Filter Clock Prescaler Register (IFCPR)

Offsets:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
IFCP

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Field Description

IFCP

Interrupt Filter Clock Prescaler setting
Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)

T(FIRC) is the fast internal RC oscillator period.

IFCP can be 0 to 15.
357/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
allow software control of the static electrical characteristics of external pins with a single
write. These are used to configure the following pad features:

● Open drain output enable

● Slew rate control

● Pull control

● Pad assignment

● Control of analog path switches

● Safe mode behavior configuration

19.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 123 GPIO pads organized as ports that can be accessed for data
reads and writes as 32, 16 or 8-bit(p).

Note: Ports are organized as groups of 16 GPIO pads, with the exception of Port J, which has 5. A
32-bit R/W operation accesses two ports simultaneously. A 16-bit operation accesses a full
port and an 8-bit access either the upper or lower byte of a port.

As shown in Figure 164, all port accesses are identical with each read or write being
performed only at a different location to access a different port width.

Figure 164. Data Port example arrangement showing configuration for different port width
accesses

The SIUL has separate data input (GPDIn_n, see Section GPIO Pad Data Input Registers
(GPDI0_3–GPDI120_123)) and data output (GPDOn_n, see Section GPIO Pad Data
Output Registers (GPDO0_3–GPDO120_123)) registers for all pads, allowing the possibility
of reading back an input or output value of a pad directly. This supports the ability to validate
what is present on the pad rather than simply confirming the value that was written to the
data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-
pull or open drain drive). Input registers are read-only and reflect the respective pad value.

When the pad is configured to use one of its alternate functions, the data input value reflects
the respective value of the pad. If a write operation is performed to the data output register
for a pad configured as an alternate function (non-GPIO), this write will not be reflected by
the pad value until reconfigured to GPIO.

p. There are exceptions. Some pads, e.g., precision analog pads, are input only.

31 23

SIUL Base+ 0x0C00

15 7 0

SIUL Base+
15 7 0

SIUL Base+
15 7 0

SIUL Base+
7 0

0x0C03
SIUL Base+

7 0

0x0C02
SIUL Base+

7 0

0x0C01
SIUL Base+

7 0

0x0C00

0x0C02 0x0C00

32-bit Access (2 ports)

16-bit Access (full port) 16-bit Access (full port)

8-bit Access
(half port)

8-bit Access
(half port)

8-bit Access
(half port)

8-bit Access
(half port)
Doc ID 16886 Rev 6 358/868

System Integration Unit Lite (SIUL) RM0045
The allocation of what input function is connected to the pin is defined by the PSMI registers
(PCRn, see Section Pad Selection for Multiplexed Inputs Registers (PSMI0_3–
PSMI60_63)).”

19.6.3 External interrupts

The SIUL supports 24 external interrupts, EIRQ0–EIRQ23. In the signal description chapter
of this reference manual, mapping is shown for external interrupts to pads.

The SIUL supports threeinterrupt vectors to the interrupt controller. Each vector interrupt
has eight external interrupts combined together with the presence of flag generating an
interrupt for that vector if enabled. All of the external interrupt pads within a single group
have equal priority.

See Figure 165 for an overview of the external interrupt implementation.

Figure 165. External interrupt pad diagram

3. 20 interrupts in 100-pin LQFP; 11 interrupts in 64-pin LQFP.

Each interrupt can be enabled or disabled independently. This can be performed using the
IRER. A pad defined as an external interrupt can be configured to recognize interrupts with
an active rising edge, an active falling edge or both edges being active. A setting of having
both edge events disabled is reserved and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and
IFEER.

Each external interrupt supports an individual flag which is held in the Interrupt Status Flag
Register (ISR). The bits in the ISR[EIF] field are cleared by writing a ‘1’ to them; this
prevents inadvertent overwriting of other flags in the register.

EIF[23:16] EIF[15:8] EIF[7:0]

IRE[23:0](1)

Pads

IREE[23:0](1)

Interrupt Edge Enable

IFEE[23:0](1)
Falling

Rising
Edge Detection

Glitch Filter

Interrupt enable

OR OR OR

IRQ_23_16 IRQ_15_08 IRQ_07_00

Interrupt
Vectors

IFE[23:0]

MAXCOUNT[x]

IRQ Glitch Filter enable

Glitch filter Counter_n

IFCP[3:0]

Glitch filter Prescaler

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

359/868 Doc ID 16886 Rev 6

RM0045 System Integration Unit Lite (SIUL)
19.7 Pin muxing
For pin muxing, please see the signal description chapter of this reference manual.
Doc ID 16886 Rev 6 360/868

LIN Controller (LINFlex) RM0045
20 LIN Controller (LINFlex)

20.1 Introduction
The LINFlex (Local Interconnect Network Flexible) controller interfaces the LIN network and
supports the LIN protocol versions 1.3; 2.0 and 2.1; and J2602 in both Master and Slave
modes. LINFlex includes a LIN mode that provides additional features (compared to
standard UART) to ease LIN implementation, improve system robustness, minimize CPU
load and allow slave node resynchronization.

20.2 Main features

20.2.1 LIN mode features

● Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

● Master mode with autonomous message handling

● Classic and enhanced checksum calculation and check

● Single 8-byte buffer for transmission/reception

● Extended frame mode for In-Application Programming (IAP) purposes

● Wake-up event on dominant bit detection

● True LIN field state machine

● Advanced LIN error detection

● Header, response and frame timeout

● Slave mode

– Autonomous header handling

– Autonomous transmit/receive data handling

● LIN automatic resynchronization, allowing operation with 16 MHz fast internal RC
oscillator as clock source

● 16 identifier filters for autonomous message handling in Slave mode

20.2.2 UART mode features

● Full duplex communication

● 8- or 9-bit with parity

● 4-byte buffer for reception, 4-byte buffer for transmission

● 8-bit counter for timeout management
361/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
20.2.3 Features common to LIN and UART

● Fractional baud rate generator

● 3 operating modes for power saving and configuration registers lock:

– Initialization

– Normal

– Sleep

● 2 test modes:

– Loop Back

– Self Test

● Maskable interrupts

20.3 General description
The increasing number of communication peripherals embedded on microcontrollers, for
example CAN, LIN and SPI, requires more and more CPU resources for communication
management. Even a 32-bit microcontroller is overloaded if its peripherals do not provide
high-level features to autonomously handle the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still
generates a non-negligible load on the CPU if the LIN is implemented on a standard UART,
as usually the case.

To minimize the CPU load in Master mode, LINFlex handles the LIN messages
autonomously.

In Master mode, once the software has triggered the header transmission, LINFlex does not
request any software intervention until the next header transmission request in transmission
mode or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlex requires software intervention only to:

● Trigger transmission or reception or data discard depending on the identifier

● Write data into the buffer (transmission mode) or read data from the buffer (reception
mode) after checksum reception

If filter mode is activated for Slave mode, LINFlex requires software intervention only to write
data into the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

● Configure LIN parameters (for example, baud rate or mode)

● Request transmissions

● Handle receptions

● Manage interrupts

● Configure LIN error and timeout detection

● Process diagnostic information

The message buffer stores transmitted or received LIN frames.
Doc ID 16886 Rev 6 362/868

LIN Controller (LINFlex) RM0045

Figure 166. LIN topology network

Figure 167. LINFlex block diagram

20.4 Fractional baud rate generation
The baud rates for the receiver and transmitter are both set to the same value as
programmed in the Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

LI
N

 m
as

te
r

no
de

LI
N

 s
la

ve
 n

od
e

1

LI
N

 s
la

ve
 n

od
e

n

LIN

LINLIN
Rx Tx

LIN
Transceiver

LINFlex
Controller

MCU

LIN Bus

Application

LIN PROTOCOL HANDLER

REGISTER MODEL / APPLICATION INTERFACE

LIN status

Baud rate

Filter configuration

Message

SLAVE

LIN control

CONFIGURATION

MESSAGE HANDLER

MASTER
MESSAGE HANDLER

Identifier Filters(1)

CONTROL STATUS

Buffer
Interface

1. Filter activation optional
363/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
Equation 2

LFDIV is an unsigned fixed point number. The 12-bit mantissa is coded in the LINIBRR and
the fraction is coded in the LINFBRR.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register
values:

Example 4 Deriving LFDIV from LINIBRR and LINFBRR register values

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 5 Programming LFDIV from LINIBRR and LINFBRR register values

To program LFDIV = 25.62d,

LINFBRR = 16 × 0.62 = 9.92, nearest real number 10d = 0xA

LINIBRR = mantissa (25.620d) = 25d = 0x19

Note: The baud counters are updated with the new value of the baud registers after a write to
LINIBRR. Hence the baud register value must not be changed during a transaction. The
LINFBRR (containing the Fraction bits) must be programmed before the LINIBRR.

Note: LFDIV must be greater than or equal to 1.5d, i.e. LINIBRR = 1 and LINFBRR = 8. Therefore,
the maximum possible baudrate is fperiph_set_1_clk / 24.

Tx/ Rx baud =
fperiph_set_1_clk

(16 × LFDIV)

Table 167. Error calculation for programmed baud rates

Baud
rate

fperiph_set_1_clk = 48 MHz fperiph_set_1_clk = 16 MHz

Actual

Value programmed in
the baud rate register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated –

Desired)
baud rate
/ Desired
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

2400 2400.00 1250 0 0.000 2399.88 416 11 -0.005

9600 9600.00 312 8 0.000 9598.08 104 3 -0.02

10417 10416.67 287 16 -0.003 10416.7 95 16 -0.003

19200 19200.00 156 4 0.000 19207.7 52 1 0.04

57600 57623.05 52 1 0.040 57554 17 6 -0.08

115200 115107.91 26 1 -0.080 115108 8 11 -0.08

230400 230769.23 13 0 0.160 231884 4 5 0.644

460800 461538.46 6 8 0.160 457143 2 3 -0.794

921600 923076.92 3 4 0.160 941176 1 1 2.124
Doc ID 16886 Rev 6 364/868

LIN Controller (LINFlex) RM0045
20.5 Operating modes
LINFlex has three main operating modes: Initialization, Normal and Sleep. After a hardware
reset, LINFlex is in Sleep mode to reduce power consumption. The software instructs
LINFlex to enter Initialization mode or Sleep mode by setting the INIT bit or SLEEP bit in the
LINCR1.

Figure 168. LINFlex operating modes

20.5.1 Initialization mode

The software can be initialized while the hardware is in Initialization mode. To enter this
mode the software sets the INIT bit in the LINCR1.

To exit Initialization mode, the software clears the INIT bit.

While in Initialization mode, all message transfers to and from the LIN bus are stopped and
the status of the LIN bus output LINTX is recessive (high).

Entering Initialization mode does not change any of the configuration registers.

To initialize the LINFlex controller, the software selects the mode (LIN Master, LIN Slave or
UART), sets up the baud rate register and, if LIN Slave mode with filter activation is
selected, initializes the identifier list.

20.5.2 Normal mode

Once initilization is complete, software clears the INIT bit in the LINCR1 to put the hardware
into Normal mode.

20.5.3 Low power mode (Sleep)

To reduce power consumption, LINFlex has a low power mode called Sleep mode. To enter
Sleep mode, software sets the SLEEP bit in the LINCR1. In this mode, the LINFlex clock is

SLEEP

INITIALIZATION

NORMAL

S
LE

E
P

SLEEP * IN
IT

RESET

SLEEP

LI
N

R
X

 D
O

M
I N

A
N

T

SLEEP * IN
IT

SLEEP * INIT
365/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
stopped. Consequently, the LINFlex will not update the status bits but software can still
access the LINFlex registers.

LINFlex can be awakened (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of LIN bus activity if automatic wake-up mode is enabled (AWUM bit is set).

On LIN bus activity detection, hardware automatically performs the wake-up sequence by
clearing the SLEEP bit if the AWUM bit in the LINCR1 is set. To exit from Sleep mode if the
AWUM bit is cleared, software clears the SLEEP bit when a wake-up event occurs.

20.6 Test modes
Two test modes are available to the user: Loop Back mode and Self Test mode. They can be
selected by the LBKM and SFTM bits in the LINCR1. These bits must be configured while
LINFlex is in Initialization mode. Once one of the two test modes has been selected, LINFlex
must be started in Normal mode.

20.6.1 Loop Back mode

LINFlex can be put in Loop Back mode by setting the LBKM bit in the LINCR. In Loop Back
mode, the LINFlex treats its own transmitted messages as received messages.

Figure 169. LINFlex in loop back mode

This mode is provided for self test functions. To be independent of external events, the LIN
core ignores the LINRX signal. In this mode, the LINFlex performs an internal feedback from
its Tx output to its Rx input. The actual value of the LINRX input pin is disregarded by the
LINFlex. The transmitted messages can be monitored on the LINTX pin.

20.6.2 Self Test mode

LINFlex can be put in Self Test mode by setting the LBKM and SFTM bits in the LINCR. This
mode can be used for a “Hot Self Test”, meaning the LINFlex can be tested as in Loop Back
mode but without affecting a running LIN system connected to the LINTX and LINRX pins. In
this mode, the LINRX pin is disconnected from the LINFlex and the LINTX pin is held
recessive.

LINTX LINRX

LINFlex

Tx Rx
Doc ID 16886 Rev 6 366/868

LIN Controller (LINFlex) RM0045

Figure 170. LINFlex in self test mode

20.7 Memory map and registers description

20.7.1 Memory map

See the “Memory map” chapter of this reference manual for the base addresses for the
LINFlex modules.

Table 168 shows the LINFlex memory map.

LINFlex

LINTX LINRX

Tx Rx

= 1

Table 168. LINFlex memory map

Address offset Register Location

0x0000 LIN control register 1 (LINCR1) on page 20-368

0x0004 LIN interrupt enable register (LINIER) on page 20-371

0x0008 LIN status register (LINSR) on page 20-373

0x000C LIN error status register (LINESR) on page 20-376

0x0010 UART mode control register (UARTCR) on page 20-377

0x0014 UART mode status register (UARTSR) on page 20-379

0x0018 LIN timeout control status register (LINTCSR) on page 20-381

0x001C LIN output compare register (LINOCR) on page 20-382

0x0020 LIN timeout control register (LINTOCR) on page 20-382

0x0024 LIN fractional baud rate register (LINFBRR) on page 20-383

0x0028 LIN integer baud rate register (LINIBRR) on page 20-384

0x002C LIN checksum field register (LINCFR) on page 20-385

0x0030 LIN control register 2 (LINCR2) on page 20-385

0x0034 Buffer identifier register (BIDR) on page 20-387

0x0038 Buffer data register LSB (BDRL)(1) on page 20-388

0x003C Buffer data register MSB (BDRM)(2) on page 20-388

0x0040 Identifier filter enable register (IFER) on page 20-389
367/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
LIN control register 1 (LINCR1)

0x0044 Identifier filter match index (IFMI) on page 20-390

0x0048 Identifier filter mode register (IFMR) on page 20-391

0x004C Identifier filter control register 0 (IFCR0) on page 20-392

0x0050 Identifier filter control register 1 (IFCR1) on page 20-393

0x0054 Identifier filter control register 2 (IFCR2) on page 20-393

0x0058 Identifier filter control register 3 (IFCR3) on page 20-393

0x005C Identifier filter control register 4 (IFCR4) on page 20-393

0x0060 Identifier filter control register 5 (IFCR5) on page 20-393

0x0064 Identifier filter control register 6 (IFCR6) on page 20-393

0x0068 Identifier filter control register 7 (IFCR7) on page 20-393

0x006C Identifier filter control register 8 (IFCR8) on page 20-393

0x0070 Identifier filter control register 9 (IFCR9) on page 20-393

0x0074 Identifier filter control register 10 (IFCR10) on page 20-393

0x0078 Identifier filter control register 11 (IFCR11) on page 20-393

0x007C Identifier filter control register 12 (IFCR12) on page 20-393

0x0080 Identifier filter control register 13 (IFCR13) on page 20-393

0x0084 Identifier filter control register 14 (IFCR14) on page 20-393

0x0088 Identifier filter control register 15 (IFCR15) on page 20-393

0x008C–0x000F Reserved

1. LSB: Least significant byte

2. MSB: Most significant byte

Table 168. LINFlex memory map (continued)

Address offset Register Location

Figure 171. LIN control register 1 (LINCR1)

Offset: 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CCD CFD LASE AWUM MBL BF SFTM LBKM MME SBDT RBLM SLEEP INIT

W

Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
Doc ID 16886 Rev 6 368/868

LIN Controller (LINFlex) RM0045

Table 169. LINCR1 field descriptions

Field Description

CCD

Checksum calculation disable

This bit disables the checksum calculation (see Table 170).
0 Checksum calculation is done by hardware. When this bit is 0, the LINCFR is read-only.
1 Checksum calculation is disabled. When this bit is set the LINCFR is read/write. User can

program this register to send a software-calculated CRC (provided CFD is 0).
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD

Checksum field disable

This bit disables the checksum field transmission (see Table 170).

0 Checksum field is sent after the required number of data bytes is sent.
1 No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE

LIN Slave Automatic Resynchronization Enable

0 Automatic resynchronization disable.
1 Automatic resynchronization enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM

Automatic Wake-Up Mode
This bit controls the behavior of the LINFlex hardware during Sleep mode.

0 The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR.
1 The Sleep mode is exited automatically by hardware on LINRX dominant state detection. The

SLEEP bit of the LINCR is cleared by hardware whenever WUF bit in the LINSR is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

MBL

LIN Master Break Length

This field indicates the Break length in Master mode (see Table 171).
Note: This field can be written in Initialization mode only. It is read-only in Normal or Sleep

mode.

BF

Bypass filter

0 No interrupt if identifier does not match any filter.
1 An RX interrupt is generated on identifier not matching any filter.
Note:

– If no filter is activated, this bit is reserved and always reads 1.
– This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM

Self Test Mode

This bit controls the Self Test mode. For more details, see Section 20.6.2, Self Test mode.
0 Self Test mode disable.
1 Self Test mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM

Loop Back Mode

This bit controls the Loop Back mode. For more details see Section 20.6.1, Loop Back mode.
0 Loop Back mode disable.
1 Loop Back mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode
369/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)

MME

Master Mode Enable

0 Slave mode enable.
1 Master mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT

Slave Mode Break Detection Threshold

0 11-bit break.
1 10-bit break.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM

Receive Buffer Locked Mode
0 Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming

message overwrites the previous one.
1 Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming

message is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP

Sleep Mode Request
This bit is set by software to request LINFlex to enter Sleep mode.

This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and
the WUF bit in LINSR are set (see Table 172).

INIT
Initialization Request
The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset,
LINFlex enters Normal mode when clearing the INIT bit (see Table 172).

Table 170. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 171. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

Table 169. LINCR1 field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 370/868

LIN Controller (LINFlex) RM0045

LIN interrupt enable register (LINIER)

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 172. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal

Table 171. LIN master break length selection (continued)

MBL Length

Figure 172. LIN interrupt enable register (LINIER)

Offset: 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
SZIE OCIE BEIE CEIE HEIE

0 0
FEIE BOIE LSIE WUIE DBFIE DBEIE DRIE DTIE HRIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 173. LINIER field descriptions

Field Description

SZIE
Stuck at Zero Interrupt Enable
0 No interrupt when SZF bit in LINESR or UARTSR is set.
1 Interrupt generated when SZF bit in LINESR or UARTSR is set.
371/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
OCIE
Output Compare Interrupt Enable

0 No interrupt when OCF bit in LINESR or UARTSR is set.
1 Interrupt generated when OCF bit in LINESR or UARTSR is set.

BEIE
Bit Error Interrupt Enable

0 No interrupt when BEF bit in LINESR is set.
1 Interrupt generated when BEF bit in LINESR is set.

CEIE
Checksum Error Interrupt Enable
0 No interrupt on Checksum error.
1 Interrupt generated when checksum error flag (CEF) in LINESR is set.

HEIE
Header Error Interrupt Enable

0 No interrupt on Break Delimiter error, Synch Field error, Identifier field error.
1 Interrupt generated on Break Delimiter error, Synch Field error, Identifier field error.

FEIE
Framing Error Interrupt Enable

0 No interrupt on Framing error.
1 Interrupt generated on Framing error.

BOIE
Buffer Overrun Interrupt Enable
0 No interrupt on Buffer overrun.
1 Interrupt generated on Buffer overrun.

LSIE

LIN State Interrupt Enable

0 No interrupt on LIN state change.
1 Interrupt generated on LIN state change.

This interrupt can be used for debugging purposes. It has no status flag but is reset when writing
‘1111’ into LINS[0:3] in the LINSR.

WUIE
Wake-up Interrupt Enable

0 No interrupt when WUF bit in LINSR or UARTSR is set.
1 Interrupt generated when WUF bit in LINSR or UARTSR is set.

DBFIE
Data Buffer Full Interrupt Enable
0 No interrupt when buffer data register is full.
1 Interrupt generated when data buffer register is full.

DBEIE
Data Buffer Empty Interrupt Enable

0 No interrupt when buffer data register is empty.
1 Interrupt generated when data buffer register is empty.

DRIE
Data Reception Complete Interrupt Enable
0 No interrupt when data reception is completed.
1 Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set.

DTIE
Data Transmitted Interrupt Enable

0 No interrupt when data transmission is completed.
1 Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR.

HRIE
Header Received Interrupt Enable

0 No interrupt when a valid LIN header has been received.
1 Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR is set.

Table 173. LINIER field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 372/868

LIN Controller (LINFlex) RM0045
LIN status register (LINSR)

Figure 173. LIN status register (LINSR)

Offset: 0x0008 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LINS 0 0 RMB 0 RBSY RPS WUF DBFF DBEF DRF DTF HRF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
373/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
 t

Table 174. LINSR field descriptions

Field Description

LINS

LIN modes / normal mode states

0000: Sleep mode
LINFlex is in Sleep mode to save power consumption.

0001: Initialization mode
LINFlex is in Initialization mode.

Normal mode states

0010: Idle
This state is entered on several events:

– SLEEP bit and INIT bit in LINCR1 have been cleared by software,

– A falling edge has been received on RX pin and AWUM bit is set,
– The previous frame reception or transmission has been completed or aborted.

0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.
Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on

last bit state. If last bit is dominant new LIN state is Break, otherwise Idle.
In Master mode, Break transmission ongoing.

0100: Break Delimiter
In Slave mode, a valid Break has been detected. See Section , LIN control register 1 (LINCR1)
for break length configuration (10-bit or 11-bit). Waiting for a rising edge.

In Master mode, Break transmission has been completed. Break Delimiter transmission is
ongoing.

0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit
time). Receiving Synch Field.
In Master mode, Synch Field transmission is ongoing.

0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving Identifier Field.
In Master mode, identifier transmission is ongoing.

0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR.
In Master mode, header transmission is completed.

1000: Data reception/transmission
Response reception/transmission is ongoing.

1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.

In UART mode, only the following states are flagged by the LIN state bits:

– Init
– Sleep

– Idle

– Data transmission/reception
Doc ID 16886 Rev 6 374/868

LIN Controller (LINFlex) RM0045
RMB

Release Message Buffer

0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data

received in the buffer.
This bit is cleared by hardware in Initialization mode.

RBSY

Receiver Busy Flag

0 Receiver is idle
1 Reception ongoing
Note: In Slave mode, after header reception, if BIDR[DIR] = 0 and reception starts then this bit

is set. In this case, user cannot program LINCR2[DTRQ] = 1.

RPS
LIN receive pin state
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
on the LINRX pin when:
– Slave is in Sleep mode

– Master is in Sleep mode or idle state

This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is
generated if WUIE bit in LINIER is set.

DBFF

Data Buffer Full Flag

This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended
frames (DFL > 7).

This bit must be cleared by software.

It is reset by hardware in Initialization mode.

DBEF

Data Buffer Empty Flag

This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting
extended frames (DFL > 7).

This bit must be cleared by software, once buffer has been filled again, in order to start
transmission.

This bit is reset by hardware in Initialization mode.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.

It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error or framing error.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error if IOBE bit is reset.

Table 174. LINSR field descriptions (continued)

Field Description
375/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
LIN error status register (LINESR)

HRF

Header Reception Flag

This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.

This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.

Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is
to say:

– All filters are inactive and BF bit in LINCR1 is set
– No match in any filter and BF bit in LINCR1 is set

– TX filter match

Table 174. LINSR field descriptions (continued)

Field Description

Figure 174. LIN error status register (LINESR)

Offset: 0x000C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF BEF CEF SFEF BDEF IDPEF FEF BOF 0 0 0 0 0 0 NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 175. LINESR field descriptions

Field Description

SZF
Stuck at Zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. If the dominant
state continues, SZF flag is set again after 87-bit time. It is cleared by software.

OCF

Output Compare Flag

0 No output compare event occurred
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit

is set and IOT bit in LINTCSR is set, LINFlex moves to Idle state.
If LTOM bit in LINTCSR is set, then OCF is cleared by hardware in Initialization mode. If LTOM bit is
cleared, then OCF maintains its status whatever the mode is.

BEF

Bit Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a bit error. This
error can occur during response field transmission (Slave and Master modes) or during header
transmission (in Master mode).

This bit is cleared by software.
Doc ID 16886 Rev 6 376/868

LIN Controller (LINFlex) RM0045
UART mode control register (UARTCR)

CEF

Checksum Error Flag

This bit is set by hardware and indicates that the received checksum does not match the hardware
calculated checksum.

This bit is cleared by software.
Note: This bit is never set if CCD or CFD bit in LINCR1 is set.

SFEF
Synch Field Error Flag
This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch
Field).

BDEF
Break Delimiter Error Flag

This bit is set by hardware and indicates that the received Break Delimiter is too short (less than
one bit time).

IDPEF

Identifier Parity Error Flag

This bit is set by hardware and indicates that a Identifier Parity error occurred.

Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER
is set.

FEF

Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit). This error can occur during reception of any data in the response field (Master or
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF

Buffer Overrun Flag

This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte
overwrites the buffer. It can be cleared by software.

NF
Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Table 175. LINESR field descriptions (continued)

Field Description

Figure 175. UART mode control register (UARTCR)

Offset: 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
TDFL

0
RDFL

0 0 0 0
RXEN TXEN OP PCE WL UART

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
377/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)

Table 176. UARTCR field descriptions

Field Description

TDFL

Transmitter Data Field length

This field sets the number of bytes to be transmitted in UART mode. It can be programmed
only when the UART bit is set. TDFL[0:1] = Transmit buffer size – 1.

00 Transmit buffer size = 1.
01 Transmit buffer size = 2.
10 Transmit buffer size = 3.
11 Transmit buffer size = 4.

RDFL

Receiver Data Field length

This field sets the number of bytes to be received in UART mode. It can be programmed only
when the UART bit is set. RDFL[0:1] = Receive buffer size – 1.

00 Receive buffer size = 1.
01 Receive buffer size = 2.
10 Receive buffer size = 3.
11 Receive buffer size = 4.

RXEN

Receiver Enable

0 Receiver disable.
1 Receiver enable.
This bit can be programmed only when the UART bit is set.

TXEN

Transmitter Enable

0 Transmitter disable.
1 Transmitter enable.
This bit can be programmed only when the UART bit is set.
Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

OP

Odd Parity
0 Sent parity is even.
1 Sent parity is odd.
This bit can be programmed in Initialization mode only when the UART bit is set.

PCE

Parity Control Enable
0 Parity transmit/check disable.
1 Parity transmit/check enable.
This bit can be programmed in Initialization mode only when the UART bit is set.

WL

Word Length in UART mode

0 7-bit data + parity bit.
1 8-bit data (or 9-bit if PCE is set).
This bit can be programmed in Initialization mode only when the UART bit is set.

UART

UART mode enable
0 LIN mode.
1 UART mode.
This bit can be programmed in Initialization mode only.
Doc ID 16886 Rev 6 378/868

LIN Controller (LINFlex) RM0045
UART mode status register (UARTSR)

Figure 176. UART mode status register (UARTSR)

Offset: 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 0 DRF DTF NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 177. UARTSR field descriptions

Field Description

SZF
Stuck at Zero Flag

This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF

OCF Output Compare Flag
0 No output compare event occurred.
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.
An interrupt is generated if the OCIE bit in LINIER register is set.

PE3

Parity Error Flag Rx3
This bit indicates if there is a parity error in the corresponding received byte (Rx3). See Section ,
Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE2

Parity Error Flag Rx2

This bit indicates if there is a parity error in the corresponding received byte (Rx2). See Section ,
Buffer in UART mode. No interrupt is generated if this error occurs.

0 No parity error.
1 Parity error.

PE1

Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). See Section ,
Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.

PE0

Parity Error Flag Rx0

This bit indicates if there is a parity error in the corresponding received byte (Rx0). See Section ,
Buffer in UART mode. No interrupt is generated if this error occurs.

0 No parity error.
1 Parity error.
379/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
RMB

Release Message Buffer

0 Buffer is free.
1 Buffer ready to be read by software. This bit must be cleared by software after reading data

received in the buffer.

This bit is cleared by hardware in Initialization mode.

FEF
Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit).

BOF

Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared.
If RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new
byte overwrites buffer. it can be cleared by software.

RPS
LIN Receive Pin State

This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag

This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
on the LINRX pin in Sleep mode.

This bit must be cleared by software. It is reset by hardware in Initialization mode.

An interrupt i generated if WUIE bit in LINIER is set.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed, that is, the number of
bytes programmed in RDFL[0:1] in UARTCR have been received.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

An interrupt is generated if DRIE bit in LINIER is set.

Note: In UART mode, this flag is set in case of framing error, parity error or overrun.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed, that is, the number of
bytes programmed in TDFL[0:1] have been transmitted.

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

An interrupt is generated if DTIE bit in LINIER is set.

NF
Noise Flag
This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Table 177. UARTSR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 380/868

LIN Controller (LINFlex) RM0045
LIN timeout control status register (LINTCSR)

Figure 177. LIN timeout control status register (LINTCSR)

Offset: 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0
LTOM IOT TOCE

CNT

W

Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Table 178. LINTCSR field descriptions

Field Description

LTOM

LIN timeout mode

0 LIN timeout mode (header, response and frame timeout detection).
1 Output compare mode.

This bit can be set/cleared in Initialization mode only.

IOT

Idle on Timeout

0 LIN state machine not reset to Idle on timeout event.
1 LIN state machine reset to Idle on timeout event.

This bit can be set/cleared in Initialization mode only.

TOCE

Timeout counter enable

0 Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
1 Timeout counter enable. OCF bit is set if an output compare event occurs.

TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in
LIN timeout mode, then hardware takes control of TOCE bit.

CNT
Counter Value
This field indicates the LIN timeout counter value.
381/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
LIN output compare register (LINOCR)

LIN timeout control register (LINTOCR)

Figure 178. LIN output compare register (LINOCR)

Offset: 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
OC21 OC11

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. If LINTCSR[LTOM] = 1, this field is read-only.

Table 179. LINOCR field descriptions

Field Description

OC2
Output compare 2 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

OC1
Output compare 1 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.

Figure 179. LIN timeout control register (LINTOCR)

Offset: 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO

W

Reset 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0
Doc ID 16886 Rev 6 382/868

LIN Controller (LINFlex) RM0045

LIN fractional baud rate register (LINFBRR)

Table 180. LINTOCR field descriptions

Field Description

RTO

Response timeout value

This field contains the response timeout duration (in bit time) for 1 byte.

The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 × TResponse_Nominal

HTO

Header timeout value

This field contains the header timeout duration (in bit time). This value does not include the
Break and the Break Delimiter. The reset value is the 0x2C = 44, corresponding to
THeader_Maximum. Programming LINSR[MME] = 1 changes the HTO value to 0x1C = 28.

This field can be written only in Slave mode.

Figure 180. LIN fractional baud rate register (LINFBRR)

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 181. LINFBRR field descriptions

Field Description

DIV_F

Fraction bits of LFDIV

The 4 fraction bits define the value of the fraction of the LINFlex divider (LFDIV).

Fraction (LFDIV) = Decimal value of DIV_F / 16.

This field can be written in Initialization mode only.
383/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
LIN integer baud rate register (LINIBRR)

Figure 181. LIN integer baud rate register (LINIBRR)

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DIV_M

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 182. LINIBRR field descriptions

Field Description

DIV_M
LFDIV mantissa

This field defines the LINFlex divider (LFDIV) mantissa value (see Table 183). This field can be
written in Initialization mode only.

Table 183. Integer baud rate selection

DIV_M[0:12] Mantissa

0x0000 LIN clock disabled

0x0001 1

... ...

0x1FFE 8190

ox1FFF 8191
Doc ID 16886 Rev 6 384/868

LIN Controller (LINFlex) RM0045
LIN checksum field register (LINCFR)

LIN control register 2 (LINCR2)

Figure 182. LIN checksum field register (LINCFR)

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 184. LINCFR field descriptions

Field Description

CF
Checksum bits

When LINCR1[CCD] = 0, this field is read-only. When LINCR1[CCD] = 1, this field is read/write.
See Table 170.

Figure 183. LIN control register 2 (LINCR2)

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0
IOBE IOPE

0 0 0 0 0 0 0 0 0 0 0 0 0

W WURQ DDRQ DTRQ ABRQ HTRQ

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
385/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)

Table 185. LINCR2 field descriptions

Field Description

IOBE

Idle on Bit Error

0 Bit error does not reset LIN state machine.
1 Bit error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

IOPE

Idle on Identifier Parity Error

0 Identifier Parity error does not reset LIN state machine.
1 Identifier Parity error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

WURQ

Wake-up Generation Request

Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character
has been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit
cannot be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit
error is not checked when transmitting the wake-up request.

DDRQ

Data Discard Request

Set by software to stop data reception if the frame does not concern the node. This bit is reset by
hardware once LINFlex has moved to idle state. In Slave mode, this bit can be set only when HRF
bit in LINSR is set and identifier did not match any filter.

DTRQ

Data Transmission Request

Set by software in Slave mode to request the transmission of the LIN Data field stored in the
Buffer data register. This bit can be set only when HRF bit in LINSR is set.

Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when BIDR[DIR] = 1 and header transmission is
completed.

ABRQ

Abort Request

Set by software to abort the current transmission.
Cleared by hardware when the transmission has been aborted. LINFlex aborts the transmission
at the end of the current bit.
This bit can also abort a wake-up request.

It can also be used in UART mode.

HTRQ

Header Transmission Request

Set by software to request the transmission of the LIN header.

Cleared by hardware when the request has been completed or aborted.

This bit has no effect in UART mode.
Doc ID 16886 Rev 6 386/868

LIN Controller (LINFlex) RM0045
Buffer identifier register (BIDR)

Figure 184. Buffer identifier register (BIDR)

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0
ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 186. BIDR field descriptions

Field Description

DFL

Data Field Length

This field defines the number of data bytes in the response part of the frame.

DFL = Number of data bytes – 1.
Normally, LIN uses only DFL[2:0] to manage frames with a maximum of 8 bytes of data. Identifier
filters are compatible with DFL[2:0] only. DFL[5:3] are provided to manage extended frames.

DIR

Direction

This bit controls the direction of the data field.
0 LINFlex receives the data and copies them in the BDR registers.
1 LINFlex transmits the data from the BDR registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN

specification 2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and

earlier.

In LIN slave mode (MME bit cleared in LINCR1), this bit must be configured before the header
reception. If the slave has to manage frames with 2 types of checksum, filters must be configured.

ID
Identifier

Identifier part of the identifier field without the identifier parity.
387/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
Buffer data register LSB (BDRL)

Buffer data register MSB (BDRM)

Figure 185. Buffer data register LSB (BDRL)

Offset: 0x0038 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 187. BDRL field descriptions

Field Description

DATA3
Data Byte 3

Data byte 3 of the data field.

DATA2
Data Byte 2

Data byte 2 of the data field.

DATA1
Data Byte 1

Data byte 1 of the data field.

DATA0
Data Byte 0

Data byte 0 of the data field.

Figure 186. Buffer data register MSB (BDRM)

Offset: 0x003C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 388/868

LIN Controller (LINFlex) RM0045

Identifier filter enable register (IFER)

Table 188. BDRM field descriptions

Field Description

DATA7
Data Byte 7

Data byte 7 of the data field.

DATA6
Data Byte 6

Data byte 6 of the data field.

DATA5
Data Byte 5

Data byte 5 of the data field.

DATA4
Data Byte 4

Data byte 4 of the data field.

Figure 187. Identifier filter enable register (IFER)

Offset: 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
FACT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 189. IFER field descriptions

Field Description

FACT

Filter activation (see Table 190)
0 Filters 2n and 2n + 1 are deactivated.
1 Filters 2n and 2n + 1 are activated.

This field can be set/cleared in Initialization mode only.

Table 190. IFER[FACT] configuration

Bit Value Result

FACT[0]
0 Filters 0 and 1 are deactivated.

1 Filters 0 and 1 are activated.

FACT[1]
0 Filters 2 and 3 are deactivated.

1 Filters 2 and 3 are activated.
389/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
Identifier filter match index (IFMI)

FACT[2]
0 Filters 4 and 5 are deactivated.

1 Filters 4 and 5 are activated.

FACT[3]
0 Filters 6 and 7 are deactivated.

1 Filters 6 and 7 are activated.

FACT[4]
0 Filters 8 and 9 are deactivated.

1 Filters 8 and 9 are activated.

FACT[5]
0 Filters 10 and 11 are deactivated.

1 Filters 10 and 11 are activated.

FACT[6]
0 Filters 12 and 13 are deactivated.

1 Filters 12 and 13 are activated.

FACT[7]
0 Filters 14 and 15 are deactivated.

1 Filters 14 and 15 are activated.

Table 190. IFER[FACT] configuration (continued)

Bit Value Result

Figure 188. Identifier filter match index (IFMI)

Address: Base + 0x0044 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI[0:4]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 191. IFMI field descriptions

Field Description

0:26 Reserved

IFMI[0:4]
27:31

Filter match index
This register contains the index corresponding to the received identifier. It can be used to directly
write or read the data in SRAM (see Section , Slave mode for more details).
When no filter matches, IFMI[0:4] = 0. When Filter n is matching, IFMI[0:4] = n + 1.
Doc ID 16886 Rev 6 390/868

LIN Controller (LINFlex) RM0045
Identifier filter mode register (IFMR)

Figure 189. Identifier filter mode register (IFMR)

Offset: 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 192. IFMR field descriptions

Field Description

IFM
Filter mode (see Table 193).

0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).

Table 193. IFMR[IFM] configuration

Bit Value Result

IFM[0]
0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1]
0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2]
0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

IFM[3]
0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4]
0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5]
0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).

IFM[6]
0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).
391/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
Identifier filter control register (IFCR2n)

Note: This register can be written in Initialization mode only.

IFM[7]
0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Table 193. IFMR[IFM] configuration (continued)

Bit Value Result

Figure 190. Identifier filter control register (IFCR2n)

Offsets : 0x004C–0x0084 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 194. IFCR2n field descriptions

Field Description

DFL
Data Field Length
This field defines the number of data bytes in the response part of the frame.

DIR

Direction
This bit controls the direction of the data field.

0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification

2.0 and higher.
1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and

earlier.

ID
Identifier
Identifier part of the identifier field without the identifier parity.
Doc ID 16886 Rev 6 392/868

LIN Controller (LINFlex) RM0045
Identifier filter control register (IFCR2n + 1)

Note: This register can be written in Initialization mode only.

20.8 Functional description

20.8.1 UART mode

The main features in the UART mode are

● Full duplex communication

● 8- or 9-bit data with parity

● 4-byte buffer for reception, 4-byte buffer for transmission

● 8-bit counter for timeout management

Figure 191. Identifier filter control register (IFCR2n + 1)

Offsets: 0x0050–0x0088 (8 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
DFL DIR CCS

0 0 ID

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 195. IFCR2n + 1 field descriptions

Field Description

DFL

Data Field Length

This field defines the number of data bytes in the response part of the frame.

DFL = Number of data bytes – 1.

DIR

Direction

This bit controls the direction of the data field.
0 LINFlex receives the data and copies them in the BDRL and BDRM registers.
1 LINFlex transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.
0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN

specification 2.0 and higher.
1 Classic Checksum covering Data field only. This is compatible with LIN specification 1.3 and

earlier.

ID
Identifier

Identifier part of the identifier field without the identifier parity
393/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
8-bit data frames: The 8th bit can be a data or a parity bit. Even/Odd Parity can be selected
by the Odd Parity bit in the UARTCR. An even parity is set if the modulo-2 sum of the 7 data
bits is 1. An odd parity is cleared in this case.

Figure 192. UART mode 8-bit data frame

9-bit frames: The 9th bit is a parity bit. Even/Odd Parity can be selected by the Odd Parity
bit in the UARTCR. An even parity is set if the modulo-2 sum of the 8 data bits is 1. An odd
parity is cleared in this case.

Figure 193. UART mode 9-bit data frame

Buffer in UART mode

The 8-byte buffer is divided into two parts: one for receiver and one for transmitter as shown
in Table 196.

UART transmitter

In order to start transmission in UART mode, you must program the UART bit and the
transmitter enable (TXEN) bit in the UARTCR to 1. Transmission starts when DATA0 (least

Start
bit D0 D7

Stop
bit

Byte Field

— Data bit
— Parity bit

D1 D2 D3 D4 D5 D6

Start
bit D0 D7 Stop

bit

Byte Field

— Parity bit

D1 D2 D3 D4 D5 D6 D8

Table 196. Message buffer

Buffer data register LIN mode UART mode

BDRL[0:31]

Transmit/Receive
buffer

DATA0[0:7]

Transmit buffer

Tx0

DATA1[0:7] Tx1

DATA2[0:7] Tx2

DATA3[0:7] Tx3

BDRM[0:31]

DATA4[0:7]

Receive buffer

Rx0

DATA5[0:7] Rx1

DATA6[0:7] Rx2

DATA7[0:7] Rx3
Doc ID 16886 Rev 6 394/868

LIN Controller (LINFlex) RM0045
significant data byte) is programmed. The number of bytes transmitted is equal to the value
configured by UARTCR[TDFL] (see Table 176).

The Transmit buffer is 4 bytes, hence a 4-byte maximum transmission can be triggered.
Once the programmed number of bytes has been transmitted, the UARTSR[DTF] bit is set.
If UARTCR[TXEN] is reset during a transmission then the current transmission is completed
and no further transmission can be invoked.

UART receiver

The UART receiver is active as soon as the user exits Initialization mode and programs
UARTCR[RXEN] = 1. There is a dedicated 4-byte data buffer for received data bytes. Once
the programmed number (RDFL bits) of bytes has been received, the UARTSR[DRF] bit is
set. If the RXEN bit is reset during a reception then the current reception is completed and
no further reception can be invoked until RXEN is set.

If a parity error occurs during reception of any byte, then the corresponding PEx bit in the
UARTSR is set. No interrupt is generated in this case. If a framing error occurs in any byte
(UARTSR[FE] = 1) then an interrupt is generated if the LINIER[FEIE] bit is set.

If the last received frame has not been read from the buffer (that is, RMB bit is not reset by
the user) then upon reception of the next byte an overrun error occurs (UARTSR[BOF] = 1)
and one message will be lost. Which message is lost depends on the configuration of
LINCR1[RBLM].

● If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in
the buffer is overwritten by the new incoming message. In this case the latest message
is always available to the application.

● If the buffer lock function is enabled (LINCR1[RBLM] = 1) the most recent message is
discarded and the previous message is available in the buffer.

An interrupt is generated if the LINIER[BOIE] bit is set.

Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In UART mode, the
LINFlex controller acknowledges a clock gating request once the data transmission and
data reception are completed, that is, once the Transmit buffer is empty and the Receive
buffer is full.

20.8.2 LIN mode

LIN mode comprises four submodes:

● Master mode

● Slave mode

● Slave mode with identifier filtering

● Slave mode with automatic resynchronization

These submodes are described in the following pages.

Master mode

In Master mode the application uses the message buffer to handle the LIN messages.
Master mode is selected when the LINCR1[MME] bit is set.
395/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
LIN header transmission

According to the LIN protocol any communication on the LIN bus is triggered by the Master
sending a header. The header is transmitted by the Master task while the data is transmitted
by the Slave task of a node.

To transmit a header with LINFlex the application must set up the identifier, the data field
length and configure the message (direction and checksum type) in the BIDR before
requesting the header transmission by setting LINCR2[HTRQ].

Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the
header, then the slave task of the master has to send the data in the Response part of the
LIN frame. Therefore, the application must provide the data to LINFlex before requesting the
header transmission. The application stores the data in the message buffer BDR. According
to the data field length, LINFlex transmits the data and the checksum. The application uses
the BDR[CCS] bit to configure the checksum type (classic or enhanced) for each message.

If the response has been sent successfully, the LINSR[DTF] bit is set. In case of error, the
DTF flag is not set and the corresponding error flag is set in the LINESR (see Section , Error
handling).

It is possible to handle frames with a Response size larger than 8 bytes of data (extended
frames). If the data field length in the BIDR is configured with a value higher than 8 data
bytes, the LINSR[DBEF] bit is set after the first 8 bytes have been transmitted. The
application has to update the buffer BDR before resetting the DBEF bit. The transmission of
the next bytes starts when the DBEF bit is reset.

After the last data byte (or the checksum byte) has been sent, the DTF flag is set.

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the application
sets this bit the response is sent by LINFlex (publisher). Resetting this bit configures the
message buffer as subscriber.

Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding
identifier. LINFlex stores the data received from the slave in the message buffer and stores
the message status in the LINSR.

If the response has been received successfully, the LINSR[DRF] is set. In case of error, the
DRF flag is not set and the corresponding error flag is set in the LINESR (see Section , Error
handling).

It is possible to handle frames with a Response size larger than 8 bytes of data (extended
frames). If the data field length in the BIDR is configured with a value higher than 8 data
bytes, the LINSR[DBFF] bit is set once the first 8 bytes have been received. The application
has to read the buffer BDR before resetting the DBFF bit. Once the last data byte (or the
checksum byte) has been received, the DRF flag is set.

Data discard

To discard data from a slave, the BIDR[DIR] bit must be reset and the LINCR2[DDRQ] bit
must be set before starting the header transmission.
Doc ID 16886 Rev 6 396/868

LIN Controller (LINFlex) RM0045
Error detection

LINFlex is able to detect and handle LIN communication errors. A code stored in the LIN
error status register (LINESR) signals the errors to the software.

In Master mode, the following errors are detected:

● Bit error: During transmission, the value read back from the bus differs from the
transmitted value.

● Framing error: A dominant state has been sampled on the stop bit of the currently
received character (synch field, identifier field or data field).

● Checksum error: The computed checksum does not match the received one.

● Response and Frame timeout: See Section 20.8.3, 8-bit timeout counter, for more
details.

Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the
frame after the corrupted bit. LINFlex returns to idle state and an interrupt is generated if
LINIER[BEIE] = 1.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex
returns immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex
returns to idle state. An interrupt is generated if LINIER[CEIE] = 1.

Slave mode

In Slave mode the application uses the message buffer to handle the LIN messages. Slave
mode is selected when LINCR1[MME] = 0.

Data transmission (transceiver as publisher)

When LINFlex receives the identifier, the LINSR[HRF] is set and, if LINIER[HRIE] = 1, an
RX interrupt is generated. The software must read the received identifier in the BIDR, fill the
BDR registers, specify the data field length using the BIDR[DFL] and trigger the data
transmission by setting the LINCR2[DTRQ] bit.

One or several identifier filters can be configured for transmission by setting the IFCRx[DIR]
bit and activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in transmission and activated, and if the
received identifier matches the filter, a specific TX interrupt (instead of an RX interrupt) is
generated.

Typically, the application has to copy the data from SRAM locations to the BDAR. To copy
the data to the right location, the application has to identify the data by means of the
identifier. To avoid this and to ease the access to the SRAM locations, the LINFlex controller
provides a Filter Match Index. This index value is the number of the filter that matched the
received identifier.

The software can use the index in the IFMI register to directly access the pointer that points
to the right data array in the SRAM area and copy this data to the BDAR (see Figure 195).

Using a filter avoids the software having to configure the direction, the data field length and
the checksum type in the BIDR. The software fills the BDAR and triggers the data
transmission by programming LINCR2[DTRQ] = 1.
397/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
If LINFlex cannot provide enough TX identifier filters to handle all identifiers the software has
to transmit data for, then a filter can be configured in mask mode (see Section , Slave mode
with identifier filtering) in order to manage several identifiers with one filter only.

Data reception (transceiver as subscriber)

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an
RX interrupt is generated. The software must read the received identifier in the BIDR and
specify the data field length using the BIDR[DFL] field before receiving the stop bit of the
first byte of data field.

When the checksum reception is completed, an RX interrupt is generated to allow the
software to read the received data in the BDR registers.

One or several identifier filters can be configured for reception by programming
IFCRx[DIR] = 0 and activated by setting one or several bits in the IFER.

When at least one identifier filter is configured in reception and activated, and if the received
identifier matches the filter, an RX interrupt is generated after the checksum reception only.

Typically, the application has to copy the data from the BDAR to SRAM locations. To copy
the data to the right location, the application has to identify the data by means of the
identifier. To avoid this and to ease the access to the SRAM locations, the LINFlex controller
provides a Filter Match Index. This index value is the number of the filter that matched the
received identifier.

The software can use the index in the IFMI register to directly access the pointer that points
to the right data array in the SRAM area and copy this data from the BDAR to the SRAM
(see Figure 195).

Using a filter avoids the software reading the ID value in the BIDR, and configuring the
direction, the data field length and the checksum type in the BIDR.

If LINFlex cannot provide enough RX identifier filters to handle all identifiers the software
has to receive the data for, then a filter can be configured in mask mode (see Section , Slave
mode with identifier filtering) in order to manage several identifiers with one filter only.

Data discard

When LINFlex receives the identifier, the LINSR[HRF] bit is set and, if LINIER[HRIE] = 1, an
RX interrupt is generated. If the received identifier does not concern the node, you must
program LINCR2[DDRQ] = 1. LINFlex returns to idle state after bit DDRQ is set.

Error detection

In Slave mode, the following errors are detected:

● Header error: An error occurred during header reception (Break Delimiter error,
Inconsistent Synch Field, Header Timeout).

● Bit error: During transmission, the value read back from the bus differs from the
transmitted value.

● Framing error: A dominant state has been sampled on the stop bit of the currently
received character (synch field, identifier field or data field).

● Checksum error: The computed checksum does not match the received one.
Doc ID 16886 Rev 6 398/868

LIN Controller (LINFlex) RM0045
Error handling

In case of Bit Error detection during transmission, LINFlex stops the transmission of the
frame after the corrupted bit. LINFlex returns to idle state and an interrupt is generated if the
BEIE bit in the LINIER is set.

During reception, a Framing Error leads LINFlex to discard the current frame. LINFlex
returns immediately to idle state. An interrupt is generated if LINIER[FEIE] = 1.

During reception, a Checksum Error leads LINFlex to discard the received frame. LINFlex
returns to idle state. An interrupt is generated if LINIER[CEIE] = 1.

During header reception, a Break Delimiter error, an Inconsistent Synch Field or a Timeout
error leads LINFlex to discard the header. An interrupt is generated if LINIER[HEIE] = 1.
LINFlex returns to idle state.

Valid header

A received header is considered as valid when it has been received correctly according to
the LIN protocol.

If a valid Break Field and Break Delimiter come before the end of the current header or at
any time during a data field, the current header or data is discarded and the state machine
synchronizes on this new break.

Valid message

A received or transmitted message is considered as valid when the data has been received
or transmitted without error according to the LIN protocol.

Overrun

Once the message buffer is full, the next valid message reception leads to an overrun and a
message is lost. The hardware sets the BOF bit in the LINSR to signal the overrun
condition. Which message is lost depends on the configuration of the RX message buffer:

● If the buffer lock function is disabled (LINCR1[RBLM] = 0) the last message stored in
the buffer is overwritten by the new incoming message. In this case the latest message
is always available to the application.

● If the buffer lock function is enabled (LINCR1[RBLM] = 0) the most recent message is
discarded and the previous message is available in the buffer.

Slave mode with identifier filtering

In the LIN protocol the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. On header reception a slave node decides—depending on the
identifier value—whether the software needs to receive or send a response. If the message
does not target the node, it must be discarded without software intervention.

To fulfill this requirement, the LINFlex controller provides configurable filters in order to
request software intervention only if needed. This hardware filtering saves CPU resources
that would otherwise be needed by software for filtering.

Filter mode

Usually each of the eight IFCR registers filters one dedicated identifier, but this limits the
number of identifiers LINFlex can handle to the number of IFCR registers implemented in
399/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
the device. Therefore, in order to be able to handle more identifiers, the filters can be
configured in mask mode.

In identifier list mode (the default mode), both filter registers are used as identifier
registers. All bits of the incoming identifier must match the bits specified in the filter register.

In mask mode, the identifier registers are associated with mask registers specifying which
bits of the identifier are handled as “must match” or as “don’t care”. For the bit mapping and
registers organization, please see Figure 194.

Figure 194. Filter configuration—register organization

Identifier filter mode configuration

The identifier filters are configured in the IFCRx registers. To configure an identifier filter the
filter must first be deactivated by programming IFER[FACT] = 0.. The identifier list or
identifier mask mode for the corresponding IFCRx registers is configured by the IFMR[IFM]
bit. For each filter, the IFCRx register configures the ID (or the mask), the direction (TX or
RX), the data field length, and the checksum type.

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter
generate a TX interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter
generate an RX interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s)
generate an RX interrupt.

IFCRnIdentifier

IDBit Mapping

Identifier Filter Register Organization

15 0

DFL CCSDIR

Identifier Filter Configuration

IFCR2nIdentifier
Identifier IFCR2n + 1

IFM = 0

Identifier Filter Mode

IFCR2nIdentifier
Mask IFCR2n + 1

IFM = 1

Identifier List Mode

Mask Mode
Doc ID 16886 Rev 6 400/868

LIN Controller (LINFlex) RM0045

Figure 195. Identifier match index

Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fperiph_set_1_clk tolerance is
greater than 1.5%. This feature compensates a fperiph_set_1_clk deviation up to 14%, as
specified in LIN standard.

This mode is similar to Slave mode as described in Section , Slave mode, with the addition
of automatic resynchronization enabled by the LASE bit. In this mode LINFlex adjusts the
fractional baud rate generator after each Synch Field reception.

Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN Break, the time duration
between five falling edges on RDI is sampled on fperiph_set_1_clk and the result of this
measurement is stored in an internal 19-bit register called SM (not user accessible) (see
Figure 196). Then the LFDIV value (and its associated registers LINIBRR and LINFBRR)
are automatically updated at the end of the fifth falling edge. During LIN Synch Field

Table 197. Filter to interrupt vector correlation

Number of
active filters

Number of active filters
configured as TX

Number of active filters
configured as RX

Interrupt vector

0 0 0 RX interrupt on all identifiers

a
(a > 0)

a 0

— TX interrupt on identifiers
matching the filters,
— RX interrupt on all other
identifiers if BF bit is set, no RX
interrupt if BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

— TX interrupt on identifiers
matching the TX filters,
— RX interrupt on identifiers
matching the RX filters,
— all other identifiers discarded
(no interrupt)

b
(b > 0)

0 b

— RX interrupt on identifiers
matching the filters,
— TX interrupt on all other
identifiers if BF bit is set, no TX
interrupt if BF bit is reset

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
pointers

table

SRAM

@

+

401/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
measurement, the LINFlex state machine is stopped and no data is transferred to the data
register.

Figure 196. LIN synch field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 12 bits in the LINIBRR
and the fraction is coded on 4 bits in the LINFBRR.

If LASE bit = 1 then LFDIV is automatically updated at the end of each LIN Synch Field.

Three internal registers (not user-accessible) manage the auto-update of the LINFlex divider
(LFDIV):

● LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

● LFDIV_MEAS (results of the Field Synch measurement)

● LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a
complete frame, hardware reloads LFDIV with LFDIV_NOM.

Deviation error on the Synch Field

The deviation error is checked by comparing the current baud rate (relative to the slave
oscillator) with the received LIN Synch Field (relative to the master oscillator). Two checks
are performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling
edge of the Synch Field:

● If D1 > 14.84%, LHE is set.

● If D1 < 14.06%, LHE is not set.

● If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing
between the signal on LINFlex_RX pin the fperiph_set_1_clk clock.

The second check is based on a measurement of time between each falling edge of the
Synch Field:

● If D2 > 18.75%, LHE is set.

● If D2 < 15.62%, LHE is not set.

● If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing
between the signal on LINFlex_RX pin the fperiph_set_1_clk clock.

LIN Break
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start
Bit

LIN Synch Field

Measurement = 8.TBR = SM.Tperiph_set_1_clk

LFDIV(n) LFDIV(n+1)

LFDIV = TBR / (16.Tperiph_set_1_clk) = Rounding (SM / 128)

Tperiph_set_1_clk = Clock period

TBR = baud rate period

TBR

TBR = 16.LFDIV.Tperiph_set_1_clk

SM = Synch Measurement Register (19 bits)

delim.
Doc ID 16886 Rev 6 402/868

LIN Controller (LINFlex) RM0045
Note that the LINFlex does not need to check if the next edge occurs slower than expected.
This is covered by the check for deviation error on the full synch byte.

Clock gating

The LINFlex clock can be gated from the Mode Entry module (MC_ME). In LIN mode, the
LINFlex controller acknowledges a clock gating request once the frame transmission or
reception is completed.

20.8.3 8-bit timeout counter

LIN timeout mode

Setting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes
read-only, and OC1 and OC2 output compare values in the LINOCR are automatically
updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the LINCR1[MME] bit), the 8-bit timeout counter
will behave differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or
reception (that is, if the data field length in the BIDR is configured with a value higher than 8
data bytes).

LIN Master mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values.
Header timeout value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (see Figure 197).

When LINFlex moves from Break delimiter state to Synch Field state (see Section , LIN
status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame
timeout value for an 8-byte frame),

● the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9
(response timeout value for an 8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is
reset.

If there is no response, frame timeout value does not take into account the DFL value, and
an 8-byte response (DFL = 7) is always assumed.

LIN Slave mode

The LINTOCR[RTO] field can be used to tune response timeout and frame timeout values.
Header timeout value is fixed to HTO.
403/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlex)
OC1 checks THeader and TResponse and OC2 checks TFrame (see Figure 197).

When LINFlex moves from Break state to Break Delimiter state (see Section , LIN status
register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame
timeout value for an 8-byte frame)),

● The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9
(response timeout value for an 8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is
reset.

Figure 197. Header and response timeout

Output compare mode

Programming LINTCSR[LTOM] = 0 enables the output compare mode. This mode allows
the user to fully customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

20.8.4 Interrupts

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1

OC2

Response
space

Table 198. LINFlex interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI (1)

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI
Doc ID 16886 Rev 6 404/868

LIN Controller (LINFlex) RM0045
Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt (2) LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

1. In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector is RXI
or TXI depending on the value of identifier received.

2. For debug and validation purposes

Table 198. LINFlex interrupt control (continued)

Interrupt event Event flag bit Enable control bit Interrupt vector
405/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21 LIN Controller (LINFlexD)

21.1 Introduction
The LINFlexD (Local Interconnect Network Flexible with DMA support) controller interfaces
the LIN network and supports the LIN protocol versions 1.3, 2.0, 2.1 and J2602 in both
Master and Slave modes. LINFlexD includes a LIN mode that provides additional features
(compared to standard UART) to ease LIN implementation, improve system robustness,
minimize CPU load and allow slave node resynchronization.

Figure 198 shows the LINFlexD block diagram.

Figure 198. LINFlexD block diagram

21.2 Main features
The LINFlexD controller can operate in several modes, each of which has a distinct set of
features. These distinct features are described in the following sections.

LIN PROTOCOL HANDLER

REGISTER MODEL / APPLICATION INTERFACE

Buffer
Interface

LIN Status

Baud rate

Filter Config.

Message

SLAVE

LIN Control

CONFIG
CONTROL
STATUS

MESSAGE HANDLER

MASTER
MESSAGE HANDLER

ID Filters(1)

1 Filter activation optional
Doc ID 16886 Rev 6 406/868

LIN Controller (LINFlexD) RM0045
In addition, the LINFlexD controller has several features common to all modes:

● Fractional baud rate generator

● 3 operating modes for power saving and configuration registers lock

– Initialization

– Normal

– Sleep

● 2 test modes

– Loop Back

– Self Test

● Maskable interrupts

21.2.1 LIN mode features

● Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602

● Master mode with autonomous message handling

● Classic and enhanced checksum calculation and check

● Single 8-byte buffer for transmission/reception

● Extended frame mode for In-application Programming purposes

● Wake-up event on dominant bit detection

● True LIN field state machine

● Advanced LIN error detection

● Header, response and frame timeout

● Slave mode

– Autonomous header handling

– Autonomous transmit/receive data handling

● LIN automatic resynchronization, allowing operation with FIRC as clock source

● Identifier filters for autonomous message handling in Slave mode

21.2.2 UART mode features

● Full-duplex communication

● Selectable frame size:

– 8-bit frame

– 9-bit frame

– 16-bit frame

– 17-bit frame

● Selectable parity:

– Even

– Odd

– 0

– 1

● 4-byte buffer for reception, 4-byte buffer for transmission

● 12-bit counter for timeout management
407/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.3 The LIN protocol
The LIN (Local Interconnect Network) is a serial communication protocol. The topology of a
LIN network is shown in Figure 199. A LIN network consists of:

● One master node

● Several slave nodes

● The LIN bus

A master node contains the master task as well as a slave task, all other nodes contain a
slave task only. The master node decides when and which frame shall be transferred on the
bus. The slave task provides the data to be transported by the frame.

Figure 199. LIN network topology

21.3.1 Dominant and recessive logic levels

The LIN bus defines two logic levels, “dominant” and “recessive”, as follows:

● Dominant: logical low level (0)

● Recessive: logical high level (1)

21.3.2 LIN frames

A frame consists of a header provided by the master task and a response provided by the
slave task, as shown in Figure 200.

LIN master node LIN slave node 1 LIN slave node n

LIN

LINLIN
Rx Tx

LIN
Transceiver

LINFlexD
Controller

MCU

LIN Bus

Application
Doc ID 16886 Rev 6 408/868

LIN Controller (LINFlexD) RM0045

Figure 200. LIN frame structure

21.3.3 LIN header

The header consists of:

● A break field (described in Section , Break field)

● A sync byte field (described in Section , Sync byte field)

● An identifier (described in Section , Identifier)

The slave task associated with the identifier provides the response.

Break field

The break field, shown in Figure 201, is used to signal the beginning of a new frame. It is
always generated by the master and consists of:

● At least 13 dominant bits including the start bit

● At least one recessive bit that functions as break delimiter

Figure 201. Break field

Sync byte field

The sync pattern is a byte consisting of alternating dominant and recessive bits as shown in
Figure 202. It forms a data value of 0x55.

Header

Response

Header

Response

Master Task

Slave Task 1

Slave Task 2

Frame slot

Frame

Header

Response
space Response

Start
bit

Break
Delimiter
409/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 202. Sync pattern

21.3.4 Response

The response consists of:

● A data field (described in Section , Data field)

● A checksum (described in Section , Checksum)

The slave task interested in the data associated with the identifier receives the response
and verifies the checksum.

Data field

The structure of the data field transmitted on the LIN bus is shown in Figure 203. The LSB of
the data is sent first and the MSB last. The start bit is encoded as a dominant bit and the
stop bit is encoded as a recessive bit.

Figure 203. Structure of the data field

Identifier

The identifier, shown in Figure 204, consists of two sub-fields:

● The identifier value (in bits 0–5)

● The identifier parity (in bits 6–7)

The parity bits P0 and P1 are defined as follows:

● P0 = ID0 xor ID1 xor ID2 xor ID4

● P1 = not(ID1 xor ID3 xor ID4 xor ID5)

Figure 204. Identifier

Start
bit

Stop

bit

Start
bit LSB MSB Stop

bit

Byte Field

Start
bit ID0 P1 Stop

bitID1 ID2 ID3 ID4 ID5 P0
Doc ID 16886 Rev 6 410/868

LIN Controller (LINFlexD) RM0045
Checksum

The checksum contains the inverted 8-bit sum (with carry) over one of two possible groups:

● The classic checksum sums all data bytes, and is used for communication with LIN 1.3
slaves.

● The enhanced checksum sums all data bytes and the identifier, and is used for
communication with LIN 2.0 (or later) slaves.

21.4 LINFlexD and software intervention
The increasing number of communication peripherals embedded on microcontrollers (for
example, CAN, LIN, SPI) requires more and more CPU resources for the communication
management. Even a 32-bit microcontroller is overloaded if its peripherals do not provide
high level features to autonomously handle the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still
generates a non-negligible load on the CPU if the LIN is implemented on a standard UART,
as is usually the case.

To minimize the CPU load in Master mode, LINFlexD handles the LIN messages
autonomously.

In Master mode, once the software has triggered the header transmission, LINFlexD does
not request any software (that is, application) intervention until the next header transmission
request in transmission mode or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlexD requires software intervention only to:

● Trigger transmission or reception or data discard depending on the identifier

● Write data into the buffer (transmission mode) or read data from the buffer (reception
mode) after checksum reception

If filter mode is activated for Slave mode, LINFlexD requires software intervention only to
write data into the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

● Configure LIN parameters (for example, baud rate or mode)

● Request transmissions

● Handle receptions

● Manage interrupts

● Configure LIN error and timeout detection

● Process diagnostic information

The message buffer stores transmitted or received LIN frames.

21.5 Summary of operating modes
The LINFlexD controller has three operating modes:

● Normal

● Initialization

● Sleep
411/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
After a hardware reset, the LINFlexD controller is in Sleep mode to reduce power
consumption.

The transitions between these modes are shown in Figure 205. The software instructs
LINFlexD to enter Initialization mode or Sleep mode by setting LINCR1[INIT] or
LINCR1[SLEEP], respectively.

Figure 205. LINFlexD controller operating modes

In addition to these controller-level operating modes, the LINFlexD controller also supports
several protocol-level modes:

● LIN mode:

– Master mode

– Slave mode

– Slave mode with identifier filtering

– Slave mode with automatic resynchronization

● UART mode

● Test modes:

– Loop Back mode

– Self Test mode

These modes are discussed in detail in subsequent sections.

21.6 Controller-level operating modes

21.6.1 Initialization mode

The software initialization can be done while the hardware is in Initialization mode. To enter
or exit this mode, the software sets or clears LINCR1[INIT], respectively.

In Initialization mode, all message transfers to and from the LIN bus are stopped and the LIN
bus output (LINTX) is recessive.

Entering Initialization mode does not change any of the configuration registers.

SLEEP

INITIALIZATION

NORMAL

S
LE

E
P

SLEEP * IN
IT

RESET

SLEEP

LI
N

R
X

 D
O

M
I N

A
N

T

SLEEP * IN
IT

SLEEP * INIT
Doc ID 16886 Rev 6 412/868

LIN Controller (LINFlexD) RM0045
To initialize the LINFlexD controller, the software must:

● Select the desired mode (Master, Slave or UART)

● Set up the baud rate register

● If LIN Slave mode with filter activation is selected, initialize the identifier list

21.6.2 Normal mode

After initialization is complete, the software must clear LINCR1[INIT] to put the LINFlexD
controller into Normal mode.

21.6.3 Sleep (low-power) mode

To reduce power consumption, LINFlexD has a low-power mode called Sleep mode. In this
mode, the LINFlexD clock is stopped. Consequently, the LINFlexD will not update the status
bits, but software can still access the LINFlexD registers.

To enter this mode, the software must set LINCR1[SLEEP].

LINFlexD can be awakened (exit Sleep mode) in one of two ways:

● The software clears LINCR1[SLEEP]

● Automatic wake-up is enabled (LINCR1[AWUM] is set) and LINFlexD detects LIN bus
activity (that is, if a wakeup pulse of 150 s is detected on the LIN bus)

On LIN bus activity detection, hardware automatically performs the wake-up sequence by
clearing LINCR1[SLEEP] if LINCR1[AWUM] is set. To exit from Sleep mode if
LINCR1[AWUM] is cleared, the software must clear LINCR1[SLEEP] when a wake-up event
occurs.

21.7 LIN modes

21.7.1 Master mode

In Master mode, the software uses the message buffer to handle the LIN messages.

Master mode is selected when LINCR1[MME] is set.

LIN header transmission

According to the LIN protocol, any communication on the LIN bus is triggered by the master
sending a header. The header is transmitted by the master task while the data is transmitted
by the slave task of a node.

To transmit a header with LINFlexD the application must set up the identifier, the data field
length and configure the message (direction and checksum type) in the BIDR register before
requesting the header transmission by setting LINCR2[HTRQ].

Data transmission (transceiver as publisher)

When the master node is publisher of the data corresponding to the identifier sent in the
header, then the slave task of the master has to send the data in the Response part of the
LIN frame. Therefore, the software must provide the data to LINFlexD before requesting the
header transmission. The software stores the data in the message buffer BDR. According to
413/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
the data field length LINFlexD transmits the data and the checksum. The software uses the
BIDR[CCS] bit to configure the checksum type (classic or enhanced) for each message.

If the response has been sent successfully, LINSR[DTF] is set. In case of error, the DTF flag
is not set and the corresponding error flag is set in the LINESR (refer to Error handling). It is
possible to handle frames with a Response size larger than 8 bytes of data (extended
frames). If the data field length in the BIDR is configured with a value higher than 8 data
bytes, LINSR[DBEF] is set once the first 8 bytes have been transmitted. The application has
to update the buffer BDR before resetting the DBEF bit. The transmission of the next bytes
starts when the DBEF bit is reset. Once the last data byte (or the checksum byte) has been
sent, the DTF flag is set.

The direction of the message buffer is controlled by the BIDR[DIR] bit. When the software
sets this bit the response is sent by LINFlexD (publisher). Clearing this bit configures the
message buffer as subscriber.

Data reception (transceiver as subscriber)

To receive data from a slave node, the master sends a header with the corresponding
identifier. LINFlexD stores the data received from the slave in the message buffer and stores
the message status in the LINSR. If the response has been received successfully, the
LINSR(DRF) bit is set. In case of error, the DRF flag is not set and the corresponding error
flag is set in the LINESR (refer to Error handling). It is possible to handle frames with a
Response size larger than 8 bytes of data (extended frames). If the data field length in the
BIDR is configured with a value higher than 8 data bytes, the LINSR(DBFF) bit is set once
the first 8 bytes have been received. The application has to read the buffer BDR before
resetting the DBFF bit. Once the last data byte (or the checksum byte) has been received,
the DRF flag is set.

Data discard

To discard data from a slave, the DIR bit in the BIDR must be reset and the DDRQ bit in
LINCR2 must be set before starting the header transmission.

Error detection and handling

LINFlexD is able to detect and handle LIN communication errors. A code stored in the LIN
error status register (LINESR) signals the errors to the software.

Table 199 lists the errors detected in Master mode and the LINFlexD controller’s response to
these errors.
Doc ID 16886 Rev 6 414/868

LIN Controller (LINFlexD) RM0045

21.7.2 Slave mode

In Slave mode the software uses the message buffer to handle the LIN messages.

Slave mode is selected when the LINCR1[MME] is cleared.

Data transmission (transceiver as publisher)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

● Read the received ID in the BIDR register

● Fill the BDR registers

● Specify the data field length using the BIDR[DFL] field

● Trigger the data transmission by setting LINCR2[DTRQ]

One or several identifier filters can be configured for transmission by setting the DIR bits in
the corresponding IFCR registers and activated by setting one or several bits in the IFER
register.

When at least one identifier filter is configured in transmission and activated, and if the
received ID matches the filter, a specific TX interrupt is generated.

Typically, the software has to copy the data from RAM locations to the BDRL and BDRM
registers. To copy the data to the right location, the software has to identify the data by
means of the identifier. To avoid this and to ease the access to the RAM locations, the
LINFlexD controller provides a Filter Match Index. This index value is the number of the filter
which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which
points to the right data array in the RAM area and copy this data to the BDRL and BDRM
registers (see Figure 207).

Table 199. Errors in Master mode

Error Description LINFlexD response to error

Bit error
During transmission, the value read back
from the bus differs from the transmitted
value

– Stops the transmission of the frame after
the corrupted bit

– Generates an interrupt if LINIER[BEIE] is
set

– Returns to idle state

Framing error
A dominant state has been sampled on the
stop bit of the currently received character
(sync field, identifier, or data field)

If encountered during reception:
– Discards the current frame

– Generates an interrupt if LINIER[FEIE] is
set

– Returns immediately to idle state

Checksum error
The computed checksum does not match the
received checksum

If encountered during reception:

– Discards the current frame

– Generates an interrupt if LINIER[CEIE] is
set

– Returns to idle state

Response and frame
timeout

Refer to Section 21.12.1, 8-bit timeout counter, for more details
415/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
Using a filter avoids the software having to configure the direction, the data field length and
the checksum type in the BDIR register. The software fills the BDRL and BDRM registers
and triggers the data transmission by setting LINCR2[DTRQ].

If LINFlexD cannot provide enough TX identifier filters to handle all identifiers the software
has to transmit data for, then a filter can be configured in mask mode (refer to
Section 21.7.3, Slave mode with identifier filtering) in order to manage several identifiers
with one filter only.

Data reception (transceiver as subscriber)

When LINFlexD receives the identifier, an RX interrupt is generated. The software must:

● Read the received ID in the BIDR register

● Specify the data field length using the BIDR[DFL] field before the reception of the stop
bit of the first byte of data field

When the checksum reception is completed, an RX interrupt is generated to allow the
software to read the received data in the BDR registers.

One or several identifier filters can be configured for reception by clearing the DIR bit in the
corresponding IFCR registers and activated by clearing one or several bits in the IFER
register.

When at least one identifier filter is configured in reception and activated, and if the received
ID matches the filter, an RX interrupt is generated after the checksum reception only.

Typically, the software has to copy the data from the BDRL and BDRM registers to RAM
locations. To copy the data to the right location, the software has to identify the data by
means of the identifier. To avoid this and to ease the access to the RAM locations, the
LINFlexD controller provides a Filter Match Index. This index value is the number of the filter
which matched the received identifier.

The software can use the index in the IFMI register to directly access the pointer which
points to the right data array in the RAM area and copy this data from the BDRL and BDRM
registers to the RAM (see Figure 207).

Using a filter avoids the software reading the ID value in the BIDR register, and configuring
the direction, the data field length and the checksum type in the BIDR register.

If LINFlexD cannot provide enough RX identifier filters to handle all identifiers the software
has to receive the data for, then a filter can be configured in mask mode (refer to
Section 21.7.3, Slave mode with identifier filtering) in order to manage several identifiers
with one filter only.

Data discard

When LINFlexD receives the identifier, the LINSR(HRF) bit is set and, if the LINIER(HRIE)
bit is set, an RX interrupt is generated. If the received identifier does not concern the node,
the software must set LINCR2[DDRQ]. LINFlexD returns to idle state after bit DDRQ is set.

Error detection and handling

Table 200 lists the errors detected in Slave mode and the LINFlexD controller’s response to
these errors.
Doc ID 16886 Rev 6 416/868

LIN Controller (LINFlexD) RM0045

Valid header

A received header is considered as valid when it has been received correctly according to
the LIN protocol.

If a valid break field and break delimiter come before the end of the current header, or at any
time during a data field, the current header or data is discarded and the state machine
synchronizes on this new break.

Valid message

A received or transmitted message is considered as valid when the data has been received
or transmitted without error according to the LIN protocol.

Overrun

After the message buffer is full, the next valid message reception causes an overrun and a
message is lost. The LINFlexD controller sets LINSR[BOF] to signal the overrun condition.
Which message is lost depends on the configuration of the RX message buffer:

● If the buffer lock function is disabled (LINCR1[RBLM] cleared), the last message stored
in the buffer is overwritten by the new incoming message. In this case, the latest
message is always available to the software.

● If the buffer lock function is enabled (LINCR1[RBLM] set), the most recent message is
discarded and the previous message is available in the buffer.

Table 200. Errors in Slave mode

Error Description LINFlexD response to error

Bit error
During transmission, the value read back
from the bus differs from the transmitted
value

– Stops the transmission of the frame after
the corrupted bit

– Generates an interrupt if LINIER[BEIE] is
set

– Returns to idle state

Framing error
A dominant state has been sampled on the
stop bit of the currently received character
(sync field, identifier, or data field)

If encountered during reception:
– Discards the current frame

– Generates an interrupt if LINIER[FEIE] is
set

– Returns immediately to idle state

Checksum error
The computed checksum does not match the
received checksum

If encountered during reception:

– Discards the received frame

– Generates an interrupt if LINIER[CEIE] is
set

– Returns to idle state

Header error
An error occurred during header reception
(break delimiter error, inconsistent sync field,
header timeout)

If encountered during header reception, a
break field error, an inconsistent sync field, or
a timeout:
– Discards the header

– Generates an interrupt if LINIER[HEIE] is
set

– Returns to idle state
417/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.7.3 Slave mode with identifier filtering

In the LIN protocol, the identifier of a message is not associated with the address of a node
but related to the content of the message. Consequently a transmitter broadcasts its
message to all receivers. When a slave node receives a header, it decides - depending on
the identifier value - whether the software needs to receive or send a response. If the
message does not target the node, it must be discarded without software intervention.

To fulfill this requirement, the LINFlexD controller provides configurable filters in order to
request software intervention only if needed. This hardware filtering saves CPU resources
which would otherwise be needed by software for filtering.

The filtering is accomplished through the use of IFCR registers. These registers have the
names IFCR0 through IFCR15. This section also uses the nomenclature IFCR2n and
IFCR2n+1; in this nomenclature, n is an integer, and the corresponding IFCR register is
calculated using the formula in the subscript.

Filter submodes

Usually each of the 16 IFCRs is used to filter one dedicated identifier, but this means that
the LINFlexD controller could filter a maximum of 16 identifiers. In order to be able to handle
more identifiers, the filters can be configured to operate as masks.

Table 201 describes the two available filter submodes.

The bit mapping and register organization in these two submodes is shown in Figure 206.

Table 201. Filter submodes

Submode Description

Identifier list
Both filter registers are used as identifier registers. All bits of the
incoming identifier must match the bits specified in the filter register.
This is the default submode for the LINFlexD controller.

Mask
The identifier registers are associated with mask registers specifying
which bits of the identifier are handled as “must match” or as “don’t
care”.
Doc ID 16886 Rev 6 418/868

LIN Controller (LINFlexD) RM0045

Figure 206. Filter configuration - register organization

Identifier filter submode configuration

The identifier filters are configured in the IFCR registers. To configure an identifier filter the
filter must first be deactivated by clearing the corresponding bit in the IFER[FACT] field. The
submode (identifier list or mask) for the corresponding IFCR register is configured by the
IFMR[IFM] field. For each filter, the IFCR register is used to configure:

● The ID or mask

● The direction (TX or RX)

● The data field length

● The checksum type

If no filter is active, an RX interrupt is generated on any received identifier event.

If at least one active filter is configured as TX, all received identifiers matching this filter
generate a TX interrupt.

If at least one active filter is configured as RX, all received identifiers matching this filter
generate an RX interrupt.

If no active filter is configured as RX, all received identifiers not matching TX filter(s)
generate an RX interrupt.

Further details are provided in Table 202 and Figure 207.

IFCRxIdentifier

IDBit Mapping

Identifier filter register organization

CCSDIR

Identifier filter configuration

IFCR2nIdentifier
Identifier IFCR2n+1

IFM = 0

Identifier filter submode

IFCR2nIdentifier
Mask IFCR2n+1

IFM = 1

Identifier list submode

Mask submode

DFL
419/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 207. Identifier match index

21.7.4 Slave mode with automatic resynchronization

Automatic resynchronization must be enabled in Slave mode if fipg_clock_lin tolerance is
greater than 1.5%. This feature compensates a fperiph_set_1_clk deviation up to 14%, as
specified in the LIN standard.

This mode is similar to Slave mode as described in Section 21.7.2, Slave mode, with the
addition of automatic resynchronization enabled by the LINCR1[LASE] bit. In this mode
LINFlexD adjusts the fractional baud rate generator after each synch field reception.

Automatic resynchronization method

When automatic resynchronization is enabled, after each LIN break, the time duration
between five falling edges on RDI is sampled on fperiph_set_1_clk as shown in Figure 208.
Then the LFDIV value (and its associated LINIBRR and LINFBRR registers) are

Table 202. Filter to interrupt vector correlation

Number of active
filters

Number of active
filters configured as

TX

Number of active
filters configured as

RX
Interrupt vector

0 0 0 - RX interrupt on all IDs

a
(a > 0)

a 0

- TX interrupt on IDs matching
the filters,
- RX interrupt on all other IDs if
BF bit is set, no RX interrupt if
BF bit is reset

n
(n = a + b)

a
(a > 0)

b
(b > 0)

- TX interrupt on IDs matching
the TX filters,
- RX interrupt on IDs matching
the RX filters,
- all other IDs discarded (no
interrupt)

b
(b > 0)

0 b

- RX interrupt on IDs matching
the filters,
- TX interrupt on all other IDs if
BF bit is set, no TX interrupt if
BF bit is reset

IFMI

MESSAGE0

MESSAGE1

MESSAGE2DATA
Pointers
Table

RAM

@

+

Doc ID 16886 Rev 6 420/868

LIN Controller (LINFlexD) RM0045
automatically updated at the end of the fifth falling edge. During LIN sync field
measurement, the LINFlexD state machine is stopped and no data is transferred to the data
register.

Figure 208. LIN sync field measurement

LFDIV is an unsigned fixed point number. The mantissa is coded on 20 bits in the LINIBRR
register and the fraction is coded on 4 bits in the LINFBRR register.

If LINCR1[LASE] is set, LFDIV is automatically updated at the end of each LIN sync field.

Three registers are used internally to manage the auto-update of the LINFlexD divider
(LFDIV):

● LFDIV_NOM (nominal value written by software at LINIBRR and LINFBRR addresses)

● LFDIV_MEAS (results of the Field Synch measurement)

● LFDIV (used to generate the local baud rate)

On transition to idle, break or break delimiter state due to any error or on reception of a
complete frame, hardware reloads LFDIV with LFDIV_NOM.

Deviation error on the sync field

The deviation error is checked by comparing the current baud rate (relative to the slave
oscillator) with the received LIN sync field (relative to the master oscillator). Two checks are
performed in parallel.

The first check is based on a measurement between the first falling edge and the last falling
edge of the sync field:

● If D1 > 14.84%, LHE is set.

● If D1 < 14.06%, LHE is not set.

● If 14.06% < D1 < 14.84%, LHE can be either set or reset depending on the dephasing
between the signal on LINFlexD_RX pin the fipg_clock_lin clock.

LIN Break
Break Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7

Start
Bit

Stop
Bit

Next
Start
Bit

LIN sync field

LFDIV(n) LFDIV(n+1)

TBR = Baud rate period

TBR

delim.

Tperiph_set_1_clk = Clock period

SM = Synch Measurement Register (19 bits)

TBR = 16.LFDIV.Tperiph_set_1_clk

Measurement = 8.TBR = SM.Tperiph_set_1_clk

LFDIV = TBR/(16.Tperiph_set_1_clk) = Rounding (SM / 128)
421/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
The second check is based on a measurement of time between each falling edge of the
sync field:

● If D2 > 18.75%, LHE is set.

● If D2 < 15.62%, LHE is not set.

● If 15.62% < D2 < 18.75%, LHE can be either set or reset depending on the dephasing
between the signal on LINFlexD_RX pin the fipg_clock_lin clock.

Note that the LINFlexD does not need to check if the next edge occurs slower than
expected. This is covered by the check for deviation error on the full synch byte.

Clock gating

The LINFlexD clock can be gated from the Mode Entry module (refer to Operating Modes
chapter). In LIN mode, the LINFlexD controller acknowledges a clock gating request once
the frame transmission or reception is completed.

21.8 Test modes
The LINFlexD controller includes two test modes, Loop Back mode and Self Test mode.
They can be selected by the LBKM and SFTM bits in the LINCR1 register. These bits must
be configured while LINFlexD is in Initialization mode. After one of the two test modes has
been selected, LINFlexD must be started in Normal mode.

21.8.1 Loop Back mode

LINFlexD can be put in Loop Back mode by setting LINCR1[LBKM]. In Loop Back mode, the
LINFlexD treats its own transmitted messages as received messages. This is illustrated in
Figure 209.

Figure 209. LINFlexD in Loop Back mode

This mode is provided for self-test functions. To be independent of external events, the LIN
core ignores the LINRX signal. In this mode, the LINFlexD performs an internal feedback
from its Tx output to its Rx input. The actual value of the LINRX input pin is disregarded by
the LINFlexD. The transmitted messages can be monitored on the LINTX pin.

21.8.2 Self Test mode

LINFlexD can be put in Self Test mode by setting LINCR1[LBKM] and LINCR1[SFTM]. This
mode can be used for a “Hot Self Test”, meaning the LINFlexD can be tested as in Loop
Back mode but without affecting a running LIN system connected to the LINTX and LINRX

LINTX LINRX

LINFlexD

Tx Rx
Doc ID 16886 Rev 6 422/868

LIN Controller (LINFlexD) RM0045
pins. In this mode, the LINRX pin is disconnected from the LINFlexD and the LINTX pin is
held recessive. This is illustrated in Figure 210.

Figure 210. LINFlexD in Self Test mode

21.9 UART mode
The main features of UART mode are presented in Section 21.2.2, UART mode features.

21.9.1 Data frame structure

8-bit data frame

The 8-bit UART data frame is shown in Figure 211. The 8th bit can be a data or a parity bit.
Parity (even, odd, 0, or 1) can be selected by the UARTCR[PC] field. An even parity is set if
the modulo-2 sum of the 7 data bits is 1. An odd parity is cleared in this case.

Figure 211. UART mode 8-bit data frame

9-bit data frame

The 9-bit UART data frame is shown in Figure 212. The 9th bit is a parity bit. Parity (even,
odd, 0, or 1) can be selected by the by the UARTCR[PC] field. An even parity is set if the
modulo-2 sum of the 8 data bits is 1. An odd parity is cleared in this case. Parity 0 forces a
zero logical value. Parity 1 forces a high logical value.

LINFlexD

LINTX LINRX

Tx Rx

=1

Start
bit D0 D7

Stop
bit

Byte Field

- Data bit
- Parity bit

D1 D2 D3 D4 D5 D6
423/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 212. UART mode 9-bit data frame

16-bit data frame

The 16-bit UART data frame is shown in Figure 213. The 16th bit can be a data or a parity
bit. Parity (even, odd, 0, or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a
zero logical value. Parity 1 forces a high logical value.

Figure 213. UART mode 16-bit data frame

17-bit data frame

The 17-bit UART data frame is shown in Figure 214. The 17th bit is the parity bit. Parity
(even, odd, 0, or 1) can be selected by the UARTCR[PC] field. Parity 0 forces a zero logical
value. Parity 1 forces a high logical value.

Figure 214. UART mode 17-bit data frame

21.9.2 Buffer

The 8-byte buffer is divided into two parts — one for receiver and one for transmitter — as
shown in Table 203.

Start
bit D0 D7 Stop

bit

Byte Field

- Parity bit

D1 D2 D3 D4 D5 D6 D8

Start
bit D0 D15

Stop
bit

Byte Field

- Data bit
- Parity bit

D1 D2 D13 D14

Start
bit D0 D16

Stop
bit

Byte Field

- Parity bit

D1 D2 ... D13 D14 D15
Doc ID 16886 Rev 6 424/868

LIN Controller (LINFlexD) RM0045

For 16-bit frames, the lower 8 bits will be written in BDR0 and the upper 8 bits will be written
in BDR1.

21.9.3 UART transmitter

In order to start transmission in UART mode, the UARTCR[UART] and UARTCR[TXEN] bits
must be set. Transmission starts when BDR0 (least significant data byte) is programmed.
The number of bytes transmitted is equal to the value configured by the UARTCR[TDFLTFC]
field (see Table 216).

The Transmit buffer size is as follows:

● 4 bytes when UARTCR[WL1] = 0

● 2 half-words when UARTCR[WL1] = 1

Therefore, the maximum transmission that can be triggered is 4 bytes (2 half-words). After
the programmed number of bytes has been transmitted, the UARTSR[DTFTFF] flag is set. If
the UARTCR[TXEN] field is cleared during a transmission, the current transmission is
completed, but no further transmission can be invoked. The buffer can be configured in
FIFO mode (mandatory when DMA Tx is enabled) by setting UARTCR[TFBM].

The access to the BDRL register is shown in Table 204.

Table 203. UART buffer structure

BDR UART mode

0 Tx0

1 Tx1

2 Tx2

3 Tx3

4 Rx0

5 Rx1

6 Rx2

7 Rx3

Table 204. BDRL access in UART mode

Access Mode(1) Word length(2) IPS operation result

Write Byte0 FIFO Byte OK

Write Byte1-2-3 FIFO Byte IPS transfer error

Write Half-word0-1 FIFO Byte IPS transfer error

Write Word FIFO Byte IPS transfer error

Write Byte0-1-2-3 FIFO Half-word IPS transfer error

Write Half-word0 FIFO Half-word OK

Write Half-word1 FIFO Half-word IPS transfer error

Write Word FIFO Half-word IPS transfer error

Read Byte0-1-2-3 FIFO Byte/Half-word IPS transfer error
425/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.9.4 UART receiver

Reception of a data byte is started as soon as the software completes the following tasks in
order:

1. Exits Initialization mode

2. Sets the UARTCR[RXEN] field

3. Detects the start bit

There is a dedicated data buffer for received data bytes. Its size is as follows:

● 4 bytes when UARTCR[WL1] = 0

● 2 half-words when UARTCR[WL1] = 1

After the programmed number (RDFL bits) of bytes has been received, the
UARTSR[DRFRFE] field is set. If the UARTCR[RXEN] field is cleared during a reception, the
current reception is completed, but no further reception can be invoked until
UARTCR[RXEN] is set again.

The buffer can be configured in FIFO mode (required when DMA Rx is enabled) by setting
UARTCR[RFBM].

The access to the BDRM register is shown in Table 205.

Read Half-word0-1 FIFO Byte/Half-word IPS transfer error

Read Word FIFO Byte/Half-word IPS transfer error

Write Byte0-1-2-3 BUFFER Byte/Half-word OK

Write Half-word0-1 BUFFER Byte/Half-word OK

Write Word BUFFER Byte/Half-word OK

Read Byte0-1-2-3 BUFFER Byte/Half-word OK

Read Half-word0-1 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

1. As specified by UARTCR[TFBM]

2. As specified by the WL1 and WL0 bits of the UARTCR register. In UART FIFO mode (UARTCR[TFBM] = 1),any read
operation causes an IPS transfer error.

Table 204. BDRL access in UART mode (continued)

Access Mode(1) Word length(2) IPS operation result

Table 205. BDRM access in UART mode

Access Mode(1) Word length(2) IPS operation result

Read Byte4 FIFO Byte OK

Read Byte5-6-7 FIFO Byte IPS transfer error

Read Half-word2-3 FIFO Byte IPS transfer error

Read Word FIFO Byte IPS transfer error

Read Byte4-5-6-7 FIFO Half-word IPS transfer error

Read Half-word2 FIFO Half-word OK

Read Half-word3 FIFO Half-word IPS transfer error
Doc ID 16886 Rev 6 426/868

LIN Controller (LINFlexD) RM0045
Table 206 lists some common scenarios, controller responses, and suggestions when the
LINFlexD controller is acting as a UART receiver.

Read Word FIFO Half-word IPS transfer error

Write Byte4-5-6-7 FIFO Byte/Half-word IPS transfer error

Write Half-word2-3 FIFO Byte/Half-word IPS transfer error

Write Word FIFO Byte/Half-word IPS transfer error

Read Byte4-5-6-7 BUFFER Byte/Half-word OK

Read Half-word2-3 BUFFER Byte/Half-word OK

Read Word BUFFER Byte/Half-word OK

Write Byte4-5-6-7 BUFFER Byte/Half-word IPS transfer error

Write Half-word2-3 BUFFER Byte/Half-word IPS transfer error

Write Word BUFFER Byte/Half-word IPS transfer error

1. As specified by UARTCR[RFBM]

2. As specified by the WL1 and WL0 bits of the UARTCR register

Table 205. BDRM access in UART mode (continued)

Access Mode(1) Word length(2) IPS operation result

Table 206. UART receiver scenarios

Scenario Responses and suggestions

The software does not know (in advance) how many
bytes will be received.

Do not program UARTCR[RDFLRFC] in advance. When
this field is zero (as it is after reset), reception occurs on
a byte-by-byte basis. Therefore, the state machine will
move to IDLE state after each byte is received.

UARTCR[RDFLRFC] is programmed for a certain
number of bytes received, but the actual number of bytes
received is smaller.

The reception will hang. In this case, the software must
monitor the UARTSR[TO] field, and move to IDLE state
by setting LINCR1[SLEEP].

A STOP request arrives before the reception is
completed.

The request is acknowledged only after the programmed
number of data bytes are received. In other words, the
STOP request is not serviced immediately. In this case,
the software must monitor the UARTSR[TO] field and
move the state machine to IDLE state as appropriate.
The stop request will be serviced only after this is
complete.

A parity error occurs during the reception of a byte.
The corresponding UARTSR[PEn] field is set. No
interrupt is generated.
427/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10 Memory map and register description
The memory maps for the LINFlexD modules on this microcontroller differ by module:

● The memory map for LINFlexD_0 is shown in Table 207.

● The memory map for LINFlexD_1 is shown in Table 208.

See the microcontroller memory map for the base addresses.

A framing error occurs during the reception of a byte.

– UARTSR[FE] is set.

– If LINIER[FEIE] = 1, an interrupt is generated. This
interrupt is helpful in identifying which byte has the
framing error, since there is only one register bit for
framing errors.

A new byte has been received, but the last received
frame has not been read from the buffer (UARTSR[RMB]
has not yet been cleared by the software)

– An overrun error will occur (UARTSR[BOF] will be set).

– One message will be lost (depending on the setting of
LINCR[RBLM]).

– An interrupt is generated if LINIER[BOIE] is set.

Table 206. UART receiver scenarios (continued)

Scenario Responses and suggestions

Table 207. LINFlexD_0 memory map

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 21-430

0x04 LIN interrupt enable register (LINIER) on page 21-433

0x08 LIN status register (LINSR) on page 21-435

0x0C LIN error status register (LINESR) on page 21-438

0x10 UART mode control register (UARTCR) on page 21-439

0x14 UART mode status register (UARTSR) on page 21-442

0x18 LIN timeout control status register (LINTCSR) on page 21-444

0x1C LIN output compare register (LINOCR) on page 21-445

0x20 LIN timeout control register (LINTOCR) on page 21-446

0x24 LIN fractional baud rate register (LINFBRR) on page 21-447

0x28 LIN integer baud rate register (LINIBRR) on page 21-447

0x2C LIN checksum field register (LINCFR) on page 21-448

0x30 LIN control register 2 (LINCR2) on page 21-449

0x34 Buffer identifier register (BIDR) on page 21-450

0x38 Buffer data register least significant (BDRL) on page 21-451

0x3C Buffer data register most significant (BDRM) on page 21-452

0x40 Identifier filter enable register (IFER) on page 21-453

0x44 Identifier filter match index (IFMI) on page 21-454

0x48 Identifier filter mode register (IFMR) on page 21-455
Doc ID 16886 Rev 6 428/868

LIN Controller (LINFlexD) RM0045

0x4C–0x88 Identifier filter control registers 0–15 (IFCR0–IFCR15) on page 21-456

0x8C Global control register (GCR) on page 21-457

0x90 UART preset timeout register (UARTPTO) on page 21-458

0x94 UART current timeout register (UARTCTO) on page 21-459

0x98 DMA Tx enable register (DMATXE) on page 21-460

0x9C DMA Rx enable register (DMARXE) on page 21-461

Table 208. LINFlexD_1 memory map

Address offset Register description Location

0x00 LIN control register 1 (LINCR1) on page 21-430

0x04 LIN interrupt enable register (LINIER) on page 21-433

0x08 LIN status register (LINSR) on page 21-435

0x0C LIN error status register (LINESR) on page 21-438

0x10 UART mode control register (UARTCR) on page 21-439

0x14 UART mode status register (UARTSR) on page 21-442

0x18 LIN timeout control status register (LINTCSR) on page 21-444

0x1C LIN output compare register (LINOCR) on page 21-445

0x20 LIN timeout control register (LINTOCR) on page 21-446

0x24 LIN fractional baud rate register (LINFBRR) on page 21-447

0x28 LIN integer baud rate register (LINIBRR) on page 21-447

0x2C LIN checksum field register (LINCFR) on page 21-448

0x30 LIN control register 2 (LINCR2) on page 21-449

0x34 Buffer identifier register (BIDR) on page 21-450

0x38 Buffer data register least significant (BDRL) on page 21-451

0x3C Buffer data register most significant (BDRM) on page 21-452

0x40 Identifier filter enable register (IFER) on page 21-453

0x44 Identifier filter match index (IFMI) on page 21-454

0x48 Identifier filter mode register (IFMR) on page 21-455

0x4C Global control register (GCR) on page 21-457

0x50 UART preset timeout register (UARTPTO) on page 21-458

0x54 UART current timeout register (UARTCTO) on page 21-459

0x58 DMA Tx enable register (DMATXE) on page 21-460

0x5C DMA Rx enable register (DMARXE) on page 21-461

Table 207. LINFlexD_0 memory map (continued)

Address offset Register description Location
429/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.1 LIN control register 1 (LINCR1)

Figure 215. LIN control register 1 (LINCR1)

Offset:0x00 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CCD1 CFD

(1)

LA
S

E
(1

)

A
W

U
M

(1
)

MBL(1) BF(1) SFTM
(1)

LB
K

M
(1

)

M
M

E
(1

)

S
B

D
T

(1
)

R
B

LM
(1

)

S
LE

E
P

INIT
W

Reset 0 0 0 0 0 0 0 0 1 0 0 0/12 0 0 1 0

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

2. Resets to 0 in Slave mode and to 1 in Master mode

Table 209. LINCR1 field descriptions

Field Description

CCD

Checksum Calculation disable
This bit is used to disable the checksum calculation (see Table 210).
0: Checksum calculation is done by hardware. When this bit is reset the LINCFR register is read-only.
1: Checksum calculation is disabled. When this bit is set the LINCFR register is read/write. User can
program this register to send a software calculated CRC (provided CFD is reset).

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD

Checksum field disable

This bit is used to disable the checksum field transmission (see Table 210).
0: Checksum field is sent after the required number of data bytes is sent.
1: No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE

LIN Slave Automatic Resynchronization Enable

0: Automatic resynchronization disable
1: Automatic resynchronization enable

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM

Automatic Wake-Up Mode

This bit controls the behavior of the LINFlexD hardware during Sleep mode.
0: The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR register.
1: The Sleep mode is exited automatically by hardware on RX dominant state detection. The SLEEP
bit of the LINCR register is cleared by hardware whenever WUF bit in LINSR is set.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.
Doc ID 16886 Rev 6 430/868

LIN Controller (LINFlexD) RM0045

MBL

LIN Master Break Length

These bits indicate the Break length in Master mode (see Table 211).
Note: These bits can be written in Initialization mode only. They are read-only in Normal or Sleep
mode.

BF

Bypass filter

0: No interrupt if ID does not match any filter
1: An RX interrupt is generated on ID not matching any filter

Notes:
– If no filter is activated, this bit is reserved and always reads 1.

– This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM

Self Test Mode

This bit controls the Self Test mode. For more details please refer to Section 21.8.2, Self Test mode.
0: Self Test mode disable
1: Self Test mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM

Loop Back Mode
This bit controls the Loop Back mode. For more details please refer to Section 21.8.1, Loop Back
mode.
0: Loop Back mode disable
1: Loop Back mode enable

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode

MME

Master Mode Enable

0: Master and Slave mode enable

1: Master mode enable
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT

Slave Mode Break Detection Threshold
0: 11-bit break
1: 10-bit break
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM

Receive Buffer Locked Mode
0: Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming
message overwrites the previous one.
1: Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming message
is discarded.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP

Sleep Mode Request
This bit is set by software to request LINFlexD to enter Sleep mode.
This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and the
WUF bit in LINSR are set (see Table 212).

INIT
Initialization Request

The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset,
LINFlexD enters Normal mode when clearing the INIT bit (see Table 212).

Table 209. LINCR1 field descriptions (continued)

Field Description
431/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Table 210. Checksum bits configuration

CFD CCD LINCFR Checksum sent

1 1 Read/Write None

1 0 Read-only None

0 1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 0 Read-only Hardware calculated

Table 211. LIN master break length selection

MBL Length

0000 10-bit

0001 11-bit

0010 12-bit

0011 13-bit

0100 14-bit

0101 15-bit

0110 16-bit

0111 17-bit

1000 18-bit

1001 19-bit

1010 20-bit

1011 21-bit

1100 22-bit

1101 23-bit

1110 36-bit

1111 50-bit

Table 212. Operating mode selection

SLEEP INIT Operating mode

1 0 Sleep (reset value)

x 1 Initialization

0 0 Normal
Doc ID 16886 Rev 6 432/868

LIN Controller (LINFlexD) RM0045
21.10.2 LIN interrupt enable register (LINIER)

Figure 216. LIN interrupt enable register (LINIER)

Offset: 0x04 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZIE OCIE BEIE CEIE HEIE 0 0 FEIE BOIE LSIE

W
U

IE

D
B

F
IE

D
B

E
IE

TO
IE

DRIE DTIE HRIE

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 213. LINIER field descriptions

Field Description

SZIE
Stuck at Zero Interrupt Enable

0: No interrupt when SZF bit in LINESR or UARTSR is set
1: Interrupt generated when SZF bit in LINESR or UARTSR is set

OCIE
Output Compare Interrupt Enable

0: No interrupt when OCF bit in LINESR or UARTSR is set
1: Interrupt generated when OCF bit in LINESR or UARTSR is set

BEIE
Bit Error Interrupt Enable
0: No interrupt when BEF bit in LINESR is set
1: Interrupt generated when BEF bit in LINESR is set

CEIE
Checksum Error Interrupt Enable

0: No interrupt on Checksum error
1: Interrupt generated when checksum error flag (CEF) is set in LINESR

HEIE
Header Error Interrupt Enable
0: No interrupt on Break Delimiter error, Synch Field error, ID field error
1: Interrupt generated on Break Delimiter error, Synch Field error, ID field error

FEIE

Framing Error Interrupt Enable

0: No interrupt on Framing error
1: Interrupt generated on Framing error

BOIE
Buffer Overrun Interrupt Enable
0: No interrupt on Buffer overrun
1: Interrupt generated on Buffer overrun
433/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
LSIE

LIN State Interrupt Enable

0: No interrupt on LIN state change
1: Interrupt generated on LIN state change
This interrupt can be used for debugging purposes. It has no status flag but is reset when writing
‘1111’ into the LIN state bits in the LINSR register.

WUIE
Wake-up Interrupt Enable

0: No interrupt when WUF bit in LINSR or UARTSR is set
1: Interrupt generated when WUF bit in LINSR or UARTSR is set

DBFIE
Data Buffer Full Interrupt Enable

0: No interrupt when buffer data register is full
1: Interrupt generated when data buffer register is full

DBEIETOIE

Data Buffer Empty Interrupt Enable / Timeout Interrupt Enable
0: No interrupt when buffer data register is empty
1: Interrupt generated when data buffer register is empty
Note: An interrupt is generated if this bit is set and one of the following is true:

LINFlexD is in LIN mode and LINSR[DBEF] is set
LINFlexD is in UART mode and UARTSR[TO] is set

DRIE
Data Reception Complete Interrupt Enable

0: No interrupt when data reception is completed
1: Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set

DTIE
Data Transmitted Interrupt Enable
0: No interrupt when data transmission is completed
1: Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR register

HRIE

Header Received Interrupt Enable

0: No interrupt when a valid LIN header has been received
1: Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR register
is set

Table 213. LINIER field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 434/868

LIN Controller (LINFlexD) RM0045
21.10.3 LIN status register (LINSR)

Figure 217. LIN status register (LINSR)

Offset: 0x08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R LINS 0 0 RMB 0

R
B

S
Y

RPS WUF

D
B

F
F

D
B

E
F

DRF DTF HRF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
435/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Table 214. LINSR field descriptions

Field Description

LINS

LIN state

LIN mode states description

0000: Sleep mode
LINFlexD is in Sleep mode to save power consumption.

0001: Initialization mode
LINFlexD is in Initialization mode.
0010: Idle
This state is entered on several events:

– SLEEP bit and INIT in LINCR1 register have been cleared by software,
– A falling edge has been received on RX pin and AWUM bit is set,

– The previous frame reception or transmission has been completed or aborted.

0011: Break
In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.

Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on last bit
state. If last bit is dominant new LIN state is Break, otherwise Idle.

In Master mode, Break transmission ongoing.

0100: Break Delimiter
In Slave mode, a valid Break has been detected. Refer to LINCR1 register for break length
configuration (10-bit or 11-bit). Waiting for a rising edge.
In Master mode, Break transmission has been completed. Break Delimiter transmission is ongoing.

0101: Synch Field
In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit time).
Receiving Synch Field.

In Master mode, Synch Field transmission is ongoing.
0110: Identifier Field
In Slave mode, a valid Synch Field has been received. Receiving ID Field.

In Master mode, identifier transmission is ongoing.
0111: Header reception/transmission completed
In Slave mode, a valid header has been received and identifier field is available in the BIDR register.

In Master mode, header transmission is completed.
1000: Data reception/transmission
Response reception/transmission is ongoing.

1001: Checksum
Data reception/transmission completed. Checksum reception/transmission ongoing.
In UART mode, only the following states are flagged by the LIN state bits:

– Init

– Sleep
– Idle

– Data transmission/reception

RMB

Release Message Buffer

0: Buffer is free
1: Buffer ready to be read by software. This bit must be cleared by software after reading data
received in the buffer.
This bit is cleared by hardware in Initialization mode.
Doc ID 16886 Rev 6 436/868

LIN Controller (LINFlexD) RM0045
RBSY

Receiver Busy Flag

0: Receiver is Idle
1: Reception ongoing

Note: In Slave mode, after header reception, if DIR bit in BIDR is reset and reception starts then this
bit is set. In this case, user cannot set DTRQ bit in LINCR2.

RPS
LIN receive pin state

This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on
the LINRX pin when

– slave is in Sleep mode,

– master is in Sleep mode or idle state.
This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is
generated if WUIE bit in LINIER is set.

DBFF

Data Buffer Full Flag

This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended
frames (DFL > 7).
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

DBEF

Data Buffer Empty Flag

This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting extended
frames (DFL > 7).
This bit must be cleared by software, once buffer has been filled again, in order to start transmission.
This bit is reset by hardware in Initialization mode.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error or framing error.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error if IOBE bit is reset.

HRF

Header Reception Flag

This bit is set by hardware and indicates a valid header reception is completed.
This bit must be cleared by software.
This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.

Note: If filters are enabled, this bit is set only when identifier software filtering is required, that is to
say:

– all filters are inactive and BF bit in LINCR1 is set

– no match in any filter and BF bit in LINCR1 is set
– TX filter match

Table 214. LINSR field descriptions (continued)

Field Description
437/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.4 LIN error status register (LINESR)

Figure 218. LIN error status register (LINESR)

Offset: 0x0C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF BEF CEF

S
F

E
F

B
D

E
F

ID
P

E
F

FEF BOF 0 0 0 0 0 0 NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 215. LINESR field descriptions

Field Description

SZF
Stuck at zero Flag
This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF

Output Compare Flag

0: No output compare event occurred
1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit
is set and IOT bit in LINTCSR is set, LINFlexD moves to Idle state.
If LTOM bit in LINTCSR register is set then OCF is reset by hardware in Initialization mode. If LTOM
bit is reset, then OCF maintains its status whatever the mode is.

BEF

Bit Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a bit error. This
error can occur during response field transmission (Slave and Master modes) or during header
transmission (in Master mode).
This bit is cleared by software.

CEF

Checksum error Flag
This bit is set by hardware and indicates that the received checksum does not match the hardware
calculated checksum.
This bit is cleared by software.

Note: This bit is never set if CCD or CFD bit in LINCR1 register is set.

SFEF
Synch Field Error Flag

This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch Field).

BDEF
Break Delimiter Error Flag

This bit is set by hardware and indicates that the received Break Delimiter is too short (less than one
bit time).
Doc ID 16886 Rev 6 438/868

LIN Controller (LINFlexD) RM0045
21.10.5 UART mode control register (UARTCR)

IDPEF

Identifier Parity Error Flag

This bit is set by hardware and indicates that a Identifier Parity error occurred.
Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER is
set.

FEF

Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error
(invalid stop bit). This error can occur during reception of any data in the response field (Master or
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.

BOF

Buffer Overrun Flag
This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte
overwrites the buffer. It can be cleared by software.

NF
Noise Flag

This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Figure 219. UART mode control register (UARTCR)

Offset: 0x10 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TDFLTFC1 RDFLRFC(1)

R
F

B
M

T
F

B
M

2

W
L[

1]
(2

)

P
C

1(2
)

R
X

E
N

T
X

E
N

P
C

0(2
)

P
C

E
(2

)

W
L[

0]
(2

)

U
A

R
T

(2
)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. These fields are read/write in UART buffer mode and read-only in other modes.

2. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Table 215. LINESR field descriptions (continued)

Field Description
439/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Table 216. UARTCR field descriptions

Field Description

TDFLTFC

Transmitter data field length / Tx FIFO counter

This field has one of two functions depending on the mode of operation as follows:

– When LINFlexD is in UART buffer mode (TFBM = 0), TDFLTFC defines the number of bytes to be
transmitted. The field is read/write in this configuration. The first bit is reserved and not
implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values
for TDFLTFC are 0b001 and 0b011.

– When LINFlexD is in UART FIFO mode (TFBM = 1), TDFLTFC contains the number of entries
(bytes) of the Tx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RDFLRFC

Receiver data field length / Rx FIFO counter

This field has one of two functions depending on the mode of operation as follows:
– When LINFlexD is in UART buffer mode (RFBM = 0), RDFLRFC defines the number of bytes to be

received. The field is read/write in this configuration. The first bit is reserved and not implemented.
The permissible values are as follows (with X representing the unimplemented first bit):
0bX00: 1 byte
0bX01: 2 bytes
0bX10: 3 bytes
0bX11: 4 bytes
When the UART data length is configured as half-word (WL = 0b10 or 0b11), the only valid values
for RDFLRFC are 0b001 and 0b011.

– When LINFlexD is in UART FIFO mode (RFBM = 1), RDFLRFC contains the number of entries
(bytes) of the Rx FIFO. The field is read-only in this configuration.
The permissible values are as follows:
0b000: Empty
0b001: 1 byte
0b010: 2 bytes
0b011: 3 bytes
0b100: 4 bytes
All other values are reserved.

This field is meaningful and can be programmed only when the UART bit is set.

RFBM

Rx FIFO/buffer mode
0 Rx buffer mode enabled
1 Rx FIFO mode enabled (mandatory in DMA Rx mode)

This field can be programmed in initialization mode only when the UART bit is set.
Doc ID 16886 Rev 6 440/868

LIN Controller (LINFlexD) RM0045
TFBM

Tx FIFO/buffer mode

0 Tx buffer mode enabled
1 Tx FIFO mode enabled (mandatory in DMA Tx mode)

This field can be programmed in initialization mode only when the UART bit is set.

RXEN

Receiver Enable
0: Receiver disabled
1: Receiver enabled

This field can be programmed only when the UART bit is set.

TXEN

Transmitter Enable

0: Transmitter disabled
1: Transmitter enabled

This field can be programmed only when the UART bit is set.

Note: Transmission starts when this bit is set and when writing DATA0 in the BDRL register.

PC

Parity control

00 Parity sent is even
01 Parity sent is odd
10 A logical 0 is always transmitted/checked as parity bit
11 A logical 1 is always transmitted/checked as parity bit

This field can be programmed in initialization mode only when the UART bit is set.

PCE

Parity Control Enable

0: Parity transmit/check disabled
1: Parity transmit/check enabled

This field can be programmed in Initialization mode only when the UART bit is set.

WL

Word length in UART mode

00 7 bits data + parity
01 8 bits data when PCE = 0 or 8 bits data + parity when PCE = 1
10 15 bits data + parity
11 16 bits data when PCE = 0 or 16 bits data + parity when PCE = 1

This field can be programmed in Initialization mode only when the UART bit is set.

UART

UART mode enable
0: LIN mode
1: UART mode

This field can be programmed in Initialization mode only.

Table 216. UARTCR field descriptions (continued)

Field Description
441/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.6 UART mode status register (UARTSR)

Figure 220. UART mode status register (UARTSR)

Offset: 0x14 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R SZF OCF PE3 PE2 PE1 PE0 RMB FEF BOF RPS WUF 0 TO

D
R

F
R

F
E

D
T

F
T

F
F

NF

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 217. UARTSR field descriptions

Field Description

SZF
Stuck at zero Flag

This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.

OCF

OCF Output Compare Flag
0: No output compare event occurred

1: The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.

An interrupt is generated if the OCIE bit in LINIER register is set.

PE3

Parity Error Flag Rx3

This bit indicates if there is a parity error in the corresponding received byte (Rx3). No interrupt is
generated if this error occurs.

0: No parity error
1: Parity error

PE2

Parity Error Flag Rx2

This bit indicates if there is a parity error in the corresponding received byte (Rx2). No interrupt is
generated if this error occurs.

0: No parity error
1: Parity error

PE1

Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). No interrupt is
generated if this error occurs.
0: No parity error

1: Parity error
Doc ID 16886 Rev 6 442/868

LIN Controller (LINFlexD) RM0045
PE0

Parity Error Flag Rx0

This bit indicates if there is a parity error in the corresponding received byte (Rx0). No interrupt is
generated if this error occurs.

0: No parity error
1: Parity error

RMB

Release Message Buffer
0: Buffer is free

1: Buffer ready to be read by software. This bit must be cleared by software after reading data
received in the buffer.

This bit is cleared by hardware in Initialization mode.

FEF
Framing Error Flag

This bit is set by hardware and indicates to the software that LINFlexD has detected a framing error
(invalid stop bit).

BOF

FIFO/buffer overrun flag
This bit is set by hardware when a new data byte is received and the RMB bit is not cleared in UART
buffer mode. In UART FIFO mode, this bit is set when there is a new byte and the Rx FIFO is full. In
UART FIFO mode, once Rx FIFO is full, the new received message is discarded regardless of the
value of LINCR1[RBLM].

If LINCR1[RBLM] = 1, the new byte received is discarded.

If LINCR1[RBLM] = 0, the new byte overwrites buffer.
This field can be cleared by writing a 1 to it. An interrupt is generated if LINIER[BOIE] is set.

RPS
LIN Receive Pin State
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlexD has detected a falling edge on
the LINRX pin in Sleep mode.
This bit must be cleared by software. It is reset by hardware in Initialization mode.

An interrupt i generated if WUIE bit in LINIER is set.

TO

Timeout

The LINFlexD controller sets this field when a UART timeout occurs — that is, when the value of
UARTCTO becomes equal to the preset value of the timeout (UARTPTO register setting). This field
should be cleared by software. The GCR[SR] field should be used to reset the receiver FSM to idle
state in case of UART timeout for UART reception depending on the application both in buffer and
FIFO mode.
An interrupt is generated when LINIER[DBEIETOIE] is set on the Error interrupt line in UART mode.

DRFRFE

Data reception completed flag / Rx FIFO empty flag
The LINFlexD controller sets this field as follows:

– In UART buffer mode (RFBM = 0), it indicates that the num ber of bytes programmed in RDFL has
been received. This field should be cleared by software. An interrupt is generated if LINIER[DRIE]
is set. This field is set in case of framing error, parity error, or overrun. This field reflects the same
value as in LINESR when in Initialization mode and UART bit is set.

– In UART FIFO mode (RFBM = 1), it indicates that the Rx FIFO is empty. This field is a read-only
field used internally by the DMA Rx interface.

Table 217. UARTSR field descriptions (continued)

Field Description
443/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.7 LIN timeout control status register (LINTCSR)

DTFTFF

Data transmission completed flag / Tx FIFO full flag

The LINFlexD controller sets this field as follows:
– In UART buffer mode (TFBM = 0), it indicates that the data transmission is completed. This field

should be cleared by software. An interrupt is generated if LINIER[DTIE] is set. This field reflects
the same value as in LINESR when in Initialization mode and UART bit is set.

– In UART FIFO mode (TFBM = 1), it indicates that the Tx FIFO is full. This field is a read-only field
used internally by the DMA Tx interface.

NF
Noise Flag

This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.

Figure 221. LIN timeout control status register (LINTCSR)

Offset: 0x18 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

LT
O

M

IOT

TO
C

E CNT

W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

Table 218. LINTCSR field descriptions

Name Description

LTOM

LIN timeout mode

0: LIN timeout mode (header, response and frame timeout detection)

1: Output compare mode
This bit can be set/cleared in Initialization mode only.

IOT

Idle on Timeout
0: LIN state machine not reset to Idle on timeout event

1: LIN state machine reset to Idle on timeout event

This bit can be set/cleared in Initialization mode only.

Table 217. UARTSR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 444/868

LIN Controller (LINFlexD) RM0045
21.10.8 LIN output compare register (LINOCR)

TOCE

Timeout counter enable

0: Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
1: Timeout counter enable. OCF bit is set if an output compare event occurs.

TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in LIN
timeout mode, then hardware takes control of TOCE bit.

CNT
Counter Value
These bits indicate the LIN Timeout counter value.

Figure 222. LIN output compare register (LINOCR)

Offset: 0x1C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R OC21 OC1(1)

W w1c(1) w1c(1)

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1. If LINTCSR[LTOM] = 1, these fields are read-only.

Table 219. LINOCR field descriptions

Field Description

OC2
Output compare 2 value

These bits contain the value to be compared to the value of LINTCSR[CNT].

OC1
Output compare 1 value
These bits contain the value to be compared to the value of LINTCSR[CNT].

Table 218. LINTCSR field descriptions (continued)

Name Description
445/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.9 LIN timeout control register (LINTOCR)

Figure 223. LIN timeout control register (LINTOCR)

Offset: 0x20 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
RTO

0
HTO(1)

1. HTO field can only be written in slave mode, LINCR1[MME] = 0

W

Reset 0 0 0 0 1 1 1 0 0 0 0/1(2)

2. Resets to 1 in Slave mode and to 0 in Master mode

0/1(3)

3. Resets to 0 in Slave mode and to 1 in Master mode

1 1 0 0

Table 220. LINTOCR field descriptions

Field Description

RTO

Response timeout value

This register contains the response timeout duration (in bit time) for 1 byte.

The reset value is 0xE = 14, corresponding to TResponse_Maximum = 1.4 x TResponse_Nominal

HTO

Header timeout value

This register contains the header timeout duration (in bit time). This value does not include the first 11
dominant bits of the Break. The reset value depends on which mode LINFlexD is in.

HTO can be written only for Slave mode.
Doc ID 16886 Rev 6 446/868

LIN Controller (LINFlexD) RM0045
21.10.10 LIN fractional baud rate register (LINFBRR)

21.10.11 LIN integer baud rate register (LINIBRR)

Figure 224. LIN timeout control register (LINTOCR)

Offset: 0x24 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_F1

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. This field is writable only in Initialization mode, LINCR1[INIT] = 1.

Table 221. LINFBRR field descriptions

Field Description

DIV_F

Fraction bits of LFDIV
The 4 fraction bits define the value of the fraction of the LINFlexD divider (LFDIV).

Fraction (LFDIV) = Decimal value of DIV_F / 16.

This register can be written in Initialization mode only, LINCR1[INIT] = 1.

Figure 225. LIN integer baud rate register (LINIBRR)

Offset: 0x28 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
DIV_M1

W

Reset 0

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).
447/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

21.10.12 LIN checksum field register (LINCFR)

Table 222. LINIBRR field descriptions

Field Description

DIV_M

LFDIV mantissa

These bits define the LINFlexD divider (LFDIV) mantissa value (see Table 223).

This register can be written in Initialization mode only.

Table 223. Integer baud rate selection

DIV_M Mantissa

0x0 LIN clock disabled

0x1 1

... ...

0xFFFFE 1048574

0xFFFFF 1048575

Figure 226. LIN checksum field register (LINCFR)

Offset: 0x2C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
CF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 224. LINCFR field descriptions

Field Description

CF
Checksum bits
When LINCR1[CCD] is cleared, these bits are read-only. When LINCR1[CCD] is set, these bits are
read/write. See Table 210.
Doc ID 16886 Rev 6 448/868

LIN Controller (LINFlexD) RM0045
21.10.13 LIN control register 2 (LINCR2)

Figure 227. LIN control register 2 (LINCR2)

Offset: 0x30 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

IO
B

E
1

IO
P

E
(1

)

W
U

R
Q

D
D

R
Q

D
T

R
Q

A
B

R
Q

H
T

R
Q

0 0 0 0 0 0 0 0

W w1c w1c w1c w1c w1c

Reset 0 1 0/12 0 0 0 0 0 0 0 0 0 0 0 0 0

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1.

2. Resets to 1 in Slave mode and to 0 in Master mode

Table 225. LINCR2 field descriptions

Field Description

IOBE

Idle on Bit Error
0: Bit error does not reset LIN state machine

1: Bit error reset LIN state machine

This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

IOPE

Idle on Identifier Parity Error

0: Identifier Parity error does not reset LIN state machine.
1: Identifier Parity error reset LIN state machine.

This bit can be set/cleared in Initialization mode only (LINCR1[INIT]) = 1.

WURQ

Wake-up Generation Request

Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character has
been transmitted. The character sent is copied from DATA0 in BDRL buffer. Note that this bit cannot
be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit error is not
checked when transmitting the wake-up request.

DDRQ

Data Discard Request
Set by software to stop data reception if the frame does not concern the node. This bit is reset by
hardware once LINFlexD has moved to idle state. In Slave mode, this bit can be set only when HRF
bit in LINSR is set and identifier did not match any filter.
449/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.14 Buffer identifier register (BIDR)

This register contains the fields that identify a transaction and provide other information
related to it.

All the fields in this register must be updated when an ID filter (enabled) in slave mode (Tx or
Rx) matches the ID received.

DTRQ

Data Transmission Request

Set by software in Slave mode to request the transmission of the LIN Data field stored in the Buffer
data register. This bit can be set only when HRF bit in LINSR is set.

Cleared by hardware when the request has been completed or aborted or on an error condition.
In Master mode, this bit is set by hardware when DIR bit in BIDR is set and header transmission is
completed.

ABRQ

Abort Request

Set by software to abort the current transmission.
Cleared by hardware when the transmission has been aborted. LINFlexD aborts the transmission at
the end of the current bit.
This bit can also abort a wake-up request.

It can also be used in UART mode.

HTRQ

Header Transmission Request

Set by software to request the transmission of the LIN header.

Cleared by hardware when the request has been completed or aborted.
This bit has no effect in UART mode.

Table 225. LINCR2 field descriptions (continued)

Field Description

Figure 228. Buffer identifier register (BIDR)

Offset: 0x34 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL DIR CCS

0 0

ID
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 450/868

LIN Controller (LINFlexD) RM0045

21.10.15 Buffer data register least significant (BDRL)

Table 226. BIDR field descriptions

Field Description

DFL

Data Field Length

These bits define the number of data bytes in the response part of the frame.

DFL = Number of data bytes - 1.
Normally, LIN uses only DFL[0:2] to manage frames with a maximum of 8 bytes of data. Identifier
filters are compatible with DFL[0:2] and DFL[0:5] . DFL[3:5] are provided to manage extended frames.

DIR

Direction

This bit controls the direction of the data field.
0: LINFlexD receives the data and copy them in the BDR registers.

1: LINFlexD transmits the data from the BDR registers.

CCS

Classic Checksum

This bit controls the type of checksum applied on the current message.

0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification
2.0 and higher.

1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and
below.

ID
Identifier

Identifier part of the identifier field without the identifier parity.

Figure 229. Buffer data register least significant (BDRL)

Offset: 0x38 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA3 DATA2

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA1 DATA0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 227. BDRL field descriptions

Field Description

DATA3
Data Byte 3
Data byte 3 of the data field

DATA2
Data Byte 2
Data byte 2 of the data field
451/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.16 Buffer data register most significant (BDRM)

DATA1
Data Byte 1

Data byte 1 of the data field

DATA0
Data Byte 0

Data byte 0 of the data field

Figure 230. Buffer data register most significant (BDRM)

Offset: 0x3C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DATA7 DATA6

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DATA5 DATA4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 228. BDRM field descriptions

Field Description

DATA7
Data Byte 7

Data byte 7 of the data field

DATA6
Data Byte 6

Data byte 6 of the data field

DATA5
Data Byte 5

Data byte 5 of the data field

DATA4
Data Byte 4

Data byte 4 of the data field

Table 227. BDRL field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 452/868

LIN Controller (LINFlexD) RM0045
21.10.17 Identifier filter enable register (IFER)

Figure 231. Identifier filter enable register (IFER)

Offset: 0x40 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
FACT(1)

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 229. IFER field descriptions

Field Description

FACT

Filter activation (see Table 230)

The software sets the bit FACT[x] to activate the filters x in identifier list mode.
In identifier mask mode bits FACT(2n + 1) have no effect on the corresponding filters as they act as
masks for the Identifiers 2n.
0 Filters 2n and 2n + 1 are deactivated.
1 Filters 2n and 2n + 1 are activated.

Table 230. IFER[FACT] configuration

Bit Value Result

FACT[0]
0 Filters 0 and 1 are deactivated.

1 Filters 0 and 1 are activated.

FACT[1]
0 Filters 2 and 3 are deactivated.

1 Filters 2 and 3 are activated.

FACT[2]
0 Filters 4 and 5 are deactivated.

1 Filters 4 and 5 are activated.

FACT[3]
0 Filters 6 and 7 are deactivated.

1 Filters 6 and 7 are activated.

FACT[4]
0 Filters 8 and 9 are deactivated.

1 Filters 8 and 9 are activated.
453/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.18 Identifier filter match index (IFMI)

FACT[5]
0 Filters 10 and 11 are deactivated.

1 Filters 10 and 11 are activated.

FACT[6]
0 Filters 12 and 13 are deactivated.

1 Filters 12 and 13 are activated.

FACT[7]
0 Filters 14 and 15 are deactivated.

1 Filters 14 and 15 are activated.

Figure 232. Identifier filter match index (IFMI)

Offset: 0x44 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 IFMI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 231. IFMI field descriptions

Field Description

IFMI

Filter match index

This register contains the index corresponding to the received ID. It can be used to directly write or
read the data in RAM (refer to Section 21.7.2, Slave mode, for more details).

When no filter matches, IFMI = 0. When Filter n is matching, IFMI = n + 1.

Table 230. IFER[FACT] configuration (continued)

Bit Value Result
Doc ID 16886 Rev 6 454/868

LIN Controller (LINFlexD) RM0045
21.10.19 Identifier filter mode register (IFMR)

Figure 233. Identifier filter mode register (IFMR)

Offset:0x48 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
IFM

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 232. IFMR field descriptions

Field Description

IFM

Filter mode
0 Filters 2n and 2n + 1 are in identifier list mode.
1 Filters 2n and 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).
(See Table 233.)

Table 233. IFMR[IFM] configuration

Bit Value Result

IFM[0]
0 Filters 0 and 1 are in identifier list mode.

1 Filters 0 and 1 are in mask mode (filter 1 is the mask for the filter 0).

IFM[1]
0 Filters 2 and 3 are in identifier list mode.

1 Filters 2 and 3 are in mask mode (filter 3 is the mask for the filter 2).

IFM[2]
0 Filters 4 and 5 are in identifier list mode.

1 Filters 4 and 5 are in mask mode (filter 5 is the mask for the filter 4).

IFM[3]
0 Filters 6 and 7 are in identifier list mode.

1 Filters 6 and 7 are in mask mode (filter 7 is the mask for the filter 6).

IFM[4]
0 Filters 8 and 9 are in identifier list mode.

1 Filters 8 and 9 are in mask mode (filter 9 is the mask for the filter 8).

IFM[5]
0 Filters 10 and 11 are in identifier list mode.

1 Filters 10 and 11 are in mask mode (filter 11 is the mask for the filter 10).
455/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.10.20 Identifier filter control registers (IFCR0–IFCR15)

The function of these registers is different depending on which mode the LINFlexD controller
is in, as described in Table 234.

Note: These registers are available on LINFlexD_0 only.

IFM[6]
0 Filters 12 and 13 are in identifier list mode.

1 Filters 12 and 13 are in mask mode (filter 13 is the mask for the filter 12).

IFM[7]
0 Filters 14 and 15 are in identifier list mode.

1 Filters 14 and 15 are in mask mode (filter 15 is the mask for the filter 14).

Table 233. IFMR[IFM] configuration (continued)

Bit Value Result

Table 234. IFCR functionality based on mode

Mode IFCR functionality

Identifier list Each IFCR register acts as a filter.

Identifier mask
If a = (number of filters) / 2, and n = 0 to (a - 1),

then IFCR[2n] acts as a filter and IFCR[2n+1] acts as the mask for IFCR[2n].

Figure 234. Identifier filter control registers (IFCR0–IFCR15)

Offsets: 0x4C–0x88 (16 registers) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DFL(1)

1. These fields are writable only in Initialization mode (LINCR1[INIT] = 1).

D
IR

(1
)

C
C

S
(1

)

0 0
ID(1)

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 456/868

LIN Controller (LINFlexD) RM0045

21.10.21 Global control register (GCR)

This register can be programmed only in Initialization mode. The configuration specified in
this register applies in both LIN and UART modes.

Table 235. IFCR field descriptions

Field Description

DFL
Data Field Length

This field defines the number of data bytes in the response part of the frame.

DIR

Direction

This bit controls the direction of the data field.

0: LINFlexD receives the data and copy them in the BDRL and BDRM registers.
1: LINFlexD transmits the data from the BDRL and BDRM registers.

CCS

Classic Checksum
This bit controls the type of checksum applied on the current message.

0: Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN specification
2.0 and higher.

1: Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and
below.

ID
Identifier
Identifier part of the identifier field without the identifier parity.

Figure 235. Global control register (GCR)

Offset: 0x8C (for LINFlexD_0 only), 0x4C (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0

T
D

F
B

M
(1

)

1. This field is writable only in Initialization mode (LINCR1[INIT] = 1).

R
D

F
B

M
(1

)

T
D

LI
S

(1
)

R
D

LI
S

(1
)

S
TO

P
(1

) 0

W SR(1)

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
457/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

21.10.22 UART preset timeout register (UARTPTO)

This register contains the preset timeout value in UART mode, and is used to monitor the
IDLE state of the reception line. The timeout detection uses this register and the UARTCTO
register described in Section 21.10.23, UART current timeout register (UARTCTO).

Table 236. GCR field descriptions

Field Description

TDFBM

Transmit data first bit MSB

This field controls the first bit of transmitted data (payload only) as MSB/LSB in both UART and LIN
modes.

0 The first bit of transmitted data is LSB – that is, the first bit transmitted is mapped on the LSB bit
(BDR(0), BDR(8), BDR(16), BDR(24)).

1 The first bit of transmitted data is MSB – that is, the first bit transmitted is mapped on the MSB bit
(BDR(7), BDR(15), BDR(23), BDR(31)).

RDFBM

Received data first bit MSB

This field controls the first bit of received data (payload only) as MSB/LSB in both UART and LIN
modes.

0 The first bit of received data is LSB – that is, the first bit received is mapped on the LSB bit (BDR(0),
BDR(8), BDR(16), BDR(24)).

1 The first bit of received data is MSB – that is, the first bit received is mapped on the MSB bit (BDR(7),
BDR(15), BDR(23), BDR(31)).

TDLIS

Transmit data level inversion selection

This field controls the data inversion of transmitted data (payload only) in both UART and LIN modes.

0 Transmitted data is not inverted.
1 Transmitted data is inverted.

RDLIS

Received data level inversion selection

This field controls the data inversion of received data (payload only) in both UART and LIN modes.

0 Received data is not inverted.
1 Received data is inverted.

STOP

Stop bit configuration

This field controls the number of stop bits in transmitted data in both UART and LIN modes. The stop
bit is configured for all the fields (delimiter, sync, ID, checksum, and payload).

0 One stop bit
1 Two stop bits

SR

Soft reset
If the software writes a “1” to this field, the LINFlexD controller executes a soft reset in which the
FSMs, FIFO pointers, counters, timers, status registers, and error registers are reset but the
configuration registers are unaffected.

This field always reads “0”.
Doc ID 16886 Rev 6 458/868

LIN Controller (LINFlexD) RM0045

21.10.23 UART current timeout register (UARTCTO)

This register contains the current timeout value in UART mode, and is used in conjunction
with the UARTPTO register (see Section 21.10.22, UART preset timeout register
(UARTPTO)) to monitor the IDLE state of the reception line. UART timeout works in both
CPU and DMA modes.

The timeout counter:

● Starts at zero and counts upward

● Is clocked with the baud rate clock prescaled by a hard-wired scaling factor of 16

● Is automatically enabled when UARTCR[RXEN] = 1

Figure 236. UART preset timeout register (UARTPTO)

Offset: 0x90 (for LINFlexD_0 only), 0x50 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
PTO

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 237. UARTPTO field descriptions

Field Description

PTO
Preset value of the timeout counter
Do not set PTO = 0 (otherwise, UARTSR[TO] would immediately be set).
459/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

21.10.24 DMA Tx enable register (DMATXE)

This register enables the DMA Tx interface.

Figure 237. UART current timeout register (UARTCTO)

Offset: 0x94 (for LINFlexD_0 only), 0x54 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 CTO

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 238. UARTCTO field descriptions

Field Description

CTO

Current value of the timeout counter
This field is reset whenever one of the following occurs:

– A new value is written to the UARTPTO register
– The value of this field matches the value of UARTPTO[PTO]

– A hard or soft reset occurs

– New incoming data is received

When CTO matches the value of UARTPTO[PTO], UARTSR[TO] is set.
Doc ID 16886 Rev 6 460/868

LIN Controller (LINFlexD) RM0045

21.10.25 DMA Rx enable register (DMARXE)

This register enables the DMA Rx interface.

Figure 238. DMA Tx enable register (DMATXE)

Offset: 0x98 (for LINFlexD_0 only), 0x58 (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
T

E
15

D
T

E
14

D
T

E
13

D
T

E
12

D
T

E
11

D
T

E
10

D
T

E
9

D
T

E
8

D
T

E
7

D
T

E
6

D
T

E
5

D
T

E
4

D
T

E
3

D
T

E
2

D
T

E
1

D
T

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 239. DMATXE field descriptions

Field Description

DTEn

DMA Tx channel n enable
0 DMA Tx channel n disabled
1 DMA Tx channel n enabled
Note: When DMATXE = 0x0, the DMA Tx interface FSM is forced (soft reset) into the IDLE state.

Figure 239. DMA Rx enable register (DMARXE)

Offset: 0x9C (for LINFlexD_0 only), 0x5C (for LINFlexD_1) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

D
R

E
15

D
R

E
14

D
R

E
13

D
R

E
12

D
R

E
11

D
R

E
10

D
R

E
9

D
R

E
8

D
R

E
7

D
R

E
6

D
R

E
5

D
R

E
4

D
R

E
3

D
R

E
2

D
R

E
1

D
R

E
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
461/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

21.11 DMA interface
The LINFlexD DMA interface offers a parametric and programmable solution with the
following features:

● LIN Master node, TX mode: single DMA channel

● LIN Master node, RX mode: single DMA channel

● LIN Slave node, TX mode: 1 to N DMA channels where N = max number of ID filters

● LIN Slave node, RX mode: 1 to N DMA channels where N = max number of ID filters

● UART node, TX mode: single DMA channel

● UART node, RX mode: single DMA channel + timeout

The LINFlexD controller interacts with an enhanced direct memory access (eDMA)
controller; see the description of that controller for details on its operation and the transfer
control descriptors (TCDs) referenced in this section.

21.11.1 Master node, TX mode

On a master node in TX mode, the DMA interface requires a single TX channel. Each TCD
controls a single frame, except for the extended frames (multiple TCDs). The memory map
associated with the TCD chain (RAM area and LINFlexD registers) is shown in Figure 240.

Table 240. DMARXE field descriptions

Field Description

DREn

DMA Rx channel n enable

0 DMA Rx channel n disabled
1 DMA Rx channel n enabled

Note: When DMARXE = 0x0, the DMA Rx interface FSM is forced (soft reset) into the IDLE state.
Doc ID 16886 Rev 6 462/868

LIN Controller (LINFlexD) RM0045

Figure 240. TCD chain memory map (master node, TX mode)

The TCD chain of the DMA Tx channel on a master node supports:

● Master to Slave: transmission of the entire frame (header + data)

● Slave to Master: transmission of the header. The data reception is controlled by the Rx
channel on the master node.

● Slave to Slave: transmission of the header.

The register settings for the LINCR2 and BIDR registers for each class of LIN frame are
shown in Table 241.

The concept FSM to control the DMA TX interface is shown in Figure 241. The DMA TX
FSM will move to IDLE state immediately at next clock edge if DMATXE[0] = 0.

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM

DMA transfer

(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

RAM area

TCD (n+2)

TCD (n+3)

Linked chain

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

LINCR2 (4 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Frame (n+1)
Slave –> Master

or
Slave –> Slave

Extended
Frame (n+2)

Master –> Slave

Extended
Frame (n+3)

Master –> Slave

Frame (n)
Master –> Slave

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Table 241. Register settings (master node, TX mode)

LIN frame LINCR2 BIDR

Master to Slave
DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 1 (TX)

Slave to Master
DDRQ=0
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)

Slave to Slave
DDRQ=1
DTRQ=0
HTRQ=0

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)
463/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 241. FSM to control the DMA TX interface (master node)

The TCD settings (word transfer) are shown in Table 242. All other TCD fields are equal to
0. TCD settings based on half-word or byte transfers are allowed.

Enables DMA TX
channel request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (LIN idle |

DBEF) & DMA_TEN &
!Token_DMA_RX

?

True

DMA TX transfer (Req/Ack
minor/major loop) from

RAM area to LINFlex registers

DMA TX
transfer is completed

?

True

DBEF
?

False

Set HTRQ to transmit the
LIN frame (header + [data])

!DIR & !DDRQ
?

False (TX mode)

True (RX mode)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False

False

False

False

DTF
?

DBEF
?

Set Token_DMA_RX to enable
the DMA RX interface

Clear DTF

True (end of frame)

True
(extended frame,
size > 8 bytes)
Doc ID 16886 Rev 6 464/868

LIN Controller (LINFlexD) RM0045

21.11.2 Master node, RX mode

On a master node in RX mode, the DMA interface requires a single RX channel. Each TCD
controls a single frame, except for the extended frames (multiple TCDs). The memory map
associated to the TCD chain (RAM area and LINFlexD registers) is shown in Figure 242.

Figure 242. TCD chain memory map (master node, RX mode)

The TCD chain of the DMA Rx channel on a master node supports Slave-to-Master
reception of the data field.

Table 242. TCD settings (master node, TX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4 + 4] + 0/4/8 = N
Data buffer is stuffed with dummy bytes if the length is
not word aligned.

LINCR2 + BIDR + BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] LINCR2 address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked chain

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA RX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)
465/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
The BIDR register is optionally copied into the RAM area. This BIDR field (part of FIFO
data) contains the ID of each message to allow the CPU to figure out which ID was received
by the LINFlexD DMA if only the “one DMA channel” setup is used.

The concept FSM to control the DMA RX interface is shown in Figure 243. The DMA RX
FSM will move to IDLE state immediately at next clock edge if DMARXE[0]=0.

Figure 243. FSM to control the DMA RX interface (master node)

The TCD settings (word transfer) are shown in Table 243. All other TCD fields are equal to
0. TCD settings based on half-word or byte transfer are allowed.

Enables DMA RX
channel request

(DMAERQH, DMAERQL)

(DRF |
(DBFF & RMB))

& Token_DMA_RX &
DMA_REN

?

True

DMA RX transfer (Req/Ack
minor/major loop) from

LINFlex registers to RAM area

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

Clear Token_DMA_RX

True True
(extended frame,

Clear DRF

Clear DBFF, RMB
(for extended frame)

size > 8 bytes)
Doc ID 16886 Rev 6 466/868

LIN Controller (LINFlexD) RM0045

21.11.3 Slave node, TX mode

On a slave node in TX mode, the DMA interface requires a DMA TX channel for each ID
filter programmed in TX mode. In case a single DMA TX channel is available, a single ID
field filter must be programmed in TX mode. Each TCD controls a single frame, except for
the extended frames (multiple TCDs). The memory map associated to the TCD chain (RAM
area and LINFlexD registers) is shown in Figure 244.

Figure 244. TCD chain memory map (slave node, TX mode)

Table 243. TCD settings (master node, RX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N
Data buffer is stuffed with dummy bytes if the length is not

word aligned.

BIDR + BDRL + BDRM

SADDR[31:0] BIDR address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

DMA transfer

RAM area

TCD (n+2)

Linked chain

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Slave –> Master

1 DMA TX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BDRL + BDRM
(4/8 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Slave –> Slave

BDRL + BDRM
(4/8 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)
467/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
The TCD chain of the DMA Tx channel on a slave node supports:

● Slave to Master: transmission of the data field

● Slave to Slave: transmission of the data field

The register settings of the LINCR2, IFER, IFMR, and IFCR registers are shown in
Table 244.

The concept FSM to control the DMA Tx interface is shown in Figure 245. DMA TX FSM will
move to idle state if DMATXE[x] = 0, where x = IFMI – 1.

Table 244. Register settings (slave node, TX mode)

LIN frame LINCR2 IFER IFMR IFCR

Slave to Master
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter
(Tx mode) for each
DMA TX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 1(TX)
Doc ID 16886 Rev 6 468/868

LIN Controller (LINFlexD) RM0045

Figure 245. FSM to control the DMA TX interface (slave node)

The TCD settings (word transfer) are shown in Table 245. All other TCD fields are equal to
0. TCD settings based on half-word or byte transfer are allowed.

Enables DMA TX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
!DRF & (DBEF |

HRF) & (IFMI != 0) &
DMA_TEN

?

True

DMA TX transfer (Req/Ack) from
RAM area to LINFlex registers

(channel/filter mapping)

DMA TX
transfer done

?

True

DBEF
?

False

Set DTRQ to transmit the
LIN frame (data)

Clear DBEF to transmit the LIN
frame (data for extended frame)

True

False False

False

False

DTF
?

DBEF
?

Clear DTF

True True
(extended frame,
size > 8 bytes)
469/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

21.11.4 Slave node, RX mode

On a slave node in RX mode, the DMA interface requires a DMA RX channel for each ID
filter programmed in RX mode. In case a single DMA RX channel is available, a single ID
field filter must be programmed in RX mode. Each TCD controls a single frame, except for
the extended frames (multiple TCDs). The memory map associated to the TCD chain (RAM
area and LINFlexD registers) is shown in Figure 246.

Figure 246. TCD chain memory map (slave node, RX mode)

Table 245. TCD settings (slave node, TX mode)

TCD field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] 4/8 = N
Data buffer is stuffed with dummy bytes if the length is not
word aligned.

BDRL + BDRM

SADDR[31:0] RAM address

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] BDRL address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

DMA transfer

RAM area

TCD (n+2)

Linked chain

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

LINFlex2 registers

Extended
Frame (n+1)

Frame (n)
Master –> Slave

1 DMA RX channel/filter (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Extended
Frame (n+2)

BIDR (4 bytes)

BDRL + BDRM
(4/8 bytes)

BIDR (4 bytes)

BDRL + BDRM
(8 bytes)

BDRL + BDRM
(4/8 bytes)

Slave –> Slave
Doc ID 16886 Rev 6 470/868

LIN Controller (LINFlexD) RM0045
The TCD chain of the DMA RX channel on a slave node supports:

● Master to Slave: reception of the data field.

● Slave to Slave: reception of the data field.

The register setting of the LINCR2, IFER, IFMR, and IFCR registers are given in Table 246.

The concept FSM to control the DMA Rx interface is shown in Figure 247. DMA RX FSM will
move to idle state if DMARXE[x] = 0 where x = IFMI - 1.

Table 246. Register settings (slave node, RX mode)

LIN frame LINCR2 IFER IFMR IFCR

Master to Slave
or Slave to Slave

DDRQ = 0
DTRQ = 0
HTRQ = 0

To enable an ID filter
(Rx mode) for each
DMA RX channel

- Identifier list mode
- Identifier mask mode

DFL = payload size
ID = address
CCS = checksum
DIR = 0 (RX)
471/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 247. FSM to control the DMA RX interface (slave node)

The TCD settings (word transfer) are shown in Table 247. All other TCD fields = 0. TCD
settings based on half-word or byte transfer are allowed.

Enables DMA RX
channel/filter request

(DMAERQH, DMAERQL)

!DTF &
(DRF | (DBFF &

RMB)) & (IFMI != 0) &
DMA_REN

?

True

DMA RX transfer (Req/Ack) from
LINFlex registers to RAM area

(channel/filter mapping)

DMA RX
transfer done

?

True

False False

False

False

DRF
?

DBFF & RMB
?

True True
(extended frame,

Clear DRF
Clear DBFF, RMB

(for extended frame)

size > 8 bytes)

Table 247. TCD settings (slave node, RX mode)

TCD Field Value Description

CITER[14:0] 1 Single iteration for the “major” loop

BITER[14:0] 1 Single iteration for the “major” loop

NBYTES[31:0] [4] + 4/8 = N
Data buffer is stuffed with dummy bytes if the
length is not word aligned.
BIDR + BDRL + BDRM

SADDR[31:0] BDRL address
Doc ID 16886 Rev 6 472/868

LIN Controller (LINFlexD) RM0045
21.11.5 UART node, TX mode

In UART TX mode, the DMA interface requires a DMA TX channel. A single TCD can control
the transmission of an entire Tx buffer. The memory map associated with the TCD chain
(RAM area and LINFlexD registers) is shown in Figure 248.

Figure 248. TCD chain memory map (UART node, TX mode)

The UART TX buffer must be configured in FIFO mode in order to:

● Allow the transfer of large data buffer by a single TCD

● Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data
from the RAM to the FIFO

● Use low priority DMA channels

● Support the UART baud rate (2 Mb/s) without underrun events

SOFF[15:0] 4 Word increment

SSIZE[2:0] 2 Word transfer

SLAST[31:0] –N

DADDR[31:0] RAM address

DOFF[15:0] 4 Word increment

DSIZE[2:0] 2 Word transfer

DLAST_SGA[31:0] –N No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Table 247. TCD settings (slave node, RX mode) (continued)

TCD Field Value Description

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M half-words)

BDRL
(2 half-words FIFO mode)

BDRL
(M bytes)

BDRL
(M bytes)

DMA transfer (8/16-bits data format)

RAM area LINFlex2 registers

1 DMA TX channel (TCD single and/or linked chain)

TCD (n+1)

TCD (n)

Buffer (n+1)

BDRL
(4 bytes FIFO mode)

BDRL
(4 bytes FIFO mode)

Buffer (n)
473/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
The Tx FIFO size is:

● 4 bytes in 8-bit data format

● 2 half-words in 16-bit data format

A DMA request is triggered by FIFO not full (TX) status signals.

The concept FSM to control the DMA TX interface is shown in Figure 249. DMA TX FSM will
move to idle state if DMATXE[0] = 0.

Figure 249. FSM to control the DMA TX interface (UART node)

The TCD settings (typical case) are shown in Table 248. All other TCD fields = 0. The minor
loop transfers a single byte/half-word as soon a free entry is available in the Tx FIFO.

!TFF & DMA_TEN
?

True

False

False

!TFF
?

UART TX buffer (FIFO mode)
Set TXEN

Enables DMA TX
channel request

(DMAERQH, DMAERQL)

DMA TX transfer (Req/Ack) from
RAM area to UART TX FIFO

DMA TX
(major loop) done

?

True

False

DMA TX
(minor loop) done

?

True

False

True
Doc ID 16886 Rev 6 474/868

LIN Controller (LINFlexD) RM0045

21.11.6 UART node, RX mode

In UART RX mode, the DMA interface requires a DMA RX channel. A single TCD can
control the reception of an entire Rx buffer. The memory map associated with the TCD chain
(RAM area and LINFlexD registers) is shown in Figure 250.

Figure 250. TCD chain memory map (UART node, RX mode)

Table 248. TCD settings (UART node, TX mode)

TCD Field
Value

Description
8-bit data 16-bit data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] RAM address

SOFF[15:0] 1 2 Byte/Half-word increment

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] -M -M * 2

DADDR[31:0] BDRL address
DADDR = BDRL + 0x3 for byte transfer
DADDR = BDRL + 0x2 for half-word
transfer

DOFF[15:0] 0 No increment (FIFO)

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] 0 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request

Buffer (n+1)

Buffer (n)

DMA transfer (8/16-bits data format)

RAM areaLINFlex2 registers

1 DMA RX channel (TCD single and/or linked chain)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

BDRM
(4 bytes FIFO mode)

BDRM
(2 half-words FIFO mode)

TCD (n+1)

TCD (n)

BDRM
(M bytes)

BDRM
(M half-words)

BDRM
(M bytes)

BDRM
(M half-words)
475/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
The UART RX buffer must be configured in FIFO mode in order to:

● Allow the transfer of large data buffer by a single TCD

● Adsorb the latency, following a DMA request (due to the DMA arbitration), to move data
from the FIFO to the RAM

● Use low priority DMA channels

● Support high UART baud rate (at least 2 Mb/s) without overrun events

The Rx FIFO size is:

● 4 bytes in 8-bit data format

● 2 half-words in 16-bit data format

This is sufficient because just one byte allows a reaction time of about 3.8 s (at 2 Mbit/s),
corresponding to about 450 clock cycles at 120 MHz, before the transmission is affected. A
DMA request is triggered by FIFO not empty (RX) status signals.

The concept FSM to control the DMA Rx interface is shown in Figure 251. DMA Rx FSM will
move to idle state if DMARXE[0] = 0.
Doc ID 16886 Rev 6 476/868

LIN Controller (LINFlexD) RM0045

Figure 251. FSM to control the DMA RX interface (UART node)

The TCD settings (typical case) are shown in Table 249. All other TCD fields = 0. The minor
loop transfers a single byte/half-word as soon an entry is available in the Rx FIFO. A new

!RFE & DMA_REN
?

True

False

!RFE
?

UART RX buffer (FIFO mode)
TIMEOUT config

Enables DMA RX
channel request

(DMAERQH, DMAERQL)

DMA RX transfer (Req/Ack) from
UART RX FIFO to RAM area

DMA RX
(major loop) done

?

True

False

DMA RX
(minor loop) done

?

True

False

True

Set RXEN

TIMEOUT restart

False

False
TIMEOUT

?

True

Set TIMEOUT flag
477/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
software reset bit is required that allows the LINFlexD FSMs to be reset in case this timeout
state is reached or in any other case. Timeout counter can be re-written by software at any
time to extend timeout period.

21.11.7 Use cases and limitations

● In LIN slave mode, the DMA capability can be used only if the ID filtering mode is
activated. The number of ID filters enabled must be equal to the number of DMA
channels enabled. The correspondence between channel # and ID filter is based on
IFMI (identifier filter match index).

● In LIN master mode both the DMA channels (TX and RX) must be enabled in case the
DMA capability is required.

● In UART mode the DMA capability can be used only if the UART Tx/Rx buffers are
configured as FIFOs.

● DMA and CPU operating modes are mutually exclusive for the data/frame transfer on a
UART or LIN node. Once a DMA transfer is finished the CPU can handle subsequent
accesses.

● Error management must be always executed via CPU enabling the related error
interrupt sources. The DMA capability does not provide support for the error
management. Error management means checking status bits, handling IRQs and
potentially canceling DMA transfers.

● The DMA programming model must be coherent with the TCD setting defined in this
document.

Table 249. TCD settings (UART node, RX mode)

TCD Field
Value

Description
8 bits data 16 bits data

CITER[14:0] M Multiple iterations for the “major” loop

BITER[14:0] M Multiple iterations for the “major” loop

NBYTES[31:0] 1 2 Minor loop transfer = 1 or 2 bytes

SADDR[31:0] BDRM address
SADDR = BDRM + 0x3 for byte transfer

SADDR = BDRM + 0x2 for half-word
transfer

SOFF[15:0] 0 No increment (FIFO)

SSIZE[2:0] 0 1 Byte/Half-word transfer

SLAST[31:0] 0

DADDR[31:0] RAM address

DOFF[15:0] 1 2 Byte/Half-word increment

DSIZE[2:0] 0 1 Byte/Half-word transfer

DLAST_SGA[31:0] -M -M * 2 No scatter/gather processing

INT_MAJ 0/1 Interrupt disabled/enabled

D_REQ 1 Only on the last TCD of the chain.

START 0 No software request
Doc ID 16886 Rev 6 478/868

LIN Controller (LINFlexD) RM0045
21.12 Functional description

21.12.1 8-bit timeout counter

LIN timeout mode

Setting the LTOM bit in the LINTCSR enables the LIN timeout mode. The LINOCR becomes
read-only, and OC1 and OC2 output compare values in the LINOCR are automatically
updated by hardware.

This configuration detects header timeout, response timeout, and frame timeout.

Depending on the LIN mode (selected by the MME bit in LINCR1), the 8-bit timeout counter
will behave differently.

LIN timeout mode must not be enabled during LIN extended frames transmission or
reception (that is, if the data field length in the BIDR is configured with a value higher than 8
data bytes).

LIN Master mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values.
Header timeout value is fixed to HTO = 28-bit time.

Field OC1 checks THeader and TResponse and field OC2 checks TFrame (refer to Figure 252).

When LINFlexD moves from Break delimiter state to Synch Field state (refer to
Section 21.10.3, LIN status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + 28),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + 28 + RTO × 9 (frame
timeout value for an 8-byte frame),

● the TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9
(response timeout value for an 8-byte frame)).

On the first response byte is received, OC1 and OC2 are automatically updated to check
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or response, the TOCE bit is
reset.

If there is no response, frame timeout value does not take into account the DFL value, and
an 8-byte response (DFL = 7) is always assumed.

LIN Slave mode

Field RTO in the LINTOCR can be used to tune response timeout and frame timeout values.
Header timeout value is fixed to HTO.

OC1 checks THeader and TResponse and OC2 checks TFrame (refer to Figure 252).
479/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
When LINFlexD moves from Break state to Break Delimiter state (refer to Section 21.10.3,
LIN status register (LINSR)):

● OC1 is updated with the value of OCHeader (OCHeader = CNT + HTO),

● OC2 is updated with the value of OCFrame (OCFrame = CNT + HTO + RTO × 9 (frame
timeout value for an 8-byte frame)),

● The TOCE bit is set.

On the start bit of the first response data byte (and if no error occurred during the header
reception), OC1 is updated with the value of OCResponse (OCResponse = CNT + RTO × 9
(response timeout value for an 8-byte frame)).

Once the first response byte is received, OC1 and OC2 are automatically updated to check
TResponse and TFrame according to RTO (tolerance) and DFL.

On the checksum reception or in case of error in the header or data field, the TOCE bit is
reset.

Figure 252. Header and response timeout

Output compare mode

Resetting the LTOM bit in the LINTCSR enables the output compare mode. This mode
allows the user to fully customize the use of the counter.

OC1 and OC2 output compare values can be updated in the LINTOCR by software.

21.12.2 Interrupts

OCFrame

OCHeader OCResponse

Header Response

Break

Frame

OC1

OC2

Response
space

Table 250. LINFlexD interrupt control

Interrupt event Event flag bit Enable control bit Interrupt vector

Header Received interrupt HRF HRIE RXI (1)

Data Transmitted interrupt DTF DTIE TXI

Data Received interrupt DRF DRIE RXI

Data Buffer Empty interrupt DBEF DBEIE TXI

Data Buffer Full interrupt DBFF DBFIE RXI
Doc ID 16886 Rev 6 480/868

LIN Controller (LINFlexD) RM0045
Wake-up interrupt WUPF WUPIE RXI

LIN State interrupt (2) LSF LSIE RXI

Buffer Overrun interrupt BOF BOIE ERR

Framing Error interrupt FEF FEIE ERR

Header Error interrupt HEF HEIE ERR

Checksum Error interrupt CEF CEIE ERR

Bit Error interrupt BEF BEIE ERR

Output Compare interrupt OCF OCIE ERR

Stuck at Zero interrupt SZF SZIE ERR

1. In Slave mode, if at least one filter is configured as TX and enabled, header received interrupt vector is RXI
or TXI depending on the value of identifier received.

2. For debug and validation purposes.

Table 250. LINFlexD interrupt control (continued)

Interrupt event Event flag bit Enable control bit Interrupt vector
481/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 253. Interrupt diagram

21.12.3 Fractional baud rate generation

The baud rates for the receiver and transmitter are both set to the same value as
programmed in the Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

LFDIV is an unsigned fixed point number. The 20-bit mantissa is coded in the LINIBRR
register and the fraction is coded in the LINFBRR register.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register
values:

LSIE
States

WUIE
WUF

DBFF

DRF

HRIE

Tx

DTIE
DTF

HRIE
HRF

Rx
DBFIE

DRIE

BOIE
BOF

FEIE
FEF

CEF

BEIE
BEF

CEIE

HRF

HEIE
SFEF,SDEF,IDPEF

OCIE
OCF

SZIE
SZF

Error

DBEIE
DBEF

TOIE
TO

Tx/Rx baud =
fipg_clock_lin

(16 * LFDIV)
Doc ID 16886 Rev 6 482/868

LIN Controller (LINFlexD) RM0045
Example 6

If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 7

To program LFDIV = 25.62d,

LINFBRR = 16 * 0.62 = 9.92, nearest real number 10d = Ah

LINIBRR = mantissa(25.620d) = 25d = 19h

Note: The Baud Counters are updated with the new value of the Baud Registers after a write to
LINIBRR. Hence the Baud Register value must not be changed during a transaction. The
LINFBRR (containing the Fraction bits) must be programmed before LINIBRR.

Note: LFDIV must be greater than or equal to 1.5d, for example, LINIBRR = 1 and LINFBRR = 8.
Therefore, the maximum possible baudrate is fperiph_set_1_clk / 24.

21.13 Programming considerations
This section describes the various configurations in which the LINFlexD can be used.

Table 251. Error calculation for programmed baud rates

Baud rate

fperiph_set1_clk = 48 MHz fperiph_set1_clk = 16 MHz

Actual

Value programmed in
the baud rate register

% Error =
(Calculated -

Desired)
Baud rate
/ Desired
baud rate

Actual

Value programmed in
the baud rate register

% Error =
(Calculated -

Desired)
Baud rate
/ Desired
baud rate

LINIBRR LINFBRR LINIBRR LINFBRR

2400 2400.00 1250 0 0.000 2399.88 416 11 -0.005

9600 9600.00 312 8 0.000 9598.08 104 3 -0.02

10417 10416.67 287 16 -0.003 10416.7 95 16 -0.003

19200 19200.00 156 4 0.000 19207.7 52 1 0.04

57600 57623.05 52 1 0.040 57554 17 6 -0.08

115200 115107.91 26 1 -0.080 115108 8 11 -0.08

230400 230769.23 13 0 0.160 231884 4 5 0.644

460800 461538.46 6 8 0.160 457143 2 3 -0.794

921600 923076.92 3 4 0.160 941176 1 1 2.124
483/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)
21.13.1 Master node

Figure 254. Programming consideration: master node, transmitter

Figure 255. Programming consideration: master node, receiver

Figure 256. Programming consideration: master node, transmitter, bit error

Figure 257. Programming consideration: master node, receiver, checksum error

Header Data TX Checksum TX

Configure ID

DFL, Data buffer

Set HTRQ
TXI Interrupt

DTF set

DIR = 1

Header Data RX Checksum RX

Configure ID, DFL

Set HTRQ RXI Interrupt

DRF set

DIR = 0
and

DDRQ = 0

Header Data TX

Configure ID

DFL, Data buffer

Set HTRQ

DIR = 1

BEF set

ERRI Interrupt

IOBE = 1

Header Data TX Checksum TX

Configure ID

DFL, Data buffer

Set HTRQ
TX Interrupt

DTF set

DIR = 1

BEF set

ERR Interrupt

IOBE = 0

Header Data RX Checksum RX

Configure ID, DFL

Set HTRQ ERR Interrupt
CEF set

DIR = 0
and
DDRQ = 0
Doc ID 16886 Rev 6 484/868

LIN Controller (LINFlexD) RM0045
21.13.2 Slave node

Figure 258. Programming consideration: slave node, transmitter, no filters

Figure 259. Programming consideration: slave node, receiver, no filters

Figure 260. Programming consideration: slave node, transmitter, no filters, bit error

Figure 261. Programming consideration: slave node, receiver, no filters, checksum error

Header Data TX Checksum TX

TX Interrupt
DTF setHRF set

RX Interrupt

Set DTRQ

Configure CCS, DIR, DFL,

Data Buffers

Header Data RX Checksum RX

RX Interrupt

DRF setConfigure CCS, DIR, DFLHRF set
RX Interrupt

DDRQ = 0

Header

DDRQ = 1HRF set
RX Interrupt

Header Data TX

ERR Interrupt
BEF setHRF set

RX Interrupt
Set DTRQ

Configure DIR, DFL,
Data Buffers

IOBE = 1

Header Data RX Checksum RX

ERR Interrupt

CEF set

DDRQ = 0

Configure DIR, DFLHRF set
RX Interrupt
485/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 262. Programming consideration: slave node, at least one TX filter, BF is reset, ID matches
filter

Figure 263. Programming consideration: slave node, at least one RX filter, BF is reset, ID matches
filter

Figure 264. Programming consideration: slave node, RX only, TX only, RX and TX filters, ID not
matching filter, BF is reset

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(ID matched)

Note: This configuration can be used in case the slave never receives data
(for example, as with a sensor).

Header Data RX Checksum RX

RXI Interrupt

DRF set
IFMI = ID matched+1

Header

ID not matching any filter
Doc ID 16886 Rev 6 486/868

LIN Controller (LINFlexD) RM0045

Figure 265. Programming consideration: slave node, TX filter, BF is set

Figure 266. Programming consideration: slave node, RX filter, BF is set

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(ID has matched)

Header Data RX Checksum RX

RX Interrupt

DRF set

DDRQ = 0

Configure CCS, DIR, DFLHRF set
RX Interrupt

(ID not matched)

Note: This configuration is used when:
a) All TX IDs are managed by filters
b) The number of other filters is not enough to manage all reception IDs

Header Data RX Checksum RX

RX Interrupt

DRF set
IFMI = ID matched

Header Data RX Checksum RX

RX Interrupt

DRF setHRF set
RX Interrupt

(ID not matched)

Configure CCS, DIR, DFL
(ID is RX)

DDRQ = 0

Header Data TX Checksum TX

TX Interrupt
DTF setHRF set

RX Interrupt

Set DTRQ

Configure CCS, DIR, DFL,

Data Buffers

(ID is TX)
487/868 Doc ID 16886 Rev 6

RM0045 LIN Controller (LINFlexD)

Figure 267. Programming consideration: slave node, TX filter, RX filter, BF is set

21.13.3 Extended frames

Figure 268. Programming consideration: extended frames

Header Data TX Checksum TX

TX Interrupt

DTF set

Set DTRQ

Write Data BuffersHRF set
TX Interrupt

(IFMI = ID matched+1)

Header Data RX Checksum RX

RXI Interrupt

DRF set
IFMI = ID matched+1

Header Data RX/TX Checksum RX/TX

RX/TX Interrupt

DRF/DTF set

DDRQ = 0

Configure CCS, DIR, DFLHRF set
RX Interrupt

(ID not matched)

Note: This configuration is used when:
a) The number of filters is not enough
b) Filters are used for most frequently-used IDs to reduce CPU usage

Header 8 bytes TX 8 bytes TX Checksum TX

TX Interrupt

DTF setConfigure DIR, DFL,HRF set
RX Interrupt

(ID not matched)

DBEF
set

Refill Buffer
Reset DBEFCCS

DTRQ =1

Header 8 bytes RX 8 bytes RX Checksum RX

RX Interrupt

DRF setConfigure DIR, DFL,HRF set
RX Interrupt

(ID not matched)

RMB,
DBFF

Read Buffer
Reset RMB

 set
DDRQ = 0
CCS
Doc ID 16886 Rev 6 488/868

LIN Controller (LINFlexD) RM0045
21.13.4 Timeout

Figure 269. Programming consideration: response timeout

Figure 270. Programming consideration: frame timeout

Figure 271. Programming consideration: header timeout

21.13.5 UART mode

Figure 272. Programming consideration: UART mode

Header RX/TX Data RX

OC1

Tresponse_max

OCF is set

ERR Interrupt

Header RX/TX Data RX/TX

OC2

Tframe_max

OCF is set

ERR Interrupt

Header RX

OC1

Theader_max

OCF is set

ERR Interrupt

Break

Data RX/TX

DTF/DRF is set

TX/RX Interrupt
Set TXen/RXen
Write Buffer for Tx
489/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
22 FlexCAN

22.1 Information specific to this device
This section presents device-specific parameterization and customization information not
specifically referenced in the remainder of this chapter.

22.1.1 Device-specific features

The device has one FlexCAN block.

● 32 Message Buffers (MB)

● DMA support is not provided.

● It is possible to operate the bxcan bit timing logic with either system clock or 4–16 MHz
fast external crystal oscillator clock (FXOSC).

● In the case of safe mode entry, the pad associated with CANTX can optionally be put
into a high-impedance state (not recessive state)

● Modes of operation:

– 4 functional modes: Normal (User and Supervisor), Freeze, Listen-Only and Loop-
Back

– 1 low-power mode (Disable mode)

● 528 bytes (32 MBs) of RAM used for MB storage

● The filters per message buffer feature is not implemented.

● Hardware cancellation on Tx message buffers

● Module Configuration Register (MCR): Bits 5, 9, 12 and 13 are ‘Reserved’

● Error and Status Register (ESR): Bit 31 is ‘Reserved’

22.2 Introduction
The FlexCAN module is a communication controller implementing the CAN protocol
according to the CAN 2.0B protocol specification [Ref. 1]. A general block diagram is shown
in Figure 273, which describes the main sub-blocks implemented in the FlexCAN module,
including two embedded memories, one for storing Message Buffers (MB) and another one
for storing Rx Individual Mask Registers. Support for up to 64 Message Buffers is provided.
The functions of the sub-modules are described in subsequent sections.

Doc ID 16886 Rev 6 490/868

FlexCAN RM0045

Figure 273. FlexCAN block diagram

22.2.1 Overview

The CAN protocol was primarily, but not only, designed to be used as a vehicle serial data
bus, meeting the specific requirements of this field: real-time processing, reliable operation
in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The
FlexCAN module is a full implementation of the CAN protocol specification, Version 2.0 B
[Ref. 1], which supports both standard and extended message frames. A flexible number of
Message Buffers (16, 32 or 64) is also supported. The Message Buffers are stored in an
embedded RAM dedicated to the FlexCAN module.

The CAN Protocol Interface (CPI) sub-module manages the serial communication on the
CAN bus, requesting RAM access for receiving and transmitting message frames, validating
received messages and performing error handling. The Message Buffer Management
(MBM) sub-module handles Message Buffer selection for reception and transmission, taking
care of arbitration and ID matching algorithms. The Bus Interface Unit (BIU) sub-module

288/544/1056-

Bus Interface Unit

max MB #

(0–63)

IP Bus Interface

CAN Message

CAN Tx

CAN Rx

MB1

MB0

MB62

MB63

Clocks, Address & Data buses,
Interrupt and Test Signals

Buffer
Management

Protocol
Interface

byte RAM

Message
Buffer

Storage

64/128/256-

RXIMR1

RXIMR0

RXIMR62
RXIMR63

byte RAM

ID Mask
Storage
491/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
controls the access to and from the internal interface bus, in order to establish connection to
the CPU and to other blocks. Clocks, address and data buses, interrupt outputs and test
signals are accessed through the Bus Interface Unit.

22.2.2 FlexCAN module features

The FlexCAN module includes these distinctive features:

● Full Implementation of the CAN protocol specification, Version 2.0B

– Standard data and remote frames

– Extended data and remote frames

– Zero to eight bytes data length

– Programmable bit rate up to 1 Mbit/s

– Content-related addressing

● Flexible Message Buffers (up to 64) of zero to eight bytes data length

● Each MB configurable as Rx or Tx, all supporting standard and extended messages

● Individual Rx Mask Registers per Message Buffer

● Includes either 1056 bytes (64 MBs), 544 bytes (32 MBs) or 288 bytes (16 MBs) of
RAM used for MB storage

● Includes either 256 bytes (64 MBs), 128 bytes (32 MBs) or 64 bytes (16 MBs) of RAM
used for individual Rx Mask Registers

● Full featured Rx FIFO with storage capacity for 6 frames and internal pointer handling

● Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either 8
extended, 16 standard or 32 partial (8 bits) IDs, with individual masking capability

● Selectable backwards compatibility with previous FlexCAN version

● Programmable clock source to the CAN Protocol Interface, either bus clock or crystal
oscillator

● Unused MB and Rx Mask Register space can be used as general purpose RAM space

● Listen only mode capability

● Programmable loop-back mode supporting self-test operation

● Programmable transmission priority scheme: lowest ID, lowest buffer number or highest
priority

● Time Stamp based on 16-bit free-running timer

● Global network time, synchronized by a specific message

● Maskable interrupts

● Independent of the transmission medium (an external transceiver is assumed)

● Short latency time due to an arbitration scheme for high-priority messages

● Low power modes, with programmable wake up on bus activity

Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs.
Please consult the specific MCU documentation to find out if this feature is supported.
Doc ID 16886 Rev 6 492/868

FlexCAN RM0045
22.2.3 Modes of operation

The FlexCAN module has four functional modes: Normal mode (User and Supervisor),
Freeze mode, Listen-Only mode and Loop-Back mode. There is also a low-power mode
(Disable mode).

● Normal mode (User or Supervisor):

In Normal Mode, the module operates receiving and/or transmitting message frames,
errors are handled normally and all the CAN Protocol functions are enabled. User and
Supervisor Modes differ in the access to some restricted control registers.

● Freeze mode:

It is enabled when the FRZ bit in the MCR Register is asserted. If enabled, Freeze
Mode is entered when the HALT bit in MCR is set or when Debug Mode is requested at
MCU level. In this mode, no transmission or reception of frames is done and
synchronicity to the CAN bus is lost. See Section , Freeze mode, for more information.

● Listen-Only mode:

The module enters this mode when the LOM bit in the Control Register is asserted. In
this mode, transmission is disabled, all error counters are frozen and the module
operates in a CAN Error Passive mode [Ref. 1]. Only messages acknowledged by
another CAN station will be received. If FlexCAN detects a message that has not been
acknowledged, it will flag a BIT0 error (without changing the REC), as if it was trying to
acknowledge the message.

● Loop-Back mode:

The module enters this mode when the LPB bit in the Control Register is asserted. In
this mode, FlexCAN performs an internal loop back that can be used for self test
operation. The bit stream output of the transmitter is internally fed back to the receiver
input. The Rx CAN input pin is ignored and the Tx CAN output goes to the recessive
state (logic ‘1’). FlexCAN behaves as it normally does when transmitting and treats its
own transmitted message as a message received from a remote node. In this mode,
FlexCAN ignores the bit sent during the ACK slot in the CAN frame acknowledge field
to ensure proper reception of its own message. Both transmit and receive interrupts are
generated.

● Module Disable mode:

This low power mode is entered when the MCR[MDIS] bit is asserted by the CPU.
When disabled, the module requests to disable the clocks to the CAN Protocol
Interface and Message Buffer Management sub-modules. Exit from this mode is done
by negating the MDIS bit in the MCR Register. See Section , Module Disable mode, for
more information.

22.3 External signal description

22.3.1 Overview

The FlexCAN module has two I/O signals connected to the external MCU pins. These
signals are summarized in Table 252 and described in more detail in the next subsections.
493/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

22.3.2 Signal descriptions

CAN Rx

This pin is the receive pin from the CAN bus transceiver. Dominant state is represented by
logic level ‘0’. Recessive state is represented by logic level ‘1’.

CAN Tx

This pin is the transmit pin to the CAN bus transceiver. Dominant state is represented by
logic level ‘0’. Recessive state is represented by logic level ‘1’.

22.4 Memory map/register definition
This section describes the registers and data structures in the FlexCAN module. The base
address of the module depends on the particular memory map of the MCU. The addresses
presented here are relative to the base address.

The address space occupied by FlexCAN has 96 bytes for registers starting at the module
base address, followed by MB storage space in embedded RAM starting at address 0x0060,
and an extra ID Mask storage space in a separate embedded RAM starting at address
0x0880.

22.4.1 FlexCAN memory mapping

The complete memory map for a FlexCAN module with 64 MBs capability is shown in
Table 253.

All registers except for the MCR can be configured to have either supervisor or unrestricted
access by programming the MCR[SUPV] bit.

The IFLAG2 and IMASK2 registers are considered reserved space when FlexCAN is
configured with 16 or 32 MBs. The Rx Global Mask (RXGMASK), Rx Buffer 14 Mask
(RX14MASK) and the Rx Buffer 15 Mask (RX15MASK) registers are provided for backwards
compatibility, and are not used when the BCC bit in MCR is asserted.

The address ranges 0x0060–0x047F and 0x0880–0x097F are occupied by two separate
embedded memories. These two ranges are completely occupied by RAM (1056 and 256
bytes, respectively) only when FlexCAN is configured with 64 MBs. When it is configured
with 16 MBs, the memory sizes are 288 and 64 bytes, so the address ranges 0x0180–
0x047F and 0x08C0–0x097F are considered reserved space. When it is configured with 32
MBs, the memory sizes are 544 and 128 bytes, so the address ranges 0x0280–0x047F and
0x0900–0x097F are considered reserved space. Furthermore, if the BCC bit in MCR is
negated, then the whole Rx Individual Mask Registers address range (0x0880–0x097F) is
considered reserved space.

Table 252. FlexCAN Signals

Signal Name(1)

1. The actual MCU pins may have different names.

Direction Description

CAN Rx Input CAN Receive Pin

CAN Tx Output CAN Transmit Pin
Doc ID 16886 Rev 6 494/868

FlexCAN RM0045
Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs.
Please consult the specific MCU documentation to find out if this feature is supported. If not
supported, the address range 0x0880-0x097F is considered reserved space, independent
of the value of the BCC bit.

The FlexCAN module stores CAN messages for transmission and reception using a
Message Buffer structure. Each individual MB is formed by 16 bytes mapped on memory as
described in Table 254. Table 254 shows a Standard/Extended Message Buffer (MB0)
memory map, using 16 bytes total (0x80–0x8F space).

Table 253. FlexCAN memory map

Base address: 0xFFFC_0000

Address offset Register Location

0x0000 Module Configuration (MCR) on page 22-500

0x0004 Control Register (CTRL) on page 22-505

0x0008 Free Running Timer (TIMER) on page 22-508

0x000C Reserved

0x0010 Rx Global Mask (RXGMASK) on page 22-509

0x0014 Rx Buffer 14 Mask (RX14MASK) on page 22-511

0x0018 Rx Buffer 15 Mask (RX15MASK) on page 22-511

0x001C Error Counter Register (ECR) on page 22-511

0x0020 Error and Status Register (ESR) on page 22-513

0x0024 Interrupt Masks 2 (IMASK2) on page 22-516

0x0028 Interrupt Masks 1 (IMASK1) on page 22-517

0x002C Interrupt Flags 2 (IFLAG2) on page 22-518

0x0030 Interrupt Flags 1 (IFLAG1) on page 22-519

0x0034–0x007F Reserved

0x0080–0x017F Message Buffers MB0–MB15 —

0x0180–0x027F Message Buffers MB16–MB31 —

0x0280–0x047F Message Buffers MB32–MB63 —

Table 254. Message Buffer MB0 memory mapping

Address Offset MB Field

0x80 Control and Status (C/S)

0x84 Identifier Field

0x88–0x8F Data Field 0 – Data Field 7 (1 byte each)
495/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
22.4.2 Message Buffer Structure

The Message Buffer structure used by the FlexCAN module is represented in Figure 274.
Both Extended and Standard Frames (29-bit Identifier and 11-bit Identifier, respectively)
used in the CAN specification (Version 2.0 Part B) are represented.

Figure 274. Message Buffer Structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x0 CODE

S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x4 PRIO ID (Standard/Extended) ID (Extended)

0x8 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0xC Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

= Unimplemented or Reserved

Table 255. Message Buffer Structure field description

Field Description

CODE

Message Buffer Code
This 4-bit field can be accessed (read or write) by the CPU and by the FlexCAN module itself, as
part of the message buffer matching and arbitration process. The encoding is shown in Table 256
and Table 257. See Section 22.5, Functional description, for additional information.

SRR

Substitute Remote Request
Fixed recessive bit, used only in extended format. It must be set to ‘1’ by the user for transmission
(Tx Buffers) and will be stored with the value received on the CAN bus for Rx receiving buffers. It can
be received as either recessive or dominant. If FlexCAN receives this bit as dominant, then it is
interpreted as arbitration loss.
1 = Recessive value is compulsory for transmission in Extended Format frames
0 = Dominant is not a valid value for transmission in Extended Format frames

IDE

 ID Extended Bit
This bit identifies whether the frame format is standard or extended.
1 = Frame format is extended
0 = Frame format is standard

RTR

Remote Transmission Request
This bit is used for requesting transmissions of a data frame. If FlexCAN transmits this bit as ‘1’
(recessive) and receives it as ‘0’ (dominant), it is interpreted as arbitration loss. If this bit is
transmitted as ‘0’ (dominant), then if it is received as ‘1’ (recessive), the FlexCAN module treats it as
bit error. If the value received matches the value transmitted, it is considered as a successful bit
transmission.

1 = Indicates the current MB has a Remote Frame to be transmitted
0 = Indicates the current MB has a Data Frame to be transmitted

LENGTH

 Length of Data in Bytes
This 4-bit field is the length (in bytes) of the Rx or Tx data, which is located in offset 0x8 through 0xF
of the MB space (see Figure 274). In reception, this field is written by the FlexCAN module, copied
from the DLC (Data Length Code) field of the received frame. In transmission, this field is written by
the CPU and corresponds to the DLC field value of the frame to be transmitted. When RTR=1, the
Frame to be transmitted is a Remote Frame and does not include the data field, regardless of the
Length field.
Doc ID 16886 Rev 6 496/868

FlexCAN RM0045

TIME STAMP
Free-Running Counter Time Stamp
This 16-bit field is a copy of the Free-Running Timer, captured for Tx and Rx frames at the time
when the beginning of the Identifier field appears on the CAN bus.

PRIO

Local priority
This 3-bit field is only used when LPRIO_EN bit is set in MCR and it only makes sense for Tx
buffers. These bits are not transmitted. They are appended to the regular ID to define the
transmission priority. See Section 22.5.4, Arbitration process.

ID

Frame Identifier
In Standard Frame format, only the 11 most significant bits (3 to 13) are used for frame identification
in both receive and transmit cases. The 18 least significant bits are ignored. In Extended Frame
format, all bits are used for frame identification in both receive and transmit cases.

DATA

Data Field
Up to eight bytes can be used for a data frame. For Rx frames, the data is stored as it is received
from the CAN bus. For Tx frames, the CPU prepares the data field to be transmitted within the
frame.

Table 256. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment

0000 INACTIVE: MB is not active. —
MB does not participate in the matching
process.

0100
EMPTY: MB is active and
empty.

0010
MB participates in the matching process. When
a frame is received successfully, the code is
automatically updated to FULL.

0010 FULL: MB is full.

0010

The act of reading the C/S word followed by
unlocking the MB does not make the code
return to EMPTY. It remains FULL. If a new
frame is written to the MB after the C/S word
was read and the MB was unlocked, the code
still remains FULL.

0110

If the MB is FULL and a new frame is
overwritten to this MB before the CPU had time
to read it, the code is automatically updated to
OVERRUN. See Section 22.5.6, Matching
process, for details about overrun behavior.

0110
OVERRUN: a frame was
overwritten into a full buffer.

0010

If the code indicates OVERRUN but the CPU
reads the C/S word and then unlocks the MB,
when a new frame is written to the MB the code
returns to FULL.

0110

If the code already indicates OVERRUN, and
yet another new frame must be written, the MB
will be overwritten again, and the code will
remain OVERRUN. See Section 22.5.6,
Matching process, for details about overrun
behavior.

Table 255. Message Buffer Structure field description (continued)

Field Description
497/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

22.4.3 Rx FIFO structure

When the FEN bit is set in the MCR, the memory area from 0x80 to 0xFC (which is normally
occupied by MBs 0 to 7) is used by the reception FIFO engine. Figure 275 shows the Rx
FIFO data structure. The region 0x80-0x8C contains an MB structure which is the port
through which the CPU reads data from the FIFO (the oldest frame received and not read
yet). The region 0x90–0xDC is reserved for internal use of the FIFO engine. The region
0xE0-0xFC contains an 8-entry ID table that specifies filtering criteria for accepting frames
into the FIFO. Figure 276 shows the three different formats that the elements of the ID table
can assume, depending on the IDAM field of the MCR. Note that all elements of the table

0XY1(1)
BUSY: Flexcan is updating the
contents of the MB. The CPU
must not access the MB.

0010
An EMPTY buffer was written with a new frame
(XY was 01).

0110
A FULL/OVERRUN buffer was overwritten (XY
was 11).

1. Note that for Tx MBs (see Table 257), the BUSY bit should be ignored upon read, except when AEN bit is set in the MCR
register.

Table 257. Message Buffer Code for Tx buffers

RTR
Initial Tx

code

Code after
successful

transmission
Description

X 1000 — INACTIVE: MB does not participate in the arbitration process.

X 1001 —
ABORT: MB was configured as Tx and CPU aborted the
transmission. This code is only valid when AEN bit in MCR is
asserted. MB does not participate in the arbitration process.

0 1100 1000
Transmit data frame unconditionally once. After transmission, the
MB automatically returns to the INACTIVE state.

1 1100 0100
Transmit remote frame unconditionally once. After transmission,
the MB automatically becomes an Rx MB with the same ID.

0 1010 1010

Transmit a data frame whenever a remote request frame with the
same ID is received. This MB participates simultaneously in both
the matching and arbitration processes. The matching process
compares the ID of the incoming remote request frame with the ID
of the MB. If a match occurs this MB is allowed to participate in the
current arbitration process and the Code field is automatically
updated to ‘1110’ to allow the MB to participate in future arbitration
runs. When the frame is eventually transmitted successfully, the
Code automatically returns to ‘1010’ to restart the process again.

0 1110 1010

This is an intermediate code that is automatically written to the MB
by the MBM as a result of match to a remote request frame. The
data frame will be transmitted unconditionally once and then the
code will automatically return to ‘1010’. The CPU can also write
this code with the same effect.

Table 256. Message Buffer Code for Rx buffers

Rx Code
BEFORE

Rx New Frame
Description

Rx Code
AFTER

Rx New Frame
Comment
Doc ID 16886 Rev 6 498/868

FlexCAN RM0045
must have the same format. See Section 22.5.8, Rx FIFO, for more information.

Figure 275. Rx FIFO structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0x80

S
R

R

ID
E

R
T

R

LENGTH TIME STAMP

0x84 ID (Standard/Extended) ID (Extended)

0x88 Data Byte 0 Data Byte 1 Data Byte 2 Data Byte 3

0x8C Data Byte 4 Data Byte 5 Data Byte 6 Data Byte 7

0x90

Reservedto

0xDC

0xE0 ID Table 0

0xE4 ID Table 1

0xE8 ID Table 2

0xEC ID Table 3

0xF0 ID Table 4

0xF4 ID Table 5

0xF8 ID Table 6

0xFC ID Table 7

= Unimplemented or Reserved

Figure 276. ID Table 0–7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A

R
E

M

E
X

T RXIDA

(Standard = 2–12, Extended = 2–30)

B

R
E

M

E
X

T RXIDB_0

(Standard = 2–12, Extended = 2–15) R
E

M

E
X

T RXIDB_1

(Standard = 18–28, Extended = 18–31)

C
RXIDC_0

(Std/Ext = 0–7)

RXIDC_1

(Std/Ext = 8–15)

RXIDC_2

(Std/Ext = 16–23)

RXIDC_3

(Std/Ext = 24–31)

= Unimplemented or Reserved
499/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

22.4.4 Register descriptions

The FlexCAN registers are described in this section in ascending address order.

Module Configuration Register (MCR)

This register defines global system configurations, such as the module operation mode
(e.g., low power) and maximum message buffer configuration. This register can be
accessed at any time, however some fields must be changed only during Freeze Mode. Find
more information in the fields descriptions ahead.

Table 258. Rx FIFO Structure field description

Field Description

REM

Remote Frame
This bit specifies if Remote Frames are accepted into the FIFO if they match the target ID.

1 = Remote Frames can be accepted and data frames are rejected
0 = Remote Frames are rejected and data frames can be accepted

EXT

Extended Frame
Specifies whether extended or standard frames are accepted into the FIFO if they match the target ID.

1 = Extended frames can be accepted and standard frames are rejected
0 = Extended frames are rejected and standard frames can be accepted

RXIDA

Rx Frame Identifier (Format A)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, only the
11 most significant bits (3 to 13) are used for frame identification. In the extended frame format, all bits
are used.

RXIDB_0,
RXIDB_1

Rx Frame Identifier (Format B)
Specifies an ID to be used as acceptance criteria for the FIFO. In the standard frame format, the 11
most significant bits (a full standard ID) (3 to 13) are used for frame identification. In the extended
frame format, all 14 bits of the field are compared to the 14 most significant bits of the received ID.

RXIDC_0,
RXIDC_1,
RXIDC_2,
RXIDC_3

Rx Frame Identifier (Format C)
Specifies an ID to be used as acceptance criteria for the FIFO. In both standard and extended frame
formats, all 8 bits of the field are compared to the 8 most significant bits of the received ID.
Doc ID 16886 Rev 6 500/868

FlexCAN RM0045

Figure 277. Module Configuration Register (MCR)

Offset: 0x0000 Access: Supervisor read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
D

IS

FRZ FEN HALT

N
O

T
_R

D
Y

W
A

K
_M

S
K

S
O

F
T

_R
S

T

F
R

Z
_A

C
K

S
U

P
V 0

W
R

N
_E

N

LP
M

_A
C

K

W
A

K
_S

R
C

0

S
R

X
_D

IS

B
C

C

W

RESET: 1 1 0 1 1 0 0

N
ot

e(1
)

1. Different on various platforms, but it is always the opposite of the MDIS reset value.

1 0 0

N
ot

e(2
)

2. Different on various platforms, but it is always the same as the MDIS reset value.

0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0

LP
R

IO
_E

N

AEN

0 0

IDAM

0 0

MAXMB
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Table 259. MCR field descriptions

Field Description

MDIS

Module Disable
This bit controls whether FlexCAN is enabled or not. When disabled, FlexCAN shuts down the
clocks to the CAN Protocol Interface and Message Buffer Management sub-modules. This is the
only bit in MCR not affected by soft reset. See Section , Module Disable mode, for more
information.

1 = Disable the FlexCAN module

0 = Enable the FlexCAN module

FRZ

Freeze Enable

The FRZ bit specifies the FlexCAN behavior when the HALT bit in the MCR Register is set or when
Debug Mode is requested at MCU level. When FRZ is asserted, FlexCAN is enabled to enter
Freeze Mode. Negation of this bit field causes FlexCAN to exit from Freeze Mode.

1 = Enabled to enter Freeze Mode

0 = Not enabled to enter Freeze Mode

FEN

FIFO Enable

This bit controls whether the FIFO feature is enabled or not. When FEN is set, MBs 0 to 7 cannot
be used for normal reception and transmission because the corresponding memory region (0x80-
0xFF) is used by the FIFO engine. See Section 22.4.3, Rx FIFO structure, and Section 22.5.8, Rx
FIFO, for more information. This bit must be written in Freeze mode only.

1 = FIFO enabled
0 = FIFO not enabled
501/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
HALT

Halt FlexCAN

Assertion of this bit puts the FlexCAN module into Freeze Mode. The CPU should clear it after
initializing the Message Buffers and Control Register. No reception or transmission is performed by
FlexCAN before this bit is cleared. While in Freeze Mode, the CPU has write access to the Error
Counter Register, that is otherwise read-only. Freeze Mode can not be entered while FlexCAN is in
any of the low power modes. See Section , Freeze mode, for more information.

1 = Enters Freeze Mode if the FRZ bit is asserted.
0 = No Freeze Mode request.

NOT_RDY

FlexCAN Not Ready
This read-only bit indicates that FlexCAN is in Disable Mode or Freeze Mode. It is negated once
FlexCAN has exited these modes.
1 = FlexCAN module is in Disable Mode or Freeze Mode

0 = FlexCAN module is in Normal Mode, Listen-Only Mode or Loop-Back Mode

WAK_MSK

 Wake Up Interrupt Mask

This bit enables the Wake Up Interrupt generation.

1 = Wake Up Interrupt is enabled
0 = Wake Up Interrupt is disabled

SOFT_RST

 Soft Reset
When this bit is asserted, FlexCAN resets its internal state machines and some of the memory
mapped registers. The following registers are reset: MCR (except the MDIS bit), TIMER, ECR,
ESR, IMASK1, IMASK2, IFLAG1, IFLAG2. Configuration registers that control the interface to the
CAN bus are not affected by soft reset. The following registers are unaffected:

CTRL

RXIMR0–RXIMR63
RXGMASK, RX14MASK, RX15MASK

all Message Buffers

The SOFT_RST bit can be asserted directly by the CPU when it writes to the MCR Register, but it
is also asserted when global soft reset is requested at MCU level. Since soft reset is synchronous
and has to follow a request/acknowledge procedure across clock domains, it may take some time
to fully propagate its effect. The SOFT_RST bit remains asserted while reset is pending, and is
automatically negated when reset completes. Therefore, software can poll this bit to know when the
soft reset has completed.

Soft reset cannot be applied while clocks are shut down in any of the low power modes. The
module should be first removed from low power mode, and then soft reset can be applied.

1 = Resets the registers marked as “affected by soft reset” in Table 253

0 = No reset request

FRZ_ACK

Freeze Mode Acknowledge

This read-only bit indicates that FlexCAN is in Freeze Mode and its prescaler is stopped. The
Freeze Mode request cannot be granted until current transmission or reception processes have
finished. Therefore the software can poll the FRZ_ACK bit to know when FlexCAN has actually
entered Freeze Mode. If Freeze Mode request is negated, then this bit is negated once the
FlexCAN prescaler is running again. If Freeze Mode is requested while FlexCAN is in any of the low
power modes, then the FRZ_ACK bit will only be set when the low power mode is exited. See
Section , Freeze mode, for more information.

1 = FlexCAN in Freeze Mode, prescaler stopped
0 = FlexCAN not in Freeze Mode, prescaler running

Table 259. MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 502/868

FlexCAN RM0045
SUPV

Supervisor Mode

This bit configures some of the FlexCAN registers to be either in Supervisor or Unrestricted
memory space. The registers affected by this bit are marked as S/U in the Access Type column of
Table 253. Reset value of this bit is ‘1’, so the affected registers start with Supervisor access
restrictions. This bit should be written in Freeze mode only.
1 = Affected registers are in Supervisor memory space. Any access without supervisor permission
behaves as though the access was done to an unimplemented register location
0 = Affected registers are in Unrestricted memory space

WRN_EN

Warning Interrupt Enable
When asserted, this bit enables the generation of the TWRN_INT and RWRN_INT flags in the
Error and Status Register. If WRN_EN is negated, the TWRN_INT and RWRN_INT flags will
always be zero, independent of the values of the error counters, and no warning interrupt will ever
be generated. This bit must be written in Freeze mode only.

1 = TWRN_INT and RWRN_INT bits are set when the respective error counter transition from <96
to  96.

0 = TWRN_INT and RWRN_INT bits are zero, independent of the values in the error counters.

LPM_ACK

Low Power Mode Acknowledge

This read-only bit indicates that FlexCAN is in Disable Mode. This mode cannot be entered until all
current transmission or reception processes have finished, so the CPU can poll the LPM_ACK bit
to know when FlexCAN has actually entered low power mode. See Section , Module Disable mode,
for more information.

1 = FlexCAN is in Disable Mode
0 = FlexCAN not in any low-power mode

WAK_SRC

Wake Up Source
This bit defines whether the integrated low-pass filter is applied to protect the Rx CAN input from
spurious wake up. See Section 25.5.10.3, Stop mode and Section 25.5.10.3, Stop mode for more
information. This bit should be written in Freeze mode only.

1 = FlexCAN uses the filtered Rx input to detect recessive to dominant edges on the CAN bus
0 = FlexCAN uses the unfiltered Rx input to detect recessive to dominant edges on the CAN bus.

Note: The integrated low-pass filter may not be available in all MCUs. In case it is not available,
the unfiltered input is always used for wake up purposes, and this bit has no effect on the
FlexCAN operation.

SRX_DIS

Self Reception Disable

This bit defines whether FlexCAN is allowed to receive frames transmitted by itself. If this bit is
asserted, frames transmitted by the module will not be stored in any MB, regardless if the MB is
programmed with an ID that matches the transmitted frame, and no interrupt flag or interrupt signal
will be generated due to the frame reception. This bit must be written in Freeze mode only.
1 = Self reception disabled

0 = Self reception enabled

Table 259. MCR field descriptions (continued)

Field Description
503/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

BCC

 Backwards Compatibility Configuration

This bit is provided to support Backwards Compatibility with previous FlexCAN versions. When this
bit is negated, the following configuration is applied:

For MCUs supporting individual Rx ID masking, this feature is disabled. Instead of individual ID
masking per MB, FlexCAN uses its previous masking scheme with RXGMASK, RX14MASK and
RX15MASK.

The reception queue feature is disabled. Upon receiving a message, if the first MB with a matching
ID that is found is still occupied by a previous unread message, FlexCAN will not look for another
matching MB. It will override this MB with the new message and set the CODE field to ‘0110’
(overrun).

Upon reset this bit is negated, allowing legacy software to work without modification. This bit must
be written in Freeze mode only.

1 = Individual Rx masking and queue feature are enabled.
0 = Individual Rx masking and queue feature are disabled.

LPRIO_EN

Local Priority Enable
This bit is provided for backwards compatibility reasons. It controls whether the local priority feature
is enabled or not. It is used to extend the ID used during the arbitration process. With this extended
ID concept, the arbitration process is done based on the full 32-bit word, but the actual transmitted
ID still has 11-bit for standard frames and 29-bit for extended frames. This bit must be written in
Freeze mode only.
1 = Local Priority enabled

0 = Local Priority disabled

AEN

Abort Enable

This bit is supplied for backwards compatibility reasons. When asserted, it enables the Tx abort
feature. This feature guarantees a safe procedure for aborting a pending transmission, so that no
frame is sent in the CAN bus without notification. This bit must be written in Freeze mode only.
1 = Abort enabled

0 = Abort disabled

IDAM

ID Acceptance Mode

This 2-bit field identifies the format of the elements of the Rx FIFO filter table, as shown in
Table 260. Note that all elements of the table are configured at the same time by this field (they are
all the same format). See Section 22.4.3, Rx FIFO structure. This bit must be written in Freeze
mode only.

MAXMB

Maximum Number of Message Buffers

This 6-bit field defines the maximum number of message buffers that will take part in the matching
and arbitration processes. The reset value (0x0F) is equivalent to 16 MB configuration. This field
must be changed only while the module is in Freeze Mode.

Maximum MBs in use = MAXMB + 1.

Note: MAXMB must be programmed with a value smaller or equal to the number of available
Message Buffers, otherwise FlexCAN can transmit and receive wrong messages.

Table 259. MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 504/868

FlexCAN RM0045
Control Register (CTRL)

This register is defined for specific FlexCAN control features related to the CAN bus, such
as bit-rate, programmable sampling point within an Rx bit, Loop Back Mode, Listen Only
Mode, Bus Off recovery behavior and interrupt enabling (Bus-Off, Error, Warning). It also
determines the Division Factor for the clock prescaler. Most of the fields in this register
should only be changed while the module is in Disable Mode or in Freeze Mode. Exceptions
are the BOFF_MSK, ERR_MSK, TWRN_MSK, RWRN_MSK and BOFF_REC bits, that can
be accessed at any time.

Table 260. IDAM coding

IDAM Format Explanation

0b00 A One full ID (standard or extended) per filter element.

0b01 B Two full standard IDs or two partial 14-bit extended IDs per filter element.

0b10 C Four partial 8-bit IDs (standard or extended) per filter element.

0b11 D All frames rejected.

Figure 278. Control Register (CTRL)

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PRESDIV RJW PSEG1 PSEG2

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
O

F
F

_M
S

K

E
R

R
_

M
S

K

C
LK

_S
R

C

LPB

T
W

R
N

_M
S

K

R
W

R
N

_M
S

K 0 0

SMP

B
O

F
F

_R
E

C

T
S

Y
N

LBUF LOM PROPSEG
W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
505/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

Table 261. CTRL field descriptions

Field Description

PRESDIV

Prescaler Division Factor

This 8-bit field defines the ratio between the CPI clock frequency and the Serial Clock (Sclock)
frequency. The Sclock period defines the time quantum of the CAN protocol. For the reset value, the
Sclock frequency is equal to the CPI clock frequency. The Maximum value of this register is 0xFF,
that gives a minimum Sclock frequency equal to the CPI clock frequency divided by 256. For more
information refer to Section , Protocol Timing. This bit must be written in Freeze mode only.

Sclock frequency = CPI clock frequency / (PRESDIV + 1)

RJW

Resync Jump Width

This 2-bit field defines the maximum number of time quanta(1) that a bit time can be changed by one
re-synchronization. The valid programmable values are 0–3. This bit must be written in Freeze mode
only.
Resync Jump Width = RJW + 1.

PSEG1

Phase Segment 1
This 3-bit field defines the length of Phase Buffer Segment 1 in the bit time. The valid programmable
values are 0–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 1 = (PSEG1 + 1) x Time-Quanta.

PSEG2

Phase Segment 2
This 3-bit field defines the length of Phase Buffer Segment 2 in the bit time. The valid programmable
values are 1–7. This bit must be written in Freeze mode only.
Phase Buffer Segment 2 = (PSEG2 + 1) x Time-Quanta.

BOFF_MSK

Bus Off Mask
This bit provides a mask for the Bus Off Interrupt.

1 = Bus Off interrupt enabled

0 = Bus Off interrupt disabled

ERR_MSK

Error Mask

This bit provides a mask for the Error Interrupt.
1 = Error interrupt enabled

0 = Error interrupt disabled

CLK_SRC

CAN Engine Clock Source

This bit selects the clock source to the CAN Protocol Interface (CPI) to be either the peripheral clock
(driven by the PLL) or the crystal oscillator clock. The selected clock is the one fed to the prescaler to
generate the Serial Clock (Sclock). In order to guarantee reliable operation, this bit must only be
changed while the module is in Disable Mode. See Section , Protocol Timing, for more information.

1 = The CAN engine clock source is the bus clock

0 = The CAN engine clock source is the oscillator clock

Note: This clock selection feature may not be available in all MCUs. A particular MCU may not have
a PLL, in which case it would have only the oscillator clock, or it may use only the PLL clock
feeding the FlexCAN module. In these cases, this bit has no effect on the module operation.
Doc ID 16886 Rev 6 506/868

FlexCAN RM0045
TWRN_MSK

Tx Warning Interrupt Mask

This bit provides a mask for the Tx Warning Interrupt associated with the TWRN_INT flag in the Error
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as
zero when WRN_EN is negated.

1 = Tx Warning Interrupt enabled

0 = Tx Warning Interrupt disabled

RWRN_MSK

Rx Warning Interrupt Mask

This bit provides a mask for the Rx Warning Interrupt associated with the RWRN_INT flag in the Error
and Status Register. This bit has no effect if the WRN_EN bit in MCR is negated and it is read as
zero when WRN_EN is negated.

1 = Rx Warning Interrupt enabled

0 = Rx Warning Interrupt disabled

LPB

Loop Back

This bit configures FlexCAN to operate in Loop-Back Mode. In this mode, FlexCAN performs an
internal loop back that can be used for self test operation. The bit stream output of the transmitter is
fed back internally to the receiver input. The Rx CAN input pin is ignored and the Tx CAN output goes
to the recessive state (logic ‘1’). FlexCAN behaves as it normally does when transmitting, and treats
its own transmitted message as a message received from a remote node. In this mode, FlexCAN
ignores the bit sent during the ACK slot in the CAN frame acknowledge field, generating an internal
acknowledge bit to ensure proper reception of its own message. Both transmit and receive interrupts
are generated. This bit must be written in Freeze mode only.

1 = Loop Back enabled
0 = Loop Back disabled

SMP

Sampling Mode
This bit defines the sampling mode of CAN bits at the Rx input. This bit must be written in Freeze
mode only.
1 = Three samples are used to determine the value of the received bit: the regular one (sample point)
and 2 preceding samples, a majority rule is used
0 = Just one sample is used to determine the bit value

BOFF_REC

Bus Off Recovery Mode
This bit defines how FlexCAN recovers from Bus Off state. If this bit is negated, automatic recovering
from Bus Off state occurs according to the CAN Specification 2.0B. If the bit is asserted, automatic
recovering from Bus Off is disabled and the module remains in Bus Off state until the bit is negated
by the user. If the negation occurs before 128 sequences of 11 recessive bits are detected on the
CAN bus, then Bus Off recovery happens as if the BOFF_REC bit had never been asserted. If the
negation occurs after 128 sequences of 11 recessive bits occurred, then FlexCAN will re-synchronize
to the bus by waiting for 11 recessive bits before joining the bus. After negation, the BOFF_REC bit
can be re-asserted again during Bus Off, but it will only be effective the next time the module enters
Bus Off. If BOFF_REC was negated when the module entered Bus Off, asserting it during Bus Off
will not be effective for the current Bus Off recovery.
1 = Automatic recovering from Bus Off state disabled

0 = Automatic recovering from Bus Off state enabled, according to CAN Spec 2.0 part B

Table 261. CTRL field descriptions (continued)

Field Description
507/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
Free Running Timer (TIMER)

This register represents a 16-bit free running counter that can be read and written by the
CPU.

The timer is clocked by the FlexCAN bit-clock (which defines the baud rate on the CAN bus).
During a message transmission/reception, it increments by one for each bit that is received
or transmitted. When there is no message on the bus, it counts using the previously
programmed baud rate. During Freeze Mode, the timer is not incremented.

The timer value is captured at the beginning of the identifier field of any frame on the CAN
bus. This captured value is written into the Time Stamp entry in a message buffer after a
successful reception or transmission of a message.

Writing to the timer is an indirect operation. The data is first written to an auxiliary register
and then an internal request/acknowledge procedure across clock domains is executed. All
this is transparent to the user, except for the fact that the data will take some time to be
actually written to the register. If desired, software can poll the register to discover when the
data was actually written.

TSYN

Timer Sync Mode

This bit enables a mechanism that resets the free-running timer each time a message is received in
Message Buffer 0. This feature provides means to synchronize multiple FlexCAN stations with a
special “SYNC” message (i.e., global network time). If the FEN bit in MCR is set (FIFO enabled),
MB8 is used for timer synchronization instead of MB0. This bit must be written in Freeze mode only.
1 = Timer Sync feature enabled

0 = Timer Sync feature disabled

LBUF

Lowest Buffer Transmitted First

This bit defines the ordering mechanism for Message Buffer transmission. When asserted, the
LPRIO_EN bit does not affect the priority arbitration. This bit must be written in Freeze mode only.

1 = Lowest number buffer is transmitted first

0 = Buffer with highest priority is transmitted first

LOM

Listen-Only Mode

This bit configures FlexCAN to operate in Listen Only Mode. In this mode, transmission is disabled,
all error counters are frozen and the module operates in a CAN Error Passive mode [Ref. 1]. Only
messages acknowledged by another CAN station will be received. If FlexCAN detects a message
that has not been acknowledged, it will flag a BIT0 error (without changing the REC), as if it was
trying to acknowledge the message. This bit must be written in Freeze mode only.

1 = FlexCAN module operates in Listen Only Mode
0 = Listen Only Mode is deactivated

PROPSEG

Propagation Segment
This 3-bit field defines the length of the Propagation Segment in the bit time. The valid programmable
values are 0–7. This bit must be written in Freeze mode only.
Propagation Segment Time = (PROPSEG + 1) * Time-Quanta.

Time-Quantum = one Sclock period.

1. One time quantum is equal to the Sclock period.

Table 261. CTRL field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 508/868

FlexCAN RM0045

Rx Global Mask (RXGMASK)

This register is provided for legacy support and for low cost MCUs that do not have the
individual masking per Message Buffer feature. For MCUs supporting individual masks per
MB, setting the BCC bit in MCR causes the RXGMASK Register to have no effect on the
module operation. For MCUs not supporting individual masks per MB, this register is always
effective.

RXGMASK is used as acceptance mask for all Rx MBs, excluding MBs 14–15, which have
individual mask registers. When the FEN bit in MCR is set (FIFO enabled), the RXGMASK
also applies to all elements of the ID filter table, except elements 6–7, which have individual
masks.

See Section 22.5.8, Rx FIFO, for important details on usage of RXGMASK on filtering
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and
must not be modified when the module is transmitting or receiving frames.

During CAN messages reception by FlexCAN, the RXGMASK (Rx Global Mask) is used as
acceptance mask for most of the Rx Message Buffers (MB). When the FIFO Enable bit in
the FlexCAN Module Configuration Register (CANx_MCR[FEN], bit 2) is set, the RXGMASK
also applies to most of the elements of the ID filter table. However there is a misalignment
between the position of the ID field in the Rx MB and in RXIDA, RXIDB and RXIDC fields of
the ID Tables. In fact RXIDA filter in the ID Tables is shifted one bit to the left from Rx MBs ID
position as shown below:

● Rx MB ID = bits 3–31 of ID word corresponding to message ID bits 0–28

● RXIDA = bits 2–30 of ID Table corresponding to message ID bits 0–28

Figure 279. Free Running Timer (TIMER)

Offset: 0x0008 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TIMER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 262. TIMER field descriptions

Field Description

TIMER
Free-running timer counter. The timer starts from 0x0000 after reset, counts linearly to 0xFFFF, and
wraps around.
509/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
The mask bits one-to-one correspondence occurs with the filters bits, not with the incoming
message ID bits. This leads the RXGMASK to affect Rx MB and Rx FIFO filtering in different
ways.

For example, if the user intends to mask out the bit 24 of the ID filter of Message Buffers
then the RXGMASK will be configured as 0xffff_ffef. As result, bit 24 of the ID field of the
incoming message will be ignored during filtering process for Message Buffers. This very
same configuration of RXGMASK would lead bit 24 of RXIDA to be "don`t care" and thus bit
25 of the ID field of the incoming message would be ignored during filtering process for Rx
FIFO.

Similarly, both RXIDB and RXIDC filters have multiple misalignments with regards to
position of ID field in Rx MBs, which can lead to erroneous masking during filtering process
for either Rx FIFO or MBs.

RX14MASK (Rx 14 Mask) and RX15MASK (Rx 15 Mask) have the same structure as the
RXGMASK. This includes the misalignment problem between the position of the ID field in
the Rx MBs and in RXIDA, RXIDB and RXIDC fields of the ID Tables.

Therefore it is recommended that one of the following actions be taken to avoid problems:

● Do not enable the RxFIFO. If CANx_MCR[FEN]=0 then the Rx FIFO is disabled and
thus the masks RXGMASK, RX14MASK and RX15MASK do not affect it.

● Enable Rx Individual Mask Registers. If the Backwards Compatibility Configuration bit
in the FlexCAN Module Configuration Register (CANx_MCR[BCC], bit 15) is set then
the Rx Individual Mask Registers (RXIMR0–63) are enabled and thus the masks
RXGMASK, RX14MASK and RX15MASK are not used.

● Do not use masks RXGMASK, RX14MASK and RX15MASK (i.e., let them in reset
value which is 0xffff_ffff) when CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this
case, filtering processes for both Rx MBs and Rx FIFO are not affected by those
masks.

● Do not configure any MB as Rx (i.e., let all MBs as either Tx or inactive) when
CANx_MCR[FEN]=1 and CANx_MCR[BCC]=0. In this case, the masks RXGMASK,
RX14MASK and RX15MASK can be used to affect ID Tables without affecting filtering
process for Rx MBs.

Figure 280. Rx Global Mask Register (RXGMASK)

Offset: 0x0010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MI31 MI30 MI29 MI28 MI27 MI26 MI25 MI24 MI23 MI22 MI21 MI20 MI19 MI18 MI17 MI16

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MI15 MI14 MI13 MI12 MI11 MI10 MI9 MI8 MI7 MI6 MI5 MI4 MI3 MI2 MI1 MI0

W

RESET: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doc ID 16886 Rev 6 510/868

FlexCAN RM0045

Rx 14 Mask (RX14MASK)

This register is provided for legacy support and for low cost MCUs that do not have the
individual masking per Message Buffer feature. For MCUs supporting individual masks per
MB, setting the BCC bit in MCR causes the RX14MASK Register to have no effect on the
module operation.

RX14MASK is used as acceptance mask for the Identifier in Message Buffer 14. When the
FEN bit in MCR is set (FIFO enabled), the RXG14MASK also applies to element 6 of the ID
filter table. This register has the same structure as the Rx Global Mask Register.

See Section 22.5.8, Rx FIFO, for important details on usage of RX14MASK on filtering
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and
must not be modified when the module is transmitting or receiving frames.

● Address Offset: 0x14

● Reset Value: 0xFFFF_FFFF

Rx 15 Mask (RX15MASK)

This register is provided for legacy support and for low cost MCUs that do not have the
individual masking per Message Buffer feature. For MCUs supporting individual masks per
MB, setting the BCC bit in MCR causes the RX15MASK Register to have no effect on the
module operation.

When the BCC bit is negated, RX15MASK is used as acceptance mask for the Identifier in
Message Buffer 15. When the FEN bit in MCR is set (FIFO enabled), the RXG15MASK also
applies to element 7 of the ID filter table. This register has the same structure as the Rx
Global Mask Register.

Refer to Section 22.5.8, Rx FIFO, for important details on usage of RX15MASK on filtering
process for Rx FIFO.

The contents of this register must be programmed while the module is in Freeze Mode, and
must not be modified when the module is transmitting or receiving frames.

● Address Offset: 0x18

● Reset Value: 0xFFFF_FFFF

Error Counter Register (ECR)

This register has two 8-bit fields reflecting the value of two FlexCAN error counters: Transmit
Error Counter (TX_ERR_COUNTER field) and Receive Error Counter
(RX_ERR_COUNTER field). The rules for increasing and decreasing these counters are

Table 263. RXGMASK field descriptions

Field Description

MIn

Mask Bits

For normal Rx MBs, the mask bits affect the ID filter programmed on the MB. For the Rx
FIFO, the mask bits affect all bits programmed in the filter table (ID, IDE, RTR).

1 = The corresponding bit in the filter is checked against the one received

0 = The corresponding bit in the filter is “don’t care”
511/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
described in the CAN protocol and are completely implemented in the FlexCAN module.
Both counters are read only except in Freeze Mode, where they can be written by the CPU.

Writing to the Error Counter Register while in Freeze Mode is an indirect operation. The data
is first written to an auxiliary register and then an internal request/acknowledge procedure
across clock domains is executed. All this is transparent to the user, except for the fact that
the data will take some time to be actually written to the register. If desired, software can poll
the register to discover when the data was actually written.

FlexCAN responds to any bus state as described in the protocol, e.g., transmit ‘Error Active’
or ‘Error Passive’ flag, delay its transmission start time (‘Error Passive’) and avoid any
influence on the bus when in ‘Bus Off’ state. The following are the basic rules for FlexCAN
bus state transitions.

● If the value of TX_ERR_COUNTER or RX_ERR_COUNTER increases to be greater
than or equal to 128, the FLT_CONF field in the Error and Status Register is updated to
reflect ‘Error Passive’ state.

● If the FlexCAN state is ‘Error Passive’, and either TX_ERR_COUNTER or
RX_ERR_COUNTER decrements to a value less than or equal to 127 while the other
already satisfies this condition, the FLT_CONF field in the Error and Status Register is
updated to reflect ‘Error Active’ state.

● If the value of TX_ERR_COUNTER increases to be greater than 255, the FLT_CONF
field in the Error and Status Register is updated to reflect ‘Bus Off’ state, and an
interrupt may be issued. The value of TX_ERR_COUNTER is then reset to zero.

● If FlexCAN is in ‘Bus Off’ state, then Tx_Err_Counter is cascaded together with another
internal counter to count the 128th occurrences of 11 consecutive recessive bits on the
bus. Hence, TX_ERR_COUNTER is reset to zero and counts in a manner where the
internal counter counts 11 such bits and then wraps around while incrementing the
TX_ERR_COUNTER. When TX_ERR_COUNTER reaches the value of 128, the
FLT_CONF field in the Error and Status Register is updated to be ‘Error Active’ and
both error counters are reset to zero. At any instance of dominant bit following a stream
of less than 11 consecutive recessive bits, the internal counter resets itself to zero
without affecting the TX_ERR_COUNTER value.

● If during system start-up, only one node is operating, then its TX_ERR_COUNTER
increases in each message it is trying to transmit, as a result of acknowledge errors
(indicated by the ACK_ERR bit in the Error and Status Register). After the transition to
‘Error Passive’ state, the TX_ERR_COUNTER does not increment anymore by
acknowledge errors. Therefore the device never goes to the ‘Bus Off’ state.

● If the RX_ERR_COUNTER increases to a value greater than 127, it is not incremented
further, even if more errors are detected while being a receiver. At the next successful
message reception, the counter is set to a value between 119 and 127 to resume to
‘Error Active’ state.
Doc ID 16886 Rev 6 512/868

FlexCAN RM0045

Error and Status Register (ESR)

This register reflects various error conditions, some general status of the device and it is the
source of four interrupts to the CPU. The reported error conditions (bits 16–21) are those
that occurred since the last time the CPU read this register. The CPU read action clears bits
16–23. Bits 22–28 are status bits.

Most bits in this register are read only, except TWRN_INT, RWRN_INT, BOFF_INT, and
ERR_INT, that are interrupt flags that can be cleared by writing ‘1’ to them (writing ‘0’ has no
effect). See Section 22.5.11, Interrupts, for more details.

Figure 281. Error Counter Register (ECR)

Offset: 0x001C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
RX_ERR_COUNTER TX_ERR_COUNTER

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 264. ECR field descriptions

Field Description

RX_ERROR_
COUNTER

Receive Error Counter. See the text of this section for a detailed description of this field and
how it interacts with TX_ERROR_COUNTER.

TX_ERROR_
COUNTER

Transmit Error Counter. See the text of this section for a detailed description of this field and
how it interacts with RX_ERROR_COUNTER.
513/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

Figure 282. Error and Status Register (ESR)

Offset: 0x0020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

T
W

R
N

_I
N

T

R
W

R
N

_I
N

T

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
IT

1_
 E

R
R

B
IT

0_
 E

R
R

A
C

K
_

E
R

R

C
R

C
_E

R
R

F
R

M
_E

R
R

S
T

F
_E

R
R

T
X

_W
R

N

R
X

_W
R

N

IDLE

T
X

R
X

FLT_CONF 0

B
O

F
F

_I
N

T

E
R

R
_

IN
T

0

W

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 265. ESR field descriptions

Field Description

TWRN_INT

TWRN_INT — Tx Warning Interrupt Flag

If the WRN_EN bit in MCR is asserted, the TWRN_INT bit is set when the TX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Tx error counter reached 96. If the corresponding mask bit in the
Control Register (TWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Tx error counter transition from < 96 to  96
0 = No such occurrence

RWRN_INT

RWRN_INT — Rx Warning Interrupt Flag

If the WRN_EN bit in MCR is asserted, the RWRN_INT bit is set when the RX_WRN flag transition
from ‘0’ to ‘1’, meaning that the Rx error counters reached 96. If the corresponding mask bit in the
Control Register (RWRN_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by
writing it to ‘1’. Writing ‘0’ has no effect.
1 = The Rx error counter transition from < 96 to  96
0 = No such occurrence

BIT1_ERR

BIT1_ERR — Bit1 Error

This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.

1 = At least one bit sent as recessive is received as dominant
0 = No such occurrence

Note: This bit is not set by a transmitter in case of arbitration field or ACK slot, or in case of a node
sending a passive error flag that detects dominant bits.
Doc ID 16886 Rev 6 514/868

FlexCAN RM0045
BIT0_ERR

BIT0_ERR — Bit0 Error

This bit indicates when an inconsistency occurs between the transmitted and the received bit in a
message.

1 = At least one bit sent as dominant is received as recessive
0 = No such occurrence

ACK_ERR

ACK_ERR — Acknowledge Error

This bit indicates that an Acknowledge Error has been detected by the transmitter node, i.e., a
dominant bit has not been detected during the ACK SLOT.

1 = An ACK error occurred since last read of this register
0 = No such occurrence

CRC_ERR

CRC_ERR — Cyclic Redundancy Check Error
This bit indicates that a CRC Error has been detected by the receiver node, i.e., the calculated CRC
is different from the received.
1 = A CRC error occurred since last read of this register.
0 = No such occurrence

FRM_ERR

FRM_ERR — Form Error

This bit indicates that a Form Error has been detected by the receiver node, i.e., a fixed-form bit
field contains at least one illegal bit.

1 = A Form Error occurred since last read of this register
0 = No such occurrence

STF_ERR

STF_ERR — Stuffing Error

This bit indicates that a Stuffing Error has been detected.

1 = A Stuffing Error occurred since last read of this register.
0 = No such occurrence.

TX_WRN

TX Error Warning

This bit indicates when repetitive errors are occurring during message transmission.

1 = TX_Err_Counter  96
0 = No such occurrence

RX_WRN

Rx Error Counter
This bit indicates when repetitive errors are occurring during message reception.

1 = Rx_Err_Counter 96

0 = No such occurrence

IDLE

CAN bus IDLE state

This bit indicates when CAN bus is in IDLE state.

1 = CAN bus is now IDLE
0 = No such occurrence

TXRX

Current FlexCAN status (transmitting/receiving)

This bit indicates if FlexCAN is transmitting or receiving a message when the CAN bus is not in
IDLE state. This bit has no meaning when IDLE is asserted.

1 = FlexCAN is transmitting a message (IDLE=0)
0 = FlexCAN is receiving a message (IDLE=0)

Table 265. ESR field descriptions (continued)

Field Description
515/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

Interrupt Masks 2 Register (IMASK2)

This register allows any number of a range of 32 Message Buffer Interrupts to be enabled or
disabled. It contains one interrupt mask bit per buffer, enabling the CPU to determine which
buffer generates an interrupt after a successful transmission or reception (i.e., when the
corresponding IFLAG2 bit is set).

FLT_CONF

Fault Confinement State

This 2-bit field indicates the Confinement State of the FlexCAN module, as shown in Table 266. If
the LOM bit in the Control Register is asserted, the FLT_CONF field will indicate “Error Passive”.
Since the Control Register is not affected by soft reset, the FLT_CONF field will not be affected by
soft reset if the LOM bit is asserted.

BOFF_INT

‘Bus Off’ Interrupt

This bit is set when FlexCAN enters ‘Bus Off’ state. If the corresponding mask bit in the Control
Register (BOFF_MSK) is set, an interrupt is generated to the CPU. This bit is cleared by writing it to
‘1’. Writing ‘0’ has no effect.

1 = FlexCAN module entered ‘Bus Off’ state
0 = No such occurrence

ERR_INT

Error Interrupt
This bit indicates that at least one of the Error Bits (bits 16-21) is set. If the corresponding mask bit
in the Control Register (ERR_MSK) is set, an interrupt is generated to the CPU. This bit is cleared
by writing it to ‘1’.Writing ‘0’ has no effect.

1 = Indicates setting of any Error Bit in the Error and Status Register
0 = No such occurrence

Table 266. Fault confinement state

Value Meaning

00 Error Active

01 Error Passive

1X Bus Off

Table 265. ESR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 516/868

FlexCAN RM0045

Interrupt Masks 1 Register (IMASK1)

This register allows to enable or disable any number of a range of 32 Message Buffer
Interrupts. It contains one interrupt mask bit per buffer, enabling the CPU to determine which
buffer generates an interrupt after a successful transmission or reception (i.e., when the
corresponding IFLAG1 bit is set).

Figure 283. Interrupt Masks 2 Register (IMASK2)

Offset: 0x0024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63M

BUF
62M

BUF
61M

BUF
60M

BUF
59M

BUF
58M

BUF
57M

BUF
56M

BUF
55M

BUF
54M

BUF
53M

BUF
52M

BUF
51M

BUF
50M

BUF
49M

BUF
48MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47M

BUF
46M

BUF
45M

BUF
44M

BUF
43M

BUF
42M

BUF
41M

BUF
40M

BUF
39M

BUF
38M

BUF
37M

BUF
36M

BUF
35M

BUF
34M

BUF
33M

BUF
32MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 267. MASK2 field descriptions

Field Description

BUFnM

Buffer MBn Mask

Each bit enables or disables the respective FlexCAN Message Buffer (MB32 to MB63)
Interrupt.

1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK2 Register can assert or negate an interrupt
request, if the corresponding IFLAG2 bit is set.
517/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

Interrupt Flags 2 Register (IFLAG2)

This register defines the flags for 32 Message Buffer interrupts. It contains one interrupt flag
bit per buffer. Each successful transmission or reception sets the corresponding IFLAG2 bit.
If the corresponding IMASK2 bit is set, an interrupt will be generated. The interrupt flag must
be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the AEN bit in the MCR is set (Abort enabled), while the IFLAG2 bit is set for a MB
configured as Tx, the writing access done by CPU into the corresponding MB will be
blocked.

Figure 284. Interrupt Masks 1 Register (IMASK1)

Offset: 0x0028 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31M

BUF
30M

BUF
29M

BUF
28M

BUF
27M

BUF
26M

BUF
25M

BUF
24M

BUF
23M

BUF
22M

BUF
21M

BUF
20M

BUF
19M

BUF
18M

BUF
17M

BUF
16MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15M

BUF
14M

BUF
13M

BUF
12M

BUF
11M

BUF
10M

BUF
9M

BUF
8M

BUF
7M

BUF
6M

BUF
5M

BUF
4M

BUF
3M

BUF
2M

BUF
1M

BUF
0MW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 268. IMASK1 field descriptions

Field Description

BUFnM

Buffer MBn Mask

Each bit enables or disables the respective FlexCAN Message Buffer (MB0 to MB31)
Interrupt.

1 = The corresponding buffer Interrupt is enabled
0 = The corresponding buffer Interrupt is disabled

Note: Setting or clearing a bit in the IMASK1 Register can assert or negate an interrupt
request, if the corresponding IFLAG1 bit is set.
Doc ID 16886 Rev 6 518/868

FlexCAN RM0045

Interrupt Flags 1 Register (IFLAG1)

This register defines the flags for 32 Message Buffer interrupts and FIFO interrupts. It
contains one interrupt flag bit per buffer. Each successful transmission or reception sets the
corresponding IFLAG1 bit. If the corresponding IMASK1 bit is set, an interrupt will be
generated. The Interrupt flag must be cleared by writing it to ‘1’. Writing ‘0’ has no effect.

When the MCR[AEN] bit is set (Abort enabled), while the IFLAG1 bit is set for a MB
configured as Tx, the writing access done by CPU into the corresponding MB will be
blocked.

When the MCR[FEN] bit is set (FIFO enabled), the function of the 8 least significant interrupt
flags (BUF7I - BUF0I) is changed to support the FIFO operation. BUF7I, BUF6I and BUF5I
indicate operating conditions of the FIFO, while BUF4I to BUF0I are not used.

Figure 285. Interrupt Flags 2 Register (IFLAG2)

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
63I

BUF
62I

BUF
61I

BUF
60I

BUF
59I

BUF
58I

BUF
57I

BUF
56I

BUF
55I

BUF
54I

BUF
53I

BUF
52I

BUF
51I

BUF
50I

BUF
49I

BUF
48IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
47I

BUF
46I

BUF
45I

BUF
44I

BUF
43I

BUF
42I

BUF
41I

BUF
40I

BUF
39I

BUF
38I

BUF
37I

BUF
36I

BUF
35I

BUF
34I

BUF
33I

BUF
32IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 269. IFLAG2 field descriptions

Field Description

BUFnI

Buffer MBn Interrupt

Each bit flags the respective FlexCAN Message Buffer (MB32 to MB63) interrupt.
1 = The corresponding buffer has successfully completed transmission or reception
0 = No such occurrence
519/868 Doc ID 16886 Rev 6

RM0045 FlexCAN

Figure 286. Interrupt Flags 1 Register (IFLAG1)

Offset: 0x002C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R BUF
31I

BUF
30I

BUF
29I

BUF
28I

BUF
27I

BUF
26I

BUF
25I

BUF
24I

BUF
23I

BUF
22I

BUF
21I

BUF
20I

BUF
19I

BUF
18I

BUF
17I

BUF
16IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R BUF
15I

BUF
14I

BUF
13I

BUF
12I

BUF
11I

BUF
10I

BUF
9I

BUF
8I

BUF
7I

BUF
6I

BUF
5I

BUF
4I

BUF
3I

BUF
2I

BUF
1I

BUF
0IW

RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 270. IFLAG1 field descriptions

Field Description

BUF31I–BUF8I

Buffer MBn Interrupt

Each bit flags the respective FlexCAN Message Buffer (MB8 to MB31) interrupt.
1 = The corresponding MB has successfully completed transmission or reception
0 = No such occurrence

BUF7I

Buffer MB7 Interrupt or “FIFO Overflow”

If the FIFO is not enabled, this bit flags the interrupt for MB7. If the FIFO is enabled, this
flag indicates an overflow condition in the FIFO (frame lost because FIFO is full).

1 = MB7 completed transmission/reception or FIFO overflow
0 = No such occurrence

BUF6I

Buffer MB6 Interrupt or “FIFO Warning”

If the FIFO is not enabled, this bit flags the interrupt for MB6. If the FIFO is enabled, this
flag indicates that 5 out of 6 buffers of the FIFO are already occupied (FIFO almost full).

1 = MB6 completed transmission/reception or FIFO almost full
0 = No such occurrence

BUF5I

Buffer MB5 Interrupt or “Frames available in FIFO”
If the FIFO is not enabled, this bit flags the interrupt for MB5. If the FIFO is enabled, this
flag indicates that at least one frame is available to be read from the FIFO.

1 = MB5 completed transmission/reception or frames available in the FIFO
0 = No such occurrence

BUF4I–BUF0I

Buffer MBi Interrupt or “reserved”

If the FIFO is not enabled, these bits flag the interrupts for MB0 to MB4. If the FIFO is
enabled, these flags are not used and must be considered as reserved locations.

1 = Corresponding MB completed transmission/reception
0 = No such occurrence
Doc ID 16886 Rev 6 520/868

FlexCAN RM0045
22.5 Functional description

22.5.1 Overview

The FlexCAN module is a CAN protocol engine with a very flexible mailbox system for
transmitting and receiving CAN frames. The mailbox system is composed by a set of up to
64 Message Buffers (MB) that store configuration and control data, time stamp, message ID
and data (see Section 22.4.2, Message Buffer Structure). The memory corresponding to the
first 8 MBs can be configured to support a FIFO reception scheme with a powerful ID
filtering mechanism, capable of checking incoming frames against a table of IDs (up to 8
extended IDs or 16 standard IDs or 32 8-bit ID slices), each one with its own individual mask
register. Simultaneous reception through FIFO and mailbox is supported. For mailbox
reception, a matching algorithm makes it possible to store received frames only into MBs
that have the same ID programmed on its ID field. A masking scheme makes it possible to
match the ID programmed on the MB with a range of IDs on received CAN frames. For
transmission, an arbitration algorithm decides the prioritization of MBs to be transmitted
based on the message ID (optionally augmented by 3 local priority bits) or the MB ordering.

Before proceeding with the functional description, an important concept must be explained.
A Message Buffer is said to be “active” at a given time if it can participate in the matching
and arbitration algorithms that are happening at that time. An Rx MB with a ‘0000’ code is
inactive (refer to Table 256). Similarly, a Tx MB with a ‘1000’ or ‘1001’ code is also inactive
(refer to Table 257). An MB not programmed with ‘0000’, ‘1000’ or ‘1001’ will be temporarily
deactivated (will not participate in the current arbitration or matching run) when the CPU
writes to the C/S field of that MB (see Section , Message Buffer Deactivation).

22.5.2 Local Priority Transmission

The term local priority refers to the priority of transmit messages of the host node. This
allows increased control over the priority mechanism for transmitting messages. Figure 274
shows the placement of PRIO in the ID part of the message buffer.

An additional 3-bit field (PRIO) in the long-word ID part of the message buffer structure has
been added for local priority determination. They are prefixed to the regular ID to define the
transmission priority. These bits are not transmitted and are intended only for Tx buffers.

Perform the following to use the local priority feature:

1. Set the LPRIO_EN bit in the CANx_MCR.

2. Write the additional PRIO bits in the ID long-word of Tx message buffers when
configuring the Tx buffers.

With this extended ID concept, the arbitration process is based on the full 32-bit word.
However, the actual transmitted ID continues to have 11 bits for standard frames and 29 bits
for extended frames.

22.5.3 Transmit process

In order to transmit a CAN frame, the CPU must prepare a Message Buffer for transmission
by executing the following procedure:

1. If the MB is active (transmission pending), write an ABORT code (‘1001’) to the Code
field of the Control and Status word to request an abortion of the transmission, then
read back the Code field and the IFLAG register to check if the transmission was
aborted (see Section , Transmission Abort Mechanism). If backwards compatibility is
521/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
desired (AEN in MCR negated), just write ‘1000’ to the Code field to inactivate the MB
but then the pending frame may be transmitted without notification (see Section ,
Message Buffer Deactivation).

2. Write the ID word.

3. Write the data bytes.

4. Write the Length, Control and Code fields of the Control and Status word to activate the
MB.

Once the MB is activated in the fourth step, it will participate into the arbitration process and
eventually be transmitted according to its priority. At the end of the successful transmission,
the value of the Free Running Timer is written into the Time Stamp field, the Code field in
the Control and Status word is updated, a status flag is set in the Interrupt Flag Register and
an interrupt is generated if allowed by the corresponding Interrupt Mask Register bit. The
new Code field after transmission depends on the code that was used to activate the MB in
step four (see Table 256 and Table 257 in Section 22.4.2, Message Buffer Structure). When
the Abort feature is enabled (AEN in MCR is asserted), after the Interrupt Flag is asserted
for a MB configured as transmit buffer, the MB is blocked, therefore the CPU is not able to
update it until the Interrupt Flag be negated by CPU. It means that the CPU must clear the
corresponding IFLAG before starting to prepare this MB for a new transmission or reception.

22.5.4 Arbitration process

The arbitration process is an algorithm executed by the MBM that scans the whole MB
memory looking for the highest priority message to be transmitted. All MBs programmed as
transmit buffers will be scanned to find the lowest ID(q) or the lowest MB number or the
highest priority, depending on the LBUF and LPRIO_EN bits on the Control Register. The
arbitration process is triggered in the following events:

● During the CRC field of the CAN frame

● During the error delimiter field of the CAN frame

● During Intermission, if the winner MB defined in a previous arbitration was deactivated,
or if there was no MB to transmit, but the CPU wrote to the C/S word of any MB after
the previous arbitration finished

● When MBM is in Idle or Bus Off state and the CPU writes to the C/S word of any MB

● Upon leaving Freeze Mode

When LBUF is asserted, the LPRIO_EN bit has no effect and the lowest number buffer is
transmitted first. When LBUF and LPRIO_EN are both negated, the MB with the lowest ID is
transmitted first but. If LBUF is negated and LPRIO_EN is asserted, the PRIO bits augment
the ID used during the arbitration process. With this extended ID concept, arbitration is done
based on the full 32-bit ID and the PRIO bits define which MB should be transmitted first,
therefore MBs with PRIO = 000 have higher priority. If two or more MBs have the same
priority, the regular ID will determine the priority of transmission. If two or more MBs have
the same priority (3 extra bits) and the same regular ID, the lowest MB will be transmitted
first.

Once the highest priority MB is selected, it is transferred to a temporary storage space
called Serial Message Buffer (SMB), which has the same structure as a normal MB but is
not user accessible. This operation is called “move-out” and after it is done, write access to

q. Actually, if LBUF is negated, the arbitration considers not only the ID, but also the RTR and IDE bits placed
inside the ID at the same positions they are transmitted in the CAN frame.
Doc ID 16886 Rev 6 522/868

FlexCAN RM0045
the corresponding MB is blocked (if the AEN bit in MCR is asserted). The write access is
released in the following events:

● After the MB is transmitted

● FlexCAN enters in HALT or BUS OFF

● FlexCAN loses the bus arbitration or there is an error during the transmission

At the first opportunity window on the CAN bus, the message on the SMB is transmitted
according to the CAN protocol rules. FlexCAN transmits up to eight data bytes, even if the
DLC (Data Length Code) value is bigger.

22.5.5 Receive process

To be able to receive CAN frames into the mailbox MBs, the CPU must prepare one or more
Message Buffers for reception by executing the following steps:

1. If the MB has a pending transmission, write an ABORT code (‘1001’) to the Code field
of the Control and Status word to request an abortion of the transmission, then read
back the Code field and the IFLAG register to check if the transmission was aborted
(see Section , Transmission Abort Mechanism). If backwards compatibility is desired
(AEN in MCR negated), just write ‘1000’ to the Code field to inactivate the MB, but then
the pending frame may be transmitted without notification (see Section , Message
Buffer Deactivation). If the MB already programmed as a receiver, just write ‘0000’ to
the Code field of the Control and Status word to keep the MB inactive.

2. Write the ID word

3. Write ‘0100’ to the Code field of the Control and Status word to activate the MB

Once the MB is activated in the third step, it will be able to receive frames that match the
programmed ID. At the end of a successful reception, the MB is updated by the MBM as
follows:

● The value of the Free Running Timer is written into the Time Stamp field

● The received ID, Data (8 bytes at most) and Length fields are stored

● The Code field in the Control and Status word is updated (see Table 256 and Table 257
in Section 22.4.2, Message Buffer Structure)

● A status flag is set in the Interrupt Flag Register and an interrupt is generated if allowed
by the corresponding Interrupt Mask Register bit

Upon receiving the MB interrupt, the CPU should service the received frame using the
following procedure:

1. Read the Control and Status word (mandatory – activates an internal lock for this
buffer)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Read the Free Running Timer (optional – releases the internal lock)

Upon reading the Control and Status word, if the BUSY bit is set in the Code field, then the
CPU should defer the access to the MB until this bit is negated. Reading the Free Running
Timer is not mandatory. If not executed the MB remains locked, unless the CPU reads the
C/S word of another MB. Note that only a single MB is locked at a time. The only mandatory
CPU read operation is the one on the Control and Status word to assure data coherency
(see Section 22.5.7, Data coherence).
523/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
The CPU should synchronize to frame reception by the status flag bit for the specific MB in
one of the IFLAG Registers and not by the Code field of that MB. Polling the Code field does
not work because once a frame was received and the CPU services the MB (by reading the
C/S word followed by unlocking the MB), the Code field will not return to EMPTY. It will
remain FULL, as explained in Table 256. If the CPU tries to workaround this behavior by
writing to the C/S word to force an EMPTY code after reading the MB, the MB is actually
deactivated from any currently ongoing matching process. As a result, a newly received
frame matching the ID of that MB may be lost. In summary: never do polling by reading
directly the C/S word of the MBs. Instead, read the IFLAG registers.

Note that the received ID field is always stored in the matching MB, thus the contents of the
ID field in an MB may change if the match was due to masking. Note also that FlexCAN
does receive frames transmitted by itself if there exists an Rx matching MB, provided the
SRX_DIS bit in the MCR is not asserted. If SRX_DIS is asserted, FlexCAN will not store
frames transmitted by itself in any MB, even if it contains a matching MB, and no interrupt
flag or interrupt signal will be generated due to the frame reception.

To be able to receive CAN frames through the FIFO, the CPU must enable and configure the
FIFO during Freeze Mode (see Section 22.5.8, Rx FIFO). Upon receiving the frames
available interrupt from FIFO, the CPU should service the received frame using the following
procedure:

1. Read the Control and Status word (optional – needed only if a mask was used for IDE
and RTR bits)

2. Read the ID field (optional – needed only if a mask was used)

3. Read the Data field

4. Clear the frames available interrupt (mandatory – release the buffer and allow the CPU
to read the next FIFO entry)

22.5.6 Matching process

The matching process is an algorithm executed by the MBM that scans the MB memory
looking for Rx MBs programmed with the same ID as the one received from the CAN bus. If
the FIFO is enabled, the 8-entry ID table from FIFO is scanned first and then, if a match is
not found within the FIFO table, the other MBs are scanned. In the event that the FIFO is full,
the matching algorithm will always look for a matching MB outside the FIFO region.

When the frame is received, it is temporarily stored in a hidden auxiliary MB called Serial
Message Buffer (SMB). The matching process takes place during the CRC field of the
received frame. If a matching ID is found in the FIFO table or in one of the regular MBs, the
contents of the SMB will be transferred to the FIFO or to the matched MB during the 6th bit
of the End-Of-Frame field of the CAN protocol. This operation is called “move-in”. If any
protocol error (CRC, ACK, etc.) is detected, than the move-in operation does not happen.

For the regular mailbox MBs, an MB is said to be “free to receive” a new frame if the
following conditions are satisfied:

● The MB is not locked (see Section , Message Buffer Lock Mechanism)

● The Code field is either EMPTY or else it is FULL or OVERRUN but the CPU has
already serviced the MB (read the C/S word and then unlocked the MB)

If the first MB with a matching ID is not “free to receive” the new frame, then the matching
algorithm keeps looking for another free MB until it finds one. If it can not find one that is
free, then it will overwrite the last matching MB (unless it is locked) and set the Code field to
OVERRUN (refer to Table 256 and Table 257). If the last matching MB is locked, then the
Doc ID 16886 Rev 6 524/868

FlexCAN RM0045
new message remains in the SMB, waiting for the MB to be unlocked (see Section ,
Message Buffer Lock Mechanism).

Suppose, for example, that the FIFO is disabled and there are two MBs with the same ID,
and FlexCAN starts receiving messages with that ID. Let us say that these MBs are the
second and the fifth in the array. When the first message arrives, the matching algorithm will
find the first match in MB number 2. The code of this MB is EMPTY, so the message is
stored there. When the second message arrives, the matching algorithm will find MB
number 2 again, but it is not “free to receive”, so it will keep looking and find MB number 5
and store the message there. If yet another message with the same ID arrives, the matching
algorithm finds out that there are no matching MBs that are “free to receive”, so it decides to
overwrite the last matched MB, which is number 5. In doing so, it sets the Code field of the
MB to indicate OVERRUN.

The ability to match the same ID in more than one MB can be exploited to implement a
reception queue (in addition to the full featured FIFO) to allow more time for the CPU to
service the MBs. By programming more than one MB with the same ID, received messages
will be queued into the MBs. The CPU can examine the Time Stamp field of the MBs to
determine the order in which the messages arrived.

The matching algorithm described above can be changed to be the same one used in
previous versions of the FlexCAN module. When the BCC bit in MCR is negated, the
matching algorithm stops at the first MB with a matching ID that it founds, whether this MB is
free or not. As a result, the message queueing feature does not work if the BCC bit is
negated.

Matching to a range of IDs is possible by using ID Acceptance Masks. FlexCAN supports
individual masking per MB. During the matching algorithm, if a mask bit is asserted, then
the corresponding ID bit is compared. If the mask bit is negated, the corresponding ID bit is
“don’t care”. Please note that the Individual Mask Registers are implemented in RAM, so
they are not initialized out of reset. Also, they can only be programmed if the BCC bit is
asserted and while the module is in Freeze Mode.

FlexCAN also supports an alternate masking scheme with only three mask registers
(RGXMASK, RX14MASK and RX15MASK) for backwards compatibility. This alternate
masking scheme is enabled when the BCC bit in the MCR Register is negated.

Note: The individual Rx Mask per Message Buffer feature may not be available in low cost MCUs.
Please consult the specific MCU documentation to find out if this feature is supported. If not
supported, the RXGMASK, RX14MASK and RX15MASK registers are available, regardless
of the value of the BCC bit.

22.5.7 Data coherence

In order to maintain data coherency and FlexCAN proper operation, the CPU must obey the
rules described in Section 22.5.3, Transmit process and Section 22.5.5, Receive process.
Any form of CPU accessing an MB structure within FlexCAN other than those specified may
cause FlexCAN to behave in an unpredictable way.

Transmission Abort Mechanism

The abort mechanism provides a safe way to request the abortion of a pending
transmission. A feedback mechanism is provided to inform the CPU if the transmission was
aborted or if the frame could not be aborted and was transmitted instead. In order to
maintain backwards compatibility, the abort mechanism must be explicitly enabled by
asserting the AEN bit in the MCR.
525/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
In order to abort a transmission, the CPU must write a specific abort code (1001) to the
Code field of the Control and Status word. When the abort mechanism is enabled, the active
MBs configured as trasmission must be aborted first and then they may be updated. If the
abort code is written to an MB that is currently being transmitted, or to an MB that was
already loaded into the SMB for transmission, the write operation is blocked and the MB is
not deactivated, but the abort request is captured and kept pending until one of the following
conditions are satisfied:

● The module loses the bus arbitration

● There is an error during the transmission

● The module is put into Freeze Mode

If none of conditions above are reached, the MB is transmitted correctly, the interrupt flag is
set in the IFLAG register and an interrupt to the CPU is generated (if enabled). The abort
request is automatically cleared when the interrupt flag is set. In the other hand, if one of the
above conditions is reached, the frame is not transmitted, therefore the abort code is written
into the Code field, the interrupt flag is set in the IFLAG and an interrupt is (optionally)
generated to the CPU.

If the CPU writes the abort code before the transmission begins internally, then the write
operation is not blocked, therefore the MB is updated and no interrupt flag is set. In this way
the CPU just needs to read the abort code to make sure the active MB was deactivated.
Although the AEN bit is asserted and the CPU wrote the abort code, in this case the MB is
deactivated and not aborted, because the transmission did not start yet. One MB is only
aborted when the abort request is captured and kept pending until one of the previous
conditions are satisfied.

The abort procedure can be summarized as follows:

● CPU writes 1001 into the code field of the C/S word

● CPU reads the CODE field and compares it to the value that was written

● If the CODE field that was read is different from the value that was written, the CPU
must read the corresponding IFLAG to check if the frame was transmitted or it is being
currently transmitted. If the corresponding IFLAG is set, the frame was transmitted. If
the corresponding IFLAG is reset, the CPU must wait for it to be set, and then the CPU
must read the CODE field to check if the MB was aborted (CODE=1001) or it was
transmitted (CODE=1000).

Message Buffer Deactivation

Deactivation is mechanism provided to maintain data coherence when the CPU writes to the
Control and Status word of active MBs out of Freeze Mode. Any CPU write access to the
Control and Status word of an MB causes that MB to be excluded from the transmit or
receive processes during the current matching or arbitration round. The deactivation is
temporary, affecting only for the current match/arbitration round.

The purpose of deactivation is data coherency. The match/arbitration process scans the
MBs to decide which MB to transmit or receive. If the CPU updates the MB in the middle of
a match or arbitration process, the data of that MB may no longer be coherent, therefore
deactivation of that MB is done.
Doc ID 16886 Rev 6 526/868

FlexCAN RM0045
Even with the coherence mechanism described above, writing to the Control and Status
word of active MBs when not in Freeze Mode may produce undesirable results. Examples
are:

● Matching and arbitration are one-pass processes. If MBs are deactivated after they are
scanned, no re-evaluation is done to determine a new match/winner. If an Rx MB with a
matching ID is deactivated during the matching process after it was scanned, then this
MB is marked as invalid to receive the frame, and FlexCAN will keep looking for another
matching MB within the ones it has not scanned yet. If it can not find one, then the
message will be lost. Suppose, for example, that two MBs have a matching ID to a
received frame, and the user deactivated the first matching MB after FlexCAN has
scanned the second. The received frame will be lost even if the second matching MB
was “free to receive”.

● If a Tx MB containing the lowest ID is deactivated after FlexCAN has scanned it, then
FlexCAN will look for another winner within the MBs that it has not scanned yet.
Therefore, it may transmit an MB with ID that may not be the lowest at the time because
a lower ID might be present in one of the MBs that it had already scanned before the
deactivation.

● There is a point in time until which the deactivation of a Tx MB causes it not to be
transmitted (end of move-out). After this point, it is transmitted but no interrupt is issued
and the Code field is not updated. In order to avoid this situation, the abort procedures
described in Section , Transmission Abort Mechanism should be used.

Message Buffer Lock Mechanism

Besides MB deactivation, FlexCAN has another data coherence mechanism for the receive
process. When the CPU reads the Control and Status word of an “active not empty” Rx MB,
FlexCAN assumes that the CPU wants to read the whole MB in an atomic operation, and
thus it sets an internal lock flag for that MB. The lock is released when the CPU reads the
Free Running Timer (global unlock operation), or when it reads the Control and Status word
of another MB. The MB locking is done to prevent a new frame to be written into the MB
while the CPU is reading it.

Note: The locking mechanism only applies to Rx MBs which have a code different than INACTIVE
(‘0000’) or EMPTY(r) (‘0100’). Also, Tx MBs can not be locked.

Suppose, for example, that the FIFO is disabled and the second and the fifth MBs of the
array are programmed with the same ID, and FlexCAN has already received and stored
messages into these two MBs. Suppose now that the CPU decides to read MB number 5
and at the same time another message with the same ID is arriving. When the CPU reads
the Control and Status word of MB number 5, this MB is locked. The new message arrives
and the matching algorithm finds out that there are no “free to receive” MBs, so it decides to
override MB number 5. However, this MB is locked, so the new message can not be written
there. It will remain in the SMB waiting for the MB to be unlocked, and only then will be
written to the MB. If the MB is not unlocked in time and yet another new message with the
same ID arrives, then the new message overwrites the one on the SMB and there will be no
indication of lost messages either in the Code field of the MB or in the Error and Status
Register.

r. In previous FlexCAN versions, reading the C/S word locked the MB even if it was EMPTY. This behavior will be honored
when the BCC bit is negated.
527/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
While the message is being moved-in from the SMB to the MB, the BUSY bit on the Code
field is asserted. If the CPU reads the Control and Status word and finds out that the BUSY
bit is set, it should defer accessing the MB until the BUSY bit is negated.

Note: If the BUSY bit is asserted or if the MB is empty, then reading the Control and Status word
does not lock the MB.

Deactivation takes precedence over locking. If the CPU deactivates a locked Rx MB, then its
lock status is negated and the MB is marked as invalid for the current matching round. Any
pending message on the SMB will not be transferred anymore to the MB.

22.5.8 Rx FIFO

The receive-only FIFO is enabled by asserting the FEN bit in the MCR. The reset value of
this bit is zero to maintain software backwards compatibility with previous versions of the
module that did not have the FIFO feature. When the FIFO is enabled, the memory region
normally occupied by the first 8 MBs (0x80-0xFF) is now reserved for use of the FIFO
engine (see Section 22.4.3, Rx FIFO structure). Management of read and write pointers is
done internally by the FIFO engine. The CPU can read the received frames sequentially, in
the order they were received, by repeatedly accessing a Message Buffer structure at the
beginning of the memory.

The FIFO can store up to 6 frames pending service by the CPU. An interrupt is sent to the
CPU when new frames are available in the FIFO. Upon receiving the interrupt, the CPU
must read the frame (accessing an MB in the 0x80 address) and then clear the interrupt.
The act of clearing the interrupt triggers the FIFO engine to replace the MB in 0x80 with the
next frame in the queue, and then issue another interrupt to the CPU. If the FIFO is full and
more frames continue to be received, an OVERFLOW interrupt is issued to the CPU and
subsequent frames are not accepted until the CPU creates space in the FIFO by reading
one or more frames. A warning interrupt is also generated when five frames are
accumulated in the FIFO.

A powerful filtering scheme is provided to accept only frames intended for the target
application, thus reducing the interrupt servicing work load. The filtering criteria is specified
by programming a table of eight 32-bit registers that can be configured to one of the
following formats (see also Section 22.4.3, Rx FIFO structure):

● Format A: 8 extended or standard IDs (including IDE and RTR)

● Format B: 16 standard IDs or 16 extended 14-bit ID slices (including IDE and RTR)

● Format C: 32 standard or extended 8-bit ID slices

Note: A chosen format is applied to all eight registers of the filter table. It is not possible to mix
formats within the table.

The eight elements of the filter table are individually affected by the first eight Individual
Mask Registers (RXIMR0 - RXIMR7), allowing very powerful filtering criteria to be defined.
The rest of the RXIMR, starting from RXIM8, continue to affect the regular MBs, starting
from MB8. If the BCC bit is negated (or if the RXIMR are not available for the particular
MCU), then the FIFO filter table is affected by the legacy mask registers as follows: element
6 is affected by RX14MASK, element 7 is affected by RX15MASK and the other elements (0
to 5) are affected by RXGMASK.
Doc ID 16886 Rev 6 528/868

FlexCAN RM0045
22.5.9 CAN Protocol Related Features

Remote Frames

Remote frame is a special kind of frame. The user can program a MB to be a Request
Remote Frame by writing the MB as Transmit with the RTR bit set to ‘1’. After the Remote
Request frame is transmitted successfully, the MB becomes a Receive Message Buffer, with
the same ID as before.

When a Remote Request frame is received by FlexCAN, its ID is compared to the IDs of the
transmit message buffers with the Code field ‘1010’. If there is a matching ID, then this MB
frame will be transmitted. Note that if the matching MB has the RTR bit set, then FlexCAN
will transmit a Remote Frame as a response.

A received Remote Request Frame is not stored in a receive buffer. It is only used to trigger
a transmission of a frame in response. The mask registers are not used in remote frame
matching, and all ID bits (except RTR) of the incoming received frame should match.

In the case that a Remote Request Frame was received and matched an MB, this message
buffer immediately enters the internal arbitration process, but is considered as normal Tx
MB, with no higher priority. The data length of this frame is independent of the DLC field in
the remote frame that initiated its transmission.

If the Rx FIFO is enabled (bit FEN set in MCR), FlexCAN will not generate an automatic
response for Remote Request Frames that match the FIFO filtering criteria. If the remote
frame matches one of the target IDs, it will be stored in the FIFO and presented to the CPU.
Note that for filtering formats A and B, it is possible to select whether remote frames are
accepted or not. For format C, remote frames are always accepted (if they match the ID).

Overload Frames

FlexCAN does transmit overload frames due to detection of following conditions on CAN
bus:

● Detection of a dominant bit in the first/second bit of Intermission

● Detection of a dominant bit at the 7th bit (last) of End of Frame field (Rx frames)

● Detection of a dominant bit at the 8th bit (last) of Error Frame Delimiter or Overload
Frame Delimiter

Time Stamp

The value of the Free Running Timer is sampled at the beginning of the Identifier field on the
CAN bus, and is stored at the end of “move-in” in the TIME STAMP field, providing network
behavior with respect to time.

Note that the Free Running Timer can be reset upon a specific frame reception, enabling
network time synchronization. Refer to TSYN description in Section , Control Register
(CTRL).

Protocol Timing

Figure 287 shows the structure of the clock generation circuitry that feeds the CAN Protocol
Interface (CPI) sub-module. The clock source bit (CLK_SRC) in the CTRL Register defines
whether the internal clock is connected to the output of a crystal oscillator (Oscillator Clock)
or to the Peripheral Clock (generally from a PLL). In order to guarantee reliable operation,
the clock source should be selected while the module is in Disable Mode (bit MDIS set in the
Module Configuration Register).
529/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
Figure 287. CAN Engine Clocking Scheme

The crystal oscillator clock should be selected whenever a tight tolerance (up to 0.1%) is
required in the CAN bus timing. The crystal oscillator clock has better jitter performance
than PLL generated clocks.

Note: This clock selection feature may not be available in all MCUs. A particular MCU may not
have a PLL, in which case it would have only the oscillator clock, or it may use only the PLL
clock feeding the FlexCAN module. In these cases, the CLK_SRC bit in the CTRL Register
has no effect on the module operation.

The FlexCAN module supports a variety of means to setup bit timing parameters that are
required by the CAN protocol. The Control Register has various fields used to control bit
timing parameters: PRESDIV, PROPSEG, PSEG1, PSEG2 and RJW. See Section , Control
Register (CTRL).

The PRESDIV field controls a prescaler that generates the Serial Clock (Sclock), whose
period defines the ‘time quantum’ used to compose the CAN waveform. A time quantum is
the atomic unit of time handled by the CAN engine.

A bit time is subdivided into three segments(s) (reference Figure 288 and Table 271):

● SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are
expected to happen within this section

● Time Segment 1: This segment includes the Propagation Segment and the Phase
Segment 1 of the CAN standard. It can be programmed by setting the PROPSEG and

Peripheral Clock (PLL)

Oscillator Clock (Xtal)
CLK_SRC

Prescaler
(1 .. 256)

SclockCPI Clock

s. For further explanation of the underlying concepts please refer to ISO/DIS 11519–1, Section 10.3. Reference
also the Bosch CAN 2.0A/B protocol specification dated September 1991 for bit timing.

fTq

fCANCLK
Prescaler ValueÞ 

--=
Doc ID 16886 Rev 6 530/868

FlexCAN RM0045
the PSEG1 fields of the CTRL Register so that their sum (plus 2) is in the range of 4 to
16 time quanta

● Time Segment 2: This segment represents the Phase Segment 2 of the CAN standard.
It can be programmed by setting the PSEG2 field of the CTRL Register (plus 1) to be 2
to 8 time quanta long

Figure 288. Segments within the Bit Time

Table 272 gives an overview of the CAN compliant segment settings and the related
parameter values.

Bit Rate
fTq

number of Time QuantaÞ Þ Þ 
---=Þ

SYNC_SEG Time Segment 1 Time Segment 2

1 4 ... 16 2 ... 8

8 ... 25 Time Quanta
= 1 Bit Time

NRZ Signal

Sample Point
(single or triple sampling)

 (PROP_SEG + PSEG1 + 2) (PSEG2 + 1)

Transmit Point

Table 271. Time Segment Syntax

Syntax Description

SYNC_SEG System expects transitions to occur on the bus during this period.

Transmit Point A node in transmit mode transfers a new value to the CAN bus at this point.

Sample Point
A node samples the bus at this point. If the three samples per bit option is
selected, then this point marks the position of the third sample.

Table 272. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization

Jump Width

5–10 2 1–2

4–11 3 1–3
531/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
Note: It is the user’s responsibility to ensure the bit time settings are in compliance with the CAN
standard. For bit time calculations, use an IPT (Information Processing Time) of 2, which is
the value implemented in the FlexCAN module.

Arbitration and Matching Timing

During normal transmission or reception of frames, the arbitration, matching, move-in and
move-out processes are executed during certain time windows inside the CAN frame, as
shown in Figure 289.

Figure 289. Arbitration, Match and Move Time Windows

When doing matching and arbitration, FlexCAN needs to scan the whole Message Buffer
memory during the available time slot. In order to have sufficient time to do that, the
following requirements must be observed:

● A valid CAN bit timing must be programmed, as indicated in Table 272

● The peripheral clock frequency can not be smaller than the oscillator clock frequency,
i.e., the PLL can not be programmed to divide down the oscillator clock

● There must be a minimum ratio between the peripheral clock frequency and the CAN
bit rate, as specified in Table 273

5–12 4 1–4

6–13 5 1–4

7–14 6 1–4

8–15 7 1–4

9–16 8 1–4

Table 272. CAN Standard Compliant Bit Time Segment Settings

Time Segment 1 Time Segment 2
 Re-synchronization

Jump Width

CRC (15) EOF (7) Interm

Start Move

Matching/Arbitration Window (24 bits)
Move

(bit 6)

Window

Table 273. Minimum Ratio Between Peripheral Clock Frequency and CAN Bit Rate

Number of Message Buffers Minimum Ratio

16 8

32 8

64 16
Doc ID 16886 Rev 6 532/868

FlexCAN RM0045
A direct consequence of the first requirement is that the minimum number of time quanta per
CAN bit must be 8, so the oscillator clock frequency should be at least 8 times the CAN bit
rate. The minimum frequency ratio specified in Table 273 can be achieved by choosing a
high enough peripheral clock frequency when compared to the oscillator clock frequency, or
by adjusting one or more of the bit timing parameters (PRESDIV, PROPSEG, PSEG1,
PSEG2). As an example, taking the case of 64 MBs, if the oscillator and peripheral clock
frequencies are equal and the CAN bit timing is programmed to have 8 time quanta per bit,
then the prescaler factor (PRESDIV + 1) should be at least 2. For prescaler factor equal to
one and CAN bit timing with 8 time quanta per bit, the ratio between peripheral and oscillator
clock frequencies should be at least 2.

22.5.10 Modes of operation details

Freeze mode

This mode is entered by asserting the HALT bit in the MCR Register or when the MCU is put
into Debug Mode. In both cases it is also necessary that the FRZ bit is asserted in the MCR
Register and the module is not in a low-power mode (Disable mode). When Freeze Mode is
requested during transmission or reception, FlexCAN does the following:

● Waits to be in either Intermission, Passive Error, Bus Off or Idle state

● Waits for all internal activities like arbitration, matching, move-in and move-out to finish

● Ignores the Rx input pin and drives the Tx pin as recessive

● Stops the prescaler, thus halting all CAN protocol activities

● Grants write access to the Error Counters Register, which is read-only in other modes

● Sets the NOT_RDY and FRZ_ACK bits in MCR

After requesting Freeze Mode, the user must wait for the FRZ_ACK bit to be asserted in
MCR before executing any other action, otherwise FlexCAN may operate in an
unpredictable way. In Freeze mode, all memory mapped registers are accessible.

Exiting Freeze Mode is done in one of the following ways:

● CPU negates the FRZ bit in the MCR Register

● The MCU is removed from Debug Mode and/or the HALT bit is negated

Once out of Freeze Mode, FlexCAN tries to resynchronize to the CAN bus by waiting for 11
consecutive recessive bits.

Module Disable mode

This low power mode is entered when the MCR[MDIS] bit is asserted. If the module is
disabled during Freeze Mode, it requests to disable the clocks to the CAN Protocol Interface
(CPI) and Message Buffer Management (MBM) sub-modules, sets the LPM_ACK bit and
negates the FRZ_ACK bit. If the module is disabled during transmission or reception,
FlexCAN does the following:

● Waits to be in either Idle or Bus Off state, or else waits for the third bit of Intermission
and then checks it to be recessive

● Waits for all internal activities like arbitration, matching, move-in and move-out to finish

● Ignores its Rx input pin and drives its Tx pin as recessive

● Shuts down the clocks to the CPI and MBM sub-modules

● Sets the NOT_RDY and LPM_ACK bits in MCR
533/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
The Bus Interface Unit continues to operate, enabling the CPU to access memory mapped
registers, except the Free Running Timer, the Error Counter Register and the Message
Buffers, which cannot be accessed when the module is in Disable Mode. Exiting from this
mode is done by negating the MDIS bit, which will resume the clocks and negate the
LPM_ACK bit.

22.5.11 Interrupts

The module can generate up to 70 interrupt sources (64 interrupts due to message buffers
and 6 interrupts due to Ored interrupts from MBs, Bus Off, Error, Tx Warning, Rx Warning
and Wake Up). The number of actual sources depends on the configured number of
Message Buffers.

Each one of the message buffers can be an interrupt source, if its corresponding IMASK bit
is set. There is no distinction between Tx and Rx interrupts for a particular buffer, under the
assumption that the buffer is initialized for either transmission or reception. Each of the
buffers has assigned a flag bit in the IFLAG Registers. The bit is set when the corresponding
buffer completes a successful transmission/reception and is cleared when the CPU writes it
to ‘1’ (unless another interrupt is generated at the same time).

Note: It must be guaranteed that the CPU only clears the bit causing the current interrupt. For this
reason, bit manipulation instructions (BSET) must not be used to clear interrupt flags. These
instructions may cause accidental clearing of interrupt flags which are set after entering the
current interrupt service routine.

If the Rx FIFO is enabled (bit FEN on MCR set), the interrupts corresponding to MBs 0 to 7
have a different behavior. Bit 7 of the IFLAG1 becomes the “FIFO Overflow” flag; bit 6
becomes the FIFO Warning flag, bit 5 becomes the “Frames Available in FIFO flag” and bits
4-0 are unused. See Section , Interrupt Flags 1 Register (IFLAG1) for more information.

A combined interrupt for all MBs is also generated by an Or of all the interrupt sources from
MBs. This interrupt gets generated when any of the MBs generates an interrupt. In this case
the CPU must read the IFLAG Registers to determine which MB caused the interrupt.

The other 5 interrupt sources (Bus Off, Error, Tx Warning, Rx Warning and Wake Up)
generate interrupts like the MB ones, and can be read from the Error and Status Register.
The Bus Off, Error, Tx Warning and Rx Warning interrupt mask bits are located in the
Control Register, and the Wake-Up interrupt mask bit is located in the MCR.

22.5.12 Bus interface

The CPU access to FlexCAN registers are subject to the following rules:

● Read and write access to supervisor registers in User Mode results in access error.

● Read and write access to unimplemented or reserved address space also results in
access error. Any access to unimplemented MB or Rx Individual Mask Register
locations results in access error. Any access to the Rx Individual Mask Register space
when the BCC bit in MCR is negated results in access error.

● If MAXMB is programmed with a value smaller than the available number of MBs, then
the unused memory space can be used as general purpose RAM space. Note that the
Rx Individual Mask Registers can only be accessed in Freeze Mode, and this is still
true for unused space within this memory. Note also that reserved words within RAM
cannot be used. As an example, suppose FlexCAN is configured with 64 MBs and
MAXMB is programmed with zero. The maximum number of MBs in this case becomes
one. The MB memory starts at 0x0060, but the space from 0x0060 to 0x007F is
Doc ID 16886 Rev 6 534/868

FlexCAN RM0045
reserved (for SMB usage), and the space from 0x0080 to 0x008F is used by the one
MB. This leaves us with the available space from 0x0090 to 0x047F. The available
memory in the Mask Registers space would be from 0x0884 to 0x097F.

Note: Unused MB space must not be used as general purpose RAM while FlexCAN is transmitting
and receiving CAN frames.

22.6 Initialization/application information
This section provide instructions for initializing the FlexCAN module.

22.6.1 FlexCAN initialization sequence

The FlexCAN module may be reset in three ways:

● MCU level hard reset, which resets all memory mapped registers asynchronously

● MCU level soft reset, which resets some of the memory mapped registers
synchronously (refer to Table 253 to see what registers are affected by soft reset)

● SOFT_RST bit in MCR, which has the same effect as the MCU level soft reset

Soft reset is synchronous and has to follow an internal request/acknowledge procedure
across clock domains. Therefore, it may take some time to fully propagate its effects. The
SOFT_RST bit remains asserted while soft reset is pending, so software can poll this bit to
know when the reset has completed. Also, soft reset can not be applied while clocks are
shut down in any of the low power modes. The low power mode should be exited and the
clocks resumed before applying soft reset.

The clock source (CLK_SRC bit) should be selected while the module is in Disable Mode.
After the clock source is selected and the module is enabled (MDIS bit negated), FlexCAN
automatically goes to Freeze Mode. In Freeze Mode, FlexCAN is un-synchronized to the
CAN bus, the HALT and FRZ bits in MCR Register are set, the internal state machines are
disabled and the FRZ_ACK and NOT_RDY bits in the MCR Register are set. The Tx pin is in
recessive state and FlexCAN does not initiate any transmission or reception of CAN frames.
Note that the Message Buffers and the Rx Individual Mask Registers are not affected by
reset, so they are not automatically initialized.
535/868 Doc ID 16886 Rev 6

RM0045 FlexCAN
For any configuration change/initialization it is required that FlexCAN is put into Freeze
Mode (see Section , Freeze mode). The following is a generic initialization sequence
applicable to the FlexCAN module:

● Initialize the Module Configuration Register

– Enable the individual filtering per MB and reception queue features by setting the
BCC bit

– Enable the warning interrupts by setting the WRN_EN bit

– If required, disable frame self reception by setting the SRX_DIS bit

– Enable the FIFO by setting the FEN bit

– Enable the abort mechanism by setting the AEN bit

– Enable the local priority feature by setting the LPRIO_EN bit

● Initialize the Control Register

– Determine the bit timing parameters: PROPSEG, PSEG1, PSEG2, RJW

– Determine the bit rate by programming the PRESDIV field

– Determine the internal arbitration mode (LBUF bit)

● Initialize the Message Buffers

– The Control and Status word of all Message Buffers must be initialized

– If FIFO was enabled, the 8-entry ID table must be initialized

– Other entries in each Message Buffer should be initialized as required

● Initialize the Rx Individual Mask Registers

● Set required interrupt mask bits in the IMASK Registers (for all MB interrupts), in CTRL
Register (for Bus Off and Error interrupts) and in MCR Register for Wake-Up interrupt

● Negate the HALT bit in MCR

Starting with the last event, FlexCAN attempts to synchronize to the CAN bus.

22.6.2 FlexCAN Addressing and RAM size configurations

There are three RAM configurations that can be implemented within the FlexCAN module.
The possible configurations are:

● For 16 MBs: 288 bytes for MB memory and 64 bytes for Individual Mask Registers

● For 32 MBs: 544 bytes for MB memory and 128 bytes for Individual Mask Registers

● For 64 MBs: 1056 bytes for MB memory and 256 bytes for Individual Mask Registers

In each configuration the user can program the maximum number of MBs that will take part
in the matching and arbitration processes using the MAXMB field in the MCR Register. For
16 MB configuration, MAXMB can be any number between 0–15. For 32 MB configuration,
MAXMB can be any number between 0–31. For 64 MB configuration, MAXMB can be any
number between 0–63.
Doc ID 16886 Rev 6 536/868

Deserial Serial Peripheral Interface (DSPI) RM0045
23 Deserial Serial Peripheral Interface (DSPI)

23.1 Introduction
This chapter describes the Deserial Serial Peripheral Interface (DSPI), which provides a
synchronous serial bus for communication between the MCU and an external peripheral
device.

The SPC560D30/40 has two identical DSPI modules (DSPI_0 and DSPI_1). The “x”
appended to signal names signifies the module to which the signal applies. Thus CS0_x
specifies that the CS0 signal applies to DSPI module 0 and 1.

A block diagram of the DSPI is shown in Figure 290.

Figure 290. DSPI block diagram

The register content is transmitted using an SPI protocol.

CMD

DMA and interrupt control

TX FIFO RX FIFO

TX data RX data

16

16

Shift register SOUT_x

SPI

SPI baud rate,
delay and transfer

control

SIN_x

SCK_x

CS0_x

CS1:4_x

CS5_x

INTCeDMA

4

537/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
For queued operations the SPI queues reside in internal SRAM which is external to the
DSPI. Data transfers between the queues and the DSPI FIFOs are accomplished through
the use of the eDMA controller or through host software.

Figure 291 shows a DSPI with external queues in internal SRAM.

Figure 291. DSPI with queues and eDMA

23.2 Features
The DSPI supports these SPI features:

● Full-duplex, three-wire synchronous transfers

● Master and slave mode

● Buffered transmit and receive operation using the TX and RX FIFOs, with depths of four
entries

● Visibility into TX and RX FIFOs for ease of debugging

● FIFO bypass mode for low-latency updates to SPI queues

● Programmable transfer attributes on a per-frame basis

– 6 clock and transfer attribute registers

– Serial clock with programmable polarity and phase

– Programmable delays

CS to SCK delay

SCK to CS delay

Delay between frames

– Programmable serial frame size of 4 to 16 bits, expandable with software control

– Continuously held chip select capability

Internal SRAM

TX queue

RX queue

Address/control

TX FIFO

DSPI

RX FIFO

RX data

TX data

TX data RX data

Shift register

eDMA controller Address/control
or host CPU
Doc ID 16886 Rev 6 538/868

Deserial Serial Peripheral Interface (DSPI) RM0045
● Up to 6 peripheral chip selects, expandable to 64 with external demultiplexer

● Deglitching support for up to 32 peripheral chip selects with external demultiplexer

● Two DMA conditions for SPI queues residing in RAM or flash

– TX FIFO is not full (TFFF)

– RX FIFO is not empty (RFDF)

● 6 interrupt conditions:

End of queue reached (EOQF)

TX FIFO is not full (TFFF)

Transfer of current frame complete (TCF)

RX FIFO is not empty (RFDF)

FIFO overrun (attempt to transmit with an empty TX FIFO or serial frame received
while RX FIFO is full) (RFOF) or (TFUF)

● Modified SPI transfer formats for communication with slower peripheral devices

● Continuous serial communications clock (SCK)

23.3 Modes of operation
The DSPI has five modes of operation. These modes can be divided into two categories:

● Module-specific: Master, Slave, and Module Disable modes

● MCU-specific: External Stop and Debug modes

The module-specific modes are entered by host software writing to a register. The MCU-
specific modes are controlled by signals external to the DSPI. An MCU-specific mode is a
mode that the entire device may enter, in parallel to the DSPI being in one of its module-
specific modes.

23.3.1 Master mode

Master mode allows the DSPI to initiate and control serial communication. In this mode the
SCK, CSn and SOUT signals are controlled by the DSPI and configured as outputs.

For more information, see Section , Master mode.

23.3.2 Slave mode

Slave mode allows the DSPI to communicate with SPI bus masters. In this mode the DSPI
responds to externally controlled serial transfers. The DSPI cannot initiate serial transfers in
slave mode. In slave mode, the SCK signal and the CS0_x signal are configured as inputs
and provided by a bus master. CS0_x must be configured as input and pulled high. If the
internal pullup is being used then the appropriate bits in the relevant SIU_PCR must be set
(SIU_PCR [WPE = 1], [WPS = 1]).

For more information, see Section , Slave mode.

23.3.3 Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-
memory mapped logic in the DSPI is stopped while in module disable mode. The DSPI
enters the module disable mode when the MDIS bit in DSPIx_MCR is set.
539/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
For more information, see Section , Module Disable mode.

23.3.4 External Stop mode

23.3.5 Debug mode

Debug mode is used for system development and debugging. If the device enters debug
mode while the FRZ bit in the DSPIx_MCR is set, the DSPI halts operation on the next
frame boundary. If the device enters debug mode while the FRZ bit is cleared, the DSPI
behavior is unaffected and remains dictated by the module-specific mode and configuration
of the DSPI.

For more information, see Section , Debug mode.

23.4 External signal description

23.4.1 Signal overview

Table 274 lists off-chip DSPI signals.

23.4.2 Signal names and descriptions

Peripheral Chip Select / Slave Select (CS0_x)

In master mode, the CS0_x signal is a peripheral chip select output that selects the slave
device to which the current transmission is intended.

In slave mode, the CS0_x signal is a slave select input signal that allows an SPI master to
select the DSPI as the target for transmission. CS0_x must be configured as input and
pulled high. If the internal pullup is being used then the appropriate bits in the relevant
SIU_PCR must be set (SIU_PCR [WPE = 1], [WPS = 1]).

Set the IBE and OBE bits in the SIU_PCR for all CS0_x pins when the DSPI chip select or
slave select primary function is selected for that pin. When the pin is used for DSPI master

Table 274. Signal properties

Name I/O type
Function

Master mode Slave mode

CS0_x Output / input Peripheral chip select 0 Slave select

CS1:3_x Output Peripheral chip select 1–3 Unused(1)

1. The SIUL allows you to select alternate pin functions for the device.

CS4_x Output Peripheral chip select 4 Master trigger

CS5_x Output
Peripheral chip select 5 /
Peripheral chip select strobe

Unused(1)

SIN_x Input Serial data in Serial data in

SOUT_x Output Serial data out Serial data out

SCK_x Output / input Serial clock (output) Serial clock (input)
Doc ID 16886 Rev 6 540/868

Deserial Serial Peripheral Interface (DSPI) RM0045
mode as a chip select output, set the OBE bit. When the pin is used in DSPI slave mode as
a slave select input, set the IBE bit.

Peripheral Chip Selects 1–3 (CS1:3_x)

CS1:3_x are peripheral chip select output signals in master mode. In slave mode these
signals are not used.

Peripheral Chip Select 4 (CS4_x)

CS4_x is a peripheral chip select output signal in master mode.

Peripheral Chip Select 5 / Peripheral Chip Select Strobe
(CS5_x)

CS5_x is a peripheral chip select output signal. When the DSPI is in master mode and
PCSSE bit in the DSPIx_MCR is cleared, the CS5_x signal is used to select the slave
device that receives the current transfer.

CS5_x is a strobe signal used by external logic for deglitching of the CS signals. When the
DSPI is in master mode and the PCSSE bit in the DSPIx_MCR is set, the CS5_x signal
indicates the timing to decode CS0:4_x signals, which prevents glitches from occurring.

CS5_x is not used in slave mode.

Serial Input (SIN_x)

SIN_x is a serial data input signal.

Serial Output (SOUT_x)

SOUT_x is a serial data output signal.

Serial Clock (SCK_x)

SCK_x is a serial communication clock signal. In master mode, the DSPI generates the
SCK. In slave mode, SCK_x is an input from an external bus master.

23.5 Memory map and register description

23.5.1 Memory map

Table 275 shows the DSPI memory map.

Table 275. DSPI memory map

Base addresses:

0xFFF9_0000 (DSPI_0)

0xFFF9_4000 (DSPI_1)

Address offset Register Location

0x00 DSPI Module Configuration Register (DSPIx_MCR) on page 23-542

0x04 Reserved

0x08 DSPI Transfer Count Register (DSPIx_TCR) on page 23-545
541/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
23.5.2 DSPI Module Configuration Register (DSPIx_MCR)

The DSPIx_MCR contains bits which configure attributes of the DSPI operation. The values
of the HALT and MDIS bits can be changed at any time, but their effect begins on the next
frame boundary. The HALT and MDIS bits in the DSPIx_MCR are the only bit values
software can change while the DSPI is running.

0x0C DSPI Clock and Transfer Attributes Register 0 (DSPIx_CTAR0) on page 23-546

0x10 DSPI Clock and Transfer Attributes Register 1 (DSPIx_CTAR1) on page 23-546

0x14–0x28 Reserved

0x2C DSPI Status Register (DSPIx_SR) on page 23-554

0x30
DSPI DMA / Interrupt Request Select and Enable Register
(DSPIx_RSER)

on page 23-556

0x34 DSPI Push TX FIFO Register (DSPIx_PUSHR) on page 23-558

0x38 DSPI Pop RX FIFO Register (DSPIx_POPR) on page 23-560

0x3C DSPI Transmit FIFO Register 0 (DSPIx_TXFR0) on page 23-561

0x40 DSPI Transmit FIFO Register 1 (DSPIx_TXFR1) on page 23-561

0x44 DSPI Transmit FIFO Register 2 (DSPIx_TXFR2) on page 23-561

0x48 DSPI Transmit FIFO Register 3 (DSPIx_TXFR3) on page 23-561

0x4C–0x78 Reserved

0x7C DSPI Receive FIFO Register 0 (DSPIx_RXFR0) on page 23-561

0x80 DSPI Receive FIFO Register 1 (DSPIx_RXFR1) on page 23-561

0x84 DSPI Receive FIFO Register 2 (DSPIx_RXFR2) on page 23-561

0x88 DSPI Receive FIFO Register 3 (DSPIx_RXFR3) on page 23-561

Table 275. DSPI memory map (continued)

Base addresses:

0xFFF9_0000 (DSPI_0)

0xFFF9_4000 (DSPI_1)

Address offset Register Location
Doc ID 16886 Rev 6 542/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Figure 292. DSPI Module Configuration Register (DSPIx_MCR)

Offset: 0x00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
S

T
R

C
O

N
T

_S
C

K
E

DCONF FRZ

M
T

F
E

P
C

S
S

E

R
O

O
E

0 0

P
C

S
IS

5

P
C

S
IS

4

P
C

S
IS

3

P
C

S
IS

2

P
C

S
IS

1

P
C

S
IS

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

MDIS

D
IS

_T
X

F

D
IS

_R
X

F

0 0

SMPL_PT

0 0 0 0 0 0 0

HALT
W

C
LR

_T
X

F

C
LR

_R
X

F

Reset 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 276. DSPIx_MCR field descriptions

Field Description

MSTR

Master/slave mode select
Configures the DSPI for master mode or slave mode.

0 DSPI is in slave mode
1 DSPI is in master mode

CONT_SCK
E

Continuous SCK enable

Enables the serial communication clock (SCK) to run continuously. See Section 23.6.6, Continuous
serial communications clock, for details.

0 Continuous SCK disabled
Note: 1Continuous SCK enabled

DCONF

DSPI configuration

The following table lists the DCONF values for the various configurations.

DCONF Configuration

00 SPI

01 Invalid value

10 Invalid value

11 Invalid value
543/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
FRZ

Freeze

Enables the DSPI transfers to be stopped on the next frame boundary when the device enters
debug mode.

0 Do not halt serial transfers
1 Halt serial transfers

MTFE

Modified timing format enable

Enables a modified transfer format to be used. See Section , Modified SPI transfer format (MTFE =
1, CPHA = 1), for more information.

0 Modified SPI transfer format disabled
1 Modified SPI transfer format enabled

PCSSE

Peripheral chip select strobe enable

Enables the CS5_x to operate as a CS strobe output signal.
See Section , Peripheral chip select strobe enable (CS5_x), for more information.

0 CS5_x is used as the Peripheral chip select 5 signal
1 CS5_x as an active-low CS strobe signal

ROOE

Receive FIFO overflow overwrite enable

Enables an RX FIFO overflow condition to ignore the incoming serial data or to overwrite existing
data. If the RX FIFO is full and new data is received, the data from the transfer that generated the
overflow is ignored or put in the shift register.

If the ROOE bit is set, the incoming data is put in the shift register. If the ROOE bit is cleared, the
incoming data is ignored. See Section , Receive FIFO Overflow Interrupt Request (RFOF), for more
information.

0 Incoming data is ignored
1 Incoming data is put in the shift register

PCSISn

Peripheral chip select inactive state
Determines the inactive state of the CS0_x signal. CS0_x must be configured as inactive high for
slave mode operation.

0 The inactive state of CS0_x is low
1 The inactive state of CS0_x is high

MDIS

Module disable

Allows the clock to stop to the non-memory mapped logic in the DSPI, effectively putting the DSPI in
a software controlled power-saving state. See Section 23.6.8, Power saving features for more
information.

0 Enable DSPI clocks
1 Allow external logic to disable DSPI clocks

Table 276. DSPIx_MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 544/868

Deserial Serial Peripheral Interface (DSPI) RM0045
23.5.3 DSPI Transfer Count Register (DSPIx_TCR)

The DSPIx_TCR contains a counter that indicates the number of SPI transfers made. The
transfer counter is intended to assist in queue management. The user must not write to the
DSPIx_TCR while the DSPI is running.

DIS_TXF

Disable transmit FIFO

Enables and disables the TX FIFO. When the TX FIFO is disabled, the transmit part of the DSPI
operates as a simplified double-buffered SPI. See Section , FIFO disable operation for details.

0TX FIFO is enabled

1TX FIFO is disabled

DIS_RXF

Disable receive FIFO

Enables and disables the RX FIFO. When the RX FIFO is disabled, the receive part of the DSPI
operates as a simplified double-buffered SPI. See Section , FIFO disable operation for details.

0 RX FIFO is enabled
1 RX FIFO is disabled

CLR_TXF

Clear TX FIFO. CLR_TXF is used to flush the TX FIFO. Writing a ‘1’ to CLR_TXF clears the TX
FIFO Counter. The CLR_TXF bit is always read as zero.

0 Do not clear the TX FIFO Counter
1 Clear the TX FIFO Counter

CLR_RXF

Clear RX FIFO. CLR_RXF is used to flush the RX FIFO. Writing a ‘1’ to CLR_RXF clears the RX
Counter. The CLR_RXF bit is always read as zero.
0 Do not clear the RX FIFO Counter
1 Clear the RX FIFO Counter

SMPL_PT

Sample point

Allows the host software to select when the DSPI master samples SIN in modified transfer format.
Figure 307 shows where the master can sample the SIN pin. The following table lists the delayed
sample points.

HALT

Halt

Provides a mechanism for software to start and stop DSPI transfers. See Section 23.6.2, Start and
stop of DSPI transfers, for details on the operation of this bit.

0 Start transfers
1 Stop transfers

Table 276. DSPIx_MCR field descriptions (continued)

Field Description

SMPL_PT
Number of system clock cycles between

odd-numbered edge of SCK_x and sampling of SIN_x

00 0

01 1

10 2

11 Reserved
545/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

The DSPI modules each contain six clock and transfer attribute registers (DSPIx_CTARn)
which are used to define different transfer attribute configurations. Each DSPIx_CTAR
controls:

● Frame size

● Baud rate and transfer delay values

● Clock phase

● Clock polarity

● MSB or LSB first

DSPIx_CTARs support compatibility with the QSPI module in the SPC560D30/40 family of
MCUs. At the initiation of an SPI transfer, control logic selects the DSPIx_CTAR that
contains the transfer’s attributes. Do not write to the DSPIx_CTARs while the DSPI is
running.

In master mode, the DSPIx_CTARn registers define combinations of transfer attributes such
as frame size, clock phase and polarity, data bit ordering, baud rate, and various delays. In
slave mode, a subset of the bit fields in the DSPIx_CTAR0 and DSPIx_CTAR1 registers are
used to set the slave transfer attributes. See the individual bit descriptions for details on
which bits are used in slave modes.

When the DSPI is configured as an SPI master, the CTAS field in the command portion of
the TX FIFO entry selects which of the DSPIx_CTAR registers is used on a per-frame basis.
When the DSPI is configured as an SPI bus slave, the DSPIx_CTAR0 register is used.

Figure 293. DSPI Transfer Count Register (DSPIx_TCR)

Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SPI_TCNT

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 277. DSPIx_TCR field descriptions

Field Description

SPI_TCN
T

SPI transfer counter

Counts the number of SPI transfers the DSPI makes. The SPI_TCNT field is incremented every time
the last bit of an SPI frame is transmitted. A value written to SPI_TCNT presets the counter to that
value. SPI_TCNT is reset to zero at the beginning of the frame when the CTCNT field is set in the
executing SPI command. The transfer counter ‘wraps around,’ incrementing the counter past 65535
resets the counter to zero.
Doc ID 16886 Rev 6 546/868

Deserial Serial Peripheral Interface (DSPI) RM0045
 .

Figure 294. DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)

Offsets: 0x0C–0x20 (6 registers) Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DBR FMSZ

C
P

O
L

C
P

H
A

LS
B

F
E

PCSSCK PASC PDT PBR
W

Reset 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CSSCK ASC DT BR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 278. DSPIx_CTARn field descriptions

Field Descriptions

DBR

Double Baud Rate

The DBR bit doubles the effective baud rate of the Serial Communications Clock (SCK). This field is
only used in Master Mode. It effectively halves the Baud Rate division ratio supporting faster
frequencies and odd division ratios for the Serial Communications Clock (SCK). When the DBR bit is
set, the duty cycle of the Serial Communications Clock (SCK) depends on the value in the Baud Rate
Prescaler and the Clock Phase bit as listed in Table 285. See the BR[0:3] field description for details on
how to compute the baud rate. If the overall baud rate is divide by two or divide by three of the system
clock then neither the Continuous SCK Enable or the Modified Timing Format Enable bits should be
set.

0 The baud rate is computed normally with a 50/50 duty cycle
1 The baud rate is doubled with the duty cycle depending on the Baud Rate Prescaler

FMSZ
Frame Size
The FMSZ field selects the number of bits transferred per frame. The FMSZ field is used in Master
Mode and Slave Mode. Table 286 lists the frame size encodings.

CPOL

Clock Polarity

The CPOL bit selects the inactive state of the Serial Communications Clock (SCK). This bit is used in
both Master and Slave Mode. For successful communication between serial devices, the devices must
have identical clock polarities. When the Continuous Selection Format is selected, switching between
clock polarities without stopping the DSPI can cause errors in the transfer due to the peripheral device
interpreting the switch of clock polarity as a valid clock edge.

0 The inactive state value of SCK is low
1 The inactive state value of SCK is high

CPHA

Clock Phase
The CPHA bit selects which edge of SCK causes data to change and which edge causes data to be

captured. This bit is used in both Master and Slave Mode. For successful communication between
serial devices, the devices must have identical clock phase settings. Continuous SCK is only
supported for CPHA = 1.

0 Data is captured on the leading edge of SCK and changed on the following edge
1 Data is changed on the leading edge of SCK and captured on the following edge
547/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
LSBFE

LSB First

The LSBFE bit selects if the LSB or MSB of the frame is transferred first. This bit is only used in Master
Mode.

0 Data is transferred MSB first
1 Data is transferred LSB first

PCSSCK

PCS to SCK Delay Prescaler

The PCSSCK field selects the prescaler value for the delay between assertion of PCS and the first
edge of the SCK. This field is only used in Master Mode. The table below lists the prescaler values. See
the CSSCK field description for details on how to compute the PCS to SCK delay.

PASC

After SCK Delay Prescaler

The PASC field selects the prescaler value for the delay between the last edge of SCK and the negation
of PCS. This field is only used in Master Mode. The table below lists the prescaler values. See the
ASC[0:3] field description for details on how to compute the After SCK delay.

PDT

Delay after Transfer Prescaler

The PDT field selects the prescaler value for the delay between the negation of the PCS signal at the
end of a frame and the assertion of PCS at the beginning of the next frame. The PDT field is only used
in Master Mode. The table below lists the prescaler values. See the DT[0:3] field description for details
on how to compute the delay after transfer.

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PCSSCK PCS to SCK delay prescaler value

00 1

01 3

10 5

11 7

PASC After SCK delay prescaler value

00 1

01 3

10 5

11 7

PDT Delay after transfer prescaler value

00 1

01 3

10 5

11 7
Doc ID 16886 Rev 6 548/868

Deserial Serial Peripheral Interface (DSPI) RM0045
PBR

Baud Rate Prescaler

The PBR field selects the prescaler value for the baud rate. This field is only used in Master Mode. The
Baud Rate is the frequency of the Serial Communications Clock (SCK). The system clock is divided by
the prescaler value before the baud rate selection takes place. The Baud Rate Prescaler values are
listed in the table below. See the BR[0:3] field description for details on how to compute the baud rate.

CSSCK

PCS to SCK Delay Scaler
The CSSCK field selects the scaler value for the PCS to SCK delay. This field is only used in Master
Mode. The PCS to SCK Delay is the delay between the assertion of PCS and the first edge of the SCK.
Table 287 list the scaler values.The PCS to SCK Delay is a multiple of the system clock period and it is
computed according to the following equation:

Equation 3

See Section , CS to SCK delay (tCSC),” for more details.

ASC

After SCK Delay Scaler

The ASC field selects the scaler value for the After SCK Delay. This field is only used in Master Mode.
The After SCK Delay is the delay between the last edge of SCK and the negation of PCS. Table 288
lists the scaler values.The After SCK Delay is a multiple of the system clock period, and it is computed
according to the following equation:

Equation 4

See Section , After SCK delay (tASC) for more details.

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

PBR Baud rate prescaler value

00 2

01 3

10 5

11 7

tCSC
1

fSYS
----------- PCSSCK CSSCK=

tASC
1

fSYS
----------- PASC ASC=
549/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

DT

Delay after Transfer Scaler

The DT field selects the Delay after Transfer Scaler. This field is only used in Master Mode. The Delay
after Transfer is the time between the negation of the PCS signal at the end of a frame and the
assertion of PCS at the beginning of the next frame. Table 289 lists the scaler values. In the Continuous
Serial Communications Clock operation the DT value is fixed to one TSCK. The Delay after Transfer is
a multiple of the system clock period and it is computed according to the following equation:

Equation 5

See Section , Delay after transfer (tDT) for more details.

BR

Baud Rate Scaler
The BR field selects the scaler value for the baud rate. This field is only used in Master Mode. The
prescaled system clock is divided by the Baud Rate Scaler to generate the frequency of the SCK.
Table 290 lists the Baud Rate Scaler values.The baud rate is computed according to the following
equation:

Equation 6

See Section , CS to SCK delay (tCSC) for more details.

Table 279. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 280. DSPI transfer frame size

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

0100 5 1100 13

0101 6 1101 14

Table 278. DSPIx_CTARn field descriptions (continued)

Field Descriptions

tDT
1

fSYS
----------- PDT DT=

SCK baud rate
fSYS

PBR

1 DBR+
BR

-----------------------=
Doc ID 16886 Rev 6 550/868

Deserial Serial Peripheral Interface (DSPI) RM0045

0110 7 1110 15

0111 8 1111 16

Table 281. DSPI PCS to SCK delay scaler

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 282. DSPI After SCK delay scaler

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 283. DSPI delay after transfer scaler

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

Table 280. DSPI transfer frame size (continued)

FMSZ Frame size FMSZ Frame size
551/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

0110 128 1110 32768

0111 256 1111 65536

Table 284. DSPI baud rate scaler

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 285. DSPI SCK duty cycle

DBR CPHA PBR SCK duty cycle

0 any any 50/50

1 0 00 50/50

1 0 01 33/66

1 0 10 40/60

1 0 11 43/57

1 1 00 50/50

1 1 01 66/33

1 1 10 60/40

1 1 11 57/43

Table 286. DSPI transfer frame size

FMSZ Frame size FMSZ Frame size

0000 Reserved 1000 9

0001 Reserved 1001 10

0010 Reserved 1010 11

0011 4 1011 12

Table 283. DSPI delay after transfer scaler (continued)

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value
Doc ID 16886 Rev 6 552/868

Deserial Serial Peripheral Interface (DSPI) RM0045

0100 5 1100 13

0101 6 1101 14

0110 7 1110 15

0111 8 1111 16

Table 287. DSPI PCS to SCK delay scaler

CSSCK PCS to SCK delay scaler value CSSCK PCS to SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 288. DSPI After SCK delay scaler

ASC After SCK delay scaler value ASC After SCK delay scaler value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 289. DSPI delay after transfer scaler

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

0000 2 1000 512

0001 4 1001 1024

0010 8 1010 2048

0011 16 1011 4096

0100 32 1100 8192

Table 286. DSPI transfer frame size (continued)

FMSZ Frame size FMSZ Frame size
553/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

23.5.5 DSPI Status Register (DSPIx_SR)

The DSPIx_SR contains status and flag bits. The bits are set by the hardware and reflect the
status of the DSPI and indicate the occurrence of events that can generate interrupt or DMA
requests. Software can clear flag bits in the DSPIx_SR by writing a ‘1’ to clear it (w1c).
Writing a ‘0’ to a flag bit has no effect. This register may not be writable in Module Disable
mode due to the use of power saving mechanisms.

0101 64 1101 16384

0110 128 1110 32768

0111 256 1111 65536

Table 290. DSPI baud rate scaler

BR Baud rate scaler value BR Baud rate scaler value

0000 2 1000 256

0001 4 1001 512

0010 6 1010 1024

0011 8 1011 2048

0100 16 1100 4096

0101 32 1101 8192

0110 64 1110 16384

0111 128 1111 32768

Table 289. DSPI delay after transfer scaler (continued) (continued)

DT
Delay after transfer scaler

value
DT

Delay after transfer scaler
value

Figure 295. DSPI Status Register (DSPIx_SR)

Offset: 0x2C Access: R/W

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TCF

T
X

R
X

S

0

E
O

Q
F

TFUF 0 TFFF 0 0 0 0 0

R
F

O
F

0

R
F

D
F

0

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXCTR TXNXTPTR RXCTR POPNXTPTR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 554/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Table 291. DSPIx_SR field descriptions

Field Description

TCF

Transfer complete flag

Indicates that all bits in a frame have been shifted out. The TCF bit is set after the last incoming
databit is sampled, but before the tASC delay starts. See Section , Classic SPI transfer format (CPHA
= 0) for details.

0 Transfer not complete
1 Transfer complete

TXRXS

TX and RX status
Reflects the status of the DSPI. See Section 23.6.2, Start and stop of DSPI transfers for information
on what clears and sets this bit.

0 TX and RX operations are disabled (DSPI is in STOPPED state)
1 TX and RX operations are enabled (DSPI is in RUNNING state)

EOQF

End of queue flag
Indicates that transmission in progress is the last entry in a queue. The EOQF bit is set when TX
FIFO entry has the EOQ bit set in the command halfword and the end of the transfer is reached. See
Section , Classic SPI transfer format (CPHA = 0) for details.

When the EOQF bit is set, the TXRXS bit is automatically cleared.

0 EOQ is not set in the executing command
1 EOQ bit is set in the executing SPI command
Note: EOQF does not function in slave mode.

TFUF

Transmit FIFO underflow flag
Indicates that an underflow condition in the TX FIFO has occurred. The transmit underflow condition
is detected only for DSPI modules operating in slave mode and SPI configuration. The TFUF bit is
set when the TX FIFO of a DSPI operating in SPI slave mode is empty, and a transfer is initiated by
an external SPI master.

0 TX FIFO underflow has not occurred
1 TX FIFO underflow has occurred

TFFF

Transmit FIFO fill flag

Indicates that the TX FIFO can be filled. Provides a method for the DSPI to request more entries to
be added to the TX FIFO. The TFFF bit is set while the TX FIFO is not full. The TFFF bit can be
cleared by writing ‘1’ to it, or an by acknowledgement from the Edam controller when the TX FIFO is
full.

0 TX FIFO is full
1 TX FIFO is not full

RFOF

Receive FIFO overflow flag

Indicates that an overflow condition in the RX FIFO has occurred. The bit is set when the RX FIFO
and shift register are full and a transfer is initiated.

0 RX FIFO overflow has not occurred
1 RX FIFO overflow has occurred
555/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
23.5.6 DSPI DMA / Interrupt Request Select and Enable Register
(DSPIx_RSER)

The DSPIx_RSER serves two purposes:

● It enables flag bits in the DSPIx_SR to generate DMA requests or interrupt requests.

● It selects the type of request to generate.

See the bit descriptions for the type of requests that are supported.

Do not write to the DSPIx_RSER while the DSPI is running.

RFDF

Receive FIFO drain flag

Indicates that the RX FIFO can be drained. Provides a method for the DSPI to request that entries
be removed from the RX FIFO. The bit is set while the RX FIFO is not empty. The RFDF bit can be
cleared by writing ‘1’ to it, or by acknowledgement from the Edam controller when the RX FIFO is
empty.

0 RX FIFO is empty
1 RX FIFO is not empty
Note: In the interrupt service routine, RFDF must be cleared only after the DSPIx_POPR register is

read.

TXCTR

TX FIFO counter

Indicates the number of valid entries in the TX FIFO. The TXCTR is incremented every time the
DSPI _PUSHR is written. The TXCTR is decremented every time an SPI command is executed and
the SPI data is transferred to the shift register.

TXNXTPTR

Transmit next pointer
Indicates which TX FIFO entry is transmitted during the next transfer. The TXNXTPTR field is
updated every time SPI data is transferred from the TX FIFO to the shift register. See Section ,
Transmit First In First Out (TX FIFO) buffering mechanism for more details.

RXCTR

RX FIFO counter

Indicates the number of entries in the RX FIFO. The RXCTR is decremented every time the DSPI
_POPR is read. The RXCTR is incremented after the last incoming databit is sampled, but before
the tASC delay starts. See Section , Classic SPI transfer format (CPHA = 0) for details.

POPNXTPT
R

Pop next pointer

Contains a pointer to the RX FIFO entry that is returned when the DSPIx_POPR is read. The
POPNXTPTR is updated when the DSPIx_POPR is read. See Section , Receive First In First Out
(RX FIFO) buffering mechanism for more details.

Table 291. DSPIx_SR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 556/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Figure 296. DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER)

Offset:0x30 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

T
C

F
_R

E 0 0

E
O

Q
F

_R
E

T
F

U
F

_R
E 0

T
F

F
F

_R
E

T
F

F
F

_D
IR

S 0 0 0 0

R
F

O
F

_R
E 0

R
F

D
F

_R
E

R
F

D
F

_D
IR

S

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 292. DSPIx_RSER field descriptions

Field Description

TCF_RE

Transmission complete request enable

Enables TCF flag in the DSPIx_SR to generate an interrupt request.

0 TCF interrupt requests are disabled
1 TCF interrupt requests are enabled

EOQF_RE

DSPI finished request enable
Enables the EOQF flag in the DSPIx_SR to generate an interrupt request.

0 EOQF interrupt requests are disabled
1 EOQF interrupt requests are enabled

TFUF_RE

Transmit FIFO underflow request enable

The TFUF_RE bit enables the TFUF flag in the DSPIx_SR to generate an interrupt request.

0 TFUF interrupt requests are disabled
1 TFUF interrupt requests are enabled

TFFF_RE

Transmit FIFO fill request enable

Enables the TFFF flag in the DSPIx_SR to generate a request. The TFFF_DIRS bit selects between
generating an interrupt request or a DMA requests.

0 TFFF interrupt requests or DMA requests are disabled
1 TFFF interrupt requests or DMA requests are enabled

TFFF_DIRS

Transmit FIFO fill DMA or interrupt request select

Selects between generating a DMA request or an interrupt request. When the TFFF flag bit in the
DSPIx_SR is set, and the TFFF_RE bit in the DSPIx_RSER is set, this bit selects between
generating an interrupt request or a DMA request.

0 Interrupt request is selected
1 DMA request is selected
557/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

The DSPIx_PUSHR provides a means to write to the TX FIFO. Data written to this register
is transferred to the TX FIFO. See Section , Transmit First In First Out (TX FIFO) buffering
mechanism, for more information. Write accesses of 8 or 16 bits to the DSPIx_PUSHR
transfers 32 bits to the TX FIFO.

Note: TXDATA is used in master and slave modes.

RFOF_RE

Receive FIFO overflow request enable

Enables the RFOF flag in the DSPIx_SR to generate an interrupt requests.

0 RFOF interrupt requests are disabled
1 RFOF interrupt requests are enabled

RFDF_RE

Receive FIFO drain request enable
Enables the RFDF flag in the DSPIx_SR to generate a request. The RFDF_DIRS bit selects between
generating an interrupt request or a DMA request.

0 RFDF interrupt requests or DMA requests are disabled
1 RFDF interrupt requests or DMA requests are enabled

RFDF_DIRS

Receive FIFO drain DMA or interrupt request select
Selects between generating a DMA request or an interrupt request. When the RFDF flag bit in the
DSPIx_SR is set, and the RFDF_RE bit in the DSPIx_RSER is set, the RFDF_DIRS bit selects
between generating an interrupt request or a DMA request.

0 Interrupt request is selected
1 DMA request is selected

Table 292. DSPIx_RSER field descriptions (continued)

Field Description

Figure 297. DSPI PUSH TX FIFO Register (DSPIx_PUSHR)

Offset:0x34 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

C
O

N
T

CTAS EOQ

C
T

C
N

T 0 0
0 0

P
C

S
5

P
C

S
4

P
C

S
3

P
C

S
2

P
C

S
1

P
C

S
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 558/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Table 293. DSPIx_PUSHR field descriptions

Field Description

CONT

Continuous peripheral chip select enable

Selects a continuous selection format. The bit is used in SPI master mode. The bit enables the selected
CS signals to remain asserted between transfers. See Section , Continuous selection format, for more
information.

0 Return peripheral chip select signals to their inactive state between transfers
1 Keep peripheral chip select signals asserted between transfers

CTAS

Clock and transfer attributes select
Selects which of the DSPIx_CTARs is used to set the transfer attributes for the SPI frame. In SPI slave
mode, DSPIx_CTAR0 is used. The following table shows how the CTAS values map to the
DSPIx_CTARs. There are eight DSPIx_CTARs in the device DSPI implementation.

Note: Use in SPI master mode only.

EOQ

End of queue

Provides a means for host software to signal to the DSPI that the current SPI transfer is the last in a
queue. At the end of the transfer the EOQF bit in the DSPIx_SR is set.

0 The SPI data is not the last data to transfer
1 The SPI data is the last data to transfer
Note: Use in SPI master mode only.

CTCNT

Clear SPI_TCNT

Provides a means for host software to clear the SPI transfer counter. The CTCNT bit clears the
SPI_TCNT field in the DSPIx_TCR. The SPI_TCNT field is cleared before transmission of the current
SPI frame begins.

0 Do not clear SPI_TCNT field in the DSPIx_TCR
1 Clear SPI_TCNT field in the DSPIx_TCR
Note: Use in SPI master mode only.

CTAS
Use clock and transfer

attributes from

000 DSPIx_CTAR0

001 DSPIx_CTAR1

010 DSPIx_CTAR2

011 DSPIx_CTAR3

100 DSPIx_CTAR4

101 DSPIx_CTAR5

110 Reserved

111 Reserved
559/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR)

The DSPIx_POPR allows you to read the RX FIFO. See Section , Receive First In First Out
(RX FIFO) buffering mechanism for a description of the RX FIFO operations. Eight or 16-bit
read accesses to the DSPIx_POPR fetch the RX FIFO data, and update the counter and
pointer.

Note: Reading the RX FIFO field fetches data from the RX FIFO. Once the RX FIFO is read, the
read data pointer is moved to the next entry in the RX FIFO. Therefore, read DSPIx_POPR
only when you need the data. For compatibility, configure the TLB entry for DSPIx_POPR as
guarded.

PCSx

Peripheral chip select x

Selects which CSx signals are asserted for the transfer.

0 Negate the CSx signal
1 Assert the CSx signal
Note: Use in SPI master mode only.

TXDATA

Transmit data
Holds SPI data for transfer according to the associated SPI command.

Note: Use TXDATA in master and slave modes.

Table 293. DSPIx_PUSHR field descriptions (continued)

Field Description

Figure 298. DSPI POP RX FIFO Register (DSPIx_POPR)

Offset:0x38 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 294. DSPIx_POPR field descriptions

Field Description

RXDATA
Received data
The RXDATA field contains the SPI data from the RX FIFO entry pointed to by the pop next data pointer
(POPNXTPTR).
Doc ID 16886 Rev 6 560/868

Deserial Serial Peripheral Interface (DSPI) RM0045
23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn)

The DSPIx_TXFRn registers provide visibility into the TX FIFO for debugging purposes.
Each register is an entry in the TX FIFO. The registers are read-only and cannot be
modified. Reading the DSPIx_TXFRn registers does not alter the state of the TX FIFO. The
MCU uses four registers to implement the TX FIFO, that is DSPIx_TXFR0–DSPIx_TXFR3
are used.

DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

The DSPIx_RXFRn registers provide visibility into the RX FIFO for debugging purposes.
Each register is an entry in the RX FIFO. The DSPIx_RXFR registers are read-only.
Reading the DSPIx_RXFRn registers does not alter the state of the RX FIFO. The device
uses four registers to implement the RX FIFO, that is DSPIx_RXFR0–DSPIx_RXFR3 are
used.

Figure 299. DSPI Transmit FIFO Register 0–3 (DSPIx_TXFRn)

Offsets: 0x3C–0x48 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TXCMD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 295. DSPIx_TXFRn field descriptions

Field Description

TXCMD
Transmit command

Contains the command that sets the transfer attributes for the SPI data. See Section 23.5.7, DSPI
PUSH TX FIFO Register (DSPIx_PUSHR), for details on the command field.

TXDATA
Transmit data
Contains the SPI data to be shifted out.
561/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

23.6 Functional description
The DSPI supports full-duplex, synchronous serial communications between the MCU and
peripheral devices. All communications are through an SPI-like protocol.

The DSPI has one configuration, namely serial peripheral interface (SPI), in which the DSPI
operates as a basic SPI or a queued SPI.

The DCONF field in the DSPIx_MCR register determines the DSPI configuration. See
Table 276 for the DSPI configuration values.

The DSPIx_CTAR0–DSPIx_CTAR5 registers hold clock and transfer attributes.The SPI
configuration can select which CTAR to use on a frame by frame basis by setting the CTAS
field in the DSPIx_PUSHR.

The 16-bit shift register in the master and the 16-bit shift register in the slave are linked by
the SOUT_x and SIN_x signals to form a distributed 32-bit register. When a data transfer
operation is performed, data is serially shifted a pre-determined number of bit positions.
Because the registers are linked, data is exchanged between the master and the slave; the
data that was in the master’s shift register is now in the shift register of the slave, and vice
versa. At the end of a transfer, the TCF bit in the DSPIx_SR is set to indicate a completed
transfer. Figure 301 illustrates how master and slave data is exchanged.

Figure 300. DSPI Receive FIFO Registers 0–3 (DSPIx_RXFRn)

Offsets: 0x7C–0x88 (4 registers) Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R RXDATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 296. DSPIx_RXFRn field description

Field Description

RXDATA
Receive data
Contains the received SPI data.
Doc ID 16886 Rev 6 562/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Figure 301. SPI serial protocol overview

The DSPI has six peripheral chip select (CSx) signals that are be used to select which of the
slaves to communicate with.

Transfer protocols and timing properties are shared by the three DSPI configurations; these
properties are described independently of the configuration in Section 23.6.5, Transfer
formats. The transfer rate and delay settings are described in Section 23.6.4, DSPI baud
rate and clock delay generation.

See Section 23.6.8, Power saving features, for information on the power-saving features of
the DSPI.

23.6.1 Modes of operation

The DSPI modules have the following available distinct modes:

● Master mode

● Slave mode

● Module Disable mode

● External Stop mode

● Debug mode

Master, slave, and module disable modes are module-specific modes whereas debug mode
and external stop mode are device-specific.

The module-specific modes are determined by bits in the DSPIx_MCR. Debug mode is a
mode that the entire device can enter in parallel with the DSPI being configured in one of its
module-specific modes.

Master mode

In master mode the DSPI can initiate communications with peripheral devices. The DSPI
operates as bus master when the MSTR bit in the DSPIx_MCR is set. The serial
communications clock (SCK) is controlled by the master DSPI. All three DSPI configurations
are valid in master mode.

In SPI configuration, master mode transfer attributes are controlled by the SPI command in
the current TX FIFO entry. The CTAS field in the SPI command selects which of the eight
DSPIx_CTARs are used to set the transfer attributes. Transfer attribute control is on a frame
by frame basis.

DSPI Master

Shift register

Baud rate generator

DSPI Slave

Shift register
SOUT_xSIN_x

SOUT_x SIN_x

SCK_x SCK_x

CS_x CS0_x
563/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
See Section 23.6.3, Serial peripheral interface (SPI) configuration for more details.

Slave mode

In slave mode the DSPI responds to transfers initiated by an SPI master. The DSPI operates
as bus slave when the MSTR bit in the DSPIx_MCR is negated. The DSPI slave is selected
by a bus master by having the slave’s CS0_x asserted. In slave mode the SCK is provided
by the bus master. All transfer attributes are controlled by the bus master, except the clock
polarity, clock phase and the number of bits to transfer which must be configured in the DSPI
slave to communicate correctly.

Module Disable mode

The module disable mode is used for MCU power management. The clock to the non-
memory mapped logic in the DSPI is stopped while in module disable mode. The DSPI
enters the module disable mode when the MDIS bit in DSPIx_MCR is set.

See Section 23.6.8, Power saving features for more details on the module disable mode.

External Stop mode

For low-power modes, the DSPI supports Stop Mode mechanism. The DSPI does not
acknowledge the request to enter External Stop Mode until it has reached a frame
boundary. When the DSPI has reached a frame boundary it halts all operations and
indicates that it is ready to have its clocks shut off. The DSPI exits External Stop Mode and
resumes normal operation once the clocks are turned on. Serial communications or register
accesses made while in External Stop Mode are ignored even if the clocks have not been
shut off yet. See Section 23.6.8, Power saving features for more details on the External Stop
Mode.

Debug mode

The debug mode is used for system development and debugging. If the MCU enters debug
mode while the FRZ bit in the DSPIx_MCR is set, the DSPI stops all serial transfers and
enters a stopped state. If the MCU enters debug mode while the FRZ bit is cleared, the
DSPI behavior is unaffected and remains dictated by the module-specific mode and
configuration of the DSPI. The DSPI enters debug mode when a debug request is asserted
by an external controller.

See Figure 302 for a state diagram.

23.6.2 Start and stop of DSPI transfers

The DSPI has two operating states: STOPPED and RUNNING. The states are independent
of DSPI configuration. The default state of the DSPI is STOPPED. In the STOPPED state no
serial transfers are initiated in master mode and no transfers are responded to in slave
mode. The STOPPED state is also a safe state for writing the various configuration registers
of the DSPI without causing undetermined results. The TXRXS bit in the DSPIx_SR is
cleared in this state. In the RUNNING state, serial transfers take place. The TXRXS bit in the
DSPIx_SR is set in the RUNNING state.

Figure 302 shows a state diagram of the start and stop mechanism.
Doc ID 16886 Rev 6 564/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Figure 302. DSPI start and stop state diagram

The transitions are described in Table 297.

State transitions from RUNNING to STOPPED occur on the next frame boundary if a
transfer is in progress, or on the next system clock cycle if no transfers are in progress.

23.6.3 Serial peripheral interface (SPI) configuration

The SPI configuration transfers data serially using a shift register and a selection of
programmable transfer attributes. The DSPI is in SPI configuration when the DCONF field in
the DSPIx_MCR is 0b00. The SPI frames can be from 4 to 16 bits long. The data to be
transmitted can come from queues stored in SRAM external to the DSPI. Host software or
an eDMA controller can transfer the SPI data from the queues to a first-in first-out (FIFO)
buffer. The received data is stored in entries in the receive FIFO (RX FIFO) buffer. Host
software or an eDMA controller transfers the received data from the RX FIFO to memory
external to the DSPI.

RUNNING
TXRXS = 1

STOPPED
TXRXS = 0

RESET

Power-on-Reset 0

1

2

Table 297. State transitions for start and stop of DSPI transfers

Transition
No.

Current state Next state Description

0 RESET STOPPED Generic power-on-reset transition

1 STOPPED RUNNING

The DSPI starts (transitions from STOPPED to RUNNING) when
all of the following conditions are true:

– EOQF bit is clear

– Debug mode is unselected or the FRZ bit is clear
– HALT bit is clear

2 RUNNING STOPPED

The DSPI stops (transitions from RUNNING to STOPPED) after
the current frame for any one of the following conditions:

– EOQF bit is set

– Debug mode is selected and the FRZ bit is set

– HALT bit is set
565/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
The FIFO buffer operations are described in Section , Transmit First In First Out (TX FIFO)
buffering mechanism, and Section , Receive First In First Out (RX FIFO) buffering
mechanism.

The interrupt and DMA request conditions are described in Section 23.6.7, Interrupt/DMA
requests.

The SPI configuration supports two module-specific modes; master mode and slave mode.
The FIFO operations are similar for the master mode and slave mode. The main difference
is that in master mode the DSPI initiates and controls the transfer according to the fields in
the SPI command field of the TX FIFO entry. In slave mode the DSPI only responds to
transfers initiated by a bus master external to the DSPI and the SPI command field of the TX
FIFO entry is ignored.

SPI Master mode

In SPI master mode the DSPI initiates the serial transfers by controlling the serial
communications clock (SCK_x) and the peripheral chip select (CSx) signals. The SPI
command field in the executing TX FIFO entry determines which CTARs are used to set the
transfer attributes and which CSx signal to assert. The command field also contains various
bits that help with queue management and transfer protocol. The data field in the executing
TX FIFO entry is loaded into the shift register and shifted out on the serial out (SOUT_x) pin.
In SPI master mode, each SPI frame to be transmitted has a command associated with it
allowing for transfer attribute control on a frame by frame basis.

See Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR), for details on the SPI
command fields.

SPI Slave mode

In SPI slave mode the DSPI responds to transfers initiated by an SPI bus master. The DSPI
does not initiate transfers. Certain transfer attributes such as clock polarity, clock phase and
frame size must be set for successful communication with an SPI master. The SPI slave
mode transfer attributes are set in the DSPIx_CTAR0.

FIFO disable operation

The FIFO disable mechanisms allow SPI transfers without using the TX FIFO or RX FIFO.
The DSPI operates as a double-buffered simplified SPI when the FIFOs are disabled. The
TX and RX FIFOs are disabled separately. The TX FIFO is disabled by writing a ‘1’ to the
DIS_TXF bit in the DSPIx_MCR. The RX FIFO is disabled by writing a ‘1’ to the DIS_RXF bit
in the DSPIx_MCR.

The FIFO disable mechanisms are transparent to the user and to host software; transmit
data and commands are written to the DSPIx_PUSHR and received data is read from the
DSPIx_POPR. When the TX FIFO is disabled, the TFFF, TFUF, and TXCTR fields in
DSPIx_SR behave as if there is a one-entry FIFO but the contents of the DSPIx_TXFRs and
TXNXTPTR are undefined. When the RX FIFO is disabled, the RFDF, RFOF, and RXCTR
fields in the DSPIx_SR behave as if there is a one-entry FIFO but the contents of the
DSPIx_RXFRs and POPNXTPTR are undefined.

Disable the TX and RX FIFOs only if the FIFO must be disabled as a requirement of the
application's operating mode. A FIFO must be disabled before it is accessed. Failure to
disable a FIFO prior to a first FIFO access is not supported, and can result in incorrect
results.
Doc ID 16886 Rev 6 566/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Transmit First In First Out (TX FIFO) buffering mechanism

The TX FIFO functions as a buffer of SPI data and SPI commands for transmission. The TX
FIFO holds four entries, each consisting of a command field and a data field. SPI commands
and data are added to the TX FIFO by writing to the DSPI push TX FIFO register
(DSPIx_PUSHR). TX FIFO entries can only be removed from the TX FIFO by being shifted
out or by flushing the TX FIFO. For more information on DSPIx_PUSHR, see
Section 23.5.7, DSPI PUSH TX FIFO Register (DSPIx_PUSHR).

The TX FIFO counter field (TXCTR) in the DSPI status register (DSPIx_SR) indicates the
number of valid entries in the TX FIFO. The TXCTR is updated every time the DSPI
_PUSHR is written or SPI data is transferred into the shift register from the TX FIFO.

See Section 23.5.5, DSPI Status Register (DSPIx_SR) for more information on DSPIx_SR.

The TXNXTPTR field indicates which TX FIFO entry is transmitted during the next transfer.
The TXNXTPTR contains the positive offset from DSPIx_TXFR0 in number of 32-bit
registers. For example, TXNXTPTR equal to two means that the DSPIx_TXFR2 contains the
SPI data and command for the next transfer. The TXNXTPTR field is incremented every
time SPI data is transferred from the TX FIFO to the shift register.

Filling the TX FIFO

Host software or the eDMA controller can add (push) entries to the TX FIFO by writing to the
DSPIx_PUSHR. When the TX FIFO is not full, the TX FIFO fill flag (TFFF) in the DSPIx_SR
is set. The TFFF bit is cleared when the TX FIFO is full and the eDMA controller indicates
that a write to DSPIx_PUSHR is complete or alternatively by host software writing a ‘1’ to
the TFFF in the DSPIx_SR. The TFFF can generate a DMA request or an interrupt request.

See Section , Transmit FIFO Fill Interrupt or DMA Request (TFFF), for details.

The DSPI ignores attempts to push data to a full TX FIFO; that is, the state of the TX FIFO is
unchanged. No error condition is indicated.

Draining the TX FIFO

The TX FIFO entries are removed (drained) by shifting SPI data out through the shift
register. Entries are transferred from the TX FIFO to the shift register and shifted out as long
as there are valid entries in the TX FIFO. Every time an entry is transferred from the TX
FIFO to the shift register, the TX FIFO counter is decremented by one. At the end of a
transfer, the TCF bit in the DSPIx_SR is set to indicate the completion of a transfer. The TX
FIFO is flushed by writing a ‘1’ to the CLR_TXF bit in DSPIx_MCR.

If an external SPI bus master initiates a transfer with a DSPI slave while the slave’s DSPI TX
FIFO is empty, the transmit FIFO underflow flag (TFUF) in the slave’s DSPIx_SR is set.

See Section , Transmit FIFO Underflow Interrupt Request (TFUF), for details.

Receive First In First Out (RX FIFO) buffering mechanism

The RX FIFO functions as a buffer for data received on the SIN pin. The RX FIFO holds four
received SPI data frames. SPI data is added to the RX FIFO at the completion of a transfer
when the received data in the shift register is transferred into the RX FIFO. SPI data is
removed (popped) from the RX FIFO by reading the DSPIx_POPR register. RX FIFO entries
can only be removed from the RX FIFO by reading the DSPIx_POPR or by flushing the RX
FIFO.
567/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on
the DSPIx_POPR.

The RX FIFO counter field (RXCTR) in the DSPI status register (DSPIx_SR) indicates the
number of valid entries in the RX FIFO. The RXCTR is updated every time the DSPI _POPR
is read or SPI data is copied from the shift register to the RX FIFO.

The POPNXTPTR field in the DSPIx_SR points to the RX FIFO entry that is returned when
the DSPIx_POPR is read. The POPNXTPTR contains the positive, 32-bit word offset from
DSPIx_RXFR0. For example, POPNXTPTR equal to two means that the DSPIx_RXFR2
contains the received SPI data that is returned when DSPIx_POPR is read. The
POPNXTPTR field is incremented every time the DSPIx_POPR is read. POPNXTPTR rolls
over every four frames on the MCU.

Filling the RX FIFO

The RX FIFO is filled with the received SPI data from the shift register. While the RX FIFO is
not full, SPI frames from the shift register are transferred to the RX FIFO. Every time an SPI
frame is transferred to the RX FIFO the RX FIFO counter is incremented by one.

If the RX FIFO and shift register are full and a transfer is initiated, the RFOF bit in the
DSPIx_SR is set indicating an overflow condition. Depending on the state of the ROOE bit in
the DSPIx_MCR, the data from the transfer that generated the overflow is ignored or put in
the shift register. If the ROOE bit is set, the incoming data is put in the shift register. If the
ROOE bit is cleared, the incoming data is ignored.

Draining the RX FIFO

Host software or the eDMA can remove (pop) entries from the RX FIFO by reading the
DSPIx_POPR. A read of the DSPIx_POPR decrements the RX FIFO counter by one.
Attempts to pop data from an empty RX FIFO are ignored, the RX FIFO counter remains
unchanged. The data returned from reading an empty RX FIFO is undetermined.

See Section 23.5.8, DSPI POP RX FIFO Register (DSPIx_POPR) for more information on
DSPIx_POPR.

When the RX FIFO is not empty, the RX FIFO drain flag (RFDF) in the DSPIx_SR is set. The
RFDF bit is cleared when the RX_FIFO is empty and the eDMA controller indicates that a
read from DSPIx_POPR is complete; alternatively the RFDF bit can be cleared by the host
writing a ‘1’ to it.

23.6.4 DSPI baud rate and clock delay generation

The SCK_x frequency and the delay values for serial transfer are generated by dividing the
system clock frequency by a prescaler and a scaler with the option of doubling the baud
rate.
Doc ID 16886 Rev 6 568/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Figure 303 shows conceptually how the SCK signal is generated.

Figure 303. Communications clock prescalers and scalers

Baud rate generator

The baud rate is the frequency of the serial communication clock (SCK_x). The system
clock is divided by a baud rate prescaler (defined by DSPIx_CTAR[PBR]) and baud rate
scaler (defined by DSPIx_CTAR[BR]) to produce SCK_x with the possibility of doubling the
baud rate. The DBR, PBR, and BR fields in the DSPIx_CTARs select the frequency of
SCK_x using the following formula:

Table 298 shows an example of a computed baud rate.

CS to SCK delay (tCSC)

The CS_x to SCK_x delay is the length of time from assertion of the CS_x signal to the first
SCK_x edge. See Figure 305 for an illustration of the CS_x to SCK_x delay. The PCSSCK
and CSSCK fields in the DSPIx_CTARn registers select the CS_x to SCK_x delay, and the
relationship is expressed by the following formula:

Table 299 shows an example of the computed CS to SCK_x delay.

Prescaler
1

Scaler
1 + DBR

System Clock SCK_x

SCK baud rate
fSYS

PBRPrescalerValue
--

1 DBR+
BRScalerValue
--¥=

Table 298. Baud rate computation example

fSYS PBR Prescaler value BR Scaler value DBR value Baud rate

48 MHz 0b00 2 0b0000 2 0 12 Mbit/s

20 MHz 0b00 2 0b0000 2 1 10 Mbit/s

tCSC =
fSYS

CSSCK PCSSCK1 

Table 299. CS to SCK delay computation example

PCSSCK Prescaler value CSSCK Scaler value fSYS CS to SCK delay

0b01 3 0b0100 32 48 MHz 2 µs
569/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
After SCK delay (tASC)

The after SCK_x delay is the length of time between the last edge of SCK_x and the
negation of CS_x. See Figure 305 and Figure 306 for illustrations of the after SCK_x delay.
The PASC and ASC fields in the DSPIx_CTARn registers select the after SCK delay. The
relationship between these variables is given in the following formula:

Table 300 shows an example of the computed after SCK delay.

Delay after transfer (tDT)

The delay after transfer is the length of time between negation of the CSx signal for a frame
and the assertion of the CSx signal for the next frame. The PDT and DT fields in the
DSPIx_CTARn registers select the delay after transfer.

See Figure 305 for an illustration of the delay after transfer.

The following formula expresses the PDT/DT/delay after transfer relationship:

Table 301 shows an example of the computed delay after transfer.

Peripheral chip select strobe enable (CS5_x)

The CS5_x signal provides a delay to allow the CSx signals to settle after transitioning
thereby avoiding glitches. When the DSPI is in master mode and PCSSE bit is set in the
DSPIx_MCR, CS5_x provides a signal for an external demultiplexer to decode the CS4_x
signals into as many as 32 glitch-free CSx signals.

tASC =
fSYS

ASC PASC1 

Table 300. After SCK delay computation example

PASC Prescaler value ASC Scaler value fSYS After SCK delay

0b01 3 0b0100 32 48 MHz 2 µs

 tDT =
 fSYS

DT PDT
1



Table 301. Delay after transfer computation example

PDT Prescaler value DT Scaler value fSYS Delay after transfer

0b01 3 0b1110 32768 48 MHz 2.05 ms
Doc ID 16886 Rev 6 570/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Figure 304 shows the timing of the CS5_x signal relative to CS signals.

Figure 304. Peripheral chip select strobe timing

The delay between the assertion of the CSx signals and the assertion of CS5_x is selected
by the PCSSCK field in the DSPIx_CTAR based on the following formula:

At the end of the transfer the delay between CS5_x negation and CSx negation is selected
by the PASC field in the DSPIx_CTAR based on the following formula:

Table 302 shows an example of the computed tPCSSCK delay.

Table 303 shows an example of the computed the tPASC delay.

23.6.5 Transfer formats

The SPI serial communication is controlled by the serial communications clock (SCK_x)
signal and the CSx signals. The SCK_x signal provided by the master device synchronizes
shifting and sampling of the data by the SIN_x and SOUT_x pins. The CSx signals serve as
enable signals for the slave devices.

CS5_x

CSx

tPCSSCK tPASC

 tPCSSCK = PCSSCK
fSYS

1

 tPASC = PASC
fSYS

1

Table 302. Peripheral chip select strobe assert computation example

PCSSCK Prescaler fSYS Delay before transfer

0b11 7 48 MHz 145.8 ns

Table 303. Peripheral chip select strobe negate computation example

PASC Prescaler fSYS Delay after transfer

0b11 7 48 MHz 145.8 ns
571/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
When the DSPI is the bus master, the CPOL and CPHA bits in the DSPI clock and transfer
attributes registers (DSPIx_CTARn) select the polarity and phase of the serial clock, SCK_x.
The polarity bit selects the idle state of the SCK_x. The clock phase bit selects if the data on
SOUT_x is valid before or on the first SCK_x edge.

When the DSPI is the bus slave, CPOL and CPHA bits in the DSPIx_CTAR0 (SPI slave
mode) select the polarity and phase of the serial clock. Even though the bus slave does not
control the SCK signal, clock polarity, clock phase and number of bits to transfer must be
identical for the master device and the slave device to ensure proper transmission.

The DSPI supports four different transfer formats:

● Classic SPI with CPHA = 0

● Classic SPI with CPHA = 1

● Modified transfer format with CPHA = 0

● Modified transfer format with CPHA = 1

A modified transfer format is supported to allow for high-speed communication with
peripherals that require longer setup times. The DSPI can sample the incoming data later
than halfway through the cycle to give the peripheral more setup time. The MTFE bit in the
DSPIx_MCR selects between classic SPI format and modified transfer format. The classic
SPI formats are described in Section , Classic SPI transfer format (CPHA = 0) and Section ,
Classic SPI transfer format (CPHA = 1). The modified transfer formats are described in
Section , Modified SPI transfer format (MTFE = 1, CPHA = 0) and Section , Modified SPI
transfer format (MTFE = 1, CPHA = 1).

In the SPI configuration, the DSPI provides the option of keeping the CS signals asserted
between frames. See Section , Continuous selection format for details.
Doc ID 16886 Rev 6 572/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Classic SPI transfer format (CPHA = 0)

The transfer format shown in Figure 305 is used to communicate with peripheral SPI slave
devices where the first data bit is available on the first clock edge. In this format, the master
and slave sample their SIN_x pins on the odd-numbered SCK_x edges and change the data
on their SOUT_x pins on the even-numbered SCK_x edges.

Figure 305. DSPI transfer timing diagram (MTFE = 0, CPHA = 0, FMSZ = 8)

The master initiates the transfer by placing its first data bit on the SOUT_x pin and asserting
the appropriate peripheral chip select signals to the slave device. The slave responds by
placing its first data bit on its SOUT_x pin. After the tCSC delay has elapsed, the master
outputs the first edge of SCK_x. This is the edge used by the master and slave devices to
sample the first input data bit on their serial data input signals. At the second edge of the
SCK_x the master and slave devices place their second data bit on their serial data output
signals. For the rest of the frame the master and the slave sample their SIN_x pins on the
odd-numbered clock edges and changes the data on their SOUT_x pins on the even-
numbered clock edges. After the last clock edge occurs a delay of tASC is inserted before the
master negates the CS signals. A delay of tDT is inserted before a new frame transfer can be
initiated by the master.

For the CPHA = 0 condition of the master, TCF and EOQF are set and the RXCTR counter
is updated at the next to last serial clock edge of the frame (edge 15) of Figure 305.

For the CPHA = 0 condition of the slave, TCF is set and the RXCTR counter is updated at
the last serial clock edge of the frame (edge 16) of Figure 305.

SCK
(CPOL = 0)

PCSx / SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT /
Slave SIN

Master SIN /
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT
tCSC

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = CSCS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS idle time).

 Master (CPHA = 0): TCF and EOQF are set and RXCTR counter
is updated at next to last SCK edge of frame (edge 15)

Slave (CPHA = 0): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615
573/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
Classic SPI transfer format (CPHA = 1)

This transfer format shown in Figure 306 is used to communicate with peripheral SPI slave
devices that require the first SCK_x edge before the first data bit becomes available on the
slave SOUT_x pin. In this format the master and slave devices change the data on their
SOUT_x pins on the odd-numbered SCK_x edges and sample the data on their SIN_x pins
on the even-numbered SCK_x edges.

Figure 306. DSPI transfer timing diagram (MTFE = 0, CPHA = 1, FMSZ = 8)

The master initiates the transfer by asserting the CSx signal to the slave. After the tCSC
delay has elapsed, the master generates the first SCK_x edge and at the same time places
valid data on the master SOUT_x pin. The slave responds to the first SCK_x edge by
placing its first data bit on its slave SOUT_x pin.

At the second edge of the SCK_x the master and slave sample their SIN_x pins. For the rest
of the frame the master and the slave change the data on their SOUT_x pins on the odd-
numbered clock edges and sample their SIN_x pins on the even-numbered clock edges.
After the last clock edge occurs a delay of tASC is inserted before the master negates the
CSx signal. A delay of tDT is inserted before a new frame transfer can be initiated by the
master.

For CPHA = 1 the master EOQF and TCF and slave TCF are set at the last serial clock edge
(edge 16) of Figure 306. For CPHA = 1 the master and slave RXCTR counters are updated
on the same clock edge.

Slave (CPHA = 1): TCF is set and RXCTR counter is updated at
last SCK edge of frame (edge 16)

SCK

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(CPOL = 0)

PCSx / SS

tASC

SCK
(CPOL = 1)

Master and slave
sample

Master SOUT/
Slave SIN

Master SIN/
Slave SOUT

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB
LSB

tDT

tCSC

MSB first (LSBFE = 0):
LSB first (LSBFE = 1):

tCSC = CS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master (CPHA = 1): TCF and EOQF are set and RXCTR counter
is updated at last SCK edge of frame (edge 16)

16
Doc ID 16886 Rev 6 574/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Modified SPI transfer format (MTFE = 1, CPHA = 0)

In this modified transfer format both the master and the slave sample later in the SCK period
than in classic SPI mode to allow for delays in device pads and board traces. These delays
become a more significant fraction of the SCK period as the SCK period decreases with
increasing baud rates.

Note: For the modified transfer format to operate correctly, you must thoroughly analyze the SPI
link timing budget.

The master and the slave place data on the SOUT_x pins at the assertion of the CSx signal.
After the CSx to SCK_x delay has elapsed the first SCK_x edge is generated. The slave
samples the master SOUT_x signal on every odd numbered SCK_x edge. The slave also
places new data on the slave SOUT_x on every odd numbered clock edge.

The master places its second data bit on the SOUT_x line one system clock after odd
numbered SCK_x edge. The point where the master samples the slave SOUT_x is selected
by writing to the SMPL_PT field in the DSPIx_MCR. Table 304 lists the number of system
clock cycles between the active edge of SCK_x and the master sample point for different
values of the SMPL_PT bit field. The master sample point can be delayed by one or two
system clock cycles.

Table 304. Delayed master sample point

SMPL_PT
Number of system clock cycles between odd-numbered edge of SCK and

sampling of SIN

00 0

01 1

10 2

11 Invalid value
575/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
Figure 307 shows the modified transfer format for CPHA = 0. Only the condition where
CPOL = 0 is illustrated. The delayed master sample points are indicated with a lighter
shaded arrow.

Figure 307. DSPI modified transfer format (MTFE = 1, CPHA = 0, fSCK = fSYS / 4)

Modified SPI transfer format (MTFE = 1, CPHA = 1)

At the start of a transfer the DSPI asserts the CS signal to the slave device. After the CS to
SCK delay has elapsed the master and the slave put data on their SOUT pins at the first
edge of SCK. The slave samples the master SOUT signal on the even numbered edges of
SCK. The master samples the slave SOUT signal on the odd numbered SCK edges starting
with the third SCK edge. The slave samples the last bit on the last edge of the SCK. The
master samples the last slave SOUT bit one half SCK cycle after the last edge of SCK. No
clock edge is visible on the master SCK pin during the sampling of the last bit. The SCK to
CS delay must be greater or equal to half of the SCK period.

Note: For the modified transfer format to operate correctly, you must thoroughly analyze the SPI
link timing budget.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

CSx

tASC

SCK

Master sample

Slave SOUT

Master SOUT

System clock
System clock

Slave sample

tCSC
Doc ID 16886 Rev 6 576/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Figure 308 shows the modified transfer format for CPHA = 1. Only the condition where
CPOL = 0 is described.

Figure 308. DSPI modified transfer format (MTFE = 1, CPHA = 1, fSCK = fSYS / 4)

Continuous selection format

Some peripherals must be deselected between every transfer. Other peripherals must
remain selected between several sequential serial transfers. The continuous selection
format provides the flexibility to handle both cases. The continuous selection format is
enabled for the SPI configuration by setting the CONT bit in the SPI command.

When the CONT bit = 0, the DSPI drives the asserted chip select signals to their idle states
in between frames. The idle states of the chip select signals are selected by the PCSIS field
in the DSPIx_MCR.

tCSC = CS to SCK delay.
tASC = After SCK delay.

System clock

1 2 3 4 5 6

CS

tASC

SCK

Master sample

Master SOUT

Slave SOUT

Slave sample

tCSC
577/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
Figure 309 shows the timing diagram for two four-bit transfers with CPHA = 1 and CONT =
0.

Figure 309. Example of non-continuous format (CPHA = 1, CONT = 0)

When the CONT = 1 and the CS signal for the next transfer is the same as for the current
transfer, the CS signal remains asserted for the duration of the two transfers. The delay
between transfers (tDT) is not inserted between the transfers.

Figure 310 shows the timing diagram for two 4-bit transfers with CPHA = 1 and CONT = 1.

Figure 310. Example of continuous transfer (CPHA = 1, CONT = 1)

In Figure 310, the period length at the start of the next transfer is the sum of tASC and tCSC;
that is, it does not include a half-clock period. The default settings for these provide a total of
four system clocks. In many situations, tASC and tCSC must be increased if a full half-clock
period is required.

SCK
(CPOL = 0)

CSx

tASC

SCK
(CPOL = 1)

Master SOUT

tDT

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.
tDT = Delay after transfer (minimum CS negation time).

Master SIN

tCSC

SCK
(CPOL = 0)

CS

tASC

SCK
(CPOL = 1)

Master SOUT

tCSC

tCSC

tCSC = CS to SCK delay.
tASC = After SCK delay.

Master SIN
Doc ID 16886 Rev 6 578/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Switching CTARs between frames while using continuous selection can cause errors in the
transfer. The CS signal must be negated before CTAR is switched.

When the CONT bit = 1 and the CS signals for the next transfer are different from the
present transfer, the CS signals behave as if the CONT bit was not set.

Note: You must fill the TXFIFO with the number of entries that will be concatenated together under
one PCS assertion for both master and slave before the TXFIFO becomes empty. For
example; while transmitting in master mode, ensure that the last entry in the TXFIFO, after
which TXFIFO becomes empty, has CONT = 0 in the command frame.

When operating in slave mode, ensure that when the last-entry in the TXFIFO is completely
transmitted (i.e. the corresponding TCF flag is asserted and TXFIFO is empty) the slave is
deselected for any further serial communication; otherwise, an underflow error occurs.

Clock polarity switching between DSPI transfers

If it is desired to switch polarity between non-continuous DSPI frames, the edge generated
by the change in the idle state of the clock occurs one system clock before the assertion of
the chip select for the next frame.

See Section 23.5.4, DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn).

In Figure 311, time ‘A’ shows the one clock interval. Time ‘B’ is user programmable from a
minimum of two system clocks.

Figure 311. Polarity switching between frames

23.6.6 Continuous serial communications clock

The DSPI provides the option of generating a continuous SCK signal for slave peripherals
that require a continuous clock.

Continuous SCK is enabled by setting the CONT_SCKE bit in the DSPIx_MCR. Continuous
SCK is valid in all configurations.

Continuous SCK is only supported for CPHA = 1. Setting CPHA = 0 is ignored if the
CONT_SCKE bit is set. Continuous SCK is supported for modified transfer format.

CS

System clock

SCK

Frame 1Frame 0

CPOL = 0 CPOL = 1

A B
579/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
Clock and transfer attributes for the continuous SCK mode are set according to the following
rules:

● The TX FIFO must be cleared before initiating any SPI configuration transfer.

● When the DSPI is in SPI configuration, CTAR0 is used initially. At the start of each SPI
frame transfer, the CTAR specified by the CTAS for the frame should be CTAR0.

● In all configurations, the currently selected CTAR remains in use until the start of a
frame with a different CTAR specified, or the continuous SCK mode is terminated.

The device is designed to use the same baud rate for all transfers made while using the
continuous SCK. Switching clock polarity between frames while using continuous SCK can
cause errors in the transfer. Continuous SCK operation is not guaranteed if the DSPI is put
into module disable mode.

Enabling continuous SCK disables the CS to SCK delay and the After SCK delay. The delay
after transfer is fixed at one SCK cycle. Figure 312 shows timing diagram for continuous
SCK format with continuous selection disabled.

Note: When in Continuous SCK mode, always use CTAR0 for the SPI transfer, and clear the
TXFIFO using the MCR[CLR_TXF] field before initiating transfer.

Figure 312. Continuous SCK timing diagram (CONT= 0)

If the CONT bit in the TX FIFO entry is set, CS remains asserted between the transfers
when the CS signal for the next transfer is the same as for the current transfer. Figure 313
shows timing diagram for continuous SCK format with continuous selection enabled.

SCK
(CPOL = 0)

CS

SCK
(CPOL = 1)

Master SOUT

tDT
tDT = 1 SCK

Master SIN
Doc ID 16886 Rev 6 580/868

Deserial Serial Peripheral Interface (DSPI) RM0045

Figure 313. Continuous SCK timing diagram (CONT=1)

SCK
(CPOL = 0)

CS

SCK
(CPOL = 1)

Master SOUT

Master SIN

Transfer 1 Transfer 2
581/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
23.6.7 Interrupt/DMA requests

The DSPI has five conditions that can generate interrupt requests only, and two conditions
that can generate interrupt or DMA requests.

Table 305 lists the seven conditions.

Each condition has a flag bit and a request enable bit. The flag bits are described in the
Section 23.5.5, DSPI Status Register (DSPIx_SR) and the request enable bits are
described in the Section 23.5.6, DSPI DMA / Interrupt Request Select and Enable Register
(DSPIx_RSER). The TX FIFO fill flag (TFFF) and RX FIFO drain flag (RFDF) generate
interrupt requests or DMA requests depending on the TFFF_DIRS and RFDF_DIRS bits in
the DSPIx_RSER.

End of Queue Interrupt Request (EOQF)

The end of queue request indicates that the end of a transmit queue is reached. The end of
queue request is generated when the EOQ bit in the executing SPI command is asserted
and the EOQF_RE bit in the DSPIx_RSER is set. See the EOQ bit description in
Section 23.5.5, DSPI Status Register (DSPIx_SR). See Figure 305 and Figure 306 that
illustrate when EOQF is set.

Transmit FIFO Fill Interrupt or DMA Request (TFFF)

The transmit FIFO fill request indicates that the TX FIFO is not full. The transmit FIFO fill
request is generated when the number of entries in the TX FIFO is less than the maximum
number of possible entries, and the TFFF_RE bit in the DSPIx_RSER is set. The
TFFF_DIRS bit in the DSPIx_RSER selects whether a DMA request or an interrupt request
is generated.

Transfer Complete Interrupt Request (TCF)

The transfer complete request indicates the end of the transfer of a serial frame. The
transfer complete request is generated at the end of each frame transfer when the TCF_RE
bit is set in the DSPIx_RSER. See the TCF bit description in Section 23.5.5, DSPI Status
Register (DSPIx_SR). See Figure 305 and Figure 306 that illustrate when TCF is set.

Table 305. Interrupt and DMA Request Conditions

Condition Flag Interrupt DMA

End of transfer queue has been reached (EOQ) EOQF X

TX FIFO is not full TFFF X X

Current frame transfer is complete TCF X

TX FIFO underflow has occurred TFUF X

RX FIFO is not empty RFDF X X

RX FIFO overflow occurred RFOF X

A FIFO overrun occurred(1)

1. The FIFO overrun condition is created by ORing the TFUF and RFOF flags together.

TFUF ORed with RFOF X
Doc ID 16886 Rev 6 582/868

Deserial Serial Peripheral Interface (DSPI) RM0045
Transmit FIFO Underflow Interrupt Request (TFUF)

The transmit FIFO underflow request indicates that an underflow condition in the TX FIFO
has occurred. The transmit underflow condition is detected only for DSPI modules operating
in slave mode and SPI configuration. The TFUF bit is set when the TX FIFO of a DSPI
operating in slave mode and SPI configuration is empty, and a transfer is initiated from an
external SPI master. If the TFUF bit is set while the TFUF_RE bit in the DSPIx_RSER is set,
an interrupt request is generated.

Receive FIFO Drain Interrupt or DMA Request (RFDF)

The receive FIFO drain request indicates that the RX FIFO is not empty. The receive FIFO
drain request is generated when the number of entries in the RX FIFO is not zero, and the
RFDF_RE bit in the DSPIx_RSER is set. The RFDF_DIRS bit in the DSPIx_RSER selects
whether a DMA request or an interrupt request is generatedt.

Receive FIFO Overflow Interrupt Request (RFOF)

The receive FIFO overflow request indicates that an overflow condition in the RX FIFO has
occurred. A receive FIFO overflow request is generated when RX FIFO and shift register are
full and a transfer is initiated. The RFOF_RE bit in the DSPIx_RSER must be set for the
interrupt request to be generated.

Depending on the state of the ROOE bit in the DSPIx_MCR, the data from the transfer that
generated the overflow is either ignored or shifted in to the shift register. If the ROOE bit is
set, the incoming data is shifted in to the shift register. If the ROOE bit is negated, the
incoming data is ignored.

FIFO Overrun Request (TFUF) or (RFOF)

The FIFO overrun request indicates that at least one of the FIFOs in the DSPI has exceeded
its capacity. The FIFO overrun request is generated by logically OR’ing together the RX
FIFO overflow and TX FIFO underflow signals.

23.6.8 Power saving features

The DSPI supports the following power-saving strategies:

● External Stop mode

● Module disable mode—clock gating of non-memory mapped logic

● Clock gating of slave interface signals and clock to memory-mapped logic

The External Stop Mode requires a block external to the DSPI to implement the SoC power
management and clock gating control. All power saving features require logic external to the
DSPI.

External Stop mode

When a request is made to enter External Stop Mode, the DSPI block acknowledges the
request by negating ipg_stop_ack. When the DSPI is ready to have its clocks shut off the
ipg_stop_ack signal is asserted. If a serial transfer is in progress, the DSPI waits until it
reaches the frame boundary before it asserts ipg_stop_ack. While the clocks are shut off,
the DSPI memory-mapped logic is not accessible. The states of the interrupt and DMA
request signals cannot be changed while in External Stop Mode.
583/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)
Module Disable mode

Module disable mode is a module-specific mode that the DSPI can enter to save power.
Host software can initiate the module disable mode by writing a ‘1’ to the MDIS bit in the
DSPIx_MCR. In module disable mode, the DSPI is in a dormant state, but the memory
mapped registers are still accessible. Certain read or write operations have a different affect
when the DSPI is in the module disable mode. Reading the RX FIFO pop register does not
change the state of the RX FIFO. Likewise, writing to the TX FIFO push register does not
change the state of the TX FIFO. Clearing either of the FIFOs does not have any effect in
the module disable mode. Changes to the DIS_TXF and DIS_RXF fields of the DSPIx_MCR
does not have any affect in the module disable mode. In the module disable mode, all status
bits and register flags in the DSPI return the correct values when read, but writing to them
has no affect. Writing to the DSPIx_TCR during module disable mode does not have an
effect. Interrupt and DMA request signals cannot be cleared while in the module disable
mode.

Slave interface signal gating

The DSPI module enable signal is used to gate slave interface signals such as address,
byte enable, read/write and data. This prevents toggling slave interface signals from
consuming power unless the DSPI is accessed.

23.7 Initialization and application information

23.7.1 How to change queues

DSPI queues are not part of the DSPI module, but the DSPI includes features in support of
queue management. Queues are primarily supported in SPI configuration. This section
presents an example of how to change queues for the DSPI.
Doc ID 16886 Rev 6 584/868

Deserial Serial Peripheral Interface (DSPI) RM0045
1. The last command word from a queue is executed. The EOQ bit in the command word
is set to indicate to the DSPI that this is the last entry in the queue.

2. At the end of the transfer, corresponding to the command word with EOQ set is
sampled, the EOQ flag (EOQF) in the DSPIx_SR is set.

3. The setting of the EOQF flag disables both serial transmission, and serial reception of
data, putting the DSPI in the STOPPED state. The TXRXS bit is negated to indicate the
STOPPED state.

4. The eDMA continues to fill TX FIFO until it is full or step 5 occurs.

5. Disable DSPI DMA transfers by disabling the DMA enable request for the DMA channel
assigned to TX FIFO and RX FIFO. This is done by clearing the corresponding DMA
enable request bits in the eDMA controller.

6. Ensure all received data in RX FIFO has been transferred to memory receive queue by
reading the RXCNT in DSPIx_SR or by checking RFDF in the DSPIx_SR after each
read operation of the DSPIx_POPR.

7. Modify DMA descriptor of TX and RX channels for “new” queues.

8. Flush TX FIFO by writing a ‘1’ to the CLR_TXF bit in the DSPIx_MCR register and flush
the RX FIFO by writing a ‘1’ to the CLR_RXF bit in the DSPIx_MCR register.

9. Clear transfer count either by setting CTCNT bit in the command word of the first entry
in the new queue or via CPU writing directly to SPI_TCNT field in the DSPIx_TCR.

10. Enable DMA channel by enabling the DMA enable request for the DMA channel
assigned to the DSPI TX FIFO, and RX FIFO by setting the corresponding DMA set
enable request bit.

11. Enable serial transmission and serial reception of data by clearing the EOQF bit.

23.7.2 Baud rate settings

Table 306 shows the baud rate that is generated based on the combination of the baud rate
prescaler PBR and the baud rate scaler BR in the DSPIx_CTARs. The values are calculated
at a 48 MHz system frequency.
585/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

Table 306. Baud rate values

Baud rate divider prescaler values

(DSPI_CTAR[PBR])

2 3 5 7
B

au
d

 r
at

e
sc

al
er

 v
al

u
es

 (
D

S
P

I_
C

TA
R

[B
R

])

2 12 MHz 8 MHz 4.80 MHz 3.43 MHz

4 6 MHz 4 MHz 2.40 MHz 1.71 MHz

6 4 MHz 2.67 MHz 1.60 MHz 1.14 MHz

8 3 MHz 2 MHz 1.20 MHz 0.86 MHz

16 1.50MHz 1 MHz 600 kHz 428.57 kHz

32 750 kHz 500 kHz 300 kHz 214.29 kHz

64 375 kHz 250 kHz 150 kHz 107.14 kHz

128 187.50 kHz 125 kHz 75 kHz 53.57 kHz

256 93.75 kHz 62.50 kHz 37.50 kHz 26.79 kHz

512 46.88 kHz 31.25 kHz 18.75 kHz 13.39 kHz

1024 23.44 kHz 15.63 kHz 9.38 kHz 6.70 kHz

2048 11.72 kHz 7.81 kHz 4.69 kHz 3.35 kHz

4096 5.86 kHz 3.91 kHz 2.34 kHz 1.67 kHz

8192 2.93 kHz 1.95 kHz 1.17 kHz 837 Hz

16384 1.46 kHz 976.56 Hz 585.94 Hz 418.53 Hz

32768 732.42 Hz 488.28 Hz 292.97 Hz 209.26 Hz
Doc ID 16886 Rev 6 586/868

Deserial Serial Peripheral Interface (DSPI) RM0045
23.7.3 Delay settings

Table 307 shows the values for the delay after transfer (tDT) that can be generated based on
the prescaler values and the scaler values set in the DSPIx_CTARs. The values calculated
assume a 48 MHz system frequency.

23.7.4 Calculation of FIFO pointer addresses

The user has complete visibility of the TX and RX FIFO contents through the FIFO registers,
and valid entries can be identified through a memory mapped pointer and a memory
mapped counter for each FIFO. The pointer to the first-in entry in each FIFO is memory
mapped. For the TX FIFO the first-in pointer is the transmit next pointer (TXNXTPTR). For
the RX FIFO the first-in pointer is the pop next pointer (POPNXTPTR).

See Section , Transmit First In First Out (TX FIFO) buffering mechanism, and Section ,
Receive First In First Out (RX FIFO) buffering mechanism, for details on the FIFO operation.
The TX FIFO is chosen for the illustration, but the concepts carry over to the RX FIFO.

Figure 314 illustrates the concept of first-in and last-in FIFO entries along with the FIFO
counter.

Table 307. Delay values

Delay prescaler values (DSPI_CTAR[PDT])

1 3 5 7

D
el

ay
 s

ca
le

r
va

lu
es

 (
D

S
P

I_
C

TA
R

[D
T

])

2 41.67 ns 125 ns 208.33 ns 291.67 ns

4 83.33 ns 250 ns 416.67 ns 583.33 ns

8 166.67 ns 500 ns 833.33 ns 1.17 µs

16 333.33 ns 1 µs 1.67 µs 2.33 µs

32 666.67 ns 2 µs 3.33 µs 4.67 µs

64 1.33 µs 4 µs 6.67 µs 9.33 µs

128 2.67 µs 8 µs 13.33 µs 18.67 µs

256 5.33 µs 16 µs 26.67 µs 37.33 µs

512 10.67 µs 32 µs 53.33 µs 74.67 µs

1024 21.33 µs 64 µs 106.67 µs 149.33 µs

2048 42.67 µs 128 µs 213.33 µs 298.67 µs

4096 85.33 µs 256 µs 426.67 µs 597.33 µs

8192 170.67 µs 512 µs 853.33 µs 1.19 ms

16384 341.33 µs 1.02 ms 1.71 ms 2.39 ms

32768 682.67 µs 2.05 ms 3.41 ms 4.78 ms

65536 1.37 ms 4.10 ms 6.83 ms 9.56 ms
587/868 Doc ID 16886 Rev 6

RM0045 Deserial Serial Peripheral Interface (DSPI)

Figure 314. TX FIFO pointers and counter

Address calculation for the first-in entry and last-in
entry in the TX FIFO

The memory address of the first-in entry in the TX FIFO is computed by the following
equation:

First-in entry address = TXFIFO base + 4 (TXNXTPTR)

The memory address of the last-in entry in the TX FIFO is computed by the following
equation:

Last-in entry address = TXFIFO base + 4 x [(TXCTR + TXNXTPTR - 1)
modulo TXFIFO depth]

where:
TXFIFO base = base address of transmit FIFO

TXCTR = transmit FIFO counter

TXNXTPTR = transmit next pointer

TX FIFO depth = transmit FIFO depth, implementation specific

Address calculation for the first-in entry and last-in
entry in the RX FIFO

The memory address of the first-in entry in the RX FIFO is computed by the following
equation:

First-in entry address = RXFIFO base + 4 x (POPNXTPTR)

The memory address of the last-in entry in the RX FIFO is computed by the following
equation:

Last-in entry address = RXFIFO base + 4 x [(RXCTR + POPNXTPTR - 1)
modulo RXFIFO depth]

Entry C

Entry A (first in)

– 1

Entry B

Entry D (last in)

TX FIFO base

Push TX FIFO

TX FIFO counter

Shift register SOUT

register

Transmit next
data pointer

–

–

–

–

+ 1

(TXNXTPTR)
Doc ID 16886 Rev 6 588/868

Deserial Serial Peripheral Interface (DSPI) RM0045
where:
RXFIFO base = base address of receive FIFO

RXCTR = receive FIFO counter

POPNXTPTR = pop next pointer

RX FIFO depth = receive FIFO depth, implementation specific
589/868 Doc ID 16886 Rev 6

RM0045 Timers
24 Timers

24.1 Introduction
This chapter describes the timer modules implemented on the microcontroller:

● System Timer Module (STM)

● Enhanced Modular IO Subsystem (eMIOS)

● Periodic Interrupt Timer (PIT)

The microcontroller also has a Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
module. The main purpose of this is to provide a periodic device wakeup source.

24.2 Technical overview
This section gives a technical overview of each of the timers as well as detailing the pins
that can be used to access the timer peripherals if applicable.

Figure 315 details the interaction between the timers and the eDMA, INTC, CTU, and ADC.
Doc ID 16886 Rev 6 590/868

Timers RM0045

Figure 315. Interaction between timers and relevant peripherals

DMA / MUX

INTC

eMIOS 0 CTU
eMIOS0

CH[0..22, 24..27] Trigger
[0..22, 24..27]

PIT

Trigger[23]
PIT_CH[3]

CH[0..27]

eMIOS0
CH[0,1,9,18,25,26] Mux[17..22]

PIT_CH[0,1]
Trigger[1,2]

IRQ[141..154]
eMIOS0

CH[0..27]*

IRQ[59..61, 127]PIT[0..2, 3]

PIT[0..3]

ADC 0
(12-bit)

27

1

6

2

14

4

PIT_CH[2]

PIT Trigger for INJECTED ADC Conversions

1

CTU triggers for
all ADC channels

Single ADC
conversion per
CTU channel

Note*

There are 16 interrupt requests from the eMIOS to the INTC. eMIOS
channels are routed to the interrupt controller in pairs for example
CH[0,1] CH[2,3]

STM

CH[0..3]

IRQ[30..33]
STM_CH[0..3]4
591/868 Doc ID 16886 Rev 6

RM0045 Timers
24.2.1 Overview of the STM

The STM is a 32-bit free running up-counter clocked by the system clock with a configurable
8-bit clock pre-scaler (divide by 1 to 256). The counter is disabled out of reset and must
therefore be enabled by software prior to use. The counter value can be read at any time.

The STM has four 32-bit compare channels. Each channel can generate a unique interrupt
on an exact match event with the free running counter.

The STM is often used to analyse code execution times. By starting the STM and reading
the timer before and after a task or function, you can make an accurate measurement of the
time taken in clock cycles to perform the task.

The STM can be configured to stop (freeze) or continue to run in debug mode and is
available for use in all operating mode where the system clock is present (not STANDBY or
certain STOP mode configurations)

There are no external pins associated with the STM.

24.2.2 Overview of the eMIOS

Each eMIOS offers a combination of PWM, Output Capture and Input Compare functions.
There are different types of channel implemented and not every channel supports every
eMIOS function. The channel functionality also differs between each eMIOS module. See
Section 24.4, Enhanced Modular IO Subsystem (eMIOS), for more details.

Each channel has its own independent 16-bit counter. To allow synchronization between
channels, there are a number of shared counter busses that can be used as a common
timing reference. These counter buses can be used in combination with the individual
channel counters to provide advanced features such as centre aligned PWM with dead time
insertion.

Once configured, the eMIOS needs very little CPU intervention. Interrupts, eDMA requests
and CTU trigger requests can be raised based on eMIOS flag and timeout events.

The eMIOS is clocked from the system clock via peripheral clock group 3 (with a maximum
permitted clock frequency of 64 MHz). The eMIOS can be used in all modes where the
system clock is available (which excludes STANDBY mode and STOP mode when the
system clock is turned off). The eMIOS has an option to allow the eMIOS counters to freeze
or to continue running in debug mode.

The CTU allows an eMIOS event to trigger a single ADC conversion via the CTU without any
CPU intervention. Without the CTU, the eMIOS would have to trigger an interrupt request.
The respective ISR would then perform a software triggered ADC conversion. This not only
uses CPU resource, but also increases the latency between the eMIOS event and the ADC
trigger.

The eMIOS "Output Pulse Width Modulation with Trigger" mode (see Section ,) allows a
customisable trigger point to be defined at any point in the waveform period. This is
extremely useful for LED lighting applications where the trigger can be set to a point where
the PWM output is high but after the initial inrush current to the LED has occurred. The
PWM trigger can then cause the CTU to perform a single ADC conversion which in turn
measures the operating conditions of the LED to ensure it is working within specification. A
watchdog feature on the ADC allows channels to be monitored and if the results fall outwith
a specific range an interrupt is triggered. This means that all of the measurement is without
CPU intervention if the results are within range.
Doc ID 16886 Rev 6 592/868

Timers RM0045
To make it easier to plan which pins to use for the eMIOS, Table 308 show the eMIOS
channel numbers that are available on each pin. The color shading matches the channel
configuration diagram in the eMIOS section.

24.2.3 Overview of the PIT

The PIT module consists of 4 Periodic Interrupt Timers (PITs) clocked from the system
clock.

Out of reset, the PITis disabled. There is a global disable control bit for all of the PIT timers.
Before using the timers, software must clear the appropriate disabled bit. Each of the PIT
timers are effectively standalone entities and each have their own timer and control
registers.

The PIT timers are 32-bit count down timers. To use them, you must first program an initial
value into the LDVAL register. The timer will then start to count down and can be read at any
time. Once the timer reaches 0x0000_0000, a flag is set and the previous value is
automatically re-loaded into the LDVAL register and the countdown starts again. The flag
event can be routed to a dedicated INTC interrupt if desired.

The PIT is also used to trigger other events:

● 2 of the PIT channels can be used as an eDMA trigger

● 1 PIT channels can be used to trigger a CTU ADC conversion (single)

● 1 PIT channel can be used to directly trigger injected conversions on the ADC

The timers can be configured to stop (freeze) or to continue to run in debug mode. The PITis
available in all modes where a system clock is generated.

There are no external pins associated with the PIT.

Table 308. eMIOS_0 channel to pin mapping

Channel
Pin function

Channel
Pin function

ALT1 ALT2 ALT3 ALT1 ALT2 ALT3

UC[0] PA[0] PA[14] UC[16] PE[0]

UC[1] PA[1] PA[15] UC[17] PE[1]

UC[2] PA[2] UC[18] PE[2]

UC[3] PA[3], PB[11] PC[8] UC[19] PE[3]

UC[4] PA[4], PB[12] UC[20] PE[4]

UC[5] PA[5], PB[13] UC[21] PE[5]

UC[6] PA[6], PB[14] UC[22] PE[6] PE[8]

UC[7] PA[7], PB[15] PC[9] UC[23] PE[7] PE[9]

UC[8] PA[8] UC[24] PE[11] PD[12]

UC[9] PA[9] UC[25] PD[13]

UC[10] PA[10] UC[26] PD[14]

UC[11] PA[11] UC[27] PD[15]

UC[12] PC[12]

UC[13] PC[13] PA[0]

UC[14] PC[14] PA[8]

UC[15] PC[15]
593/868 Doc ID 16886 Rev 6

RM0045 Timers
24.3 System Timer Module (STM)

24.3.1 Introduction

Overview

The System Timer Module (STM) is a 32-bit timer designed to support commonly required
system and application software timing functions. The STM includes a 32-bit up counter and
four 32-bit compare channels with a separate interrupt source for each channel. The counter
is driven by the system clock divided by an 8-bit prescale value (1 to 256).

Features

The STM has the following features:

● One 32-bit up counter with 8-bit prescaler

● Four 32-bit compare channels

● Independent interrupt source for each channel

● Counter can be stopped in debug mode

Modes of operation

The STM supports two device modes of operation: normal and debug. When the STM is
enabled in normal mode, its counter runs continuously. In debug mode, operation of the
counter is controlled by the FRZ bit in the STM_CR register. If the FRZ bit is set, the counter
is stopped in debug mode, otherwise it continues to run.

24.3.2 External signal description

The STM does not have any external interface signals.

24.3.3 Memory map and register definition

The STM programming model has fourteen 32-bit registers. The STM registers can only be
accessed using 32-bit (word) accesses. Attempted references using a different size or to a
reserved address generates a bus error termination.

Memory map

The STM memory map is shown in Table 309.

Table 309. STM memory map

Base address: 0xFFF3_C000

Address offset Register Location

0x0000 STM Control Register (STM_CR) on page 24-595

0x0004 STM Counter Value (STM_CNT) on page 24-596

0x0008–0x000C Reserved

0x0010 STM Channel 0 Control Register (STM_CCR0) on page 24-596

0x0014 STM Channel 0 Interrupt Register (STM_CIR0) on page 24-597

0x0018 STM Channel 0 Compare Register (STM_CMP0) on page 24-598
Doc ID 16886 Rev 6 594/868

Timers RM0045
Register descriptions

The following sections detail the individual registers within the STM programming model.

STM Control Register (STM_CR)

The STM Control Register (STM_CR) includes the prescale value, freeze control and timer
enable bits.

0x001C Reserved

0x0020 STM Channel 1 Control Register (STM_CCR1) on page 24-596

0x0024 STM Channel 1 Interrupt Register (STM_CIR1) on page 24-597

0x0028 STM Channel 1 Compare Register (STM_CMP1) on page 24-598

0x002C Reserved

0x0030 STM Channel 2 Control Register (STM_CCR2) on page 24-596

0x0034 STM Channel 2 Interrupt Register (STM_CIR2) on page 24-597

0x0038 STM Channel 2 Compare Register (STM_CMP2) on page 24-598

0x003C Reserved

0x0040 STM Channel 3 Control Register (STM_CCR3) on page 24-596

0x0044 STM Channel 3 Interrupt Register (STM_CIR3) on page 24-597

0x0048 STM Channel 3 Compare Register (STM_CMP3) on page 24-598

0x004C–0x3FFF Reserved

Table 309. STM memory map (continued)

Base address: 0xFFF3_C000

Address offset Register Location

Figure 316. STM Control Register (STM_CR)

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CPS

0 0 0 0 0 0
FRZ TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
595/868 Doc ID 16886 Rev 6

RM0045 Timers

STM Count Register (STM_CNT)

The STM Count Register (STM_CNT) holds the timer count value.

STM Channel Control Register (STM_CCRn)

The STM Channel Control Register (STM_CCRn) has the enable bit for channel n of the
timer.

Table 310. STM_CR field descriptions

Field Description

CPS

Counter Prescaler. Selects the clock divide value for the prescaler (1 - 256).

0x00 = Divide system clock by 1

0x01 = Divide system clock by 2
...

0xFF = Divide system clock by 256

FRZ
Freeze. Allows the timer counter to be stopped when the device enters debug mode.

0 = STM counter continues to run in debug mode.
1 = STM counter is stopped in debug mode.

TEN
Timer Counter Enabled.
0 = Counter is disabled.
1 = Counter is enabled.

Figure 317. STM Count Register (STM_CNT)

Offset: 0x004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CNT

W

Reset 0

Table 311. STM_CNT field descriptions

Field Description

CNT
Timer count value used as the time base for all channels. When enabled, the counter increments at the
rate of the system clock divided by the prescale value.
Doc ID 16886 Rev 6 596/868

Timers RM0045

STM Channel Interrupt Register (STM_CIRn)

The STM Channel Interrupt Register (STM_CIRn) has the interrupt flag for channel n of the
timer.

Figure 318. STM Channel Control Register (STM_CCRn)

Offset: 0x10+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 312. STM_CCRn field descriptions

Field Description

CEN
Channel Enable.
0 = The channel is disabled.
1 = The channel is enabled.

Figure 319. STM Channel Interrupt Register (STM_CIRn)

Offset: 0x14+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 313. STM_CIRn field descriptions

Field Description

CIF
Channel Interrupt Flag
0 = No interrupt request.
1 = Interrupt request due to a match on the channel.
597/868 Doc ID 16886 Rev 6

RM0045 Timers
STM Channel Compare Register (STM_CMPn)

The STM channel compare register (STM_CMPn) holds the compare value for channel n.

24.3.4 Functional description

The System Timer Module (STM) is a 32-bit timer designed to support commonly required
system and application software timing functions. The STM includes a 32-bit up counter and
four 32-bit compare channels with a separate interrupt source for each channel.

The STM has one 32-bit up counter (STM_CNT) that is used as the time base for all
channels. When enabled, the counter increments at the system clock frequency divided by a
prescale value. The STM_CR[CPS] field sets the divider to any value in the range from 1 to
256. The counter is enabled with the STM_CR[TEN] bit. When enabled in normal mode the
counter continuously increments. When enabled in debug mode the counter operation is
controlled by the STM_CR[FRZ] bit. When the STM_CR[FRZ] bit is set, the counter is
stopped in debug mode, otherwise it continues to run in debug mode. The counter rolls over
at 0xFFFF_FFFF to 0x0000_0000 with no restrictions at this boundary.

The STM has four identical compare channels. Each channel includes a channel control
register (STM_CCRn), a channel interrupt register (STM_CIRn) and a channel compare
register (STM_CMPn). The channel is enabled by setting the STM_CCRn[CEN] bit. When
enabled, the channel will set the STM_CIR[CIF] bit and generate an interrupt request when
the channel compare register matches the timer counter. The interrupt request is cleared by
writing a 1 to the STM_CIRn[CIF] bit. A write of 0 to the STM_CIRn[CIF] bit has no effect.

Note: STM counter does not advance when the system clock is stopped.

24.4 Enhanced Modular IO Subsystem (eMIOS)

24.4.1 Introduction

Overview of the eMIOS module

The eMIOS provides functionality to generate or measure time events. Each channel
provides a subset of the functionality available in the unified channel, at a resolution of 16
bits, and provides a user interface that is consistent with previous eMIOS implementations.

Figure 320. STM Channel Compare Register (STM_CMPn)

Offset: 0x18+0x10*n Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CMP

W

Reset 0

Table 314. STM_CMPn field descriptions

Field Description

CMP
Compare value for channel n. If the STM_CCRn[CEN] bit is set and the STM_CMPn register matches
the STM_CNT register, a channel interrupt request is generated and the STM_CIRn[CIF] bit is set.
Doc ID 16886 Rev 6 598/868

Timers RM0045
Features of the eMIOS module

● 1 eMIOS block with 28 channel

– All 28 channels with OPWMT, which can be connected to the CTU

● 1 global prescaler

● 16-bit data registers

● 10 x 16-bit wide counter buses

– Counter buses B, C, D, and E can be driven by Unified Channel 0, 8, 16, and 24,
respectively

– Counter bus A is driven by the Unified Channel #23

– Several channels have their own time base, alternative to the counter buses

– Shared timebases through the counter buses

– Synchronization among timebases

● Control and Status bits grouped in a single register

● Shadow FLAG register

● State of the UC can be frozen for debug purposes

● Motor control capability

Modes of operation

The Unified Channels can be configured to operate in the following modes:

● General purpose input/output

● Single Action Input Capture

● Single Action Output Compare

● Input Pulse Width Measurement

● Input Period Measurement

● Double Action Output Compare

● Modulus Counter

● Modulus Counter Buffered

● Output Pulse Width and Frequency Modulation Buffered

● Output Pulse Width Modulation Buffered

● Output Pulse Width Modulation with Trigger

● Center Aligned Output Pulse Width Modulation Buffered

These modes are described in Section , UC modes of operation.

Each channel can have a specific set of modes implemented, according to device
requirements.

If an unimplemented mode (reserved) is selected, the results are unpredictable such as
writing a reserved value to MODE[0:6] in Section , eMIOS UC Control Register
(EMIOSC[n]).

Channel implementation

Figure 321 shows the channel configuration of the eMIOS blocks.
599/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 321. Channel configuration

Key

DAOC Dual Action Output Compare

GPIO General Purpose Input Output

IPM Input Period Measurement

IPWM Input Pulse Width Measurement

MC Modulus Counter

MCB Buffered Modulus Counter

OPWMB Buffered Output Pulse Width Modulation

OPWMT Buffered Output Pulse Width Modulation with Trigger

OPWFMB Buffered Output Pulse Width and Frequency Modulation

OPWMCB Center Aligned Output PWM Buffered with Dead-Time

SAIC Single Action Input Capture

SAOC Single Action Output Compare

Ch0
Ch1
Ch2
Ch3
Ch4
Ch5
Ch6
Ch7

Ch8
Ch9
Ch10
Ch11
Ch12
Ch13
Ch14
Ch15

Ch16
Ch17
Ch18
Ch19

Ch24
Ch25
Ch26
Ch27

Ch20
Ch21
Ch22
Ch23

Global
Prescaler

8-bit Counter

C
o
u
n
te

r
B

u
s_

B

C
o
u
n
te

r
B

u
s_

A C
o
u

n
te

r
B

u
s_

C
C

o
u

n
te

r
B

u
s_

D
C

o
u
n
te

r
B

u
s_

E

Bus
Clk

Channel
Functionality

TYPE X

TYPE Y

 • MC, MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • SAIC, SAOC
 • GPIO

TYPE H

 • OPWMT
 • OPWMB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO

 • OPWMT
 • OPWMB
 • SAIC, SAOC
 • GPIO

eMIOS_0

TYPE G

 • MCB
 • OPWMT
 • OPWMB
 • OPWFMB
 • OPWMCB
 • IPWM, IPM
 • DAOC
 • SAIC, SAOC
 • GPIO
Doc ID 16886 Rev 6 600/868

Timers RM0045
Channel mode selection

Channel modes are selected using the mode selection bits MODE[0:6] in the eMIOS UC
Control Register (EMIOSC[n]). Table 327 provides the specific mode selection settings for
the eMIOS implementation on this device.

24.4.2 External signal description

For information on eMIOS external signals on this device, please refer to the signal
description chapter of the reference manual.

24.4.3 Memory map and register description

Memory maps

The overall address map organization is shown in Table 315.

Unified Channel memory map

Table 315. eMIOS memory map

Base address: 0xC3FA_0000

Address offset Description Location

0x000–0x003 eMIOS Module Configuration Register (EMIOSMCR)
on page 24-

602

0x004–0x007 eMIOS Global FLAG (EMIOSGFLAG) Register
on page 24-

604

0x008–0x00B eMIOS Output Update Disable (EMIOSOUDIS) Register
on page 24-

604

0x00C–0x00F eMIOS Disable Channel (EMIOSUCDIS) Register
on page 24-

605

0x010–0x01F Reserved —

0x020–0x11F
Channel [0]

to

Channel [7]

—

0x120–0x21F

Channel [8]

to

Channel [15]

—

0x220–0x31F

Channel [16]

to

Channel [23]

—

0x320–0x39F

Channel [24]

to
Channel [27]

—

0x3A0–0xFFF Reserved —
601/868 Doc ID 16886 Rev 6

RM0045 Timers
Addresses of Unified Channel registers are specified as offsets from the channel’s base
address; otherwise the eMIOS base address is used as reference.

Table 316 describes the Unified Channel memory map.

Register description

All control registers are 32 bits wide. Data registers and counter registers are 16 bits wide.

eMIOS Module Configuration Register (EMIOSMCR)

The EMIOSMCR contains global control bits for the eMIOS block.

Table 316. Unified Channel memory map

UC base address Description Location

0x00 eMIOS UC A Register (EMIOSA[n]) on page 24-606

0x04 eMIOS UC B Register (EMIOSB[n]) on page 24-606

0x08 eMIOS UC Counter Register (EMIOSCNT[n]) on page 24-607

0x0C eMIOS UC Control Register (EMIOSC[n]) on page 24-608

0x10 eMIOS UC Status Register (EMIOSS[n]) on page 24-612

0x14 eMIOS UC Alternate A Register (EMIOSALTA[n]) on page 24-613

0x18–0x1F Reserved —

Figure 322. eMIOS Module Configuration Register (EMIOSMCR)

Address: eMIOS base address +0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0
MDIS FRZ

G
T

B
E 0

G
P

R
E

N 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
GPRE

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 602/868

Timers RM0045

Table 317. EMIOSMCR field descriptions

Field Description

MDIS

Module Disable

Puts the eMIOS in low power mode. The MDIS bit is used to stop the clock of the block, except the
access to registers EMIOSMCR, EMIOSOUDIS and EMIOSUCDIS.

1 = Enter low power mode
0 = Clock is running

FRZ

Freeze
Enables the eMIOS to freeze the registers of the Unified Channels when Debug Mode is requested
at MCU level. Each Unified Channel should have FREN bit set in order to enter freeze state. While
in Freeze state, the eMIOS continues to operate to allow the MCU access to the Unified Channels
registers. The Unified Channel will remain frozen until the FRZ bit is written to ‘0’ or the MCU exits
Debug mode or the Unified Channel FREN bit is cleared.
1 = Stops Unified Channels operation when in Debug mode and the FREN bit is set in the
EMIOSC[n] register
0 = Exit freeze state

GTBE

Global Time Base Enable
The GTBE bit is used to export a Global Time Base Enable from the module and provide a method
to start time bases of several blocks simultaneously.
1 = Global Time Base Enable Out signal asserted

0 = Global Time Base Enable Out signal negated

Note: The Global Time Base Enable input pin controls the internal counters. When asserted,
Internal counters are enabled. When negated, Internal counters disabled.

GPREN

Global Prescaler Enable

The GPREN bit enables the prescaler counter.

1 = Prescaler enabled
0 = Prescaler disabled (no clock) and prescaler counter is cleared

GPRE
Global Prescaler
The GPRE bits select the clock divider value for the global prescaler, as shown in Table 318.

Table 318. Global prescaler clock divider

GPRE Divide ratio

00000000 1

00000001 2

00000010 3

00000011 4

.

.

.

.

.

.

.

.

11111110 255

11111111 256
603/868 Doc ID 16886 Rev 6

RM0045 Timers
eMIOS Global FLAG (EMIOSGFLAG) Register

The EMIOSGFLAG is a read-only register that groups the flag bits (F[27:0]) from all
channels. This organization improves interrupt handling on simpler devices. Each bit relates
to one channel.

For Unified Channels these bits are mirrors of the FLAG bits in the EMIOSS[n] register.

eMIOS Output Update Disable (EMIOSOUDIS) Register

Figure 323. eMIOS Global FLAG (EMIOSGFLAG) Register

Address: eMIOS base address +0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 F27 F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R F15 F14 F13 F12 F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 319. EMIOSGFLAG field descriptions

Field Description

Fn Channel [n] Flag bit

Figure 324. eMIOS Output Update Disable (EMIOSOUDIS) Register

Address: eMIOS base address +0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

O
U

27

O
U

26

O
U

25

O
U

24

O
U

23

O
U

22

O
U

21

O
U

20

O
U

19

O
U

18

O
U

17

O
U

16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
U

15

O
U

14

O
U

13

O
U

12

O
U

11

O
U

10 OU9 OU8 OU7 OU6 OU5 OU4 OU3 OU2 OU1 OU0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 604/868

Timers RM0045
eMIOS Disable Channel (EMIOSUCDIS) Register

Table 320. EMIOSOUDIS field descriptions

Field Description

OUn

Channel [n] Output Update Disable bit

When running MC, MCB or an output mode, values are written to registers A2 and B2. OU[n] bits
are used to disable transfers from registers A2 to A1 and B2 to B1. Each bit controls one channel.

1 = Transfers disabled
0 = Transfer enabled. Depending on the operation mode, transfer may occur immediately or in the
next period. Unless stated otherwise, transfer occurs immediately.

Figure 325. eMIOS Enable Channel (EMIOSUCDIS) Register

Address: eMIOS base address +0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0

C
H

D
IS

27

C
H

D
IS

26

C
H

D
IS

25

C
H

D
IS

24

C
H

D
IS

23

C
H

D
IS

22

C
H

D
IS

21

C
H

D
IS

20

C
H

D
IS

19

C
H

D
IS

18

C
H

D
IS

17

C
H

D
IS

16

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

C
H

D
IS

15

C
H

D
IS

14

C
H

D
IS

13

C
H

D
IS

12

C
H

D
IS

11

C
H

D
IS

10

C
H

D
IS

9

C
H

D
IS

8

C
H

D
IS

7

C
H

D
IS

6

C
H

D
IS

5

C
H

D
IS

4

C
H

D
IS

3

C
H

D
IS

2

C
H

D
IS

1

C
H

D
IS

0

W

Reset 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Table 321. EMIOSUCDIS field descriptions

Field Description

CHDISn

Enable Channel [n] bit
The CHDIS[n] bit is used to disable each of the channels by stopping its respective clock.

1 = Channel [n] disabled

0 = Channel [n] enabled
605/868 Doc ID 16886 Rev 6

RM0045 Timers
eMIOS UC A Register (EMIOSA[n])

Depending on the mode of operation, internal registers A1 or A2, used for matches and
captures, can be assigned to address EMIOSA[n]. Both A1 and A2 are cleared by reset.
Figure 322 summarizes the EMIOSA[n] writing and reading accesses for all operation
modes. For more information see Section , UC modes of operation.

eMIOS UC B Register (EMIOSB[n])

Depending on the mode of operation, internal registers B1 or B2 can be assigned to
address EMIOSB[n]. Both B1 and B2 are cleared by reset. Table 322 summarizes the
EMIOSB[n] writing and reading accesses for all operation modes. For more information see
Section , UC modes of operation.

Depending on the channel configuration, it may have EMIOSB register or not. This means
that, if at least one mode that requires the register is implemented, then the register is
present; otherwise it is absent.

Figure 326. eMIOS UC A Register (EMIOSA[n])

Address: UC[n] base address + 0x00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
A

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 327. eMIOS UC B Register (EMIOSB[n])

Address: UC[n] base address + 0x04

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
B

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 606/868

Timers RM0045

eMIOS UC Counter Register (EMIOSCNT[n])

The EMIOSCNT[n] register contains the value of the internal counter. When GPIO mode is
selected or the channel is frozen, the EMIOSCNT[n] register is read/write. For all others
modes, the EMIOSCNT[n] is a read-only register. When entering some operation modes,
this register is automatically cleared (refer to Section , UC modes of operation for details).

Depending on the channel configuration it may have an internal counter or not. It means that
if at least one mode that requires the counter is implemented, then the counter is present;
otherwise it is absent.

Table 322. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment

Operation mode
Register access

write read write read alt write alt read

GPIO A1, A2 A1 B1,B2 B1 A2 A2

SAIC(1)

1. In these modes, the register EMIOSB[n] is not used, but B2 can be accessed.

— A2 B2 B2 — —

SAOC(1) A2 A1 B2 B2 — —

IPWM — A2 — B1 — —

IPM — A2 — B1 — —

DAOC A2 A1 B2 B1 — —

MC(1) A2 A1 B2 B2 — —

OPWMT A1 A1 B2 B1 A2 A2

MCB(1) A2 A1 B2 B2 — —

OPWFMB A2 A1 B2 B1 — —

OPWMCB A2 A1 B2 B1 — —

OPWMB A2 A1 B2 B1 — —

Figure 328. eMIOS UC Counter Register (EMIOSCNT[n])

Address: UC[n] base address + 0x08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W(1)

1. In GPIO mode or Freeze action, this register is writable.

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R C

W(1)

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
607/868 Doc ID 16886 Rev 6

RM0045 Timers
Channels of type X and G have the internal counter enabled, so their timebase can be
selected by channel's BSL[1:0]=11:eMIOS_A - channels 0 to 8, 16, 23 and 24, eMIOS_B =
channels 0, 8, 16, 23 and 24. Other channels from the above list don't have internal
counters.

eMIOS UC Control Register (EMIOSC[n])

The Control register gathers bits reflecting the status of the UC input/output signals and the
overflow condition of the internal counter, as well as several read/write control bits.

Figure 329. eMIOS UC Control Register (EMIOSC[n])

Address: UC[n] base address + 0x0C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
R

E
N 0 0 0

UCPRE

U
C

P
R

E
N

DMA
0

IF FCK FEN
0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0

BSL

E
D

S
E

L

E
D

P
O

L

MODE
W

F
O

R
C

M
A

F
O

R
C

M
B

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 323. EMIOSC[n] field descriptions

Field Description

FREN

Freeze Enable bit

The FREN bit, if set and validated by FRZ bit in EMIOSMCR register allows the channel to enter
freeze state, freezing all registers values when in debug mode and allowing the MCU to perform
debug functions.
1 = Freeze UC registers values

0 = Normal operation

UCPRE
Prescaler bits
The UCPRE bits select the clock divider value for the internal prescaler of Unified Channel, as
shown in Table 324.

UCPREN

Prescaler Enable bit

The UCPREN bit enables the prescaler counter.
1 = Prescaler enabled

0 = Prescaler disabled (no clock)
Doc ID 16886 Rev 6 608/868

Timers RM0045
DMA

Direct Memory Access bit

The DMA bit selects if the FLAG generation will be used as an interrupt request, as a DMA request
or as a CTU trigger. The choice between a DMA request or a CTU trigger is determined by the
value of bit TM in the register CTU_EVTCFGRx (refer to the CTU chapter of the reference manual).

1 = Flag/overrun assigned to DMA request or CTU trigger

0 = Flag/overrun assigned to interrupt request

IF
Input Filter

The IF field controls the programmable input filter, selecting the minimum input pulse width that can
pass through the filter, as shown in Table 325. For output modes, these bits have no meaning.

FCK

Filter Clock select bit

The FCK bit selects the clock source for the programmable input filter.

1 = Main clock
0 = Prescaled clock

FEN

FLAG Enable bit
The FEN bit allows the Unified Channel FLAG bit to generate an interrupt signal or a DMA request
signal or a CTU trigger signal (The type of signal to be generated is defined by the DMA bit).
1 = Enable (FLAG will generate an interrupt request or DMA request or a CTU trigger)

0 = Disable (FLAG does not generate an interrupt request or DMA request or a CTU trigger)

FORCMA

Force Match A bit

For output modes, the FORCMA bit is equivalent to a successful comparison on comparator A
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator A, otherwise it has no effect.
1 = Force a match at comparator A

0 = Has no effect

Note: For input modes, the FORCMA bit is not used and writing to it has no effect.

FORCMB

Force Match B bit

For output modes, the FORCMB bit is equivalent to a successful comparison on comparator B
(except that the FLAG bit is not set). This bit is cleared by reset and is always read as zero. This bit
is valid for every output operation mode which uses comparator B, otherwise it has no effect.

1 = Force a match at comparator B

0 = Has not effect
Note: For input modes, the FORCMB bit is not used and writing to it has no effect.

BSL
Bus Select

The BSL field is used to select either one of the counter buses or the internal counter to be used by
the Unified Channel. Refer to Table 326 for details.

Table 323. EMIOSC[n] field descriptions (continued)

Field Description
609/868 Doc ID 16886 Rev 6

RM0045 Timers

EDSEL

Edge Selection bit

For input modes, the EDSEL bit selects whether the internal counter is triggered by both edges of a
pulse or just by a single edge as defined by the EDPOL bit. When not shown in the mode of
operation description, this bit has no effect.

1 = Both edges triggering
0 = Single edge triggering defined by the EDPOL bit

For GPIO in mode, the EDSEL bit selects if a FLAG can be generated.

1 = No FLAG is generated
0 = A FLAG is generated as defined by the EDPOL bit

For SAOC mode, the EDSEL bit selects the behavior of the output flip-flop at each match.

1 = The output flip-flop is toggled
0 = The EDPOL value is transferred to the output flip-flop

EDPOL

Edge Polarity bit
For input modes, the EDPOL bit asserts which edge triggers either the internal counter or an input
capture or a FLAG. When not shown in the mode of operation description, this bit has no effect.
1 = Trigger on a rising edge
0 = Trigger on a falling edge

For output modes, the EDPOL bit is used to select the logic level on the output pin.
1 = A match on comparator A sets the output flip-flop, while a match on comparator B clears it
0 = A match on comparator A clears the output flip-flop, while a match on comparator B sets it

MODE

Mode selection

The MODE field selects the mode of operation of the Unified Channel, as shown in Table 327.
Note: If a reserved value is written to mode the results are unpredictable.

Table 324. UC internalprescaler clock divider

UCPRE Divide ratio

00 1

01 2

10 3

11 4

Table 325. UC input filter bits

IF(1) Minimum input pulse width [FLT_CLK periods]

0000 Bypassed(2)

0001 02

0010 04

0100 08

Table 323. EMIOSC[n] field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 610/868

Timers RM0045

1000 16

all others Reserved

1. Filter latency is 3 clock edges.

2. The input signal is synchronized before arriving to the digital filter.

Table 326. UC BSL bits

BSL Selected bus

00 All channels: counter bus[A]

01

Channels 0 to 7: counter bus[B]
Channels 8 to 15: counter bus[C]

Channels 16 to 23: counter bus[D]

Channels 24 to 27: counter bus[E]

10 Reserved

11 All channels: internal counter

Table 327. Channel mode selection

MODE(1) Mode of operation

0000000 General purpose Input/Output mode (input)

0000001 General purpose Input/Output mode (output)

0000010 Single Action Input Capture

0000011 Single Action Output Compare

0000100 Input Pulse Width Measurement

0000101 Input Period Measurement

0000110 Double Action Output Compare (with FLAG set on B match)

0000111 Double Action Output Compare (with FLAG set on both match)

0001000 – 0001111 Reserved

001000b Modulus Counter (Up counter with clear on match start)

001001b Modulus Counter (Up counter with clear on match end)

00101bb Modulus Counter (Up/Down counter)

0011000 – 0100101 Reserved

0100110 Output Pulse Width Modulation with Trigger

0100111 – 1001111 Reserved

101000b Modulus Counter Buffered (Up counter)

101001b Reserved

10101bb Modulus Counter Buffered (Up/Down counter)

10110b0 Output Pulse Width and Frequency Modulation Buffered

Table 325. UC input filter bits

IF(1) Minimum input pulse width [FLT_CLK periods]
611/868 Doc ID 16886 Rev 6

RM0045 Timers
eMIOS UC Status Register (EMIOSS[n])

10110b1 Reserved

10111b0 Center Aligned Output Pulse Width Modulation Buffered (with trail edge dead-time)

10111b1 Center Aligned Output Pulse Width Modulation Buffered (with lead edge dead-time)

11000b0 Output Pulse Width Modulation Buffered

1100001 – 1111111 Reserved

1. b = adjust parameters for the mode of operation. Refer to Section , UC modes of operation for details.

Table 327. Channel mode selection (continued)

MODE(1) Mode of operation

Figure 330. eMIOS UC Status Register (EMIOSS[n])

Address: UC[n] base address + 0x10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R OVR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

O
V

F
L

0 0 0 0 0 0 0 0 0 0 0 0 UCIN

U
C

O
U

T

F
LA

G

W w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 328. EMIOSS[n] field descriptions

Field Description

OVR

Overrun bit
The OVR bit indicates that FLAG generation occurred when the FLAG bit was already set.

1 = Overrun has occurred

0 = Overrun has not occurred

OVFL

Overflow bit

The OVFL bit indicates that an overflow has occurred in the internal counter. OVFL must be cleared
by software writing a 1 to the OVFLC bit.

1 = An overflow had occurred
0 = No overflow

UCIN
Unified Channel Input pin bit
The UCIN bit reflects the input pin state after being filtered and synchronized.
Doc ID 16886 Rev 6 612/868

Timers RM0045
eMIOS UC Alternate A Register (EMIOSALTA[n])

The EMIOSALTA[n] register provides an alternate address to access A2 channel registers in
restricted modes (GPIO, OPWMT) only. If EMIOSA[n] register is used along with
EMIOSALTA[n], both A1 and A2 registers can be accessed in these modes. Figure 322
summarizes the EMIOSALTA[n] writing and reading accesses for all operation modes.
Please, see Section , General purpose Input/Output (GPIO) mode, Section , for a more
detailed description of the use of EMIOSALTA[n] register.

24.4.4 Functional description

The four types of channels of the eMIOS (types X, Y, G and H) can operate in the modes as
listed in Figure 321. The eMIOS provides independently operating unified channels (UC)
that can be configured and accessed by a host MCU. Up to three time bases(t) can be

UCOUT
UCOUT — Unified Channel Output pin bit

The UCOUT bit reflects the output pin state.

FLAG

FLAG bit

The FLAG bit is set when an input capture or a match event in the comparators occurred.
1 = FLAG set event has occurred

0 = FLAG cleared

Note: When DMA bit is set, the FLAG bit can be cleared by the DMA controller or the CTU.

Table 328. EMIOSS[n] field descriptions (continued)

Field Description

Figure 331. eMIOS UC Alternate A register (EMIOSALTA[n])

Address: UC[n] base address + 0x14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
ALTA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t. Time bases can be supplied by:

a) channel 23 to all unified channels

b) channel 0 to channels 0 to 7, by channel 8 to channels 8 to 15, by channel 16 to channels 16 to 23, by channel
24 to channels 24 to 31

c) channel's internal counter when available.
613/868 Doc ID 16886 Rev 6

RM0045 Timers
shared by the channels through five counter buses(u) and each unified channel can
generate its own time base(v). The eMIOS block is reset at positive edge of the clock
(synchronous reset). All registers are cleared on reset.

Unified Channel (UC)

Each Unified Channel consists of:

● Counter bus selector, which selects the time base to be used by the channel for all
timing functions

● A programmable clock prescaler

● Two double buffered data registers A and B that allow up to two input capture and/or
output compare events to occur before software intervention is needed.

● Two comparators (equal only) A and B, which compares the selected counter bus with
the value in the data registers

● Internal counter, which can be used as a local time base or to count input events

● Programmable input filter, which ensures that only valid pin transitions are received by
channel

● Programmable input edge detector, which detects the rising, falling or either edges

● An output flip-flop, which holds the logic level to be applied to the output pin

● eMIOS Status and Control register

UC modes of operation

The mode of operation of the Unified Channel is determined by the mode select bits
MODE[0:6] in the eMIOS UC Control Register (EMIOSC[n]) (see Figure 329 for details).

As the internal counter EMIOSCNT[n] continues to run in all modes (except for GPIO
mode), it is possible to use this as a time base if the resource is not used in the current
mode.

In order to provide smooth waveform generation even if A and B registers are changed on
the fly, it is available the MCB, OPWFMB, OPWMB and OPWMCB modes. In these modes
A and B registers are double buffered.

General purpose Input/Output (GPIO) mode

In GPIO mode, all input capture and output compare functions of the UC are disabled, the
internal counter (EMIOSCNT[n] register) is cleared and disabled. All control bits remain
accessible. In order to prepare the UC for a new operation mode, writing to registers
EMIOSA[n] or EMIOSB[n] stores the same value in registers A1/A2 or B1/B2, respectively.
Writing to register EMIOSALTA[n] stores a value only in register A2.

MODE[6] bit selects between input (MODE[6] = 0) and output (MODE[6] = 1) modes.

It is required that when changing MODE[0:6], the application software goes to GPIO mode
first in order to reset the UC’s internal functions properly. Failure to do this could lead to
invalid and unexpected output compare or input capture results or the FLAGs being set
incorrectly.

u. Internal eMIOS architecture have one global counter bus A and four local counter buses B, C, D, and E, that
distribute the time bases described in Note 1 (a) and (b).

v. Channels of type X and G have the internal counter enabled, so their timebase can be selected by channel's
BSL[1:0]=11: eMIOS_A - channels 0 to 8, 16, 23 and 24 eMIOS_B = channels 0, 8, 16, 23 and 24.
Doc ID 16886 Rev 6 614/868

Timers RM0045
In GPIO input mode (MODE[0:6] = 0000000), the FLAG generation is determined according
to EDPOL and EDSEL bits and the input pin status can be determined by reading the UCIN
bit.

In GPIO output mode (MODE[0:6] = 0000001), the Unified Channel is used as a single
output port pin and the value of the EDPOL bit is permanently transferred to the output flip-
flop.

Single Action Input Capture (SAIC) mode

In SAIC mode (MODE[0:6] = 0000010), when a triggering event occurs on the input pin, the
value on the selected time base is captured into register A2. The FLAG bit is set along with
the capture event to indicate that an input capture has occurred. Register EMIOSA[n]
returns the value of register A2. As soon as the SAIC mode is entered coming out from
GPIO mode the channel is ready to capture events. The events are captured as soon as
they occur thus reading register A always returns the value of the latest captured event.
Subsequent captures are enabled with no need of further reads from EMIOSA[n] register.
The FLAG is set at any time a new event is captured.

The input capture is triggered by a rising, falling or either edges in the input pin, as
configured by EDPOL and EDSEL bits in EMIOSC[n] register.

Figure 332 and Figure 333 show how the Unified Channel can be used for input capture.

Figure 332. Single action input capture with rising edge triggering example

Figure 333. Single action input capture with both edges triggering example

Single Action Output Compare (SAOC) mode

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

FLAG pin/register

A2 (captured) value2 0xxxxxxx 0x001000 0x001250 0x0016A0

input signal1

Edge detect Edge detect Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

EDSEL = 0
EDPOL = 1

selected counter bus 0x001000 0x001102

FLAG set event

A2 (captured) value2 0xxxxxxx 0x001000

input signal1

Edge detect

Notes: 1. After input filter
2. EMIOSA[n] <= A2

0x001103 0x0011080x001104 0x001105 0x001106 0x0011070x001001

FLAG pin/register

Edge detect

FLAG clear

Edge detect

0x001103 0x001108

EDSEL = 1
EDPOL = x
615/868 Doc ID 16886 Rev 6

RM0045 Timers
In SAOC mode (MODE[0:6] = 0000011) a match value is loaded in register A2 and then
immediately transferred to register A1 to be compared with the selected time base. When a
match occurs, the EDSEL bit selects whether the output flip-flop is toggled or the value in
EDPOL is transferred to it. Along with the match the FLAG bit is set to indicate that the
output compare match has occurred. Writing to register EMIOSA[n] stores the value in
register A2 and reading to register EMIOSA[n] returns the value of register A1.

An output compare match can be simulated in software by setting the FORCMA bit in
EMIOSC[n] register. In this case, the FLAG bit is not set.

When SAOC mode is entered coming out from GPIO mode the output flip-flop is set to the
complement of the EDPOL bit in the EMIOSC[n] register.

Counter bus can be either internal or external and is selected through bits BSL[0:1].

Figure 334 and Figure 335 show how the Unified Channel can be used to perform a single
output compare with EDPOL value being transferred to the output flip-flop and toggling the
output flip-flop at each match, respectively. Note that once in SAOC mode the matches are
enabled thus the desired match value on register A1 must be written before the mode is
entered. A1 register can be updated at any time thus modifying the match value which will
reflect in the output signal generated by the channel. Subsequent matches are enabled with
no need of further writes to EMIOSA[n] register. The FLAG is set at the same time a match
occurs (see Figure 336).

Note: The channel internal counter in SAOC mode is free-running. It starts counting as soon as
the SAOC mode is entered.

Figure 334. SAOC example with EDPOL value being transferred to the output flip-flop

Figure 335. SAOC example toggling the output flip-flop

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

output flip-flop

Update to A1

A1 value1 0xxxxxxx 0x001000

FLAG pin/register

0x001000 0x001000 0x001000

A1 match A1 match A1 match

Notes: 1. EMIOSA[n] = A2

EDSEL = 0
EDPOL = 1

A2 = A1 according to OU[n] bit

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100 0x001000

A1 value1 0xxxxxxx 0x001000

output flip-flop

Update to A1

FLAG pin/register

A1 match A1 match A1 match

0x001000 0x001000 0x001000

Notes: 1. EMIOSA[n] = A2

EDSEL = 1
EDPOL = x

A2 = A1 according to OU[n] bit
Doc ID 16886 Rev 6 616/868

Timers RM0045

Figure 336. SAOC example with flag behavior

Input Pulse Width Measurement (IPWM) Mode

The IPWM mode (MODE[0:6] = 0000100) allows the measurement of the width of a positive
or negative pulse by capturing the leading edge on register B1 and the trailing edge on
register A2. Successive captures are done on consecutive edges of opposite polarity. The
leading edge sensitivity (that is, pulse polarity) is selected by EDPOL bit in the EMIOSC[n]
register. Registers EMIOSA[n] and EMIOSB[n] return the values in register A2 and B1,
respectively.

The capture function of register A2 remains disabled until the first leading edge triggers the
first input capture on register B2. When this leading edge is detected, the count value of the
selected time base is latched into register B2; the FLAG bit is not set. When the trailing edge
is detected, the count value of the selected time base is latched into register A2 and, at the
same time, the FLAG bit is set and the content of register B2 is transferred to register B1
and to register A1.

If subsequent input capture events occur while the corresponding FLAG bit is set, registers
A2, B1 and A1 will be updated with the latest captured values and the FLAG will remain set.
Registers EMIOSA[n] and EMIOSB[n] return the value in registers A2 and B1, respectively.

In order to guarantee coherent access, reading EMIOSA[n] forces B1 be updated with the
content of register A1. At the same time transfers between B2 and B1 are disabled until the
next read of EMIOSB[n] register. Reading EMIOSB[n] register forces B1 be updated with A1
register content and re-enables transfers from B2 to B1, to take effect at the next trailing
edge capture. Transfers from B2 to A1 are not blocked at any time.

The input pulse width is calculated by subtracting the value in B1 from A2.

Figure 337 shows how the Unified Channel can be used for input pulse width measurement.

selected counter bus 0x0 0x2

FLAG set event

A2 value1 0x1

output flip-flop

Note: 1. EMIOSA[n] <= A2

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

A1 match

EDPOL = x
617/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 337. Input pulse width measurement example

Figure 338 shows the A1 and B1 updates when EMIOSA[n] and EMIOSB[n] register reads
occur. Note that A1 register has always coherent data related to A2 register. Note also that
when EMIOSA[n] read is performed B1 register is loaded with A1 register content. This
guarantee that the data in register B1 has always the coherent data related to the last
EMIOSA[n] read. The B1 register updates remains locked until EMIOSB[n] read occurs. If
EMIOSA[n] read is performed B1 is updated with A1 register content even if B1 update is
locked by a previous EMIOSA[n] read operation.

Figure 338. B1 and A1 updates at EMIOSA[n] and EMIOSB[n] reads

Reading EMIOSA[n] followed by EMIOSB[n] always provides coherent data. If not coherent
data is required for any reason, the sequence of reads should be inverted, therefore
EMIOSB[n] should be read prior to EMIOSA[n] register. Note that even in this case B1
register updates will be blocked after EMIOSA[n] read, thus a second EMIOSB[n] is required
in order to release B1 register updates.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000 0x001250

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001100 0x001525

0xxxxxxx 0x001000

Input signal1

B A B A B

1. After input filterNotes:

FLAG pin/register

2. EMIOSA[n] = A2

EDPOL = 1

A1 value3 0xxxxxxx 0x001000 0x001250

0x001000 0x001250

Read EMIOSA[n] Read EMIOSB[n]

3. EMIOSB[n] = B1
Doc ID 16886 Rev 6 618/868

Timers RM0045

Input Period Measurement (IPM) mode

The IPM mode (MODE[0:6] = 0000101) allows the measurement of the period of an input
signal by capturing two consecutive rising edges or two consecutive falling edges.
Successive input captures are done on consecutive edges of the same polarity. The edge
polarity is defined by the EDPOL bit in the EMIOSC[n] register.

When the first edge of selected polarity is detected, the selected time base is latched into
the registers A2 and B2, and the data previously held in register B2 is transferred to register
B1. On this first capture the FLAG line is not set, and the values in registers B1 is
meaningless. On the second and subsequent captures, the FLAG line is set and data in
register B2 is transferred to register B1.

When the second edge of the same polarity is detected, the counter bus value is latched
into registers A2 and B2, the data previously held in register B2 is transferred to data
register B1 and to register A1. The FLAG bit is set to indicate the start and end points of a
complete period have been captured. This sequence of events is repeated for each
subsequent capture. Registers EMIOSA[n] and EMIOSB[n] return the values in register A2
and B1, respectively.

In order to allow coherent data, reading EMIOSA[n] forces A1 content be transferred to B1
register and disables transfers between B2 and B1. These transfers are disabled until the
next read of the EMIOSB[n] register. Reading EMIOSB[n] register forces A1 content to be
transferred to B1 and re-enables transfers from B2 to B1, to take effect at the next edge
capture.

The input pulse period is calculated by subtracting the value in B1 from A2.

Figure 339 shows how the Unified Channel can be used for input period measurement.

Figure 339. Input period measurement example

Figure 340 describes the A1 and B1 register updates when EMIOSA[n] and EMIOSB[n]
read operations are performed. When EMIOSA[n] read occurs the content of A1 is
transferred to B1 thus providing coherent data in A2 and B1 registers. Transfers from B2 to
B1 are then blocked until EMIOSB[n] is read. After EMIOSB[n] is read, register A1 content is
transferred to register B1 and the transfers from B2 to B1 are re-enabled to occur at the
transfer edges, which is the leading edge in the Figure 340 example.

selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

A1 value

B2 (captured) value

0xxxxxxx 0x001000 0x001250

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000 0x001250 0x0016A0

Input signal1

EDPOL = 1

FLAG pin register

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

A A A

B1 value3 0xxxxxxx 0x001000 0x001250
619/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 340. A1 and B1 updates at EMIOSA[n] and EMIOSB[n] reads

Double Action Output Compare (DAOC) mode

In the DAOC mode the leading and trailing edges of the variable pulse width output are
generated by matches occurring on comparators A and B. There is no restriction concerning
the order in which A and B matches occur.

When the DAOC mode is entered, coming out from GPIO mode both comparators are
disabled and the output flip-flop is set to the complement of the EDPOL bit in the EMIOSC[n]
register.

Data written to A2 and B2 are transferred to A1 and B1, respectively, on the next system
clock cycle if bit OU[n] of the EMIOSOUDIS register is cleared (see Figure 343). The
transfer is blocked if bit OU[n] is set. Comparator A is enabled only after the transfer to A1
register occurs and is disabled on the next A match. Comparator B is enabled only after the
transfer to B1 register occurs and is disabled on the next B match. Comparators A and B are
enabled and disabled independently.

The output flip-flop is set to the value of EDPOL when a match occurs on comparator A and
to the complement of EDPOL when a match occurs on comparator B.

MODE[6] controls if the FLAG is set on both matches (MODE[0:6] = 0000111) or just on the
B match (MODE[0:6] = 0000110). FLAG bit assertion depends on comparator enabling.

If subsequent enabled output compares occur on registers A1 and B1, pulses will continue
to be generated, regardless of the state of the FLAG bit.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop
to the level corresponding to a comparison event in comparator A or B, respectively. Note
that the FLAG bit is not affected by these forced operations.

Note: If both registers (A1 and B1) are loaded with the same value, the B match prevails
concerning the output pin state (output flip-flop is set to the complement of EDPOL), the
FLAG bit is set and both comparators are disabled.

Figure 341 and Figure 342 show how the Unified Channel can be used to generate a single
output pulse with FLAG bit being set on the second match or on both matches, respectively.

 selected counter bus 0x000500 0x001000 0x001100 0x001250 0x001525 0x0016A0

A2(captured) value2

B2(captured) value

B1 value3

0xxxxxxx 0x001000 0x001250 0x0016A0

0xxxxxxx 0x001000

0xxxxxxx 0x001000

Input signal1

A A A

FLAG pin/register

EDPOL = 1

A1 value 0xxxxxxx 0x001000

0x001000

0x001250

0x001250

Read EMIOSA[n] Read EMIOSB[n]

0x001250

Notes: 1. After input filter
2. EMIOSA[n] = A2
3. EMIOSB[n] = B1

0x0016A0
Doc ID 16886 Rev 6 620/868

Timers RM0045

Figure 341. Double action output compare with FLAG set on the second match

Figure 342. Double action output compare with FLAG set on both matches

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 0

selected counter bus 0x000500 0x001000 0x001100 0x001000 0x001100

A1 value1

B1 value2 0xxxxxxx 0x001100 0x001100 0x001100

0xxxxxxx 0x001000 0x001000 0x001000

output flip-flop

A1 match B1 matchUpdate to
A1 and B1

FLAG pin/register

A1 match B1 match

Notes: 1. EMIOSA[n] = A1 (when reading)
2. EMIOSB[n] = B1 (when reading)

A2 = A1according to OU[n] bit
B2 = B1according to OU[n] bit

MODE[6] = 1
621/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 343. DAOC with transfer disabling example

Modulus Counter (MC) mode

The MC mode can be used to provide a time base for a counter bus or as a general purpose
timer.

Bit MODE[6] selects internal or external clock source when cleared or set, respectively.
When external clock is selected, the input signal pin is used as the source and the triggering
polarity edge is selected by the EDPOL and EDSEL in the EMIOSC[n] register.

The internal counter counts up from the current value until it matches the value in register
A1. Register B1 is cleared and is not accessible to the MCU. Bit MODE[4] selects up mode
or up/down mode, when cleared or set, respectively.

When in up count mode, a match between the internal counter and register A1 sets the
FLAG and clears the internal counter. The timing of those events varies according to the MC
mode setup as follows:

● Internal counter clearing on match start (MODE[0:6] = 001000b)

– External clock is selected if MODE[6] is set. In this case the internal counter clears
as soon as the match signal occurs. The channel FLAG is set at the same time the
match occurs. Note that by having the internal counter cleared as soon as the
match occurs and incremented at the next input event a shorter zero count is
generated. See Figure 366 and Figure 367.

– Internal clock source is selected if MODE[6] is cleared. In this case the counter
clears as soon as the match signal occurs. The channel FLAG is set at the same
time the match occurs. At the next prescaler tick after the match the internal
counter remains at zero and only resumes counting on the following tick. See

selected counter bus 0x0 0x2

FLAG set event

A1 value2 0xx

output flip-flop

2. EMIOSA[n] = A1 (when reading)

0x0 0x20x1 0x2 0x0 0x10x1

FLAG pin/register

FLAG clear

EDSEL = 1

System Clock

enabled A1 match

EDPOL = x

B2 value5 0x2

B1 value4 0xx

A2 value3 0x1

OU1

enabled B1 match

0x1

0xx

0xx

0x2

0x1

write to A2

0x2

0x2

0x1

0x2

0x1

0x1

0x2

write to B2
write to A2

write to B2
write to A2

write to B2

MODE[0]=1

3. EMIOSA[n] = A2 (when writing)
4. EMIOSB[n] = B1 (when reading)
5. EMIOSB[n] = B2 (when writing)

Note: 1. OU[n] bit of EMIOSOUDIS register
Doc ID 16886 Rev 6 622/868

Timers RM0045
Figure 366 and Figure 368.

● Internal counter clearing on match end (MODE[0:6] = 001001b)

– External clock is selected if MODE[6] is set. In this case the internal counter clears
when the match signal is asserted and the input event occurs. The channel FLAG
is set at the same time the counter is cleared. See Figure 366 and Figure 369.

– Internal clock source is selected if MODE[6] is cleared. In this case the internal
counter clears when the match signal is asserted and the prescaler tick occurs.
The channel FLAG is set at the same time the counter is cleared. See Figure 366
and Figure 369.

Note: If the internal clock source is selected and the prescaler of the internal counter is set to ‘1’,
the MC mode behaves the same way even in Clear on Match Start or Clear on Match End
submodes.

When in up/down count mode (MODE[0:6] = 00101bb), a match between the internal
counter and register A1 sets the FLAG and changes the counter direction from increment to
decrement. A match between register B1 and the internal counter changes the counter
direction from decrement to increment and sets the FLAG only if MODE[5] bit is set.

Only values different than 0x0 must be written at A register. Loading 0x0 leads to
unpredictable results.

Updates on A register or counter in MC mode may cause loss of match in the current cycle
if the transfer occurs near the match. In this case, the counter may rollover and resume
operation in the next cycle.

Register B2 has no effect in MC mode. Nevertheless, register B2 can be accessed for reads
and writes by addressing EMIOSB.

Figure 344 and Figure 345 show how the Unified Channel can be used as modulus counter
in up mode and up/down mode, respectively.

Figure 344. Modulus Counter Up mode example

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match A1 write to A2

0x000200

 Match A1 Match A1

0xxxxxxx

 FLAG pin/register

Notes: 1. EMIOSA[n] = A1

0x000303 0x000200

A2 = A1according to OU[n] bit

MODE[4] = 0
623/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 345. Modulus Counter Up/Down mode example

Modulus Counter Buffered (MCB) mode

The MCB mode provides a time base which can be shared with other channels through the
internal counter buses. Register A1 is double buffered thus allowing smooth transitions
between cycles when changing A2 register value on the fly. A1 register is updated at the
cycle boundary, which is defined as when the internal counter transitions to 0x1.

The internal counter values operates within a range from 0x1 up to register A1 value. If
when entering MCB mode coming out from GPIO mode the internal counter value is not
within that range then the A match will not occur causing the channel internal counter to
wrap at the maximum counter value which is 0xFFFF for a 16-bit counter. After the counter
wrap occurs it returns to 0x1 and resume normal MCB mode operation. Thus in order to
avoid the counter wrap condition make sure its value is within the 0x1 to A1 register value
range when the MCB mode is entered.

Bit MODE[6] selects internal clock source if cleared or external if set. When external clock is
selected the input channel pin is used as the channel clock source. The active edge of this
clock is defined by EDPOL and EDSEL bits in the EMIOSC[n] channel register.

When entering in MCB mode, if up counter is selected by MODE[4] = 0
(MODE[0:6] = 101000b), the internal counter starts counting from its current value to up
direction until A1 match occurs. The internal counter is set to 0x1 when its value matches A1
value and a clock tick occurs (either prescaled clock or input pin event).

If up/down counter is selected by setting MODE[4] = 1, the counter changes direction at A1
match and counts down until it reaches the value 0x1. After it has reached 0x1 it is set to
count in up direction again. B1 register is used to generate a match in order to set the
internal counter in up-count direction if up/down mode is selected. Register B1 cannot be
changed while this mode is selected.

Note that differently from the MC mode, the MCB mode counts between 0x1 and A1 register
value. Only values greater than 0x1 must be written at A1 register. Loading values other
than those leads to unpredictable results. The counter cycle period is equal to A1 value in
up counter mode. If in up/down counter mode the period is defined by the expression:
(2*A1)-2.

Figure 346 describes the counter cycle for several A1 values. Register A1 is loaded with A2
register value at the cycle boundary. Thus any value written to A2 register within cycle n will
be updated to A1 at the next cycle boundary and therefore will be used on cycle n+1. The

0xFFFFFF

0x000303

0x000000

EMIOSCNT[n]

Time

 Match A1

A1 value1 0x000303 0x000303 0x000200

 write to A2 Match B1(=0) write to A2

0x000200

 Match A1 Match B1(=0)

0xxxxxxx

Notes: 1. EMIOSA[n] = A1

0x0002000x000200
 FLAG pin/register

A2 = A1according to OU[n] bit

MODE[6] = 1
Doc ID 16886 Rev 6 624/868

Timers RM0045
cycle boundary between cycle n and cycle n+1 is defined as when the internal counter
transitions from A1 value in cycle n to 0x1 in cycle n+1. Note that the FLAG is generated at
the cycle boundary and has a synchronous operation, meaning that it is asserted one
system clock cycle after the FLAG set event.

Figure 346. Modulus Counter Buffered (MCB) Up Count mode

Figure 347 describes the MCB in up/down counter mode (MODE[0:6] = 10101bb). A1
register is updated at the cycle boundary. If A2 is written in cycle n, this new value will be
used in cycle n+1 for A1 match. Flags are generated only at A1 match start if MODE[5] is 0.
If MODE[5] is set to 1 flags are also generated at the cycle boundary.

Figure 347. Modulus Counter Buffered (MCB) Up/Down mode

Figure 348 describes in more detail the A1 register update process in up counter mode. The
A1 load signal is generated at the last system clock period of a counter cycle. Thus, A1 is
updated with A2 value at the same time that the counter (EMIOSCNT[n]) is loaded with 0x1.

EMIOSCNT[n]

TIME

write to A2 match A1 match A1 match A1write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007 0x000007
0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n cycle n+1 cycle n+2

FLAG clear

EMIOSCNT[n]

TIME

write to A2
match A1

match A1 write to A2

0x000001

0x000005
0x000006
0x000007

FLAG set event

A1 value 0x000006 0x000005 0x000007

0x000005 0x000007A2 value

FLAG pin/register

Prescaler ratio = 1

cycle n+1 cycle n+2cycle n

FLAG clear
625/868 Doc ID 16886 Rev 6

RM0045 Timers
The load signal pulse has the duration of one system clock period. If A2 is written within
cycle n its value is available at A1 at the first clock of cycle n+1 and the new value is used for
match at cycle n+1. The update disable bits OU[n] of EMIOSOUDIS register can be used to
control the update of this register, thus allowing to delay the A1 register update for
synchronization purposes.

Figure 348. MCB Mode A1 Register Update in Up Counter mode

Figure 349 describes the A1 register update in up/down counter mode. Note that A2 can be
written at any time within cycle n in order to be used in cycle n+1. Thus A1 receives this new
value at the next cycle boundary. Note that the update disable bits OU[n] of EMIOSOUDIS
register can be used to disable the update of A1 register.

Figure 349. MCB Mode A1 Register Update in Up/Down Counter mode

Output Pulse Width and Frequency Modulation Buffered (OPWFMB) mode

This mode (MODE[0:6] = 10110b0) provides waveforms with variable duty cycle and
frequency. The internal channel counter is automatically selected as the time base when this

A1 value 0x000008

0x000008

0x000001

internal counter

0x000004

0x000006

A2 value 0x000008 0x000004 0x000006

0x000002

0x000004 0x000006

 write to A2 write to A2

 Match A1 Match A1

A1 load signal

8

4

6

 Match A1

Counter = A1
Time

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2

A1 value 0x000006

A2 value 0x000006 0x000005 0x000006

0x000005

A1 load signal

Counter = 2

EMIOSCNT[n]

TIME

write to A2
match A1

match A1
write to A2

0x000001

0x000005
0x000006

0x000006

cycle n cycle n+1 cycle n+2

Prescaler ratio = 2
Doc ID 16886 Rev 6 626/868

Timers RM0045
mode is selected. A1 register indicates the duty cycle and B1 register the frequency. Both
A1 and B1 registers are double buffered to allow smooth signal generation when changing
the registers values on the fly. 0% and 100% duty cycles are supported.

At OPWFMB mode entry the output flip-flop is set to the value of the EDPOL bit in the
EMIOSC[n] register.

If when entering OPWFMB mode coming out from GPIO mode the internal counter value is
not within that range then the B match will not occur causing the channel internal counter to
wrap at the maximum counter value which is 0xFFFF for a 16-bit counter. After the counter
wrap occurs it returns to 0x1 and resume normal OPWFMB mode operation. Thus in order
to avoid the counter wrap condition make sure its value is within the 0x1 to B1 register value
range when the OPWFMB mode is entered.

When a match on comparator A occurs the output register is set to the value of EDPOL.
When a match on comparator B occurs the output register is set to the complement of
EDPOL. B1 match also causes the internal counter to transition to 0x1, thus restarting the
counter cycle.

Only values greater than 0x1 are allowed to be written to B1 register. Loading values other
than those leads to unpredictable results. If you want to configure the module for OPWFMB
mode, ensure that the B1 register is modified before the mode is set.

Figure 350 describes the operation of the OPWFMB mode regarding output pin transitions
and A1/B1 registers match events. Note that the output pin transition occurs when the A1 or
B1 match signal is deasserted which is indicated by the A1 match negedge detection signal.
If register A1 is set to 0x4 the output pin transitions 4 counter periods after the cycle had
started, plus one system clock cycle. Note that in the example shown in Figure 350 the
internal counter prescaler has a ratio of two.

Figure 350. OPWFMB A1 and B1 match to Output Register Delay

Figure 351 describes the generated output signal if A1 is set to 0x0. Since the counter does
not reach zero in this mode, the channel internal logic infers a match as if A1 = 0x1 with the
difference that in this case, the posedge of the match signal is used to trigger the output pin

8

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection
B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

Prescaler ratio = 2
627/868 Doc ID 16886 Rev 6

RM0045 Timers
transition instead of the negedge used when A1 = 0x1. Note that A1 posedge match signal
from cycle n+1 occurs at the same time as B1 negedge match signal from cycle n. This
allows to use the A1 posedge match to mask the B1 negedge match when they occur at the
same time. The result is that no transition occurs on the output flip-flop and a 0% duty cycle
is generated.

Figure 351. OPWFMB Mode with A1 = 0 (0% duty cycle)

Figure 352 describes the timing for the A1 and B1 registers load. The A1 and B1 load use
the same signal which is generated at the last system clock period of a counter cycle. Thus,
A1 and B1 are updated respectively with A2 and B2 values at the same time that the counter
(EMIOSCNT[n]) is loaded with 0x1. This event is defined as the cycle boundary. The load
signal pulse has the duration of one system clock period. If A2 and B2 are written within
cycle n their values are available at A1 and B1, respectively, at the first clock of cycle n+1
and the new values are used for matches at cycle n+1. The update disable bits OU[n] of
EMIOSOUDIS register can be used to control the update of these registers, thus allowing to
delay the A1 and B1 registers update for synchronization purposes.

In Figure 352 it is assumed that both the channel and global prescalers are set to 0x1 (each
divide ratio is two), meaning that the channel internal counter transitions at every four
system clock cycles. FLAGs can be generated only on B1 matches when MODE[5] is
cleared, or on both A1 and B1 matches when MODE[5] is set. Since B1 flag occurs at the
cycle boundary, this flag can be used to indicate that A2 or B2 data written on cycle n were
loaded to A1 or B1, respectively, thus generating matches in cycle n+1. Note that the FLAG
has a synchronous operation, meaning that it is asserted one system clock cycle after the
FLAG set event.

1

4

match A1 negedge detection

5

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

EMIOSCNT

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

system clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

no transition at this point

1

cycle n cycle n+1

Prescaler ratio = 2
Doc ID 16886 Rev 6 628/868

Timers RM0045

Figure 352. OPWFMB A1 and B1 registers update and flags

The FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on comparators A or B respectively. Similarly to a B1 match
FORCMB sets the internal counter to 0x1. The FLAG bit is not set by the FORCMA or
FORCMB bits being asserted.

Figure 353 describes the generation of 100% and 0% duty cycle signals. It is assumed
EDPOL = 0 and the resultant prescaler value is 1. Initially A1 = 0x8 and B1 = 0x8. In this
case, B1 match has precedence over A1 match, thus the output flip-flop is set to the
complement of EDPOL bit. This cycle corresponds to a 100% duty cycle signal. The same
output signal can be generated for any A1 value greater or equal to B1.

Figure 353. OPWFMB mode from 100% to 0% duty cycle

A 0% duty cycle signal is generated if A1 = 0x0 as shown in Figure 353 cycle 9. In this case
B1 = 0x8 match from cycle 8 occurs at the same time as the A1 = 0x0 match from cycle 9.
Please, refer to Figure 351 for a description of the A1 and B1 match generation. In this case

EDPOL = 0

cycle n cycle n+1 cycle n+2

A1 value1

B1 value

B2 value

0x8

0x2

0x6

0x8

0x1

internal counter

0x4

0x6

A2 value1 0x2 0x4 0x6

0x2

0x4 0x6

0x8 0x6

Output pin

 write to B2

 write to A2 write to A2

 Match A1 Match A1 Match B1 Match B1 Match B1

A1/B1 load signal

due to B1 match cycle n-1

FLAG set event

FLAG pin/register

Prescaler ratio = 4

FLAG clear

MODE[6] = 1

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

EMIOSCNT

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler ratio = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value

0x000008

0x000001
629/868 Doc ID 16886 Rev 6

RM0045 Timers
A1 match has precedence over B1 match and the output signal transitions to EDPOL.

Center Aligned Output PWM Buffered with Dead-Time (OPWMCB) mode

This operation mode generates a center aligned PWM with dead time insertion to the
leading (MODE[0:6] = 10111b1) or trailing edge (MODE[0:6] = 10111b0). A1 and B1
registers are double buffered to allow smooth output signal generation when changing A2 or
B2 registers values on the fly.

Bits BSL[0:1] select the time base. The time base selected for a channel configured to
OPWMCB mode should be a channel configured to MCB Up/Down mode, as shown in
Figure 347. It is recommended to start the MCB channel time base after the OPWMCB
mode is entered in order to avoid missing A matches at the very first duty cycle.

Register A1 contains the ideal duty cycle for the PWM signal and is compared with the
selected time base.

Register B1 contains the dead time value and is compared against the internal counter. For
a leading edge dead time insertion, the output PWM duty cycle is equal to the difference
between register A1 and register B1, and for a trailing edge dead time insertion, the output
PWM duty cycle is equal to the sum of register A1 and register B1. Bit Mode[6] selects
between trailing and leading dead time insertion, respectively.

Note: The internal counter runs in the internal prescaler ratio, while the selected time base may be
running in a different prescaler ratio.

When OPWMCB mode is entered, coming out from GPIO mode, the output flip-flop is set to
the complement of the EDPOL bit in the EMIOSC[n] register.

The following basic steps summarize proper OPWMCB startup, assuming the channels are
initially in GPIO mode:

1. [global] Disable Global Prescaler;

2. [MCB channel] Disable Channel Prescaler;

3. [MCB channel] Write 0x1 at internal counter;

4. [MCB channel] Set A register;

5. [MCB channel] Set channel to MCB Up mode;

6. [MCB channel] Set prescaler ratio;

7. [MCB channel] Enable Channel Prescaler;

8. [OPWMCB channel] Disable Channel Prescaler;

9. [OPWMCB channel] Set A register;

10. [OPWMCB channel] Set B register;

11. [OPWMCB channel] Select time base input through BSL[1:0] bits;

12. [OPWMCB channel] Enter OPWMCB mode;

13. [OPWMCB channel] Set prescaler ratio;

14. [OPWMCB channel] Enable Channel Prescaler;

15. [global] Enable Global Prescaler.

Figure 354 describes the load of A1 and B1 registers which occurs when the selected
counter bus transitions from 0x2 to 0x1. This event defines the cycle boundary. Note that
values written to A2 or B2 within cycle n are loaded into A1 or B1 registers, respectively, and
used to generate matches in cycle n+1.
Doc ID 16886 Rev 6 630/868

Timers RM0045

Figure 354. OPWMCB A1 and B1 registers load

Bit OU[n] of the EMIOSOUDIS register can be used to disable the A1 and B1 updates, thus
allowing to synchronize the load on these registers with the load of A1 or B1 registers in
others channels. Note that using the update disable bit A1 and B1 registers can be updated
at the same counter cycle thus allowing to change both registers at the same time.

In this mode A1 matches always sets the internal counter to 0x1. When operating with
leading edge dead time insertion the first A1 match sets the internal counter to 0x1. When a
match occurs between register B1 and the internal time base, the output flip-flop is set to the
value of the EDPOL bit. In the following match between register A1 and the selected time
base, the output flip-flop is set to the complement of the EDPOL bit. This sequence repeats
continuously. The internal counter should not reach 0x0 as consequence of a rollover. In
order to avoid it the user should not write to the EMIOSB register a value greater than twice
the difference between external count up limit and EMIOSA value.

Figure 355 shows two cycles of a Center Aligned PWM signal. Note that both A1 and B1
register values are changing within the same cycle which allows to vary at the same time the
duty cycle and dead time values.

A1 value 0x000020

A2 value 0x000020 0x000015 0x000016

0x000015

A1/B1 load signal

Selected Counter == 2

Selected

TIME

write to A2
write to B2

write to B2
write to A2

0x000001

0x000005
0x000006

0x000016

cycle n cycle n+1 cycle n+2
Counter Bus

B1 value 0x000004

B2 value 0x000004 0x000005 0x000006

0x000005 0x000006

Prescaler ratio = 2

System Clock
631/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 355. OPWMCB with lead dead time insertion

When operating with trailing edge dead time insertion, the first match between A1 and the
selected time base sets the output flip-flop to the value of the EDPOL bit and sets the
internal counter to 0x1. In the second match between register A1 and the selected time
base, the internal counter is set to 0x1 and B1 matches are enabled. When the match
between register B1 and the selected time base occurs the output flip-flop is set to the
complement of the EDPOL bit. This sequence repeats continuously.

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001
Doc ID 16886 Rev 6 632/868

Timers RM0045

Figure 356. OPWMCB with trail dead time insertion

FLAG can be generated in the trailing edge of the output PWM signal when MODE[5] is
cleared, or in both edges, when MODE[5] is set. If subsequent matches occur on
comparators A and B, the PWM pulses continue to be generated, regardless of the state of
the FLAG bit.

Note: In OPWMCB mode, FORCMA and FORCMB do not have the same behavior as a regular
match. Instead, they force the output flip-flop to constant value which depends upon the
selected dead time insertion mode, lead or trail, and the value of the EDPOL bit.

FORCMA has different behaviors depending upon the selected dead time insertion mode,
lead or trail. In lead dead time insertion FORCMA force a transition in the output flip-flop to
the opposite of EDPOL. In trail dead time insertion the output flip-flop is forced to the value
of EDPOL bit.

If bit FORCMB is set, the output flip-flop value depends upon the selected dead time
insertion mode. In lead dead time insertion FORCMB forces the output flip-flop to transition
to EDPOL bit value. In trail dead time insertion the output flip-flop is forced to the opposite of
EDPOL bit value.

Note: FORCMA bit set does not set the internal time-base to 0x1 as a regular A1 match.

The FLAG bit is not set either in case of a FORCMA or FORCMB or even if both forces are
issued at the same time.

Note: FORCMA and FORCMB have the same behavior even in Freeze or normal mode regarding
the output pin transition.

When FORCMA is issued along with FORCMB the output flip-flop is set to the opposite of
EDPOL bit value. This is equivalent of saying that.FORCMA has precedence over FORCMB

EDPOL = 1

internal
time
base

internal counter is
set to 1 on A1 match

dead-time

A1 value

A2 value

B1 value

B2 value

write to B2selected
counter bus

0x000002 0x000004

0x000002 0x000004

0x000015

0x000015

write to A2

0x000013

0x000013

0x000001
0x000002
0x000004

0x000015
0x000013

0x000020

dead-time

output flip-flop

FLAG pin/register

0x000001
633/868 Doc ID 16886 Rev 6

RM0045 Timers
when lead dead time insertion is selected and FORCMB has precedence over FORCMA
when trail dead time insertion is selected.

Duty cycle from 0% to 100% can be generated by setting appropriate values to A1 and B1
registers relatively to the period of the external time base. Setting A1 = 1 generates a 100%
duty cycle waveform. Assuming EDPOL is set to ‘1’ and OPWMCB mode with trail dead time
insertion, 100% duty cycle signals can be generated if B1 occurs at or after the cycle
boundary (external counter = 1). If A1 is greater than the maximum value of the selected
counter bus period, then a 0% duty cycle is produced, only if the pin starts the current cycle
in the opposite of EDPOL value. In case of 100% duty cycle, the transition from EDPOL to
the opposite of EDPOL may be obtained by forcing pin, using FORCMA or FORCMB, or
both.

Note: If A1 is set to 0x1 at OPWMCB entry the 100% duty cycle may not be obtained in the very
first PWM cycle due to the pin condition at mode entry.

Only values different than 0x0 are allowed to be written to A1 register. If 0x0 is loaded to A1
the results are unpredictable.

Note: A special case occurs when A1 is set to (external counter bus period)/2, which is the
maximum value of the external counter. In this case the output flip-flop is constantly set to
the EDPOL bit value.

The internal channel logic prevents matches from one cycle to propagate to the next cycle.
In trail dead time insertion B1 match from cycle n could eventually cross the cycle boundary
and occur in cycle n+1. In this case B1 match is masked out and does not cause the output
flip-flop to transition. Therefore matches in cycle n+1 are not affected by the late B1
matches from cycle n.

Figure 357 shows a 100% duty cycle output signal generated by setting A1 = 4 and B1 = 3.
In this case the trailing edge is positioned at the boundary of cycle n+1, which is actually
considered to belong to cycle n+2 and therefore does not cause the output flip-flip to
transition.
Doc ID 16886 Rev 6 634/868

Timers RM0045

Figure 357. OPWMCB with 100% Duty Cycle (A1 = 4 and B1 = 3)

It is important to notice that, such as in OPWMB and OPWFMB modes, the match signal
used to set or clear the channel output flip-flop is generated on the deassertion of the
channel combinational comparator output signal which compares the selected time base
with A1 or B1 register values. Please refer to Figure 350 which describes the delay from
matches to output flip-flop transition in OPWFMB mode. The operation of OPWMCB mode
is similar to OPWFMB regarding matches and output pin transition.

Output Pulse Width Modulation Buffered (OPWMB) Mode

OPWMB mode (MODE[0:6] = 11000b0) is used to generate pulses with programmable
leading and trailing edge placement. An external counter driven in MCB Up mode must be
selected from one of the counter buses. A1 register value defines the first edge and B1 the
second edge. The output signal polarity is defined by the EDPOL bit. If EDPOL is zero, a
negative edge occurs when A1 matches the selected counter bus and a positive edge
occurs when B1 matches the selected counter bus.

The A1 and B1 registers are double buffered and updated from A2 and B2, respectively, at
the cycle boundary. The load operation is similar to the OPWFMB mode. Please refer to
Figure 352 for more information about A1 and B1 registers update.

FLAG can be generated at B1 matches, when MODE[5] is cleared, or in both A1 and B1
matches, when MODE[5] is set. If subsequent matches occur on comparators A and B, the
PWM pulses continue to be generated, regardless of the state of the FLAG bit.

FORCMA and FORCMB bits allow the software to force the output flip-flop to the level
corresponding to a match on A1 or B1 respectively. FLAG bit is not set by the FORCMA and
FORCMB operations.

At OPWMB mode entry the output flip-flop is set to the value of the EDPOL bit in the
EMIOSC[n] register.

0x000001

dead time

0x000020

dead time dead time

write to A2
selected
counter bus

internal
time
base

0x000004

A1 value

A2 value

B1 value

B2 value

0x000004

0x000001

output flip-flop

0x000003

0x000015

0x000003

0x000015

0x000003

cycle n cycle n+1 cycle n+2
635/868 Doc ID 16886 Rev 6

RM0045 Timers
Some rules applicable to the OPWMB mode are:

● B1 matches have precedence over A1 matches if they occur at the same time within
the same counter cycle

● A1 = 0 match from cycle n has precedence over B1 match from cycle n-1

● A1 matches are masked out if they occur after B1 match within the same cycle

● Any value written to A2 or B2 on cycle n is loaded to A1 and B1 registers at the
following cycle boundary (assuming OU[n] bit of EMIOSOUDIS register is not
asserted). Thus the new values will be used for A1 and B1 matches in cycle n+1

Figure 358 describes the operation of the OPWMB mode regarding A1 and B1 matches and
the transition of the channel output pin. In this example EDPOL is set to ‘0’.

Figure 358. OPWMB mode matches and flags

Note that the output pin transitions are based on the negedges of the A1 and B1 match
signals. Figure 358 shows in cycle n+1 the value of A1 register being set to ‘0’. In this case
the match posedge is used instead of the negedge to transition the output flip-flop.

Figure 359 describes the channel operation for 0% duty cycle. Note that the A1 match
posedge signal occurs at the same time as the B1 = 0x8 negedge signal. In this case A1
match has precedence over B1 match, causing the output pin to remain at EDPOL bit value,
thus generating a 0% duty cycle signal.

1

4

match A1 negedge detection

6

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000006

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

86

FLAG set event

Selected
counter bus

FLAG pin/register
Doc ID 16886 Rev 6 636/868

Timers RM0045

Figure 359. OPWMB mode with 0% duty cycle

Figure 360 shows a waveform changing from 100% to 0% duty cycle. EDPOL in this case is
zero. In this example B1 is programmed to the same value as the period of the external
selected time base.

Figure 360. OPWMB mode from 100% to 0% duty cycle

In Figure 360 if B1 is set to a value lower than 0x8 it is not possible to achieve 0% duty cycle
by only changing A1 register value. Since B1 matches have precedence over A1 matches
the output pin transitions to the opposite of EDPOL bit at B1 match. Note also that if B1 is
set to 0x9, for instance, B1 match does not occur, thus a 0% duty cycle signal is generated.

1

4

match A1 negedge detection

8

A1 value 0x000004

A1 match

A1 match negedge detection

output pin
EDPOL = 0

Selected

TIME

match B1 negedge detection

B1 match

B1 match negedge detection

B1 value 0x000008

clock

prescaler

A2 value 0x000000

 write to A2

0x000000

A1 match posedge detection match A1 posedge detection

1

cycle n cycle n+1

8

counter bus

FLAG set event

FLAG pin/register

0x000008 0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000

0%100%

Selected

EDPOL = 0

A1 value

B1 value

Output pin

0x000008

Prescaler = 1

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8 cycle 9
counter bus

0x000007 0x000006 0x000005 0x000004 0x000003 0x000002 0x000001 0x000000A2 value
637/868 Doc ID 16886 Rev 6

RM0045 Timers

Output Pulse Width Modulation with Trigger (OPWMT) mode

OPWMT mode (MODE[0:6] = 0100110) is intended to support the generation of pulse width
modulation signals where the period is not modified while the signal is being output, but
where the duty cycle will be varied and must not create glitches. The mode is intended to be
used in conjunction with other channels executing in the same mode and sharing a common
timebase. It will support each channel with a fixed PWM leading edge position with respect
to the other channels and the ability to generate a trigger signal at any point in the period
that can be output from the module to initiate activity in other parts of the device such as
starting ADC conversions.

An external counter driven in either MC Up or MCB Up mode must be selected from one of
the counter buses.

Register A1 defines the leading edge of the PWM output pulse and as such the beginning of
the PWM’s period. This makes it possible to insure that the leading edge of multiple
channels in OPWMT mode can occur at a specific time with respect to the other channels
when using a shared timebase. This can allow the introduction of a fixed offset for each
channel which can be particularly useful in the generation of lighting PWM control signals
where it is desirable that edges are not coincident with each other to help eliminate noise
generation. The value of register A1 represents the shift of the PWM channel with respect to
the selected timebase. A1 can be configured with any value within the range of the selected
time base. Note that registers loaded with 0x0 will not produce matches if the timebase is
driven by a channel in MCB mode.

A1 is not buffered as the shift of a PWM channel must not be modified while the PWM signal
is being generated. In case A1 is modified it is immediately updated and one PWM pulse
could be lost.

EMIOSB[n] address gives access to B2 register for write and B1 register for read. Register
B1 defines the trailing edge of the PWM output pulse and as such the duty cycle of the PWM
signal. To synchronize B1 update with the PWM signal and so ensure a correct output pulse
generation the transfer from B2 to B1 is done at every match of register A1.

EMIOSOUDIS register affects transfers between B2 and B1 only.

In order to account for the shift in the leading edge of the waveform defined by register A1 it
will be necessary that the trailing edge, held in register B1, can roll over into the next period.
This means that a match against the B1 register should not have to be qualified by a match
in the A1 register. The impact of this would mean that incorrectly setting register B1 to a
value less that register A1 will result in the output being held over a cycle boundary until the
B1 value is encountered.

This mode provides a buffered update of the trailing edge by updating register B1 with
register B2 contents only at a match of register A1.

The value loaded in register A1 is compared with the value on the selected time base. When
a match on comparator A1 occurs, the output flip-flop is set to the value of the EDPOL bit.
When a match occurs on comparator B, the output flip-flop is set to the complement of the
EDPOL bit.

Note that the output pin and flag transitions are based on the posedges of the A1, B1 and
A2 match signals. Please, refer to Figure 358 at Section , Output Pulse Width Modulation
Buffered (OPWMB) Mode for details on match posedge.

Register A2 defines the generation of a trigger event within the PWM period and A2 should
be configured with any value within the range of the selected time base, otherwise no trigger
Doc ID 16886 Rev 6 638/868

Timers RM0045
will be generated. A match on the comparator will generate the FLAG signal but it has no
effect on the PWM output signal generation. The typical setup to obtain a trigger with FLAG
is to enable DMA and to drive the channel’s ipd_done input high.

A2 is not buffered and therefore its update is immediate. If the channel is running when a
change is made this could cause either the loss of one trigger event or the generation of two
trigger events within the same period. Register A2 can be accessed by reading or writing the
eMIOS UC Alternate A Register (EMIOSALTA) at UC[n] base address +0x14.

FLAG signal is set only at match on the comparator with A2. A match on the comparator
with A1 or B1 or B2 has no effect on FLAG.

At any time, the FORCMA and FORCMB bits allow the software to force the output flip-flop
to the level corresponding to a match on A or B respectively. Any FORCMA and/or FORCMB
has priority over any simultaneous match regarding to output pin transitions. Note that the
load of B2 content on B1 register at an A match is not inhibited due to a simultaneous
FORCMA/FORCMB assertion. If both FORCMA and FORCMB are asserted simultaneously
the output pin goes to the opposite of EDPOL value such as if A1 and B1 registers had the
same value. FORCMA assertion causes the transfer from register B2 to B1 such as a
regular A match, regardless of FORCMB assertion.

If subsequent matches occur on comparators A1 and B, the PWM pulses continue to be
generated, regardless of the state of the FLAG bit.

At OPWMT mode entry the output flip-flop is set to the complement of the EDPOL bit in the
EMIOSC[n] register.

In order to achieve 0% duty cycle both registers A1 and B must be set to the same value.
When a simultaneous match on comparators A and B occur, the output flip-flop is set at
every period to the complement value of EDPOL.

In order to achieve 100% duty cycle the register B1 must be set to a value greater than
maximum value of the selected time base. As a consequence, if 100% duty cycle must be
implemented, the maximum counter value for the time base is 0xFFFE for a 16-bit counter.
When a match on comparator A1 occurs the output flip-flop is set at every period to the
value of EDPOL bit. The transfer from register B2 to B1 is still triggered by the match at
comparator A.

Figure 361 shows the Unified Channel running in OPWMT mode with Trigger Event
Generation and duty cycle update on next period update.
639/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 361. OPWMT example

Figure 362 shows the Unified Channel running in OPWMT mode with Trigger Event
Generation and 0% duty.

Figure 362. OPWMT with 0% Duty Cycle

Figure 363 shows the Unified Channel running in OPWMT mode with Trigger Event
Generation and 100% duty cycle.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000700

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

0x000700

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000700

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x000400

 Match B1
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x000400

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2
Doc ID 16886 Rev 6 640/868

Timers RM0045

Figure 363. OPWMT with 100% duty cycle

Input Programmable Filter (IPF)

The IPF ensures that only valid input pin transitions are received by the Unified Channel
edge detector. A block diagram of the IPF is shown in Figure 364.

The IPF is a 5-bit programmable up counter that is incremented by the selected clock
source, according to bits IF[0:3] in EMIOSC[n] register.

Figure 364. lnput programmable filter submodule diagram

The input signal is synchronized by system clock. When a state change occurs in this signal,
the 5-bit counter starts counting up. As long as the new state is stable on the pin, the
counter remains incrementing. If a counter overflows occurs, the new pin value is validated.
In this case, it is transmitted as a pulse edge to the edge detector. If the opposite edge
appears on the pin before validation (overflow), the counter is reset. At the next pin
transition, the counter starts counting again. Any pulse that is shorter than a full range of the
masked counter is regarded as a glitch and it is not passed on to the edge detector. A timing
diagram of the input filter is shown in Figure 365.

0x0011FF
0x001000

0x000000

selected counter bus

Time

output flip-flop

A1 value1

 write to B2

0x000400

B1 value

B2 value2 0x001200

 Match B1 does not occur
 write to A1

0xxxxxxx

0x000400

0x001000

 and B2

0x001000

 Match A1

 Match B1 Match A1

Notes: 1. EMIOSA[n] = A1
2. EMIOSB[n] = B2 for write, B1 for read

0x001200

Notes:

A2 value 0x000500

0x000500

FLAG pin/register

 Match A2
 Match A2

IF3

filter out

ipg_clk

Prescaled Clock

IF2 IF1 IF0

clk

FCK

EMIOSI

5-bit up counter

sy
nc

hr
on

iz
er

clock
641/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 365. Input programmable filter example

The filter is not disabled during either freeze state or negated GTBE input.

Clock Prescaler (CP)

The CP divides the GCP output signal to generate a clock enable for the internal counter of
the Unified Channels. The GCP output signal is prescaled by the value defined in
Figure 324 according to the UCPRE[0:1] bits in EMIOSC[n] register. The prescaler is
enabled by setting the UCPREN bit in the EMIOSC[n] and can be stopped at any time by
clearing this bit, thereby stopping the internal counter in the Unified Channel.

In order to ensure safe working and avoid glitches the following steps must be performed
whenever any update in the prescaling rate is desired:

1. Write 0 at both GPREN bit in EMIOSMCR register and UCPREN bit in EMIOSC[n]
register, thus disabling prescalers;

2. Write the desired value for prescaling rate at UCPRE[0:1] bits in EMIOSC[n] register;

3. Enable channel prescaler by writing 1 at UCPREN bit in EMIOSC[n] register;

4. Enable global prescaler by writing 1 at GPREN bit in EMIOSMCR register.

The prescaler is not disabled during either freeze state or negated GTBE input.

Effect of Freeze on the Unified Channel

When in debug mode, bit FRZ in the EMIOSMCR and bit FREN in the EMIOSC[n] register
are both set, the internal counter and Unified Channel capture and compare functions are
halted. The UC is frozen in its current state.

During freeze, all registers are accessible. When the Unified Channel is operating in an
output mode, the force match functions remain available, allowing the software to force the
output to the desired level.

Note that for input modes, any input events that may occur while the channel is frozen are
ignored.

When exiting debug mode or freeze enable bit is cleared (FRZ in the EMIOSMCR or FREN
in the EMIOSC[n] register) the channel actions resume, but may be inconsistent until
channel enters GPIO mode again.

Time

selected clock

EMIOSI

5-bit counter

filter out

IF[0:3] = 0010
Doc ID 16886 Rev 6 642/868

Timers RM0045
IP Bus Interface Unit (BIU)

The BIU provides the interface between the Internal Interface Bus (IIB) and the Peripheral
Bus, allowing communication among all submodules and this IP interface.

The BIU allows 8, 16 and 32-bit access. They are performed over a 32-bit data bus in a
single cycle clock.

Effect of Freeze on the BIU

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation
of BIU is not affected.

Global Clock Prescaler Submodule (GCP)

The GCP divides the system clock to generate a clock for the CPs of the channels. The
main clock signal is prescaled by the value defined in Figure 318 according to bits
GPRE[0:7] in the EMIOSMCR. The global prescaler is enabled by setting the GPREN bit in
the EMIOSMCR and can be stopped at any time by clearing this bit, thereby stopping the
internal counters in all the channels.

In order to ensure safe working and avoid glitches the following steps must be performed
whenever any update in the prescaling rate is desired:

1. Write ‘0’ at GPREN bit in EMIOSMCR, thus disabling global prescaler;

2. Write the desired value for prescaling rate at GPRE[0:7] bits in EMIOSMCR;

3. Enable global prescaler by writing ‘1’ at GPREN bit in EMIOSMCR.

The prescaler is not disabled during either freeze state or negated GTBE input.

Effect of Freeze on the GCP

When the FRZ bit in the EMIOSMCR is set and the module is in debug mode, the operation
of GCP submodule is not affected, that is, there is no freeze function in this submodule.

24.4.5 Initialization/Application information

On resetting the eMIOS the Unified Channels enter GPIO input mode.

Considerations

Before changing an operating mode, the UC must be programmed to GPIO mode and
EMIOSA[n] and EMIOSB[n] registers must be updated with the correct values for the next
operating mode. Then the EMIOSC[n] register can be written with the new operating mode.
If a UC is changed from one mode to another without performing this procedure, the first
operation cycle of the selected time base can be random, that is, matches can occur in
random time if the contents of EMIOSA[n] or EMIOSB[n] were not updated with the correct
value before the time base matches the previous contents of EMIOSA[n] or EMIOSB[n].

When interrupts are enabled, the software must clear the FLAG bits before exiting the
interrupt service routine.

Application information

Correlated output signals can be generated by all output operation modes. Bits OU[n] of the
EMIOSOUDIS register can be used to control the update of these output signals.
643/868 Doc ID 16886 Rev 6

RM0045 Timers
In order to guarantee that the internal counters of correlated channels are incremented in
the same clock cycle, the internal prescalers must be set up before enabling the global
prescaler. If the internal prescalers are set after enabling the global prescaler, the internal
counters may increment in the same ratio, but at a different clock cycle.

Time base generation

For MC with internal clock source operation modes, the internal counter rate can be
modified by configuring the clock prescaler ratio. Figure 366 shows an example of a time
base with prescaler ratio equal to one.

Note: MCB and OPWFMB modes have a different behavior.

Figure 366. Time base period when running in the fastest prescaler ratio

If the prescaler ratio is greater than one or external clock is selected, the counter may
behave in three different ways depending on the channel mode:

● If MC mode and Clear on Match Start and External Clock source are selected the
internal counter behaves as described in Figure 367.

● If MC mode and Clear on Match Start and Internal Clock source are selected the
internal counter behaves as described in Figure 368.

● If MC mode and Clear on Match End are selected the internal counter behaves as
described in Figure 369.

Note: MCB and OPWFMB modes have a different behavior.

system clock

input event/prescaler clock enable = 1

internal counter

match value = 3

1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

PRE SCALED CLOCK RATIO = 1 (bypassed)

see note 1

FLAG set event

Note 1: When a match occurs, the first clock cycle is used to
 clear the internal counter, starting another period.

FLAG pin/register

FLAG clear
Doc ID 16886 Rev 6 644/868

Timers RM0045

Figure 367. Time base generation with external clock and clear on match start

Figure 368. Time base generation with internal clock and clear on match start

system clock

input event

internal counter

match value = 3

1 23 0

see note 1

Note 1: When a match occurs, the first system clock cycle is used to clear the
 internal counter, and at the next edge of prescaler clock enable

1 2

 the counter will start counting.

1 23 0

FLAG set event

FLAG clear

FLAG pin/register

system clock

prescaler clock enable

internal counter

match value = 3

0 13 0 2 03 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: When a match occurs, the first clock cycle is used to clear the
 internal counter, and only after a second edge of pre scaled clock

1 2

 the counter will start counting.

FLAG set event

FLAG clear

FLAG pin/register
645/868 Doc ID 16886 Rev 6

RM0045 Timers

Figure 369. Time base generation with clear on match end

Coherent accesses

It is highly recommended that the software waits for a new FLAG set event before start
reading EMIOSA[n] and EMIOSB[n] registers to get a new measurement. The FLAG
indicates that new data has been captured and it is the only way to assure data coherency.

The FLAG set event can be detected by polling the FLAG bit or by enabling the interrupt
request or DMA request or CTU trigger generation.

Reading the EMIOSA[n] register again in the same period of the last read of EMIOSB[n]
register may lead to incoherent results. This will occur if the last read of EMIOSB[n] register
occurred after a disabled B2 to B1 transfer.

Channel/Modes initialization

The following basic steps summarize basic output mode startup, assuming the channels are
initially in GPIO mode:

1. [global] Disable Global Prescaler.

2. [timebase channel] Disable Channel Prescaler.

3. [timebase channel] Write initial value at internal counter.

4. [timebase channel] Set A/B register.

5. [timebase channel] Set channel to MC(B) Up mode.

6. [timebase channel] Set prescaler ratio.

7. [timebase channel] Enable Channel Prescaler.

8. [output channel] Disable Channel Prescaler.

9. [output channel] Set A/B register.

10. [output channel] Select timebase input through bits BSL[1:0].

11. [output channel] Enter output mode.

12. [output channel] Set prescaler ratio (same ratio as timebase channel).

13. [output channel] Enable Channel Prescaler.

14. [global] Enable Global Prescaler.

15. [global] Enable Global Time Base.

system clock

input event/prescaler clock enable

internal counter

match value = 3

0 13 2 0

PRESCALED CLOCK RATIO = 3

see note 1

Note 1: The match occurs only when the input event/prescaler clock enable is active.
 Then, the internal counter is immediately cleared.

1 2 3

FLAG set event

FLAG clear

FLAG pin/register
Doc ID 16886 Rev 6 646/868

Timers RM0045
The timebase channel and the output channel may be the same for some applications such
as in OPWFM(B) mode or whenever the output channel is intended to run the timebase
itself.

The flags can be configured at any time.

24.5 Periodic Interrupt Timer (PIT)

24.5.1 Introduction

The PIT is an array of timers that can be used to raise interrupts and trigger DMA channels.

Figure 370 shows the PIT block diagram.

Figure 370. PIT block diagram

24.5.2 Features

The main features of this block are:

● Timers can generate DMA trigger pulses

● Timers can generate interrupts

● All interrupts are maskable

● Independent timeout periods for each timer

Timer 3

Timer 0

.

.

.

PIT
Registers

Peripheral

Interrupts

PIT

.

.

.

Triggers

Bus

System Clock
647/868 Doc ID 16886 Rev 6

RM0045 Timers
24.5.3 Signal description

The PIT module has no external pins.

24.5.4 Memory map and register description

This section provides a detailed description of all registers accessible in the PIT module.

Memory map

Table 329 gives an overview of the PIT registers. See the chip memory map for the PIT base
address.

Note: Register Address = Base Address + Address Offset, where the Base Address is defined at
the MCU level and the Address Offset is defined at the module level.

Note: Reserved registers will read as 0, writes will have no effect.

PIT Module Control Register (PITMCR)

This register controls whether the timer clocks should be enabled and whether the timers
should run in debug mode.

Table 329. PIT memory map

Base address: 0xC3FF_0000

Address offset Use Location

0x000 PIT Module Control Register (PITMCR) on page 24-648

0x004–0x0FC Reserved

0x100–0x10C Timer Channel 0 See Table 330

0x110–0x11C Timer Channel 1 See Table 330

0x120–0x12C Timer Channel 2 See Table 330

0x130–0x13C Timer Channel 3 See Table 330

Table 330. Timer channel n

Address offset Use Location

channel + 0x00 Timer Load Value Register (LDVAL) on page 24-649

channel + 0x04 Current Timer Value Register (CVAL) on page 24-650

channel + 0x08 Timer Control Register (TCTRL) on page 24-650

channel + 0x0C Timer Flag Register (TFLG) on page 24-651
Doc ID 16886 Rev 6 648/868

Timers RM0045

Timer Load Value Register (LDVAL)

This register selects the timeout period for the timer interrupts.

Figure 371. PIT Module Control Register (PITMCR)

Offset: 0x000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MDIS FRZ

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Table 331. PITMCR field descriptions

Field Description

MDIS

Module Disable

This is used to disable the module clock. This bit should be enabled before any other setup is done.
0 Clock for PIT timers is enabled
1 Clock for PIT timers is disabled (default)

FRZ

Freeze

Allows the timers to be stopped when the device enters debug mode.
0 = Timers continue to run in debug mode.

1 = Timers are stopped in debug mode.

Figure 372. Timer Load Value Register (LDVAL)

Offset: channel_base + 0x00 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
TSV[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
TSV[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
649/868 Doc ID 16886 Rev 6

RM0045 Timers

Current Timer Value Register (CVAL)

This register indicates the current timer position.

Timer Control Register (TCTRL)

This register contains the control bits for each timer.

Table 332. LDVAL field descriptions

Field Description

TSV

Time Start Value

This field sets the timer start value. The timer counts down until it reaches 0, then it generates an
interrupt and loads this register value again. Writing a new value to this register does not restart the
timer, instead the value is loaded once the timer expires. To abort the current cycle and start a timer
period with the new value, the timer must be disabled and enabled again (see Figure 377).

Figure 373. Current Timer Value Register (CVAL)

Offset: channel_base + 0x04 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R TVL[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R TVL[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 333. CVAL field descriptions

Field Description

TVL

Current Timer Value

This field represents the current timer value. Note that the timer uses a downcounter.

Note: The timer values will be frozen in Debug mode if the FRZ bit is set in the PIT Module Control
Register (see Figure 316).
Doc ID 16886 Rev 6 650/868

Timers RM0045

Timer Flag Register (TFLG)

This register holds the PIT interrupt flags.

Figure 374. Timer Control Register (TCTRL)

Offset: channel_base + 0x08 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIE TEN

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 334. TCTRL field descriptions

Field Description

TIE

Timer Interrupt Enable Bit

0 Interrupt requests from Timer x are disabled
1 Interrupt will be requested whenever TIF is set

When an interrupt is pending (TIF set), enabling the interrupt will immediately cause an interrupt event.
To avoid this, the associated TIF flag must be cleared first.

TEN
Timer Enable Bit

0 Timer will be disabled
1 Timer will be active

Figure 375. Timer Flag Register (TFLG)

Offset: channel_base + 0x0C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 TIF

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
651/868 Doc ID 16886 Rev 6

RM0045 Timers

24.5.5 Functional description

General

This section gives detailed information on the internal operation of the module. Each timer
can be used to generate trigger pulses as well as to generate interrupts, each interrupt will
be available on a separate interrupt line.

Timers

The timers generate triggers at periodic intervals, when enabled. They load their start
values, as specified in their LDVAL registers, then count down until they reach 0. Then they
load their respective start value again. Each time a timer reaches 0, it will generate a trigger
pulse and set the interrupt flag.

All interrupts can be enabled or masked (by setting the TIE bits in the TCTRL registers). A
new interrupt can be generated only after the previous one is cleared.

If desired, the current counter value of the timer can be read via the CVAL registers.

The counter period can be restarted, by first disabling, then enabling the timer with the TEN
bit (see Figure 376).

The counter period of a running timer can be modified, by first disabling the timer, setting a
new load value and then enabling the timer again (see Figure 377).

It is also possible to change the counter period without restarting the timer by writing the
LDVAL register with the new load value. This value will then be loaded after the next trigger
event (see Figure 378).

Figure 376. Stopping and starting a timer

Table 335. TFLG field descriptions

Field Description

TIF

Time Interrupt Flag

TIF is set to 1 at the end of the timer period. This flag can be cleared only by writing it with a 1. Writing a
0 has no effect. If enabled (TIE = 1), TIF causes an interrupt request.

0 Time-out has not yet occurred
1 Time-out has occurred

p1p1

Timer Enabled Disable
Timer

p1

Start Value = p1

Trigger
Event

p1

Re-Enable
Timer
Doc ID 16886 Rev 6 652/868

Timers RM0045

Figure 377. Modifying running timer period

Figure 378. Dynamically setting a new load value

Debug mode

In Debug mode the timers will be frozen. This is intended to aid software development,
allowing the developer to halt the processor, investigate the current state of the system (for
example, the timer values) and then continue the operation.

Interrupts

All of the timers support interrupt generation. See the INTC chapter of the reference manual
for related vector addresses and priorities.

Timer interrupts can be disabled by setting the TIE bits to zero. The timer interrupt flags
(TIF) are set to 1 when a timeout occurs on the associated timer, and are cleared to 0 by
writing a 1 to that TIF bit.

24.5.6 Initialization and application information

Example configuration

In the example configuration:

● The PIT clock has a frequency of 50 MHz

● Timer 1 creates an interrupt every 5.12 ms

● Timer 3 creates a trigger event every 30 ms

First the PIT module needs to be activated by programming PIT_MCR[MDIS] = 0.

The 50 MHz clock frequency equates to a clock period of 20 ns. Timer 1 needs to trigger
every 5.12 ms/20 ns = 256000 cycles and Timer 3 every 30 ms/20 ns = 1500000 cycles.
The value for the LDVAL register trigger would be calculated as (period / clock period) – 1.

The LDVAL registers must be set as follows:

● LDVAL for Timer 1 is set to 0x0003E7FF

● LDVAL for Timer 3 is set to 0x0016E35F

p1

Timer Enabled Disable
Timer, Start Value = p1

Trigger
Event

Re-Enable
Timer

p1

Set new
Load Value

p2 p2 p2

p1p1

Timer Enabled New Start
Value p2 set

p1 p2

Start Value = p1

p2

Trigger
Event
653/868 Doc ID 16886 Rev 6

RM0045 Timers
The interrupt for Timer 1 is enabled by setting TIE in the TCTRL1 register. The timer is
started by writing a 1 to bit TEN in the TCTRL1 register.

Timer 3 shall be used only for triggering. Therefore Timer 3 is started by writing a 1 to bit
TEN in the TCTRL3 register; bit TIE stays at 0.

The following example code matches the described setup:
// turn on PIT
PIT_CTRL = 0x00;

// Timer 1
PIT_LDVAL1 = 0x0003E7FF; // setup timer 1 for 256000 cycles
PIT_TCTRL1 = TIE; // enable Timer 1 interrupts
PIT_TCTRL1 |= TEN; // start timer 1

// Timer 3
PIT_LDVAL3 = 0x0016E35F; // setup timer 3 for 1500000 cycles
PIT_TCTRL3 = TEN; // start timer 3
Doc ID 16886 Rev 6 654/868

Analog-to-Digital Converter (ADC) RM0045
25 Analog-to-Digital Converter (ADC)

25.1 Overview

25.1.1 Device-specific features

● One 12-bit ADC module

● 0–VDD common mode conversion range

● Up to 33 single-ended inputs channels, expandable to 61 channels with external
multiplexers

– Internally multiplexed channels

up to 33 channels. 16 channels are precision ones

– Externally multiplexed channels

Internal control to support generation of external analog multiplexer selection

4 internal channels optionally used to support externally multiplex inputs, providing
transparent control for additional ADC channels

Each of the 4 channels supports up to 8 externally multiplexed inputs

● 3 independently configurable sample and conversion times for high precision channels,
standard precision channels and externally multiplexed channels

● Dedicated result registers available for every channel.

● One Shot/Scan Modes

● Chain Injection Mode

● Conversion triggering support

– Internal conversion triggering from periodic interrupt timer (PIT) or timed I/O
module (eMIOS) through cross triggering unit (CTU)

– Internal conversion triggering from periodic interrupt timer (PIT)

– 1 input pin configurable as external conversion trigger source

● Up to 3 configurable analog comparator channels offering range comparison with
triggered alarm

– Greater than

– Less than

– Out of range

● Conversion triggering sources:

– Software

– CTU

– PIT channel 2 (for injected conversion)

● Conversion triggering support — Internal conversion triggering from periodic interrupt
timer (PIT) or timed I/O module (eMIOS)

● Power-down mode for analog portion of ADC

● Supports DMA transfer of results based on the end of conversion

● 3 analog watchdogs with interrupt capability for continuous hardware monitoring
655/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
25.1.2 Device-specific implementation

Figure 379. ADC implementation

25.2 Introduction
The analog-to-digital converter (ADC) block provides accurate and fast conversions for a
wide range of applications.

The ADC contains advanced features for normal or injected conversion. It provides support
for eDMA (direct memory access) mode operation. A conversion can be triggered by
software or hardware (Cross Triggering Unit or PIT).

There are three types of input channels:

● Internal precision, ADC1_P[n] (internally multiplexed precision channels)

● Internal standard, ADC1_S[n] (internally multiplexed standard channels)

● External ADC1_X[n] (externally multiplexed standard channels)

The mask registers present within the ADC can be programmed to configure which channel
has to be converted.

Three external decode signals MA[2:0] (multiplexer address) are provided for external
channel selection and are available as alternate functions on GPIO.

The MA[0:2] are controlled by the ADC itself and are set automatically by the hardware.

A conversion timing register for configuring different sampling and conversion times is
associated to each channel type.

Analog watchdogs allow continuous hardware monitoring.

PIT2

CTU

eMIOS

PIT
Ch23 trig

PIT3

Up to 20
standard channels

16 precision

Up to 32 extended channels
through external MUX

ADC1_X[3]

ADC1_X[0]

ADC1_S[12] (Ch 44)

ADC1_S[0] (Ch 32)

ADC1_P[15] (Ch 15)

ADC1_P[0] (Ch 0)

ADC control

ADC trigger

ADC done

MA[2:0]

2 interrupts
ADC_EOC & ADC_WD

MUX 8 MUX 8

3

Digital
Interface Analog

switch

INTC
D

A
M

U
X

 2
0

M
U

X
 1

6

ADC_1 (12 bit)

...

...

ADC1_X[2]
ADC1_X[1]

MUX 8 MUX 8

(C
h

88
–9

5)

(C
h

64
–7

1)

(C
h

80
–8

7)

(C
h

72
–7

9)

eMIOS0_0

eMIOS0_22

eMIOS0_24

Ch0 trig

Ch22 trig

Ch24 trig

eMIOS0_27
Ch27 trig

...
...

...
...

channels
Doc ID 16886 Rev 6 656/868

Analog-to-Digital Converter (ADC) RM0045
25.3 Functional description

25.3.1 Analog channel conversion

Three conversion modes are available within the ADC:

● Normal conversion

● Injected conversion

● CTU triggered conversion

Normal conversion

This is the normal conversion that the user programs by configuring the normal conversion
mask registers (NCMR). Each channel can be individually enabled by setting ‘1’ in the
corresponding field of NCMR registers. Mask registers must be programmed before starting
the conversion and cannot be changed until the conversion of all the selected channels
ends (NSTART bit in the Main Status Register (MSR) is reset).

Start of normal conversion

The conversion chain starts when the NSTART bit in the Main Configuration Register (MCR)
is set.

The MSR[NSTART] status bit is automatically set when the normal conversion starts. At the
same time the MCR[NSTART] bit is reset, allowing the software to program a new start of
conversion. In that case the new requested conversion starts after the running conversion is
completed.

If the content of all the normal conversion mask registers is zero (that is, no channel is
selected) the conversion operation is considered completed and the interrupt ECH (see
interrupt controller chapter for further details) is immediately issued after the start of
conversion.

Normal conversion operating modes

Two operating modes are available for the normal conversion:

● One Shot

● Scan

To enter one of these modes, it is necessary to program the MCR[MODE] bit. The first
phase of the conversion process involves sampling the analog channel and the next phase
involves the conversion phase when the sampled analog value is converted to digital as
shown in Figure 380.

Figure 380. Normal conversion flow

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C
657/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
In One Shot Mode (MODE = 0) a sequential conversion specified in the NCMR registers is
performed only once. At the end of each conversion, the digital result of the conversion is
stored in the corresponding data register.

Example 8 One Shot Mode (MODE = 0)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be
converted in the One Shot Mode. MODE = 0 is set for One Shot mode. Conversion
starts from the channel B followed by conversion of channels D-E. At the end of
conversion of channel E the scanning of channels stops.

The NSTART status bit in the MSR is automatically set when the Normal conversion starts.
At the same time the MCR[NSTART] bit is reset, allowing the software to program a new
start of conversion. In that case the new requested conversion starts after the running
conversion is completed.

In Scan Mode (MODE = 1), a sequential conversion of N channels specified in the NCMR
registers is continuously performed. As in the previous case, at the end of each conversion
the digital result of the conversion is stored into the corresponding data register.

The MSR[NSTART] status bit is automatically set when the Normal conversion starts. Unlike
One Shot Mode, the MCR[NSTART] bit is not reset. It can be reset by software when the
user needs to stop scan mode. In that case, the ADC completes the current scan conversion
and, after the last conversion, also resets the MSR[NSTART] bit.

Example 9 Scan Mode (MODE = 1)

Channels A-B-C-D-E-F-G-H are present in the device where channels B-D-E are to be
converted in the Scan Mode. MODE = 1 is set for Scan Mode. Conversion starts from
the channel B followed by conversion of the channels D-E. At the end of conversion of
channel E the scanning of channel B starts followed by conversion of the channels D-E.
This sequence repeats itself till the MCR[NSTART] bit is cleared by software.

At the end of each conversion an End Of Conversion interrupt is issued (if enabled by the
corresponding mask bit) and at the end of the conversion sequence an End Of Chain
interrupt is issued (if enabled by the corresponding mask bit in the IMR register).

Injected channel conversion

A conversion chain can be injected into the ongoing Normal conversion by configuring the
Injected Conversion Mask Registers (JCMR). As Normal conversion, each channel can be
individually selected. This injected conversion (which can only occur in One Shot mode)
interrupts the normal conversion (which can be in One Shot or Scan mode). When an
injected conversion is inserted, ongoing normal channel conversion is aborted and the
injected channel request is processed. After the last channel in the injected chain is
converted, normal conversion resumes from the channel at which the normal conversion
was aborted as shown in Figure 381.
Doc ID 16886 Rev 6 658/868

Analog-to-Digital Converter (ADC) RM0045

Figure 381. Injected sample/conversion sequence

The injected conversion can be started using two options:

● By software setting the MCR[JSTART]; the current conversion is suspended and the
injected chain is converted. At the end of the chain, the JSTART bit in the MSR is reset
and the normal chain conversion is resumed.

● By an internal trigger signal from the PIT when MCR[JTRGEN] is set; a programmed
event (rising/falling edge depending on MCR[JEDGE]) on the signal coming from PIT
starts the injected conversion by setting the MSR[JSTART]. At the end of the chain, the
MSR[JSTART] is cleared and the normal conversion chain is resumed.

The MSR[JSTART] is automatically set when the Injected conversion starts. At the same
time the MCR[JSTART] is reset, allowing the software to program a new start of conversion.
In that case the new requested conversion starts after the running injected conversion is
completed.

At the end of each injected conversion, an End Of Injected Conversion (JEOC) interrupt is
issued (if enabled by the IMR[MSKJEOC]) and at the end of the sequence an End Of
Injected Chain (JECH) interrupt is issued (if enabled by the IMR[MSKJEOC]).

If the content of all the injected conversion mask registers (JCMR) is zero (that is, no
channel is selected) the JECH interrupt is immediately issued after the start of conversion.

Abort conversion

Two different abort functions are provided.

● The user can abort the ongoing conversion by setting the MCR[ABORT] bit. The
current conversion is aborted and the conversion of the next channel of the chain is
immediately started. In the case of an abort operation, the NSTART/JSTART bit
remains set and the ABORT bit is reset after the conversion of the next channel starts.
The EOC interrupt corresponding to the aborted channel is not generated. This
behavior is true for normal or Injected conversion modes. If the last channel of a chain
is aborted, the end of chain is reported generating an ECH interrupt.

● It is also possible to abort the current chain conversion by setting the
MCR[ABORTCHAIN] bit. In that case the behavior of the ADC depends on the MODE
bit. If scan mode is disabled, the NSTART bit is automatically reset together with the
MCR[ABORTCHAIN] bit. Otherwise, if the scan mode is enabled, a new chain

The ongoing channel conversion is interrupted and the injected
conversion chain is processed first. After the injected chain is
converted the normal chain conversion resumes from the channel at
which normal conversion was aborted.

Injected conversion of channels I and J

Normal conversion resumes from
the last aborted channel.

Sample B Convert B Sample C Sample D Convert D Sample E Convert EConvert C

Sample C Abort C Sample I Sample J Convert J Sample C Convert CConvert I
659/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
conversion is started. The EOC interrupt of the current aborted conversion is not
generated but an ECH interrupt is generated to signal the end of the chain.

When a chain conversion abort is requested (ABORTCHAIN bit is set) while an injected
conversion is running over a suspended Normal conversion, both injected chain and
Normal conversion chain are aborted (both the NSTART and JSTART bits are also
reset).

25.3.2 Analog clock generator and conversion timings

The clock frequency can be selected by programming the MCR[ADCLKSEL]. When this bit
is set to ‘1’ the ADC clock has the same frequency as the peripheral set 3 clock. Otherwise,
the ADC clock is half of the peripheral set 3 clock frequency. The ADCLKSEL bit can be
written only in power-down mode.

When the internal divider is not enabled (ADCCLKSEL = 1), it is important that the
associated clock divider in the clock generation module is ‘1’. This is needed to ensure 50%
clock duty cycle.

The direct clock should basically be used only in low power mode when the device is using
only the 16 MHz fast internal RC oscillator, but the conversion still requires a 16 MHz clock
(an 8 MHz clock is not fast enough).

In all other cases, the ADC should use the clock divided by two internally.

25.3.3 ADC sampling and conversion timing

In order to support different loading and switching times, several different Conversion Timing
registers (CTR) are present. There is one register per channel type. INPLATCH and
INPCMP configurations are limited when the system clock frequency is greater than
20 MHz.

When a conversion is started, the ADC connects the internal sampling capacitor to the
respective analog input pin, allowing the capacitance to charge up to the input voltage value.
The time to load the capacitor is referred to as sampling time. After completion of the
sampling phase, the evaluation phase starts and all the bits corresponding to the resolution
of the ADC are estimated to provide the conversion result.

The conversion times are programmed via the bit fields of the CTR. Bit fields INPLATCH,
INPCMP and INPSAMP are used to define the total conversion duration (Tconv) and in
particular the partition between sampling phase duration (Tsample) and total evaluation
phase duration (Teval).

ADC_1

Figure 382 represents the sampling and conversion sequence.
Doc ID 16886 Rev 6 660/868

Analog-to-Digital Converter (ADC) RM0045

Figure 382. Sampling and conversion timings

The sampling phase duration is:

where ndelay is equal to 0.5 if INPSAMP is less than or equal to 06h, otherwise it is 1.
INPSAMP must be greater than or equal to 8 (hardware requirement).

The total evaluation phase duration is:

Where:

The total conversion duration is (not including external multiplexing):

The timings refer to the unit Tck, where fck = (1/2 x ADC peripheral set clock).

0.5 cycles

2.5 cycles

Sampling phase Successive approximation / evaluation phase

10 cycles

Latching phase:
The capacitors field input
switch is opened

Note: Operating conditions — INPLATCH = 0, INPSAMP = 3, INPCMP = 1 and Fadc clk = 20 MHz

End of conversion

Tsample INPSAMP 1–  Tck=

INPSAMP 8

Teval 12 Tbiteval=

Tbiteval INPCMP Tck= if INPCMP 1 

Tbiteval 4 Tck= if INPCMP 0= 

Tconv Tsample Teval Tck+ +=
661/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Table 336. ADC sampling and conversion timing at 5 V for ADC_1

Clock
(MHz)

Tck
(s)

INPSAMPLE(1) Ndelay
(2)

Tsample
(3) Tsample/Tck INPCMP

Teval
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

4 0.250 8 1 1.750 7.000 1 3.000 1 5.000 20.000

5 0.200 8 1 1.400 7.000 1 2.400 1 4.000 20.000

6 0.167 8 1 1.167 7.000 1 2.000 1 3.333 20.000

7 0.143 8 1 1.000 7.000 1 1.714 1 2.857 20.000

8 0.125 8 1 0.875 7.000 1 1.500 1 2.500 20.000

16 0.063 9 1 0.500 8.000 2 1.500 1 2.063 33.000

32 0.031 17 1 0.500 16.000 0 1.500 1 2.031 65.000

1. Where: INPSAMPLE 8

2. Where: INPSAMP  6, N = 0.5; INPSAMP > 6, N = 1

3. Where: Tsample = (INPSAMP-N)Tck; Must be  500 ns

Table 337. ADC sampling and conversion timing at 3.3 V for ADC_1

Clock
(MHz)

Tck
(s)

INPSAMPLE(1) Ndelay
(2)

Tsample
(3) Tsample/Tck INPCMP

Teval
(s)

INPLATCH
Tconv
(s)

Tconv/
Tck

4 0.250 8 1 1.750 7.000 1 3.000 1 5.000 20.000

5 0.200 8 1 1.400 7.000 1 2.400 1 4.000 20.000

7 0.143 8 1 1.000 7.000 2 3.429 1 4.571 32.000

8 0.125 8 1 0.875 7.000 2 3.000 1 4.000 32.000

16 0.063 11 1 0.625 10.000 0 3.000 1 3.688 59.000

20 0.050 13 1 0.600 12.000 0 2.400 1 3.050 61.000

1. Where: INPSAMPLE 8

2. Where: INPSAMP  6, N = 0.5; INPSAMP > 6, N = 1

3. Where: Tsample = (INPSAMP-N)Tck; Must be  600 ns

Table 338. Max/Min ADC_clk frequency and related configuration settings at 5 V for ADC_1

INPCMP INPLATCH Max fADC_clk Min fADC_clk

00
0 16+4% 13.33

1 32+4% 13.33

01 0/1 8+4% 3.33

10
0 8+4% 6.67

1 16+4% 6.67

11
0 16+4% 10

1 24+4% 10
Doc ID 16886 Rev 6 662/868

Analog-to-Digital Converter (ADC) RM0045

25.3.4 ADC CTU (Cross Triggering Unit)

Overview

The ADC cross triggering unit (CTU) is added to enhance the injected conversion capability
of the ADC. The CTU is triggered by multiple input events (eMIOS and PIT) and can be used
to select the channels to be converted from the appropriate event configuration register. A
single channel is converted for each request. After performing the conversion, the ADC
returns the result on internal bus.

The CTU can be enabled by setting MCR[CTUEN].

The CTU and the ADC are synchronous with the peripheral set 3 clock in both cases.

CTU in trigger mode

In CTU trigger mode, normal and injected conversions triggered by the CPU are still
enabled.

Once the CTU event configuration register (CTU_EVTCFGRx) is configured and the
corresponding trigger from the eMIOS or PIT is received, the conversion starts. The
MSR[CTUSTART] is set automatically at this point and it is also automatically reset when
the CTU triggered conversion is completed.

If an injected conversion (programmed by the user by setting the JSTART bit) is ongoing and
CTU conversion is triggered, then the injected channel conversion chain is aborted and only
the CTU triggered conversion proceeds. By aborting the injected conversion, the
MSR[JSTART] is reset. That abort is signalled through the status bit MSR[JABORT].

If a normal conversion is ongoing and a CTU conversion is triggered, then any ongoing
channel conversion is aborted and the CTU triggered conversion is processed. When it is
finished, the normal conversion resumes from the channel at which the normal conversion
was aborted.

If another CTU conversion is triggered before the end of the conversion, that request is
discarded.

When a normal conversion is requested during CTU conversion (CTUSTART bit = ‘1’), the
normal conversion starts when CTU conversion is completed (CTUSTART = ‘0’).
Otherwise, when an Injected conversion is requested during CTU conversion, the injected
conversion is discarded and the MCR[JSTART] is immediately reset.

Table 339. Max/Min ADC_clk frequency and related configuration settings at 3.3 V for ADC_1

INPCMP INPLATCH Max fADC_clk Min fADC_clk

00
0 Not allowed Not allowed

1 20+4% 13.33

01 0/1 5+4% 3.33

10
0 Not allowed Not allowed

1 10+4% 6.67

11
0 10+4% 10

1 15+4% 10
663/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
25.3.5 Presampling

Introduction

Presampling is used to precharge or discharge the ADC internal capacitor before it starts
sampling of the analog input coming from the input pins. This is useful for resetting
information regarding the last converted data or to have more accurate control of conversion
speed. During presampling, the ADC samples the internally generated voltage.

Presampling can be enabled/disabled on a channel basis by setting the corresponding bits
in the PSR registers.

After enabling the presampling for a channel, the normal sequence of operation will be
Presampling + Sampling + Conversion for that channel. Sampling of the channel can be
bypassed by setting the PRECONV bit in the PSCR. When sampling of a channel is
bypassed, the sampled data of internal voltage in the presampling state is converted
(Figure 383, Figure 384).

Figure 383. Presampling sequence

Figure 384. Presampling sequence with PRECONV = 1

Presampling channel enable signals

It is possible to select internally generated voltages V0 and V1 depending on the value of
the PSCR[PREVAL] as shown in Table 340.

Three presampling value fields, one per channel type, in the PSCR make it possible to
select different presampling values for each type.

Presampling is enabled in the channel C and D. For channel B total conversion clock cycles = (S) + (C).

For channel C and D total conversion clock cycles = (P) + (S) + (C).

Sample B Convert B Presample C Convert C Presample D Sample D Convert DSample C Sample E

Sample B Convert B Presample C Presample D Convert D Sample E Convert EConvert C

Presampling enabled in channel C and D but sampling is bypassed in these channels by setting PRECONV = 1 in the PSCR.

For channel C and D total conversion clock cycles = (P) + (C).

Table 340. Presampling voltage selection based on PREVALx fields

PSCR[PREVALx] Presampling voltage

00 V0 = VSS_HV_ADC

01 V1 = VDD_HV_ADC

10 Reserved

11 Reserved
Doc ID 16886 Rev 6 664/868

Analog-to-Digital Converter (ADC) RM0045
25.3.6 Programmable analog watchdog

Introduction

The analog watchdogs are used for determining whether the result of a channel conversion
lies within a given guarded area (as shown in Figure 385) specified by an upper and a lower
threshold value named THRH and THRL respectively.

Figure 385. Guarded area

After the conversion of the selected channel, a comparison is performed between the
converted value and the threshold values. If the converted value lies outside that guarded
area then corresponding threshold violation interrupts are generated. The comparison result
is stored as WTISR[WDGxH] and WTISR[WDGxL] as explained in Table 341. Depending on
the mask bits WTIMR[MSKWDGxL] and WTIMR[MSKWDGxH], an interrupt is generated on
threshold violation.

Each channel can be enabled independently from the CWENR registers and can select the
watchdog threshold registers (THRHLRx) to be used by programming the CWSELR
registers. The threshold registers selected by the CWSELR[WSEL_CHx] provides the
threshold values.

For example, if channel number 15 is to be monitored with the threshold values in
THRHLR1, then CWSELR[WSEL_CH15] is programmed to select THRHLR1 to provide the
threshold values. The channel monitoring is enabled by setting the bit corresponding to
channel 15 in the CWENR.

If a converted value for a particular channel lies outside the range specified by threshold
values, then the corresponding bit is set in the Analog Watchdog Out of Range Register
(AWORR).

A set of threshold registers (THRHLRx) can be linked to several ADC channels. The
threshold values to be selected for a channel need be programmed only once in the
CWSELRx.

THRH

THRL

Analog voltage

Upper threshold

Lower threshold
Guarded area

Table 341. Values of WDGxH and WDGxL fields

WDGxH WDGxL Converted data

1 0 converted data > THRH

0 1 converted data < THRL

0 0 THRL <= converted data <= THRH
665/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
Note: If the higher threshold for the analog watchdog is programmed lower than the lower
threshold and the converted value is less than the lower threshold, then the WDGxL
interrupt for the low threshold violation is set, else if the converted value is greater than the
lower threshold (consequently also greater than the higher threshold) then the interrupt
WDGxH for high threshold violation is set. Thus, the user should avoid that situation as it
could lead to misinterpretation of the watchdog interrupts.

25.3.7 DMA functionality

A DMA request can be programmed after the conversion of every channel by setting the
respective masking bit in the DMAR registers. The DMAR masking registers must be
programmed before starting any conversion. There is one DMAR per channel type.

The DMA transfers can be enabled using the DMAEN bit of DMAE register. When the DCLR
bit of DMAE register is set then the DMA request is cleared on the reading of the register for
which DMA transfer has been enabled.

25.3.8 Interrupts

The ADC generates the following maskable interrupt signals:

● ADC_EOC interrupt requests

– EOC (end of conversion)

– ECH (end of chain)

– JEOC (end of injected conversion)

– JECH (end of injected chain)

– EOCTU (end of CTU conversion)

● WDGxL and WDGxH (watchdog threshold) interrupt requests

Interrupts are generated during the conversion process to signal events such as End Of
Conversion as explained in register description for CEOCFR[0..2]. Two registers named
CEOCFR[0..2] (Channel Pending Registers) and IMR (Interrupt Mask Register) are
provided in order to check and enable the interrupt request to INT module.

Interrupts can be individually enabled on a channel by channel basis by programming the
CIMR (Channel Interrupt Mask Register).

Several CEOCFR[0..2] are also provided in order to signal which of the channels’
measurement has been completed.

The analog watchdog interrupts are handled by two registers WTISR (Watchdog Threshold
Interrupt Status Register) and WTIMR (Watchdog Threshold Interrupt Mask Register) in
order to check and enable the interrupt request to the INTC module. The Watchdog interrupt
source sets two pending bits WDGxH and WDGxL in the WTISR for each of the channels
being monitored.

The CEOCFR[0..2] contains the interrupt pending request status. If the user wants to clear a
particular interrupt event status, then writing a ‘1’ to the corresponding status bit clears the
pending interrupt flag (at this write operation all the other bits of the CEOCFR[0..2] must be
maintained at ‘0’).

25.3.9 External decode signals delay

The ADC provides several external decode signals to select which external channel has to
be converted. In order to take into account the control switching time of the external analog
Doc ID 16886 Rev 6 666/868

Analog-to-Digital Converter (ADC) RM0045
multiplexer, a Decode Signals Delay register (DSDR) is provided. The delay between the
decoding signal selection and the actual start of conversion can be programmed by writing
the field DSD[0:11].

After having selected the channel to be converted, the MA[0:2] control lines are
automatically reset. For instance, in the event of normal scan conversion on ANP[0] followed
by ANX[0,7] (ADC ch 71) all the MA[0:2] bits are set and subsequently reset.

25.3.10 Power-down mode

The analog part of the ADC can be put in low power mode by setting the MCR[PWDN]. After
releasing the reset signal the ADC analog module is kept in power-down mode by default,
so this state must be exited before starting any operation by resetting the appropriate bit in
the MCR.

The power-down mode can be requested at any time by setting the MCR[PWDN]. If a
conversion is ongoing, the ADC must complete the conversion before entering the power
down mode. In fact, the ADC enters power-down mode only after completing the ongoing
conversion. Otherwise, the ongoing operation should be aborted manually by resetting the
NSTART bit and using the ABORTCHAIN bit.

MSR[ADCSTATUS] bit is set only when ADC enters power-down mode.

After the power-down phase is completed the process ongoing before the power-down
phase must be restarted manually by setting the appropriate MCR[START] bit.

Resetting MCR[PWDN] bit and setting MCR[NSTART] or MCR[JSTART] bit during the same
cycle is forbidden.

If a CTU trigger pulse is received during power-down, it is discarded.

If the CTU is enabled and the CSR[CTUSTART] bit is ‘1’, then the MCR[PWDN] bit cannot
be set.

When CTU trigger mode is enabled, the application has to wait for the end of conversion
(CTUSTART bit automatically reset).

25.3.11 Auto-clock-off mode

To reduce power consumption during the IDLE mode of operation (without going into power-
down mode), an “auto-clock-off” feature can be enabled by setting the MCR[ACKO] bit.
When enabled, the analog clock is automatically switched off when no operation is ongoing,
that is, no conversion is programmed by the user.

25.4 Register descriptions

25.4.1 Introduction

Table 342 lists the ADC_1 registers with their address offsets and reset values.
667/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Table 342. 12-bit ADC_1 digital registers

Base address: 0xFFE0_4000
Location

Address offset Register name

0x0000 Main Configuration Register (MCR) on page 25-671

0x0004 Main Status Register (MSR) on page 25-673

0x0008 .. 0x000F Reserved —

0x0010 Interrupt Status Register (ISR) on page 25-675

0x0014 Channel Pending Register (CEOCFR0) on page 25-675

0x0018 Channel Pending Register (CEOCFR1) on page 25-675

0x001C Channel Pending Register (CEOCFR2) on page 25-675

0x0020 Interrupt Mask Register (IMR) on page 25-677

0x0024 Channel Interrupt Mask Register (CIMR0) on page 25-678

0x0028 Channel Interrupt Mask Register (CIMR1) on page 25-678

0x002C Channel Interrupt Mask Register (CIMR2) on page 25-678

0x0030 Watchdog Threshold Interrupt Status Register (WTISR) on page 25-679

0x0034 Watchdog Threshold Interrupt Mask Register (WTIMR) on page 25-680

0x0038 .. 0x003F Reserved —

0x0040 DMA Enable Register (DMAE) on page 25-681

0x0044 DMA Channel Select Register 0 (DMAR0) on page 25-682

0x0048 DMA Channel Select Register 1 (DMAR1) on page 25-682

0x004C DMA Channel Select Register 2 (DMAR2) on page 25-682

0x0050 .. 0x005F Reserved —

0x0060 Threshold Register 0 (THRHLR0) on page 25-684

0x0064 Threshold Register 1 (THRHLR1) on page 25-684

0x0068 Threshold Register 2 (THRHLR2) on page 25-684

0x006C .. 0x007F Reserved —

0x0080 Presampling Control Register (PSCR) on page 25-684

0x0084 Presampling Register 0 (PSR0) on page 25-685

0x0088 Presampling Register 1 (PSR1) on page 25-685

0x008C Presampling Register 2 (PSR2) on page 25-685

0x0090 .. 0x0093 Reserved —

0x0094 Conversion Timing Register 0 (CTR0) on page 25-687

0x0098–0x00A3 Reserved

0x00A4 Normal Conversion Mask Register 0 (NCMR0) on page 25-687

0x00A8–0x00B3 Reserved

0x00B4 Injected Conversion Mask Register 0 (JCMR0) on page 25-690
Doc ID 16886 Rev 6 668/868

Analog-to-Digital Converter (ADC) RM0045
0x00B8–00C3 Reserved

0x00C4 Decode Signals Delay Register (DSDR) on page 25-692

0x00C8 Power-down Exit Delay Register (PDEDR) on page 25-692

0x00CC .. 0x00FF Reserved —

0x0100 Channel 0 Data Register (CDR0) on page 25-693

0x0104 Channel 1 Data Register (CDR1) on page 25-693

0x0108 Channel 2 Data Register (CDR2) on page 25-693

0x010C Channel 3 Data Register (CDR3) on page 25-693

0x0110 Channel 4 Data Register (CDR4) on page 25-693

0x0114 Channel 5 Data Register (CDR5) on page 25-693

0x0118 Channel 6 Data Register (CDR6) on page 25-693

0x011C Channel 7 Data Register (CDR7) on page 25-693

0x0120 Channel 8 Data Register (CDR8) on page 25-693

0x0124 Channel 9 Data Register (CDR9) on page 25-693

0x0128 Channel 10 Data Register (CDR10) on page 25-693

0x012C Channel 11 Data Register (CDR11) on page 25-693

0x0130 Channel 12 Data Register (CDR12) on page 25-693

0x0134 Channel 13 Data Register (CDR13) on page 25-693

0x0138 Channel 14 Data Register (CDR14) on page 25-693

0x013C Channel 15 Data Register (CDR15) on page 25-693

0x0140 .. 0x017F Reserved —

0x0180 Channel 32 Data Register (CDR32) on page 25-693

0x0184 Channel 33 Data Register (CDR33) on page 25-693

0x0188 Channel 34 Data Register (CDR34) on page 25-693

0x018C Channel 35 Data Register (CDR35) on page 25-693

0x0190 Channel 36 Data Register (CDR36) on page 25-693

0x0194 Channel 37 Data Register (CDR37) on page 25-693

0x0198 Channel 38 Data Register (CDR38) on page 25-693

0x019C Channel 39 Data Register (CDR39) on page 25-693

0x01A0 Channel 40 Data Register (CDR40) on page 25-693

0x01A4 Channel 41 Data Register (CDR41) on page 25-693

0x01A8 Channel 42 Data Register (CDR42) on page 25-693

0x01AC Channel 43 Data Register (CDR43) on page 25-693

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
669/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
0x01B0 .. 0x01FF Reserved —

0x0200 Channel 64 Data Register (CDR64) on page 25-693

0x0204 Channel 65 Data Register (CDR65) on page 25-693

0x0208 Channel 66 Data Register (CDR66) on page 25-693

0x020C Channel 67 Data Register (CDR67) on page 25-693

0x0210 Channel 68 Data Register (CDR68) on page 25-693

0x0214 Channel 69 Data Register (CDR69) on page 25-693

0x0218 Channel 70 Data Register (CDR70) on page 25-693

0x021C Channel 71 Data Register (CDR71) on page 25-693

0x0220 Channel 72 Data Register (CDR72) on page 25-693

0x0224 Channel 73 Data Register (CDR73) on page 25-693

0x0228 Channel 74 Data Register (CDR74) on page 25-693

0x022C Channel 75 Data Register (CDR75) on page 25-693

0x0230 Channel 76 Data Register (CDR76) on page 25-693

0x0234 Channel 77 Data Register (CDR77) on page 25-693

0x0238 Channel 78 Data Register (CDR78) on page 25-693

0x023C Channel 79 Data Register (CDR79) on page 25-693

0x0240 Channel 80 Data Register (CDR80) on page 25-693

0x0244 Channel 81 Data Register (CDR81) on page 25-693

0x0248 Channel 82 Data Register (CDR82) on page 25-693

0x024C Channel 83 Data Register (CDR83) on page 25-693

0x0250 Channel 84 Data Register (CDR84) on page 25-693

0x0254 Channel 85 Data Register (CDR85) on page 25-693

0x0258 Channel 86 Data Register (CDR86) on page 25-693

0x025C Channel 87 Data Register (CDR87) on page 25-693

0x0260 Channel 88 Data Register (CDR88) on page 25-693

0x0264 Channel 89 Data Register (CDR89) on page 25-693

0x0268 Channel 90 Data Register (CDR90) on page 25-693

0x026C Channel 91 Data Register (CDR91) on page 25-693

0x0270 Channel 92 Data Register (CDR92) on page 25-693

0x0274 Channel 93 Data Register (CDR93) on page 25-693

0x0278 Channel 94 Data Register (CDR94) on page 25-693

0x027C Channel 95 Data Register (CDR95) on page 25-693

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
Doc ID 16886 Rev 6 670/868

Analog-to-Digital Converter (ADC) RM0045

25.4.2 Control logic registers

Main Configuration Register (MCR)

The Main Configuration Register (MCR) provides configuration settings for the ADC.

0x0280 .. 0x02AF Reserved —

0x02B0 Channel Watchdog Selection Register 0 (CWSEL0) on page 25-694

0x02B4 Channel Watchdog Selection Register 1 (CWSEL1) on page 25-694

0x02B8 .. 0x02BF Reserved —

0x02C0 Channel Watchdog Selection Register 4 (CWSEL4) on page 25-695

0x02C4 Channel Watchdog Selection Register 5 (CWSEL5) on page 25-695

0x02C8 .. 0x02CF Reserved —

0x02D0 Channel Watchdog Selection Register 8 (CWSEL8) on page 25-695

0x02D4 Channel Watchdog Selection Register 9 (CWSEL9) on page 25-695

0x02D8 Channel Watchdog Selection Register 10 (CWSEL10) on page 25-695

0x02DC Channel Watchdog Selection Register 11 (CWSEL11) on page 25-695

0x02E0 Channel Watchdog Enable Register 0 (CWENR0) on page 25-695

0x02E4 Channel Watchdog Enable Register 1 (CWENR1) on page 25-695

0x02E8 Channel Watchdog Enable Register 2 (CWENR2) on page 25-695

0x02EC .. 0x02EF Reserved —

0x02F0 Analog Watchdog Out of Range register 0 (AWORR0) on page 25-696

0x02F4 Analog Watchdog Out of Range register 1 (AWORR1) on page 25-696

0x02F8 Analog Watchdog Out of Range register 2 (AWORR2) on page 25-696

0x2FC .. 0x02FF Reserved —

Table 342. 12-bit ADC_1 digital registers (continued)

Base address: 0xFFE0_4000
Location

Address offset Register name
671/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Figure 386. Main Configuration Register (MCR)

Address: Base + 0x0000 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

O
W

R
E

N

W
LS

ID
E

M
O

D
E 0 0 0 0

N
S

TA
R

T

0

JT
R

G
E

N

JE
D

G
E

JS
TA

R
T 0 0

C
T

U
E

N

0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0

A
D

C
LK

S
E

L

A
B

O
R

T
C

H
A

IN

A
B

O
R

T

A
C

K
O 0 0 0 0

P
W

D
N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 343. MCR field descriptions

Field Description

OWREN

Overwrite enable

This bit enables or disables the functionality to overwrite unread converted data.
0 Prevents overwrite of unread converted data; new result is discarded
1 Enables converted data to be overwritten by a new conversion

WLSIDE

Write left/right-aligned
0 The conversion data is written right-aligned.
1 Data is left-aligned (from 15 to (15 – resolution + 1)).
The WLSIDE bit affects all the CDR registers simultaneously. See Figure 416 and Figure 416.

MODE

One Shot/Scan
0 One Shot Mode—Configures the normal conversion of one chain.
1 Scan Mode—Configures continuous chain conversion mode; when the programmed chain

conversion is finished it restarts immediately.

NSTART

Normal Start conversion
Setting this bit starts the chain or scan conversion. Resetting this bit during scan mode causes the
current chain conversion to finish, then stops the operation.
This bit stays high while the conversion is ongoing (or pending during injection mode).

0 Causes the current chain conversion to finish and stops the operation
1 Starts the chain or scan conversion

JTRGEN
Injection external trigger enable

0 External trigger disabled for channel injection
1 External trigger enabled for channel injection

JEDGE

Injection trigger edge selection

Edge selection for external trigger, if JTRGEN = 1.

0 Selects falling edge for the external trigger
1 Selects rising edge for the external trigger

JSTART
Injection start
Setting this bit will start the configured injected analog channels to be converted by software.
Resetting this bit has no effect, as the injected chain conversion cannot be interrupted.
Doc ID 16886 Rev 6 672/868

Analog-to-Digital Converter (ADC) RM0045
Main Status Register (MSR)

The Main Status Register (MSR) provides status bits for the ADC.

CTUEN
Cross trigger unit conversion enable
0 CTU triggered conversion disabled
1 CTU triggered conversion enabled

ADCLKSEL

Analog clock select

This bit can only be written when ADC in Power-Down mode
0 ADC clock frequency is half Peripheral Set Clock frequency
1 ADC clock frequency is equal to Peripheral Set Clock frequency

ABORTCHAIN

Abort Chain

When this bit is set, the ongoing Chain Conversion is aborted. This bit is reset by hardware as soon
as a new conversion is requested.

0 Conversion is not affected
1 Aborts the ongoing chain conversion

ABORT

Abort Conversion

When this bit is set, the ongoing conversion is aborted and a new conversion is invoked. This bit is
reset by hardware as soon as a new conversion is invoked. If it is set during a scan chain, only the
ongoing conversion is aborted and the next conversion is performed as planned.
0 Conversion is not affected
1 Aborts the ongoing conversion

ACKO

Auto-clock-off enable

If set, this bit enables the Auto clock off feature.
0 Auto clock off disabled
1 Auto clock off enabled

PWDN

Power-down enable

When this bit is set, the analog module is requested to enter Power Down mode. When ADC status
is PWDN, resetting this bit starts ADC transition to IDLE mode.

0 ADC is in normal mode
1 ADC has been requested to power down

Table 343. MCR field descriptions (continued)

Field Description
673/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Note: MSR[JSTART] is automatically set when the injected conversion starts. At the same time
MCR[JSTART] is reset, allowing the software to program a new start of conversion.

The JCMR registers do not change their values.

Figure 387. Main Status Register (MSR)

Address: Base + 0x0004 Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0

N
S

TA
R

T

JA
B

O
R

T

0 0

JS
TA

R
T

0 0 0

C
T

U
S

TA
R

T

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CHADDR 0 0 0 ACK0 0 0 ADCSTATUS

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 344. MSR field descriptions

Field Description

NSTART This status bit is used to signal that a Normal conversion is ongoing.

JABORT
This status bit is used to signal that an Injected conversion has been aborted. This bit is reset
when a new injected conversion starts.

JSTART This status bit is used to signal that an Injected conversion is ongoing.

CTUSTART This status bit is used to signal that a CTU conversion is ongoing.

CHADDR
Current conversion channel address
This status field indicates current conversion channel address.

ACKO
Auto-clock-off enable
This status bit is used to signal if the Auto-clock-off feature is on.

ADCSTATUS

The value of this parameter depends on ADC status:
000 IDLE
001 Power-down
010 Wait state
011 Reserved
100 Sample
101 Reserved
110 Conversion
111 Reserved
Doc ID 16886 Rev 6 674/868

Analog-to-Digital Converter (ADC) RM0045
25.4.3 Interrupt registers

Interrupt Status Register (ISR)

The Interrupt Status Register (ISR) contains interrupt status bits for the ADC.

Channel Pending Registers (CEOCFR[0..2])

CEOCFR0 = End of conversion pending interrupt for channel 0 to 15 (precision channels)

CEOCFR1 = End of conversion pending interrupt for channel 32 to 44 (standard channels)

CEOCFR2 = End of conversion pending interrupt for channel 64 to 95 (external multiplexed
channels)

Figure 388. Interrupt Status Register (ISR)

Address: Base + 0x0010 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0
EO

CTU
JEOC JECH EOC ECH

W w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 345. ISR field descriptions

Field Description

EOCTU
End of CTU Conversion interrupt flag

When this bit is set, an EOCTU interrupt has occurred.

JEOC
End of Injected Channel Conversion interrupt flag

When this bit is set, a JEOC interrupt has occurred.

JECH
End of Injected Chain Conversion interrupt flag

When this bit is set, a JECH interrupt has occurred.

EOC
End of Channel Conversion interrupt flag

When this bit is set, an EOC interrupt has occurred.

ECH
End of Chain Conversion interrupt flag

When this bit is set, an ECH interrupt has occurred.
675/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Figure 389. Channel Pending Register 0 (CEOCFR0)

Address: Base + 0x0014 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
15

E
O

C
_C

H
14

E
O

C
_C

H
13

E
O

C
_C

H
12

E
O

C
_C

H
11

E
O

C
_C

H
10

E
O

C
_C

H
9

E
O

C
_C

H
8

E
O

C
_C

H
7

E
O

C
_C

H
6

E
O

C
_C

H
5

E
O

C
_C

H
4

E
O

C
_C

H
3

E
O

C
_C

H
2

E
O

C
_C

H
1

E
O

C
_C

H
0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 390. Channel Pending Register 1 (CEOCFR1)

Address: Base + 0x0018 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

E
O

C
_C

H
44

E
O

C
_C

H
43

E
O

C
_C

H
42

E
O

C
_C

H
41

E
O

C
_C

H
40

E
O

C
_C

H
39

E
O

C
_C

H
38

E
O

C
_C

H
37

E
O

C
_C

H
36

E
O

C
_C

H
35

E
O

C
_C

H
34

E
O

C
_C

H
33

E
O

C
_C

H
32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 676/868

Analog-to-Digital Converter (ADC) RM0045

Interrupt Mask Register (IMR)

The Interrupt Mask Register (IMR) contains the interrupt enable bits for the ADC.

Figure 391. Channel Pending Register 2 (CEOCFR2)

Address: Base + 0x001C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

E
O

C
_C

H
95

E
O

C
_C

H
94

E
O

C
_C

H
93

E
O

C
_C

H
92

E
O

C
_C

H
91

E
O

C
_C

H
90

E
O

C
_C

H
89

E
O

C
_C

H
88

E
O

C
_C

H
87

E
O

C
_C

H
86

E
O

C
_C

H
85

E
O

C
_C

H
84

E
O

C
_C

H
83

E
O

C
_C

H
82

E
O

C
_C

H
81

E
O

C
_C

H
80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

E
O

C
_C

H
79

E
O

C
_C

H
78

E
O

C
_C

H
77

E
O

C
_C

H
76

E
O

C
_C

H
75

E
O

C
_C

H
74

E
O

C
_C

H
73

E
O

C
_C

H
72

E
O

C
_C

H
71

E
O

C
_C

H
70

E
O

C
_C

H
69

E
O

C
_C

H
68

E
O

C
_C

H
67

E
O

C
_C

H
66

E
O

C
_C

H
65

E
O

C
_C

H
64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 392. Interrupt Mask Register (IMR)

Address: Base + 0x0020 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0

M
S

K
E

O
C

T
U

M
S

K
JE

O
C

M
S

K
JE

C
H

M
S

K
E

O
C

M
S

K
E

C
H

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 346. Interrupt Mask Register (IMR) field descriptions

Field Description

MSKEOCTU
Mask for end of CTU conversion (EOCTU) interrupt
When set, the EOCTU interrupt is enabled.

MSKJEOC
Mask for end of injected channel conversion (JEOC) interrupt
When set, the JEOC interrupt is enabled.
677/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
Channel Interrupt Mask Register (CIMR[0..2])

CIMR0 = Enable bits for channel 0 to 15 (precision channels)

CIMR1 = Enable bits for channel 32 to 44 (standard channels)

CIMR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

MSKJECH
Mask for end of injected chain conversion (JECH) interrupt
When set, the JECH interrupt is enabled.

MSKEOC
Mask for end of channel conversion (EOC) interrupt
When set, the EOC interrupt is enabled.

MSKECH
Mask for end of chain conversion (ECH) interrupt
When set, the ECH interrupt is enabled.

Table 346. Interrupt Mask Register (IMR) field descriptions (continued)

Field Description

Figure 393. Channel Interrupt Mask Register 0 (CIMR0)

Address: Base + 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
15

CIM
14

CIM
13

CIM
12

CIM
11

CIM
10

CIM
9

CIM
8

CIM
7

CIM
6

CIM
5

CIM
4

CIM
3

CIM
2

CIM
1

CIM
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 394. Channel Interrupt Mask Register 1 (CIMR1)

Address: Base + 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 CIM
44

CIM
43

CIM
42

CIM
41

CIM
40

CIM
39

CIM
38

CIM
37

CIM
36

CIM
35

CIM
34

CIM
33

CIM
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 678/868

Analog-to-Digital Converter (ADC) RM0045

Watchdog Threshold Interrupt Status Register (WTISR)

Figure 395. Channel Interrupt Mask Register 2 (CIMR2)

Address: Base + 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CIM
95

CIM
94

CIM
93

CIM
92

CIM
91

CIM
90

CIM
89

CIM
88

CIM
87

CIM
86

CIM
85

CIM
84

CIM
83

CIM
82

CIM
81

CIM
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CIM
79

CIM
78

CIM
77

CIM
76

CIM
75

CIM
74

CIM
73

CIM
72

CIM
71

CIM
70

CIM
69

CIM
68

CIM
67

CIM
66

CIM
65

CIM
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 347. CIMR field descriptions

Field Description

CIMn
Interrupt enable
When set (CIMn = 1), interrupt for channel n is enabled.

Figure 396. ADC_1 Watchdog Threshold Interrupt Status Register (WTISR)

Address: Base + 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
WDG

2H
WDG

2L
WDG

1H
WDG

1L
WDG

0H
WDG

0L

W w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 348. ADC_1 WTISR field descriptions

Field Description

WDGxH
This corresponds to the interrupt generated on the converted value being higher than the programmed
higher threshold (for [x = 0..2]).

WDGxL
This corresponds to the interrupt generated on the converted value being lower than the programmed
lower threshold (for [x = 0..2]).
679/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
Watchdog Threshold Interrupt Mask Register (WTIMR)

Figure 397. ADC_1 Watchdog Threshold Interrupt Mask Register (WTIMR)

Address: Base + 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 MSK
WDG

2H

MSK
WDG

2L

MSK
WDG

1H

MSK
WDG

1L

MSK
WDG

0H

MSK
WDG

0LW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 349. ADC_1 WTIMR field descriptions

Field Description

MSKWDGxH
This corresponds to the mask bit for the interrupt generated on the converted value being
higher than the programmed higher threshold (for [x = 0..2]). When set the interrupt is enabled.

MSKWDGxL
This corresponds to the mask bit for the interrupt generated on the converted value being lower
than the programmed lower threshold (for [x = 0..2]). When set the interrupt is enabled.
Doc ID 16886 Rev 6 680/868

Analog-to-Digital Converter (ADC) RM0045
25.4.4 DMA registers

DMA Enable Register (DMAE)

The DMA Enable (DMAE) register sets up the DMA for use with the ADC.

Figure 398. DMA Enable Register (DMAE)

Address: Base + 0x0040 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0

D
C

LR

D
M

A
E

N

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 350. DMAE field descriptions

Field Description

DCLR
DMA clear sequence enable
0 DMA request cleared by Acknowledge from DMA controller
1 DMA request cleared on read of data registers

DMAEN
DMA global enable

0 DMA feature disabled
1 DMA feature enabled
681/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
DMA Channel Select Register (DMAR[0..2])

DMAR0 = Enable bits for channel 0 to 15 (precision channels)

DMAR1 = Enable bits for channel 32 to 44 (standard channels)

DMAR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

Figure 399. DMA Channel Select Register 0 (DMAR0)

Address: Base + 0x0044 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
15

DMA
14

DMA
13

DMA
12

DMA
11

DMA
10

DMA
9

DMA
8

DMA
7

DMA
6

DMA
5

DMA
4

DMA
3

DMA
2

DMA
1

DMA
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 400. DMA Channel Select Register 1 (DMAR1)

Address: Base + 0x0048 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 DMA
44

DMA
43

DMA
42

DMA
41

DMA
40

DMA
39

DMA
38

DMA
37

DMA
36

DMA
35

DMA
34

DMA
33

DMA
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 682/868

Analog-to-Digital Converter (ADC) RM0045

Figure 401. DMA Channel Select Register 2 (DMAR2)

Address: Base + 0x004C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R DMA
95

DMA
94

DMA
93

DMA
92

DMA
91

DMA
90

DMA
89

DMA
88

DMA
87

DMA
86

DMA
85

DMA
84

DMA
83

DMA
82

DMA
81

DMA
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R DMA
79

DMA
78

DMA
77

DMA
76

DMA
75

DMA
74

DMA
73

DMA
72

DMA
71

DMA
70

DMA
69

DMA
68

DMA
67

DMA
66

DMA
65

DMA
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 351. DMARx field descriptions

Field Description

DMAn
DMA enable
When set (DMAn = 1), channel n is enabled to transfer data in DMA mode.
683/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
25.4.5 Threshold registers

Threshold Register (THRHLR)

25.4.6 Presampling registers

Presampling Control Register (PSCR)

Figure 402. ADC_1 Threshold Register THRHLR[0..2]

Address:
Base + 0x0060 (THRHLR0)
Base + 0x0064 (THRHLR1)

Base + 0x0068 (THRHLR2) Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0
THRH

W

Reset 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
THRL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 352. ADC_1 THRHLR field descriptions

Field Description

THRH High threshold value for channel n.

THRL Low threshold value for channel n.

Figure 403. Presampling Control Register (PSCR)

Address: Base + 0x0080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
PREVAL2 PREVAL1 PREVAL0

PRE
CONVW

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 684/868

Analog-to-Digital Converter (ADC) RM0045

Presampling Register (PSR[0..])

PSR0 = Enable bits of presampling for channel 0 to 15 (precision channels)

PSR1 = Enable bits of presampling for channel 32 to 44 (standard channels)

PSR2 = Enable bits of presampling for channel 64 to 95 (external multiplexed channels)

Table 353. PSCR field descriptions

Field Description

PREVAL2
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available internal voltages (external
multiplexed channels).

PREVAL1
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available internal voltages (standard
channels).

PREVAL0
Internal voltage selection for presampling
Selects analog input voltage for presampling from the available internal voltages (precision
channels).

PRECONV
Convert presampled value
If bit PRECONV is set, presampling is followed by the conversion. Sampling will be bypassed and
conversion of presampled data will be done.

Figure 404. Presampling Register 0 (PSR0)

Address: Base + 0x0084 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
15

PRES
14

PRES
13

PRES
12

PRES
11

PRES
10

PRES
9

PRES
8

PRES
7

PRES
6

PRES
5

PRES
4

PRES
3

PRES
2

PRES
1

PRES
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
685/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Figure 405. Presampling Register 1 (PSR1)

Address: Base + 0x0088 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 PRES
44

PRES
43

PRES
42

PRES
41

PRES
40

PRES
39

PRES
38

PRES
37

PRES
36

PRES
35

PRES
34

PRES
33

PRES
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 406. Presampling Register 2 (PSR2)

Address: Base + 0x008C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PRES
95

PRES
94

PRES
93

PRES
92

PRES
91

PRES
90

PRES
89

PRES
88

PRES
87

PRES
86

PRES
85

PRES
84

PRES
83

PRES
82

PRES
81

PRES
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRES
79

PRES
78

PRES
77

PRES
76

PRES
75

PRES
74

PRES
73

PRES
72

PRES
71

PRES
70

PRES
69

PRES
68

PRES
67

PRES
66

PRES
65

PRES
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 354. PSR field descriptions

Field Description

PRESn
Presampling enable
When set (PRESn = 1), presampling is enabled for channel n.
Doc ID 16886 Rev 6 686/868

Analog-to-Digital Converter (ADC) RM0045
25.4.7 Conversion timing registers CTR[0..2]

CTR0 = associated to internal precision channels (from 0 to 15)

CTR1 = associated to standard channels (from 32 to 44)

CTR2 = associated to external multiplexed channels (from 64 to 95)

25.4.8 Mask registers

Introduction

These registers are used to program which of the 96 input channels must be converted
during Normal and Injected conversion.

Normal Conversion Mask Registers (NCMR[0..2])

NCMR0 = Enable bits of normal sampling for channel 0 to 15 (precision channels)

Figure 407. Conversion timing registers CTR[0..2]

Address:
Base + 0x0094 (CTR0)
Base + 0x0098 (CTR1)

Base + 0x009C (CTR2)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

IN
P

LA
T

C
H 0

OFFSHIFT
(1)

1. Available only on CTR0

0

INPCMP

0

INPSAMP
W

Reset 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

Table 355. CTR field descriptions

Field Description

INPLATCH Configuration bit for latching phase duration

OFFSHIFT

Configuration for offset shift characteristic
00 No shift (that is the transition between codes 000h and 001h) is reached when the AVIN (analog

input voltage) is equal to 1 LSB.
01 Transition between code 000h and 001h is reached when the AVIN is equal to1/2 LSB
10 Transition between code 00h and 001h is reached when the AVIN is equal to 0
11 Not used
Note: Available only on CTR0

INPCMP Configuration bits for comparison phase duration

INPSAMP Configuration bits for sampling phase duration
687/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
NCMR1 = Enable bits of normal sampling for channel 32 to 44 (standard channels)

NCMR2 = Enable bits of normal sampling for channel 64 to 95 (external multiplexed
channels)

Figure 408. Normal Conversion Mask Register 0 (NCMR0)

Address: Base + 0x00A4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 409. Normal Conversion Mask Register 1 (NCMR1)

Address: Base + 0x00A8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 688/868

Analog-to-Digital Converter (ADC) RM0045

Note: The implicit channel conversion priority in the case in which all channels are selected is the
following: ADC1_P[0:x], ADC1_S[0:y], ADC1_X[0:z].

The channels always start with 0, the lowest index.

Figure 410. Normal Conversion Mask Register 2 (NCMR2)

Address: Base + 0x00AC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 356. NCMR field descriptions

Field Description

CHn
Sampling enable
When set Sampling is enabled for channel n.
689/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
Injected Conversion Mask Registers (JCMR[0..2])

JCMR0 = Enable bits of injected sampling for channel 0 to 15 (precision channels)

JCMR1 = Enable bits of injected sampling for channel 32 to 44(standard channels)

JCMR2 = Enable bits of injected sampling for channel 64 to 95 (external multiplexed
channels)

Figure 411. Injected Conversion Mask Register 0 (JCMR0)

Address: Base + 0x00B4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH15 CH14 CH13 CH12 CH11 CH10 CH9 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 412. Injected Conversion Mask Register 1 (JCMR1)

Address: Base + 0x00B8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0
CH44 CH43 CH42 CH41 CH40 CH39 CH38 CH37 CH36 CH35 CH34 CH33 CH32

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 690/868

Analog-to-Digital Converter (ADC) RM0045

Figure 413. Injected Conversion Mask Register 2 (JCMR2)

Address: Base + 0x00BC Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
CH95 CH94 CH93 CH92 CH91 CH90 CH89 CH88 CH87 CH86 CH85 CH84 CH83 CH82 CH81 CH80

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CH79 CH78 CH77 CH76 CH75 CH74 CH73 CH72 CH71 CH70 CH69 CH68 CH67 CH66 CH65 CH64

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 357. JCMR field descriptions

Field Description

CHn
Sampling enable
When set, sampling is enabled for channel n.
691/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)
25.4.9 Delay registers

Decode Signals Delay Register (DSDR)

Power-down Exit Delay Register (PDEDR)

Figure 414. Decode Signals Delay Register (DSDR)

Address: Base + 0x00C4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0
DSD

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 358. DSDR field descriptions

Field Description

DSD

Delay between the external decode signals and the start of the sampling phase

It is used to take into account the settling time of the external multiplexer.
The decode signal delay is calculated as: DSD × 1/frequency of ADC clock.

Note: when ADC clock = Peripheral Clock/2 the DSD has to be incremented by 2 to see an additional
ADC clock cycle delay on the decode signal.
For example:
DSD = 0; 0 ADC clock cycle delay
DSD = 2; 1 ADC clock cycle delay
DSD = 4; 2 ADC clock cycles delay

Figure 415. Power-down Exit Delay Register (PDEDR)

Address: Base + 0x00C8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0
PDED

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 692/868

Analog-to-Digital Converter (ADC) RM0045

25.4.10 Data registers

Introduction

ADC conversion results are stored in data registers. There is one register per channel.

Channel Data Register (CDR[0..95])

CDR[0..15] = precision channels

CDR[32..44] = standard channels

CDR[64..95] = external multiplexed channels

Each data register also gives information regarding the corresponding result as described
below.

Table 359. PDEDR field descriptions

Field Description

PDED
Delay between the power-down bit reset and the start of conversion. The delay is to allow time for the
ADC power supply to settle before commencing conversions.
The power down delay is calculated as: PDED x 1/frequency of ADC clock.

Figure 416. Channel Data Register (CDR[0..95])

Address: See Table 342 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 VA
LID

OVER
W

RESULT
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 CDATA[0:11]
(MCR[WLSIDE] = 0)W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CDATA[0:11]
(MCR[WLSIDE] = 1)

0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
693/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

25.4.11 Watchdog register

Channel Watchdog Select Register (CWSELR[0..11])

Register WSEL_CHn[3:0] = Selects the threshold register which provides the values to be
used for upper and lower bounds for channel n.

CWSELR[0..1] = Channel watchdog select register for channel 0 to 15 (precision channels)

CWSELR[4..5] = Channel watchdog select register for channel 32 to 44 (standard channels)

CWSELR[8..1] = Channel watchdog select register for channel 64 to 95 (external
multiplexed channels)

Table 360. CDR field descriptions

Field Description

VALID
Used to notify when the data is valid (a new value has been written). It is automatically cleared when
data is read.

OVERW

Overwrite data

This bit signals that the previous converted data has been overwritten by a new conversion. This
functionality depends on the value of MCR[OWREN]:

– When OWREN = 0, then OVERW is frozen to 0 and CDATA field is protected against being
overwritten until being read.

– When OWREN = 1, then OVERW flags the CDATA field overwrite status.
0 Converted data has not been overwritten
1 Previous converted data has been overwritten before having been read

RESULT

This bit reflects the mode of conversion for the corresponding channel.
00 Data is a result of Normal conversion mode
01 Data is a result of Injected conversion mode
10 Data is a result of CTU conversion mode
11 Reserved

CDATA
Channel 0-95 converted data. Depending on the value of the MCR[WLSIDE] bit, the position of this
bitfield can be changed as shown in Figure 416 and Figure 416.

Figure 417. Channel Watchdog Select Register (CWSELR[0..11])

Address: See Table 342 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
WSEL_CH7 WSEL_CH6 WSEL_CH5 WSEL_CH4

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WSEL_CH3 WSEL_CH2 WSEL_CH1 WSEL_CH0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 694/868

Analog-to-Digital Converter (ADC) RM0045

Channel Watchdog Enable Register (CWENRx, x = [0..2])

CWENR0 = Enable bits for channel 0 to 15 (precision channels)

CWENR1 = Enable bits for channel 32 to 44 (standard channels)

CWENR2 = Enable bits for channel 64 to 95 (external multiplexed channels)

Table 361. CWSELR field descriptions

Field Description

WSEL_CHn

: Channel Watchdog select for channel n

0000 THRHLR0 register is selected
0001 THRHLR1 register is selected
. . .
. . .
x THRHLRx register is selected

Figure 418. Channel Watchdog Enable Register 0 (CWENR0)

Address: Base + 0x02E0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CWEN
15

CWEN
14

CWEN
13

CWEN
12

CWEN
11

CWEN
10

CWEN
9

CWEN
8

CWEN
7

CWEN
6

CWEN
5

CWEN
4

CWEN
3

CWEN
2

CWEN
1

CWEN
0W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 419. Channel Watchdog Enable Register 1 (CWENR1)

Address: Base + 0x02E4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 CWEN
44

CWEN
43

CWEN
42

CWEN
41

CWEN
40

CWEN
39

CWEN
38

CWEN
37

CWEN
36

CWEN
35

CWEN
34

CWEN
33

CWEN
32W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
695/868 Doc ID 16886 Rev 6

RM0045 Analog-to-Digital Converter (ADC)

Analog Watchdog Out of Range Register (AWORRx, x = [0..2])

Figure 420. Channel Watchdog Enable Register 2 (CWENR2)

Address: Base + 0x02E08 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R CWEN
95

CWEN
94

CWEN
93

CWEN
92

CWEN
91

CWEN
90

CWEN
89

CWEN
88

CWEN
87

CWEN
86

CWEN
85

CWEN
84

CWEN
83

CWEN
82

CWEN
81

CWEN
80W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CWEN
79

CWEN
78

CWEN
77

CWEN
76

CWEN
75

CWEN
74

CWEN
73

CWEN
72

CWEN
71

CWEN
70

CWEN
69

CWEN
68

CWEN
67

CWEN
66

CWEN
65

CWEN
64W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 362. CWENRx field descriptions

Field Description

CWENn
Channel Watchdog enable
When set (CWENn = 1) Watchdog feature is enabled for channel n.

Figure 421. Analog Watchdog Out of Range Register 0 (AWORR0)

Address: Base + 0x02F0 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
W

O
R

_C
H

15

A
W

O
R

_C
H

14

A
W

O
R

_C
H

13

A
W

O
R

_C
H

12

A
W

O
R

_C
H

11

A
W

O
R

_C
H

10

A
W

O
R

_C
H

9

A
W

O
R

_C
H

8

A
W

O
R

_C
H

7

A
W

O
R

_C
H

6

A
W

O
R

_C
H

5

A
W

O
R

_C
H

4

A
W

O
R

_C
H

3

A
W

O
R

_C
H

2

A
W

O
R

_C
H

1

A
W

O
R

_C
H

0

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 696/868

Analog-to-Digital Converter (ADC) RM0045

Figure 422. Analog Watchdog Out of Range Register 1 (AWORR1)

Address: Base + 0x02F4 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0

A
W

O
R

_C
H

44

A
W

O
R

_C
H

43

A
W

O
R

_C
H

42

A
W

O
R

_C
H

41

A
W

O
R

_C
H

40

A
W

O
R

_C
H

39

A
W

O
R

_C
H

38

A
W

O
R

_C
H

37

A
W

O
R

_C
H

36

A
W

O
R

_C
H

35

A
W

O
R

_C
H

34

A
W

O
R

_C
H

33

A
W

O
R

_C
H

32

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 423. Analog Watchdog Out of Range Register 2 (AWORR2)

Address: Base + 0x02F8 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

A
W

O
R

_C
H

95

A
W

O
R

_C
H

94

A
W

O
R

_C
H

93

A
W

O
R

_C
H

92

A
W

O
R

_C
H

91

A
W

O
R

_C
H

90

A
W

O
R

_C
H

89

A
W

O
R

_C
H

88

A
W

O
R

_C
H

87

A
W

O
R

_C
H

86

A
W

O
R

_C
H

85

A
W

O
R

_C
H

84

A
W

O
R

_C
H

83

A
W

O
R

_C
H

82

A
W

O
R

_C
H

81

A
W

O
R

_C
H

80

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

A
W

O
R

_C
H

79

A
W

O
R

_C
H

78

A
W

O
R

_C
H

77

A
W

O
R

_C
H

76

A
W

O
R

_C
H

75

A
W

O
R

_C
H

74

A
W

O
R

_C
H

73

A
W

O
R

_C
H

72

A
W

O
R

_C
H

71

A
W

O
R

_C
H

70

A
W

O
R

_C
H

69

A
W

O
R

_C
H

68

A
W

O
R

_C
H

67

A
W

O
R

_C
H

66

A
W

O
R

_C
H

65

A
W

O
R

_C
H

64

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 363. AWORRx field descriptions

Field Description

AWORR_CHn When set indicates channel n converted data is out of range
697/868 Doc ID 16886 Rev 6

RM0045 Cross Triggering Unit (CTU)
26 Cross Triggering Unit (CTU)

26.1 Introduction
The Cross Triggering Unit (CTU) allows to synchronize an ADC conversion with a timer
event from eMIOS (every mode which can generate a DMA request can trigger CTU) or PIT.
To select which ADC channel must be converted on a particular timer event, the CTU
provides the ADC with a 7-bit channel number. This channel number can be configured for
each timer channel event by the application.

26.2 Main features
● Single cycle delayed trigger output. The trigger output is a combination of 64 (generic

value) input flags/events connected to different timers in the system.

● One event configuration register dedicated to each timer event allows to define the
corresponding ADC channel.

● Acknowledgment signal to eMIOS/PIT for clearing the flag

● Synchronization with ADC to avoid collision

26.3 Block diagram
The CTU block diagram is shown in Figure 424.

Figure 424. Cross Triggering Unit block diagram

Event
Gen

Event
Gen

Event
Gen

FLAG_ACK

NEXT_CMD

Channel value select

Trig0

Trig1

Trig63

Channel value

Event
Arbitration

&
Masking

Event Configuration Register 0

Event Configuration Register 1

Event Configuration Register 31

.

.

.

.

.

.

.

.

.

.

Doc ID 16886 Rev 6 698/868

Cross Triggering Unit (CTU) RM0045
26.4 Memory map and register descriptions
The CTU registers are listed in Table 364. Every register can have 32-bit access. The base
address of the CTU is 0xFFE6_4000.

26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31)

Table 364. CTU memory map

Base address: 0xFFE6_4000

Address offset Register Location

0x000–0x02F Reserved

0x030–0x0AC Event Configuration Registers 0..31 (CTU_EVTCFGR0..31)
on page 26-

699

Figure 425. Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31)

Offsets: 0x030–0x0AC Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

TM

C
LR

_F
LA

G
(1

)

1. This bit implementation is generic based and implemented only for inputs mapped to PIT event flags.

0 0 0 0 0

A
D

C
_S

E
L 0

CHANNEL_VALUE
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 365. CTU_EVTCFGRx field descriptions

Field Description

TM

Trigger Mask

0: Trigger masked
1: Trigger enabled

CLR_FLAG
To provide flag_ack through software
1: Flag_ack is forced to ‘1’ for the particular event

0: Flag_ack is dependent on flag servicing
699/868 Doc ID 16886 Rev 6

RM0045 Cross Triggering Unit (CTU)
These registers contain the ADC channel number to be converted when the timer event
occurs. The CLR_FLAG is used to clear the respective timer event flag by software (this
applies only to the PIT as the eMIOS flags are automatically cleared by the CTU).

The CLR_FLAG bit has to be used cautiously as setting this bit may result in a loss of
events.

The event input can be masked by writing ‘0’ to bit TM of the CTU_EVTCFGR register.
Writing ‘1’ to bit TM enables the CTU triggering and automatically disables the DMA
connection for the corresponding eMIOS channel.

26.5 Functional description
This peripheral is used to synchronize ADC conversions with timer events (from eMIOS or
PIT). When a timer event occurs, the CTU triggers an ADC conversion providing the ADC
channel number to be converted. In case concurrent events occur the priority is managed
according to the index of the timer event. The trigger output is a single cycle pulse used to
trigger ADC conversion of the channel number provided by the CTU.

Each trigger input from the CTU is connected to the Event Trigger signal of an eMIOS
channel. The assignment between eMIOS outputs and CTU trigger inputs is defined in
Table 366.

ADC_SEL

This bit selects the ADC number.

0: Reserved
1: 12-bit ADC1 is selected

CHANNEL_
VALUE These bits provide the ADC channel number to be converted. Valid values are 0b0 to 0b1011111

(decimal 95).

Table 365. CTU_EVTCFGRx field descriptions (continued)

Field Description

Table 366. Trigger source

CTU trigger No. Module Source

0 eMIOS 0 Channel_0

1 eMIOS 0 Channel_1

2 eMIOS 0 Channel_2

3 eMIOS 0 Channel_3

4 eMIOS 0 Channel_4

5 eMIOS 0 Channel_5

6 eMIOS 0 Channel_6

7 eMIOS 0 Channel_7

8 eMIOS 0 Channel_8

9 eMIOS 0 Channel_9

10 eMIOS 0 Channel_10
Doc ID 16886 Rev 6 700/868

Cross Triggering Unit (CTU) RM0045
Each event has a dedicated configuration register (CTU_EVTCFGR). These registers store
a channel number which is used to communicate which channel needs to be converted.

In case several events are pending for ADC request, the priority is managed according to
the timer event index. The lowest index has the highest priority. Once an event has been
serviced (conversion requested to ADC) the eMIOS flag is cleared by the CTU and next
prior event is handled.

The acknowledgment signal can be forced to ‘1’ by setting the CLR_FLAG bit of the
CTU_EVTCFGR register. These bits are implemented for only those input flags to which PIT
flags are connected. Providing these bits offers the option of clearing PIT flags by software.

26.5.1 Channel value

The channel value stored in an event configuration register is demultiplexed to 7 bits and
then provided to the ADC.

The mapping of the channel number value to the corresponding ADC channel is provided in
Table 366.

11 eMIOS 0 Channel_11

12 eMIOS 0 Channel_12

13 eMIOS 0 Channel_13

14 eMIOS 0 Channel_14

15 eMIOS 0 Channel_15

16 eMIOS 0 Channel_16

17 eMIOS 0 Channel_17

18 eMIOS 0 Channel_18

19 eMIOS 0 Channel_19

20 eMIOS 0 Channel_20

21 eMIOS 0 Channel_21

22 eMIOS 0 Channel_22

23 PIT PIT_3

24 eMIOS 0 Channel_24

25 eMIOS 0 Channel_25

26 eMIOS 0 Channel_26

27 eMIOS 0 Channel_27

Table 366. Trigger source (continued)

CTU trigger No. Module Source
701/868 Doc ID 16886 Rev 6

RM0045 Cross Triggering Unit (CTU)

CTU channel mapping should be taken into consideration when programming an event
configuration register. For example, if the channel value of any event configuration register is
programmed to 16, it will actually correspond to ADC channel 32 and conversion will occur
for this channel.

Table 367. CTU-to-ADC channel assignment

12-bit ADC_1 Signal name 12-bit ADC_1 channel #
Channel number in
CTU_EVTCFGRx

ADC1_P[0] CH0 0

ADC1_P[1] CH1 1

ADC1_P[2] CH2 2

ADC1_P[3] CH3 3

ADC1_P[4] CH4 4

ADC1_P[5] CH5 5

ADC1_P[6] CH6 6

ADC1_P[7] CH7 7

ADC1_P[8] CH8 8

ADC1_P[9] CH9 9

ADC1_P[10] CH10 10

ADC1_P[11] CH11 11

ADC1_P[12] CH12 12

ADC1_P[13] CH13 13

ADC1_P[14] CH14 14

ADC1_P[15] CH15 15

ADC1_S[0] CH32 32

ADC1_S[1] CH33 33

ADC1_S[2] CH34 34

ADC1_S[3] CH35 35

ADC1_S[4] CH36 36

ADC1_S[5] CH37 37

ADC1_S[6] CH38 38

ADC1_S[7] CH39 39

ADC1_S[8] CH40 40

ADC1_S[9] CH41 41

ADC1_S[10] CH42 42

ADC1_S[11] CH43 43

ADC1_S[12] CH44 44
Doc ID 16886 Rev 6 702/868

Flash Memory RM0045
27 Flash Memory

27.1 Introduction
The flash memory comprises a platform flash memory controller (PFlash) interface and the
following flash memory arrays:

● One array of 256 KB for code (CFlash)

● One array of 64 KB for data (DFlash)

The flash memory architecture of this device is illustrated in Figure 426.

Figure 426. Flash memory architecture

The primary function of the flash memory module is to serve as electrically programmable
and erasable nonvolatile memory.

Nonvolatile memory may be used for instruction and/or data storage.

The module is a nonvolatile solid-state silicon memory device consisting of:

● Blocks (also called “sectors”) of single transistor storage elements

● An electrical means for selectively adding (programming) and removing (erasing)
charge from these elements

● A means of selectively sensing (reading) the charge stored in these elements

The flash memory module is arranged as two functional units:

● The flash memory core

● The memory interface

Crossbar switch

Bank0 (CFlash) Bank1 (DFlash)

32

data

(for EEPROM

Array 0

256 KB

Array 0

1x128 page buffer4x128 page buffer

PFlash controller

emulation)

CFLASH_PFCR0[B0_P0_BFE]

CFLASH_MCR
...
...
...
CFLASH_UMISR4

CFLASH_PFCR1[B1_P0_BFE]

DFLASH_MCR
...
...
...
DFLASH_UMISR4

Flash memory flash memory

128 128

64 KB
703/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
The flash memory core is composed of arrayed nonvolatile storage elements, sense
amplifiers, row decoders, column decoders and charge pumps. The arrayed storage
elements in the flash memory core are subdivided into physically separate units referred to
as blocks (or sectors).

The memory interface contains the registers and logic which control the operation of the
flash memory core. The memory interface is also the interface between the flash memory
module and a platform flash memory controller. It contains the ECC logic and redundancy
logic.

A platform flash memory controller connects the flash memory module to a system bus, and
contains all system level customization required for the device application.

27.2 Main features

27.3 Block diagram
The flash memory module contains one Matrix Module, composed of a single bank (Bank 0)
normally used for code storage. RWW operations are not possible.

Modify operations are managed by an embedded Flash Memory Program/Erase Controller
(FPEC). Commands to the FPEC are given through a User Registers Interface.

The read data bus is 128 bits wide, while the flash memory registers are on a separate bus
32 bits wide addressed in the user memory map.

The high voltages needed for program/erase operations are generated internally.

Table 368. Flash memory features

Feature CFlash DFlash

High read parallelism (128 bits) Yes

Error Correction Code (SEC-DED) to enhance data retention Yes

Double Word Program (64 bits) Yes

Sector erase Yes

Single bank—Read-While-Write (RWW) No

Erase Suspend Yes

Program Suspend No

Software programmable program/erase protection to avoid unwanted
writings

Yes

Censored Mode against piracy Yes

Shadow Sector available Yes No

One-Time Programmable (OTP) area in Test Flash block Yes

Boot sectors Yes No
Doc ID 16886 Rev 6 704/868

Flash Memory RM0045

Figure 427. CFlash and DFlash module structures

27.4 Functional description

27.4.1 Module structure

The flash memory module is addressable by Double Word (64 bits) for program, and page
(128 bits) for read. Reads to the flash memory always return 128 bits, although read page
buffering may be done in the platform flash memory controller.

Each read of the flash memory module retrieves a page, or four consecutive words (128
bits) of information. The address for each word retrieved within a page differs from the other
addresses in the page only by address bits (3:2).

The flash memory module supports fault tolerance through Error Correction Code (ECC) or
error detection, or both. The ECC implemented within the flash memory module will correct
single bit failures and detect double bit failures.

The flash memory module uses an embedded hardware algorithm implemented in the
Memory Interface to program and erase the flash memory core.

The embedded hardware algorithm includes control logic that works with software block
enables and software lock mechanisms to guard against accidental program/erase.

The hardware algorithm performs the steps necessary to ensure that the storage elements
are programmed and erased with sufficient margin to guarantee data integrity and reliability.

256 KB:

+ 16 KB TestFlash

HV generator

Flash memory

Controller

Flash memory

Matrix Register

Program/Erase

registers

interface

Flash memory

interface

+ 16 KB Shadow

bank 0

CFlash structure

64 KB:

+ 16 KB TestFlash

HV generator

Flash memory

Controller

Flash memory

Matrix Register

Program/Erase

registers

interface

Flash memory

interface

bank 1

DFlash structure

32 KB
2 × 16 KB
2 × 32 KB
1 × 128 KB 4 × 16 KB
705/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
In the flash memory module, logic levels are defined as follows:

● A programmed bit reads as logic level 0 (or low).

● An erased bit reads as logic level 1 (or high).

Program and erase of the flash memory module requires multiple system clock cycles to
complete.

The erase sequence may be suspended.

The program and erase sequences may be aborted.

27.4.2 Flash memory module sectorization

CFlash module sectorization

The CFlash module supports 256 KBof user memory, plus 16 KB of test memory (a portion
of which is One-Time Programmable by the user). An extra 16 KB sector is available as
Shadow space usable for user option bits and censorship settings.

The module is composed of a single bank (Bank 0): Read-While-Write is not supported.

Bank 0 of the module is divided in 8 sectors including a reserved sector, named TestFlash,
in which some One-Time Programmable (OTP) user data are stored, as well as a Shadow
Sector in which user erasable configuration values can be stored.

The matrix module sectorization is shown in Table 369.

The division into blocks of the flash memory module is also used to implement independent
erase/program protection. A software mechanism is provided to independently lock/unlock
each block in low and mid address space against program and erase.

DFlash module sectorization

The DFlash module supports 64 KB of user memory, plus 16 KB of test memory (a portion
of which is One-Time Programmable by the user).

The module is composed of a single bank (Bank 0): Read-While-Write is not supported.

Bank 0 of the 80 KB module is divided in four sectors. Bank 0 also contains a reserved
sector named TestFlash in which some One-Time Programmable user data are stored.

Table 369. CFlash module sectorization

Bank Sector Addresses Size (KB)
Address

space
CFLASH_LML field for

locking the address space

0

0 0x00000000–0x00007FFF 32

Low

LLK0

1 0x00008000–0x0000BFFF 16 LLK1

2 0x0000C000–0x0000FFFF 16 LLK2

3 0x00010000–0x00017FFF 32 LLK3

4 0x00018000–0x0001FFFF 32 LLK4

5 0x00020000–0x0003FFFF 128 LLK5

Shadow 0x00200000–0x00203FFF 16 Shadow TSLK

Test 0x00400000–0x00403FFF 16 Test TSLK
Doc ID 16886 Rev 6 706/868

Flash Memory RM0045
The sectorization of the 80 KB matrix module is shown in Table 370.

The flash memory module is divided into blocks also to implement independent
erase/program protection. A software mechanism is provided to independently lock/unlock
each block in low and mid address space against program and erase.

27.4.3 TestFlash block

A TestFlash block is available in both the CFlash and DFlash modules. The TestFlash block
exists outside the normal address space and is programmed and read independently of the
other blocks. The independent TestFlash block is included to also support systems which
require nonvolatile memory for security or to store system initialization information, or both.

A section of the TestFlash is reserved to store the nonvolatile information related to
Redundancy, Configuration and Protection.

The ECC is also applied to TestFlash.

The structure of the TestFlash sector is detailed in Table 371 and Table 372.

Table 370. DFlash module sectorization

Bank Sector Addresses
Size
(KB)

Address
space

DFLASH_LML field for
locking the address

space

0

0 0x00800000–0x00803FFF

16
Low

LLK0

1 0x00804000–0x00807FFF LLK1

2 0x00808000–0x0080BFFF LLK2

3 0x0080C000–0x0080FFFF LLK3

Test 0x00C00000–0x00C03FFF Test TSLK

Table 371. CFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0x400000–0x401FFF 8192 bytes

— Reserved 0x402000–0x403CFF 7424 bytes

— User OTP area 0x403D00–0x403DE7 232 bytes

CFLASH_NVLML
 CFlash Nonvolatile Low/Mid Address Space Block

Locking Register
0x403DE8–0x403DEF 8 bytes

— Reserved 0x403DF0–0x403DF7 8 bytes

CFLASH_NVSLL
CFlash Nonvolatile Secondary Low/mid Address

Space Block Locking Register
0x403DF8–0x403DFF 8 bytes

— User OTP area 0x403E00–0x403EFF 256 bytes

— Reserved 0x403F00–0x403FFF 256 bytes
707/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

Erase of the TestFlash block is always locked.

Programming of the TestFlash block has similar restrictions as the array in terms of how
ECC is calculated. Only one programming operation is allowed per 64-bit ECC segment.

The first 8 KB of TestFlash block may be used for user defined functions (possibly to store
serial numbers, other configuration words or factory process codes). Locations of the
TestFlash other than the first 8 KB of OTP area cannot be programmed by the user
application.

27.4.4 Shadow sector

The shadow sector is only present in the CFlash module.

User Mode program and erase of the shadow sector are enabled only when
CFLASH_MCR[PEAS] is high.

The shadow sector may be locked/unlocked against program or erase by using the
CFLASH_LML[TSLK] and CFLASH_SLL[STSLK] fields.

Programming of the shadow sector has similar restrictions as the array in terms of how ECC
is calculated. Only one programming operation is allowed per 64-bit ECC segment between
erases.

Erase of the shadow sector is done similarly to a sector erase.

The shadow sector contains specified data that are needed for user features.

The user area of shadow sector may be used for user defined functions (possibly to store
boot code, other configuration words or factory process codes).

The structure of the shadow sector is detailed in Table 373.

Table 372. DFlash TestFlash structure

Name Description Addresses Size

— User OTP area 0xC00000–0xC01FFF 8192 bytes

— Reserved 0xC02000–0xC03CFF 7424 bytes

— User OTP area 0xC03D00–0xC03DE7 232 bytes

DFLASH_NVLML
DFlash Nonvolatile Low/Mid Address Space Block

Locking Register
0xC03DE8–0xC03DEF 8 bytes

— Reserved 0xC03DF0–0xC03DF7 8 bytes

DFLASH_NVSLL
DFlash Nonvolatile Secondary Low/Mid Address

Space Block Locking Register
0xC03DF8–0xC03DFF 8 bytes

— User OTP area 0xC03E00–0xC03EFF 256 bytes

— Reserved 0xC03F00–0xC03FFF 256 bytes

Table 373. Shadow sector structure

Name Description Addresses
Size

(bytes)

— User area 0x200000–0x203DCF 15824

— Reserved 0x203DD0–0x203DD7 8
Doc ID 16886 Rev 6 708/868

Flash Memory RM0045
27.4.5 User mode operation

In User Mode the flash memory module may be read and written (register writes and
interlock writes), programmed or erased.

The default state of the flash memory module is read.

The main, shadow and test address space can be read only in the read state.

The majority of CFlash and DFlash memory-mapped registers can be read even when the
CFlash or DFlash is in power-down or low-power mode. The exceptions are as follows:

● CFlash

– UT0[MRE, MRV, AIS, DSI0:7]

– UT1

– UT2

● DFlash

– UT0[MRE, MRV, AIS, DSI0:7]

– UT1

– UT2

The flash memory module enters the read state on reset.

The module is in the read state under two sets of conditions:

● The read state is active when the module is enabled (User Mode Read).

● The read state is active when the ERS and ESUS fields in the corresponding MCR
(CFLASH_MCR or DFLASH_MCR) are 1 and the PGM field is 0 (Erase Suspend).

Flash memory core reads return 128 bits (1 Page = 2 Double Words).

Registers reads return 32 bits (1 Word).

Flash memory core reads are done through the platform flash memory controller.

Registers reads to unmapped register address space will return all 0’s.

Registers writes to unmapped register address space will have no effect.

Attempted array reads to invalid locations will result in indeterminate data. Invalid locations
occur when blocks that do not exist in non 2n array sizes are addressed.

NVPWD0–1 Nonvolatile Private Censorship PassWord 0–1 registers 0x203DD8–0x203DDF 8

NVSCC0–1 Nonvolatile System Censorship Control 0–1 registers 0x203DE0–0x203DE7 8

— Reserved 0x203DE8–0x203DFF 24

NVPFAPR
 Nonvolatile Platform Flash Memory Access Protection

Register
0x203E00–0x203E07 8

— Reserved 0x203E08–0x203E17 16

NVUSRO Nonvolatile User Options register 0x203E18–0x203E1F 8

— Reserved 0x203E20–0x203FFF 480

Table 373. Shadow sector structure (continued)

Name Description Addresses
Size

(bytes)
709/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Attempted interlock writes to invalid locations will result in an interlock occurring, but
attempts to program these blocks will not occur since they are forced to be locked. Erase will
occur to selected and unlocked blocks even if the interlock write is to an invalid location.

Simultaneous Read cycle on the Flash Matrix and Read/Write cycles on the registers are
possible. On the contrary, registers read/write accesses simultaneous to a Flash Matrix
interlock write are forbidden.

27.4.6 Reset

A reset is the highest priority operation for the flash memory module and terminates all other
operations.

The flash memory module uses reset to initialize register and status bits to their default
reset values. If the flash memory module is executing a Program or Erase operation
(PGM = 1 or ERS = 1 in CFLASH_MCR or DFLASH_MCR) and a reset is issued, the
operation will be suddenly terminated and the module will disable the high voltage logic
without damage to the high voltage circuits. Reset terminates all operations and forces the
flash memory module into User Mode ready to receive accesses. Reset and power-off must
not be used as a systematic way to terminate a Program or Erase operation.

After reset is negated, read register access may be done, although it should be noted that
registers that require updating from shadow information, or other inputs, may not read
updated values until the DONE field (in CFLASH_MCR or DFLASH_MCR) transitions. The
DONE field may be polled to determine if the flash memory module has transitioned out of
reset. Notice that the registers cannot be written until the DONE field is high.

27.4.7 Power-down mode

All flash memory DC current sources can be turned off in power-down mode, so that all
power dissipation is due only to leakage in this mode. Flash memory power-down mode can
be selected at ME_<mode>_MC.

Reads from or writes to the module are not possible in power-down mode.

When enabled the flash memory module returns to its pre-disable state in all cases unless
in the process of executing an erase high voltage operation at the time of disable.

If the flash memory module is disabled during an erase operation, MCR[ESUS] bit is
programmed to ‘1’. The user may resume the erase operation at the time the module is
enabled by programming MCR[ESUS] = 0. MCR[EHV] must be high to resume the erase
operation.

If the flash memory module is disabled during a program operation, the operation will in any
case be completed and the power-down mode will be entered only after the programming
ends.

The user should realize that, if the flash memory module is put in power-down mode and the
interrupt vectors remain mapped in the flash memory address space, the flash memory
module will greatly increase the interrupt response time by adding several wait-states.

It is forbidden to enter in low power mode when the power-down mode is active.

27.4.8 Low power mode

The low power mode turns off most of the DC current sources within the flash memory
module. Flash memory low power mode can be selected at ME_<mode>_MC.
Doc ID 16886 Rev 6 710/868

Flash Memory RM0045
The module (flash memory core and registers) is not accessible for read or write once it
enters low power mode.

Wake-up time from low power mode is faster than wake-up time from power-down mode.

When exiting from low power mode the flash memory module returns to its pre-sleep state
in all cases unless it is executing an erase high voltage operation at the time low power
mode is entered.

If the flash memory module enters low power mode during an erase operation, MCR[ESUS]
is programmed to ‘1’. The user may resume the erase operation at the time the module exits
low power mode by programming MCR[ESUS] = 0. MCR[EHV] must be high to resume the
erase operation.

If the flash memory module enters low power mode during a program operation, the
operation will be in any case completed and the low power mode will be entered only after
the programming end.

It is forbidden to enter power-down mode when the low power mode is active.

27.5 Register description
The CFlash and DFlash modules have respective sets of memory mapped registers. The
CFlash register mapping is shown in Table 374. The DFlash register mapping is shown in
Table 375.

Table 374. CFlash registers

Address offset Register Location

0x0000 on page 27-713

0x0004
CFlash Low/Mid Address Space Block Locking Register
(CFLASH_LML)

on page 27-718

0x0008 Reserved

0x000C
CFlash Secondary Low/Mid Address Space Block Locking
Register (CFLASH_SLL)

on page 27-722

0x0010
CFlash Low/Mid Address Space Block Select Register
(CFLASH_LMS)

on page 27-726

0x0014 Reserved

0x0018 CFlash Address Register (CFLASH_ADR) on page 27-727

0x0028–0x0038 Reserved

0x003C CFlash User Test 0 register (CFLASH_UT0) on page 27-728

0x0040 CFlash User Test 1 register (CFLASH_UT1) on page 27-730

0x0044 CFlash User Test 2 register (CFLASH_UT2) on page 27-730

0x0048
CFlash User Multiple Input Signature Register 0
(CFLASH_UMISR0)

on page 27-731

0x004C
CFlash User Multiple Input Signature Register 1
(CFLASH_UMISR1)

on page 27-732

0x0050
CFlash User Multiple Input Signature Register 2
(CFLASH_UMISR2)

on page 27-733
711/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

In the following some nonvolatile registers are described. Please notice that such entities
are not Flip-Flops, but locations of TestFlash or Shadow sectors with a special meaning.

0x0054
CFlash User Multiple Input Signature Register 3
(CFLASH_UMISR3)

on page 27-734

0x0058
CFlash User Multiple Input Signature Register 4
(CFLASH_UMISR4)

on page 27-735

Table 375. DFlash registers

Address offset Register name Location

0x0000 DFlash Module Configuration Register (DFLASH_MCR) on page 27-740

0x0004
DFlash Low/Mid Address Space Block Locking Register
(DFLASH_LML)

on page 27-746

0x0008 Reserved —

0x000C
DFlash Secondary Low/Mid Address Space Block Locking
Register (DFLASH_SLL)

on page 27-750

0x0010
DFlash Low/Mid Address Space Block Select Register
(DFLASH_LMS)

on page 27-754

0x0014 Reserved —

0x0018 DFlash Address Register (DFLASH_ADR) on page 27-754

0x001C–0x0038 Reserved —

0x003C DFlash User Test 0 register (DFLASH_UT0) on page 27-755

0x0040 DFlash User Test 1 register (DFLASH_UT1) on page 27-758

0x0044 DFlash User Test 2 register (DFLASH_UT2) on page 27-758

0x0048
DFlash User Multiple Input Signature Register 0
(DFLASH_UMISR0)

on page 27-759

0x004C
DFlash User Multiple Input Signature Register 1
(DFLASH_UMISR1)

on page 27-760

0x0050
DFlash User Multiple Input Signature Register 2
(DFLASH_UMISR2)

on page 27-761

0x0054
DFlash User Multiple Input Signature Register 3
(DFLASH_UMISR3)

on page 27-762

0x0058
DFlash User Multiple Input Signature Register 4
(DFLASH_UMISR4)

on page 27-763

Table 374. CFlash registers (continued)

Address offset Register Location
Doc ID 16886 Rev 6 712/868

Flash Memory RM0045
During the flash memory initialization phase, the FPEC reads these nonvolatile registers
and updates the corresponding volatile registers. When the FPEC detects ECC double
errors in these special locations, it behaves in the following way:

● In case of a failing system locations (configurations, device options, redundancy,
embedded firmware), the initialization phase is interrupted and a Fatal Error is flagged.

● In case of failing user locations (protections, censorship, platform flash memory
controller, ...), the volatile registers are filled with all ‘1’s and the flash memory
initialization ends setting low the PEG bit of the corresponding MCR (CFLASH_MCR or
DFLASH_MCR).

27.5.1 CFlash register description

CFlash Module Configuration Register (CFLASH_MCR)

The CFlash Module Configuration Register is used to enable and monitor all modify
operations of the flash memory module.

Figure 428. CFlash Module Configuration Register (CFLASH_MCR)

Offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE 0 0

P
E

A
S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 376. CFLASH_MCR field descriptions

Field Description

 EDC

Ecc Data Correction
EDC provides information on previous reads. If an ECC Single Error detection and
correction occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must
occur before this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EDC) were not corrected through ECC.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE
array space SIZE
The value of SIZE field is dependent upon the size of the flash memory module; see
Table 377.
713/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
LAS
Low Address Space

The value of the LAS field corresponds to the configuration of the Low Address Space; see
Table 378.

MAS
Mid Address Space

The value of the MAS field corresponds to the configuration of the Mid Address Space; see
Table 379.

EER

Ecc event ERror
EER provides information on previous reads. If an ECC Double Error detection occurred,
the EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.

RWE

Read-while-Write event Error

RWE provides information on previous reads when a Modify operation is on going. If a
RWW Error occurs, the RWE bit is set to ‘1’. Read-While-Write Error means that a read
access to the flash memory Matrix has occurred while the FPEC was performing a program
or erase operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS

Program/Erase Access Space
PEAS is used to indicate which space is valid for program and erase operations: main array
space or shadow/test space.
PEAS = 0 indicates that the main address space is active for all flash memory module
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify
operations. The value of PEAS is retained between sampling events (that is, subsequent
first interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space
disabled.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 714/868

Flash Memory RM0045
DONE

modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.

DONE is set to 1 on termination of the flash memory module reset.

DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage
operation, or after resuming a suspended operation.

DONE is set to 1 at the end of program and erase high voltage sequences.
DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of
EHV, which aborts a high voltage Program/Erase operation.
DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1
transition of ESUS, which suspends an erase operation.
0: Flash memory is executing a high voltage operation.

1: Flash memory is not executing a high voltage operation.

PEG

Program/Erase Good
The PEG bit indicates the completion status of the last flash memory Program or Erase
sequence for which high voltage operations were initiated. The value of PEG is updated
automatically during the Program and Erase high voltage operations. Aborting a
Program/Erase high voltage operation will cause PEG to be cleared to 0, indicating the
sequence failed. PEG is set to 1 when the flash memory module is reset, unless a flash
memory initialization error has been detected. The value of PEG is valid only when PGM=1
and/or ERS=1 and after DONE transitions from 0 to 1 due to an abort or the completion of a
Program/Erase operation. PEG is valid until PGM/ERS makes a 1 to 0 transition or EHV
makes a 0 to 1 transition. The value in PEG is not valid after a 0 to 1 transition of DONE
caused by ESUS being set to logic 1. If Program or Erase are attempted on blocks that are
locked, the response will be PEG=1, indicating that the operation was succesful, and the
content of the block were properly protected from the Program or Erase operation. If a
Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating
that the requested operation has failed. In Array Integrity Check or Margin Read PEG is set
to 1 when the operation is completed, regardless the occurrence of any error. The presence
of errors can be detected only comparing checksum value stored in UMIRS0-1. Aborting an
Array Integrity Check or a Margin Read operation will cause PEG to be cleared to 0,
indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode
completed.

PGM

ProGraM

PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS
Program SUSpend
Write this bit has no effect, but the written data can be read back.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
715/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

ERS

ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

ESUS

Erase SUSpend
ESUS is used to indicate that the flash memory module is in Erase Suspend or in the
process of entering a Suspend state. The flash memory module is in Erase Suspend when
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and
returns the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV

Enable High Voltage

The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be
set under one of the following conditions:
Erase (ERS = 1, ESUS = 0, UT0[AIE] = 0)

Program (ERS = 0, ESUS = 0, PGM = 1, UT0[AIE] = 0)

In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a
failing program/erase; address locations being operated on by the aborted operation contain
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an
indeterminate data state. This may be recovered by executing an erase on the affected
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be
written after ESUS is set and before DONE transitions high. EHV may not be cleared after
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 376. CFLASH_MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 716/868

Flash Memory RM0045

A number of CFLASH_MCR bits are protected against write when another bit, or set of bits,
is in a specific state. These write locks are covered on a bit by bit basis in the preceding
description, but those locks do not consider the effects of trying to write two or more bits
simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would
put the device into an illegal state. This is implemented through a priority mechanism among
the bits. The bit changing priorities are detailed in Table 380.

Table 377. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 1024 KB

100 1536 KB

101 Reserved (2048 KB)

110 64 KB

111 Reserved

Table 378. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 379. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128 KB or 0 KB

1 Reserved
717/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

If the user attempts to write two or more CFLASH_MCR bits simultaneously then only the bit
with the lowest priority level is written.

If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while
fetching code from another then the following sequence is executed:

● CPU is stalled when flash is unavailable

● PEG flag set (stall case) or reset (abort case)

● Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the
RWE flag. The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See
Section 27.8.10, Read-while-write functionality.

CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

The CFlash Low/Mid Address Space Block Locking register provides a means to protect
blocks from being modified. These bits, along with bits in the CFLASH_SLL register,
determine if the block is locked from Program or Erase. An “OR” of CFLASH_LML and
CFLASH_SLL determine the final lock status.

Table 380. CFLASH_MCR bits set/clear priority levels

Priority level CFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS

Figure 429. CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML)

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0 0 0

W

Reset
Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset
Defined by CFLASH_NVLML at CFlash Test Sector Address 0x403DE8. This location is user OTP (One
Time Programmable). The CFLASH_NVLML register influences only the R/W bits of the CFLASH_LML

register.
Doc ID 16886 Rev 6 718/868

Flash Memory RM0045

Table 381. CFLASH_LML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.

This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
CFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK field is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field
may be written as a register. Reset will cause the field to go back to its TestFlash block
value. The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
field will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.

LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
719/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash Nonvolatile Low/Mid Address Space Block Locking Register
(CFLASH_NVLML)

The CFLASH_LML register has a related CFlash Nonvolatile Low/Mid Address Space Block
Locking register located in TestFlash that contains the default reset value for CFLASH_LML.
During the reset phase of the flash memory module, the CFLASH_NVLML register content
is read and loaded into the CFLASH_LML.

The CFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32
are ‘don’t care’ and are used to manage ECC codes.

Figure 430. CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML)

Offset: 0x403DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doc ID 16886 Rev 6 720/868

Flash Memory RM0045

Table 382. CFLASH_NVLML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.

This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
CFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[5:0] are related to sectors B0F5-0, respectively. LLK[15:6] are not used for this memory
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits LLK[15:6] are read-only and locked at ‘1’.

LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
721/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash Secondary Low/Mid Address Space Block Locking Register
(CFLASH_SLL)

The CFlash Secondary Low/Mid Address Space Block Locking Register provides an
alternative means to protect blocks from being modified. These bits, along with bits in the
CFLASH_LML register, determine if the block is locked from Program or Erase. An “OR” of
CFLASH_LML and CFLASH_SLL determine the final lock status.

Figure 431. CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL)

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 0 0

W

Reset
Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset
Defined by CFLASH_NVSLL at CFlash Test Sector Address 0x403DF8. This location is user OTP (One
Time Programmable). The CFLASH_NVSLL register influences only the R/W bits of the CFLASH_SLL

register.
Doc ID 16886 Rev 6 722/868

Flash Memory RM0045

Table 383. CFLASH_SLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.

SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
723/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash Nonvolatile Secondary Low/Mid Address Space Block Locking
Register (CFLASH_NVSLL)

The CFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space
Block Locking register located in TestFlash that contains the default reset value for SLL.
During the reset phase of the flash memory module, the CFLASH_NVSLL register content
is read and loaded into the CFLASH_SLL.

The CFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32
are ‘don’t care’ and are used to manage ECC codes.

Figure 432. CFlash Nonvolatile Secondary Low/mid address space block Locking register
(CFLASH_NVSLL)

Offset: 0x403DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doc ID 16886 Rev 6 724/868

Flash Memory RM0045

Table 384. CFLASH_NVSLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
CFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
CFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[5:0] are related to sectors B0F5-0, respectively. SLK[15:6] are not used for this
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
CFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
Bits SLK[15:6] are read-only and locked at ‘1’.

SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if CFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
725/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash Low/Mid Address Space Block Select Register (CFLASH_LMS)

The CFLASH_LMS register provides a means to select blocks to be operated on during
erase.

Figure 433. CFlash Low/Mid address space block Select register (CFLASH_LMS)

Offset: 0x00010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 385. CFLASH_LMS field descriptions

Field Description

LSL

Low address space block SeLect
A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset
value for the select register is 0, or unselected.
LSL[5:0] are related to sectors B0F5-0, respectively. LSL[15:6] are not used for this memory
cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of
the erase sequence. The select register is not writable once an interlock write is completed
or if a high voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding LSL bits will default to unselected, and will not be writable. The reset value
will always be 0, and register writes will have no effect.
Bits LSL[15:6] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for erase.
1: Low Address Space Block is selected for erase.
Doc ID 16886 Rev 6 726/868

Flash Memory RM0045
CFlash Address Register (CFLASH_ADR)

The CFLASH_ADR provides the first failing address in the event module failures (ECC or
FPEC) occur or the first address at which an ECC single error correction occurs.

Figure 434. CFlash Address Register (CFLASH_ADR)

Offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 386. CFLASH_ADR field descriptions

Field Description

AD

ADdress 22-3 (Read Only)
The Address Register provides the first failing address in the event of ECC error
(CFLASH_MCR[EER] = 1) or the first failing address in the event of RWW error
(CFLASH_MCR[RWE] = 1), or the address of a failure that may have occurred in a FPEC
operation (CFLASH_MCR[PEG] = 0). The Address Register also provides the first address
at which an ECC single error correction occurs (CFLASH_MCR[EDC] = 1).

The ECC double error detection takes the highest priority, followed by the FPEC error and
the ECC single error correction. When accessed CFLASH_ADR will provide the address
related to the first event occurred with the highest priority. The priorities between these four
possible events is summarized in Table 387.

This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same
page, bit AD3 will output 0. The same is valid for a simultaneous ECC Single Error
Correction on both Double Words of the same page.

Table 387. CFLASH_ADR content: priority list

Priority level Error flag CFLASH_ADR content

1 CFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 CFLASH_MCR[RWE] = 1 Address of first RWW Error

3 CFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 CFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction
727/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash User Test 0 register (CFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash
memory module. The User Test 0 Register allows to control the way in which the flash
memory content check is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible
whenever CFLASH_MCR[DONE] or UT0[AID] are low: reading returns indeterminate data
while writing has no effect.

Figure 435. CFlash User Test 0 register (CFLASH_UT0)

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 388. CFLASH_UT0 field descriptions

Field Description

UTE

User Test Enable
This status bit gives indication when User Test is enabled. All bits in CFLASH_UT0-2 and
CFLASH_UMISR0-4 are locked when this bit is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE
bit is set to reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the CFLASH_UT0 register.

DSI

Data Syndrome Input

These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check.
Bits DSI[7:0] correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are
low: reading returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X

Reserved
This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.
Doc ID 16886 Rev 6 728/868

Flash Memory RM0045
MRE

Margin Read Enable

MRE enables margin reads to be done. This bit, combined with MRV, enables regular user
mode reads

to be replaced by margin reads inside the Array Integrity Checks sequences. Margin reads
are only active during Array Integrity Checks; Normal User reads are not affected by MRE.
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.
0: Margin reads are not enabled

1: Margin reads are enabled.

MRV

Margin Read Value

If MRE is high, MRV selects the margin level that is being checked. Margin can be checked
to an erased level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low:
reading returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE

ECC data Input Enable

EIE enables the ECC Logic Check operation to be done. This bit is not accessible whenever
CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading returns indeterminate data
while writing has no effect.

0: ECC Logic Check is not enabled.

1: ECC Logic Check is enabled.

AIS

Array Integrity Sequence

AIS determines the address sequence to be used during array integrity checks or Margin
Read . The default sequence (AIS=0) is meant to replicate sequences normal user code
follows, and thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS=1) is just logically sequential. It should be noted that the time
to run a sequential sequence is significantly shorter than the time to run the proprietary
sequence. The usage of proprietary sequence is forbidden in Margin Read. This bit is not
accessible whenever CFLASH_MCR[DONE] or CFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.

0: Array Integrity sequence is proprietary sequence.
1: Array Integrity or f sequence is sequential.

AIE

Array Integrity Enable

AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (CFLASH_UMISR0-4) can be checked after
the operation is complete, to determine if a correct signature is obtained.
AIE can be set only if CFLASH_MCR[ERS], CFLASH_MCR[PGM] and
CFLASH_MCR[EHV] are all low.
0: Array Integrity Checks, Margin Read and ECC Logic Checks are not enabled.
1: Array Integrity Checks, Margin Read and ECC Logic Checks are enabled.

AID

Array Integrity Done

AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is
on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At
this time the MISR (CFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 388. CFLASH_UT0 field descriptions (continued)

Field Description
729/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
CFlash User Test 1 register (CFLASH_UT1)

The CFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32
LSB of the Double Word.

The User Test 1 Register is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

CFlash User Test 2 register (CFLASH_UT2)

The CFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32
MSB of the Double Word.

The User Test 2 Register is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 436. CFlash User Test 1 register (CFLASH_UT1)

Offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 389. CFLASH_UT1 field descriptions

Field Description

DAI[31:0]

Data Array Input, bits 31–0

These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits
DAI[31:00] correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
Doc ID 16886 Rev 6 730/868

Flash Memory RM0045

O

R

R

CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

The CFLASH_UMISR0 register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 0 represents the bits 31:0 of the whole 144 bits
word (2 Double Words including ECC).

The CFLASH_UMISR0 Register is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 437. CFlash User Test 2 register (CFLASH_UT2)

ffset: 0x00044 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

eset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

eset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 390. CFLASH_UT2 field descriptions

Field Description

DAI[63:32]

Data Array Input, bits 63–32

These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits
DAI[63:32] correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
731/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

The CFLASH_UMISR1 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double
Words including ECC).

The CFLASH_UMISR1 is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 438. CFlash User Multiple Input Signature Register 0 (CFLASH_UMISR0)

Offset: 0x00048 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 391. CFLASH_UMISR0 field descriptions

Field Description

MS0[31:0]

Multiple input Signature, bits 31–0

These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR0 register.
Doc ID 16886 Rev 6 732/868

Flash Memory RM0045

CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

The CFLASH_UMISR2 provides a means to evaluate the Array Integrity.

The CFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double
Words including ECC).

The CFLASH_UMISR2 is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 439. CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)

Offset: 0x0004C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 392. CFLASH_UMISR1 field descriptions

Field Description

MS0[63:32]

Multiple input Signature, bits 63–32

These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR1.
733/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

The CFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double
Words including ECC).

The CFLASH_UMISR3 is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 440. CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2)

Offset: 0x00050 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS0[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS0[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 393. CFLASH_UMISR2 field descriptions

Field Description

MS0[95:64]

Multiple input Signature, bits 95–64

These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR2.
Doc ID 16886 Rev 6 734/868

Flash Memory RM0045

CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

The CFLASH_UMISR4 provides a mean to evaluate the Array Integrity.

The CFLASH_UMISR4 represents the ECC bits of the whole 144 bits word (2 Double Words
including ECC): bits 8:15 are ECC bits for the odd Double Word and bits 24:31 are the ECC
bits for the even Double Word; bits 4:5 and 20:21 of MISR are respectively the double and
single ECC error detection for odd and even Double Word.

The CFLASH_UMISR4 is not accessible whenever CFLASH_MCR[DONE] or
CFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 441. CFlash User Multiple Input Signature Register 3 (CFLASH_UMISR3)

Offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 394. CFLASH_UMISR3 field descriptions

Field Description

MS[127:96]

Multiple input Signature, bits127–96

These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages
read from the flash memory.
The MS can be seeded to any value by writing the CFLASH_UMISR3.
735/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

The nonvolatile private censorship password 0 register contains the 32 LSB of the Password
used to validate the Censorship information contained in NVSCC0–1 registers.

Figure 442. CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4)

Offset: 0x00058 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 395. CFLASH_UMISR4 field descriptions

Field Description

MS[159:128]

Multiple input Signature, bits 159–128

These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the CFLASH_UMISR4 register.
Doc ID 16886 Rev 6 736/868

Flash Memory RM0045

CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

The nonvolatile private censorship password 1 register contains the 32 MSB of the
Password used to validate the Censorship information contained in NVSCC0–1 registers.

Figure 443. CFlash Nonvolatile Private Censorship Password 0 Register (NVPWD0)

Offset: 0x203DD8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[31:16]

W

Reset 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[15:0]

W

Reset 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

Table 396. NVPWD0 field descriptions

Field Description

PWD[31:0]
Password, bits 31–0

These bits represent the 32 LSB of the Private Censorship Password.

Figure 444. CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1)

Offset: 0x203DDC Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
PWD[63:48]

W

Reset 1 1 0 0 1 0 1 0 1 1 1 1 1 1 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
PWD[47:32]

W

Reset 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1
737/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

Note: In a secured device, starting with a serial boot, it is possible to read the content of the four
flash locations where the RCHW can be stored. For example if the RCHW is stored at
address 0x00000000, the reads at address 0x00000000, 0x00000004, 0x00000008 and
0x0000000C will return a correct value. Any other flash address cannot be accessed.

CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

The NVSCC0 register stores the 32 LSB of the Censorship Control Word of the device.

The NVSCC0 is a nonvolatile register located in the Shadow sector: it is read during the
reset phase of the flash memory module and the protection mechanisms are activated
consequently.

The parts are delivered uncensored to the user.

Table 397. NVPWD1 field descriptions

Field Description

PWD[63:32]
Password, bits 63–32

These bits represent the 32 MSB of the Private Censorship Password.

Figure 445. CFlash Nonvolatile System Censorship Control 0 register (NVSCC0)

Offset: 0x203DE0 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[15:0]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Table 398. NVSCC0 field descriptions

Field Description

SC[15:0]

Serial Censorship control word, bits 15-0

These bits represent the 16 LSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[15:0]

Censorship control Word, bits 15-0

These bits represent the 16 LSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.
Doc ID 16886 Rev 6 738/868

Flash Memory RM0045
CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

The NVSCC1 register stores the 32 MSB of the Censorship Control Word of the device.

The NVSCC1 is a nonvolatile register located in the Shadow sector: it is read during the
reset phase of the flash memory module and the protection mechanisms are activated
consequently.

The parts are delivered uncensored to the user.

CFlash Nonvolatile User Options register (NVUSRO)

The nonvolatile User Options Register contains configuration information for the user
application.

The NVUSRO register is a 64-bit register, of which the 32 most significant bits 63:32 are
‘don’t care’ and are used to manage ECC codes.

Figure 446. CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)

Offset: 0x203DE4 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
SC[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
CW[31:16]

W

Reset 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0

Table 399. NVSCC1 field descriptions

Field Description

SC[31:16]

Serial Censorship control word, bits 31-16

These bits represent the 16 MSB of the Serial Censorship Control Word (SCCW).
If SC15-0 = 0x55AA and NVSCC1 = NVSCC0 the Public Access is disabled.
If SC15-0  0x55AA or NVSCC1  NVSCC0 the Public Access is enabled.

CW[31:16]

Censorship control Word, bits 31-16

These bits represent the 16 MSB of the Censorship Control Word (CCW).
If CW15-0 = 0x55AA and NVSCC1 = NVSCC0 the Censored Mode is disabled.
If CW15-0  0x55AA or NVSCC1  NVSCC0 the Censored Mode is enabled.
739/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

27.5.2 DFlash register description

DFlash Module Configuration Register (DFLASH_MCR)

The Module Configuration Register is used to enable and monitor all modify operations of
the flash memory module.

Figure 447. CFlash Nonvolatile User Options register (NVUSRO)

Offset: 0x203E18 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

W
AT

C
H

D
O

G
_E

N

O
S

C
IL

LA
TO

R
_M

A
R

G
IN

PA
D

3V
5V

1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 400. NVUSRO field descriptions

Field Description

WATCHDOG_EN

WATCHDOG_EN

0: Disable after reset
1: Enable after reset

Default manufacturing value before flash memory initialization is ‘1’

OSCILLATOR_
MARGIN

OSCILLATOR_MARGIN

0: Low consumption configuration (4 MHz/8 MHz)

1: High margin configuration (4 MHz/16 MHz)
Default manufacturing value before flash memory initialization is ‘1’

PAD3V5V

PAD3V5V
0: High voltage supply is 5.0 V

1: High voltage supply is 3.3 V

Default manufacturing value before flash memory initialization is ‘1’ (3.3 V) which should
ensure correct minimum slope for boundary scan.
Doc ID 16886 Rev 6 740/868

Flash Memory RM0045

Figure 448. DFlash Module Configuration Register (DFLASH_MCR)

Address offset: 0x0000 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R EDC 0 0 0 0 SIZE 0 LAS 0 0 0 MAS

W w1c

Reset 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R EER RWE 0 0
P

E
A

S

D
O

N
E

PEG 0 0 0 0
PGM

P
S

U
S

ERS

E
S

U
S

EHV

W w1c w1c

Reset 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

Table 401. DFLASH_MCR field descriptions

Field Description

 EDC

ECC Data Correction

EDC provides information on previous reads. If an ECC Single Error detection and
correction occurred, the EDC bit is set to ‘1’. This bit must then be cleared, or a reset must
occur before this bit will return to a 0 state. This bit may not be set to ‘1’ by the user.
In the event of an ECC Double Error detection, this bit will not be set.
If EDC is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EDC) were not corrected through ECC.
The function of this bit is device dependent and it can be configured to be disabled.
0: Reads are occurring normally.
1: An ECC Single Error occurred and was corrected during a previous read.

SIZE
array space SIZE

The value of SIZE field is dependent upon the size of the flash memory module; see
Table 402.

LAS
Low Address Space
The value of the LAS field corresponds to the configuration of the Low Address Space; see
Table 403.

MAS
Mid Address Space

The value of the MAS field corresponds to the configuration of the Mid Address Space; see
Table 404.

EER

ECC event Error

EER provides information on previous reads. If an ECC Double Error detection occurred,
the EER bit is set to ‘1’.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
In the event of an ECC Single Error detection and correction, this bit will not be set.
If EER is not set, or remains 0, this indicates that all previous reads (from the last reset, or
clearing of EER) were correct.
0: Reads are occurring normally.
1: An ECC Double Error occurred during a previous read.
741/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
RWE

Read-while-Write event Error

RWE provides information on previous reads when a Modify operation is on going. If a
RWW Error occurs, the RWE bit will be set to ‘1’. Read-While-Write Error means that a read
access to the flash memory Matrix has occurred while the FPEC was performing a program
or erase operation or an Array Integrity Check.
This bit must then be cleared, or a reset must occur before this bit will return to a 0 state.
This bit may not be set to ‘1’ by the user.
If RWE is not set, or remains 0, this indicates that all previous RWW reads (from the last
reset, or clearing of RWE) were correct.
0: Reads are occurring normally.
1: A RWW Error occurred during a previous read.

PEAS

Program/Erase Access Space

PEAS is used to indicate which space is valid for program and erase operations: main array
space or shadow/test space.
PEAS = 0 indicates that the main address space is active for all flash memory module
program and erase operations.
PEAS = 1 indicates that the test or shadow address space is active for program and erase.
The value in PEAS is captured and held with the first interlock write done for Modify
operations. The value of PEAS is retained between sampling events (that is, subsequent
first interlock writes).
0: Shadow/Test address space is disabled for program/erase and main address space
enabled.
1: Shadow/Test address space is enabled for program/erase and main address space
disabled.

DONE

modify operation DONE
DONE indicates if the flash memory module is performing a high voltage operation.

DONE is set to 1 on termination of the flash memory module reset.

DONE is cleared to 0 just after a 0 to 1 transition of EHV, which initiates a high voltage
operation, or after

resuming a suspended operation.
DONE is set to 1 at the end of program and erase high voltage sequences.

DONE is set to 1 (within tPABT or tEABT, equal to P/E Abort Latency) after a 1 to 0 transition of
EHV,

which aborts a high voltage Program/Erase operation.

DONE is set to 1 (within tESUS, time equals to Erase Suspend Latency) after a 0 to 1
transition of ESUS,

which suspends an erase operation.

0: Flash memory is executing a high voltage operation.
1: Flash memory is not executing a high voltage operation.

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 742/868

Flash Memory RM0045
PEG

Program/Erase Good

The PEG bit indicates the completion status of the last flash memory program or erase
sequence for which high voltage operations were initiated. The value of PEG is updated
automatically during the program and erase high voltage operations.
Aborting a program/erase high voltage operation will cause PEG to be cleared to ‘0’,
indicating the sequence failed.
PEG is set to ‘1’ when the flash memory module is reset, unless a flash memory
initialization error has been detected.
The value of PEG is valid only when PGM = 1 and/or ERS = 1 and after DONE transitions
from 0 to 1 due to an abort or the completion of a program/erase operation. PEG is valid
until PGM/ERS makes a 1 to 0 transition or EHV makes a 0 to 1 transition.
The value in PEG is not valid after a 0 to 1 transition of DONE caused by ESUS being set to
logic 1.
If program or erase are attempted on blocks that are locked, the response will be PEG = 1,
indicating that the operation was successful, and the content of the block were properly
protected from the program or erase operation.
If a Program operation tries to program at ‘1’ bits that are at ‘0’, the program operation is
correctly executed on the new bits to be programmed at ‘0’, but PEG is cleared, indicating
that the requested operation has failed.

In Array Integrity Check or Margin Read PEG is set to 1 when the operation is completed,
regardless the occurrence of any error. The presence of errors can be detected only
comparing checksum value stored in UMIRS0-1.
Aborting an Array Integrity Check or a Margin Read operation will cause PEG to be cleared
to 0, indicating the sequence failed.
0: Program, Erase operation failed or Program, Erase, Array Integrity Check or Maring Mode
aborted.
1: Program or Erase operation succesful or Array Integrity Check or Maring Mode
completed.

PGM

ProGraM

PGM is used to set up the flash memory module for a Program operation.
A 0 to 1 transition of PGM initiates a Program sequence.
A 1 to 0 transition of PGM ends the Program sequence.
PGM can be set only under User Mode Read (ERS is low and DFLASH_UT0[AIE] is low).
PGM can be cleared by the user only when EHV is low and DONE is high.
PGM is cleared on reset.
0: Flash memory is not executing a Program sequence.
1: Flash memory is executing a Program sequence.

PSUS
PSUS: Program SUSpend
Write this bit has no effect, but the written data can be read back.

ERS

ERaSe
ERS is used to set up the flash memory module for an erase operation.
A 0 to 1 transition of ERS initiates an erase sequence.
A 1 to 0 transition of ERS ends the erase sequence.
ERS can be set only under User Mode Read (PGM is low and DFLASH_UT0[AIE] is low).
ERS can be cleared by the user only when ESUS and EHV are low and DONE is high.
ERS is cleared on reset.
0: Flash memory is not executing an erase sequence.
1: Flash memory is executing an erase sequence.

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
743/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

ESUS

Erase SUSpend

ESUS is used to indicate that the flash memory module is in Erase Suspend or in the
process of entering a Suspend state. The flash memory module is in Erase Suspend when
ESUS = 1 and DONE = 1.
ESUS can be set high only when ERS and EHV are high and PGM is low.
A 0 to 1 transition of ESUS starts the sequence which sets DONE and places the flash
memory in Erase Suspend. The flash memory module enters Suspend within tESUS of this
transition.
ESUS can be cleared only when DONE and EHV are high and PGM is low.
A 1 to 0 transition of ESUS with EHV = 1 starts the sequence which clears DONE and
returns the module to Erase.
The flash memory module cannot exit Erase Suspend and clear DONE while EHV is low.
ESUS is cleared on reset.
0: Erase sequence is not suspended.
1: Erase sequence is suspended.

EHV

Enable High Voltage

The EHV bit enables the flash memory module for a high voltage program/erase operation.
EHV is cleared on reset.
EHV must be set after an interlock write to start a program/erase sequence. EHV may be
set under one of the following conditions:

Erase (ERS = 1, ESUS = 0, DFLASH_UT0[AIE] = 0)
Program (ERS = 0, ESUS = 0, PGM = 1, DFLASH_UT0[AIE] = 0)

In normal operation, a 1 to 0 transition of EHV with DONE high and ESUS low terminates
the current program/erase high voltage operation.
When an operation is aborted, there is a 1 to 0 transition of EHV with DONE low and the
eventual Suspend bit low. An abort causes the value of PEG to be cleared, indicating a
failing program/erase; address locations being operated on by the aborted operation contain
indeterminate data after an abort. A suspended operation cannot be aborted.
Aborting a high voltage operation will leave the flash memory module addresses in an
indeterminate data state. This may be recovered by executing an erase on the affected
blocks.
EHV may be written during Suspend. EHV must be high to exit Suspend. EHV may not be
written after ESUS is set and before DONE transitions high. EHV may not be cleared after
ESUS is cleared and before DONE transitions low.
0: Flash memory is not enabled to perform an high voltage operation.
1: Flash memory is enabled to perform an high voltage operation.

Table 402. Array space size

SIZE Array space size

000 128 KB

001 256 KB

010 512 KB

011 Reserved (1024 KB)

100 Reserved (1536 KB)

101 Reserved (2048 KB)

Table 401. DFLASH_MCR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 744/868

Flash Memory RM0045

A number of DFLASH_MCR bits are protected against write when another bit, or set of bits,
is in a specific state. These write locks are covered on a bit by bit basis in the preceding
description, but those locks do not consider the effects of trying to write two or more bits
simultaneously.

The flash memory module does not allow the user to write bits simultaneously which would
put the device into an illegal state. This is implemented through a priority mechanism among
the bits. The bit changing priorities are detailed in the Table 405.

If the user attempts to write two or more DFLASH_MCR bits simultaneously then only the bit
with the lowest priority level is written.

110 64 KB

111 Reserved

Table 403. Low address space configuration

LAS Low address space sectorization

000 Reserved

001 Reserved

010 32 KB + 2 x 16 KB + 2 x 32 KB + 128 KB

011 Reserved

100 Reserved

101 Reserved

110 4 x 16 KB

111 Reserved

Table 404. Mid address space configuration

MAS Mid address space sectorization

0 2 x 128KB

1 Reserved

Table 402. Array space size (continued)

SIZE Array space size

Table 405. DFLASH_MCR bits set/clear priority levels

Priority level DFLASH_MCR bits

1 ERS

2 PGM

3 EHV

4 ESUS
745/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
If Stall/Abort-While-Write is enabled and an erase operation is started on one sector while
fetching code from another then the following sequence is executed:

● CPU is stalled when flash is unavailable

● PEG flag set (stall case) or reset (abort case)

● Interrupt triggered if enabled

If Stall/Abort-While-Write is used then application software should ignore the setting of the
RWE flag. The RWE flag should be cleared after each HV operation.

If Stall/Abort-While-Write is not used the application software should handle RWE error. See
Section 27.8.10, Read-while-write functionality.

DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

The DFlash Low/Mid Address Space Block Locking register provides a means to protect
blocks from being modified. These bits, along with bits in the DFLASH_SLL register,
determine if the block is locked from Program or Erase. An “OR” of DFLASH_LML and
DFLASH_SLL determine the final lock status.

Figure 449. DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML)

Offset: 0x0004 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 0 0 0 0 0 0 0 0 0 0
TSLK

0 0 0 0

W

Reset
Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LLK

W

Reset
Defined by DFLASH_NVLML at DFlash Test Sector Address 0xC03DE8. This location is user OTP (One
Time Programmable). The DFLASH_NVLML register influences only the R/W bits of the DFLASH_LML

register.
Doc ID 16886 Rev 6 746/868

Flash Memory RM0045

Table 406. DFLASH_LML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.

This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
DFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK
This field is used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the LLK field signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK field signifies that the corresponding block is available to
receive program and erase pulses.
The LLK field is not writable after an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK field is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK field. The LLK field
may be written as a register. Reset will cause the field to go back to its TestFlash block
value. The default value of the LLK field (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
field will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
747/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
DFlash Nonvolatile Low/Mid Address Space Block Locking Register
(DFLASH_NVLML)

The DFLASH_LML register has a related Nonvolatile Low/Mid Address Space Block
Locking register located in TestFlash that contains the default reset value for DFLASH_LML.
During the reset phase of the flash memory module, the DFLASH_NVLML register content
is read and loaded into the DFLASH_LML.

The DFLASH_NVLML register is a 64-bit register, of which the 32 most significant bits 63:32
are ‘don’t care’ and are used to manage ECC codes.

Figure 450. DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML)

Offset: 0xC03DE8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R LME 1 1 1 1 1 1 1 1 1 1
TSLK

1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
LLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doc ID 16886 Rev 6 748/868

Flash Memory RM0045

Table 407. DFLASH_NVLML field descriptions

Field Description

LME

Low/Mid address space block Enable

This bit is used to enable the Lock registers (TSLK, MLK1-0 and LLK15-0) to be set or
cleared by registers writes.

This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the LME bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For LME the password 0xA1A11111 must be written to the
DFLASH_LML register.

0 Low Address Locks are disabled: TSLK, MLK1-0 and LLK15-0 cannot be written.
1 Low Address Locks are enabled: TSLK, MLK1-0 and LLK15-0 can be written.

TSLK

Test/Shadow address space block LocK

This bit is used to lock the block of Test and Shadow Address Space from Program and
Erase (Erase is any case forbidden for Test block).
A value of 1 in the TSLK register signifies that the Test/shadow sector is locked for Program
and Erase.
A value of 0 in the TSLK register signifies that the Test/shadow sector is available to receive
program and erase pulses.
The TSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
TSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the TSLK register. The TSLK
bit may be written as a register. Reset will cause the bit to go back to its TestFlash block
value. The default value of the TSLK bit (assuming erased fuses) would be locked.
TSLK is not writable unless LME is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_SLL[STSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

LLK

Low address space block LocK
These bits are used to lock the blocks of Low Address Space from Program and Erase.
LLK[3:0] are related to sectors B1F3-0, respectively. LLK[15:4] are not used for this memory
cut.
A value of 1 in a bit of the LLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the LLK register signifies that the corresponding block is available to
receive program and erase pulses.
The LLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
LLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the LLK registers. The LLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the LLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the LLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits LLK[15:4] are read-only and locked at ‘1’.
LLK is not writable unless LME is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_SLL[SLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
749/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
DFlash Secondary Low/Mid Address Space Block Locking Register
(DFLASH_SLL)

The DFlash Secondary Low/Mid Address Space Block Locking Register provides an
alternative means to protect blocks from being modified. These bits, along with bits in the
DFLASH_LML register, determine if the block is locked from Program or Erase. An “OR” of
DFLASH_LML and DFLASH_SLL determine the final lock status.

Figure 451. DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL)

Offset: 0x000C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 0 0 0 0 0 0 0 0 0 0

S
T

S
LK 0 0 0 0

W

Reset
Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL

register.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
SLK

W

Reset
Defined by DFLASH_NVSLL at DFlash Test Sector Address 0xC03DF8. This location is user OTP (One
Time Programmable). The DFLASH_NVSLL register influences only the R/W bits of the DFLASH_SLL

register.
Doc ID 16886 Rev 6 750/868

Flash Memory RM0045

Table 408. DFLASH_SLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
751/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
DFlash Nonvolatile Secondary Low/Mid Address Space Block Locking
Register (DFLASH_NVSLL)

The DFLASH_SLL register has a related Nonvolatile Secondary Low/Mid Address Space
Block Locking register located in TestFlash that contains the default reset value for
DFLASH_SLL. During the reset phase of the flash memory module, the DFLASH_NVSLL
register content is read and loaded into the DFLASH_SLL.

The DFLASH_NVSLL register is a 64-bit register, of which the 32 most significant bits 63:32
are ‘don’t care’ and are used to manage ECC codes.

Figure 452. DFlash Nonvolatile Secondary Low/mid address space block Locking register
(DFLASH_NVSLL)

Offset: 0xC03DF8 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R SLE 1 1 1 1 1 1 1 1 1 1

S
T

S
LK 1 1 1 1

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 1 1 1 1 1 1 1 1 1 1 1 1
SLK

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Doc ID 16886 Rev 6 752/868

Flash Memory RM0045

Table 409. DFLASH_NVSLL field descriptions

Field Description

SLE

Secondary Low/mid address space block Enable
This bit is used to enable the Lock registers (STSLK, SMK1-0 and SLK15-0) to be set or
cleared by registers writes.
This bit is a status bit only. The method to set this bit is to write a password, and if the
password matches, the SLE bit will be set to reflect the status of enabled, and is enabled
until a reset operation occurs. For SLE the password 0xC3C33333 must be written to the
DFLASH_SLL register.
0: Secondary Low/Mid Address Locks are disabled: STSLK, SMK1-0 and SLK15-0 cannot
be written.
1: Secondary Low/Mid Address Locks are enabled: STSLK, SMK1-0 and SLK15-0 can be
written.

STSLK

Secondary Test/Shadow address space block LocK
This bit is used as an alternate means to lock the block of Test and Shadow Address Space
from Program and Erase (Erase is any case forbidden for Test block).
A value of 1 in the STSLK register signifies that the Test/shadow sector is locked for
Program and Erase.
A value of 0 in the STSLK register signifies that the Test/shadow sector is available to
receive program and erase pulses.
The STSLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
STSLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the STSLK register. The
STSLK bit may be written as a register. Reset will cause the bit to go back to its TestFlash
block value. The default value of the STSLK bit (assuming erased fuses) would be locked.
STSLK is not writable unless SLE is high.
0: Test/Shadow Address Space Block is unlocked and can be modified (also if
DFLASH_LML[TSLK] = 0).
1: Test/Shadow Address Space Block is locked and cannot be modified.

SLK

Secondary Low address space block locK
These bits are used as an alternate means to lock the blocks of Low Address Space from
Program and Erase.
SLK[3:0] are related to sectors B1F3-0, respectively. SLK[15:4] are not used for this
memory cut.
A value of 1 in a bit of the SLK register signifies that the corresponding block is locked for
Program and Erase.
A value of 0 in a bit of the SLK register signifies that the corresponding block is available to
receive program and erase pulses.
The SLK register is not writable once an interlock write is completed until
DFLASH_MCR[DONE] is set at the completion of the requested operation. Likewise, the
SLK register is not writable if a high voltage operation is suspended.
Upon reset, information from the TestFlash block is loaded into the SLK registers. The SLK
bits may be written as a register. Reset will cause the bits to go back to their TestFlash block
value. The default value of the SLK bits (assuming erased fuses) would be locked.
In the event that blocks are not present (due to configuration or total memory size), the SLK
bits will default to locked, and will not be writable. The reset value will always be 1
(independent of the TestFlash block), and register writes will have no effect.
In the 64 KB flash memory module bits SLK[15:4] are read-only and locked at ‘1’.
SLK is not writable unless SLE is high.
0: Low Address Space Block is unlocked and can be modified (also if DFLASH_LML[LLK] =
0).
1: Low Address Space Block is locked and cannot be modified.
753/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

The DFLASH_LMS register provides a means to select blocks to be operated on during
erase.

DFlash Address Register (DFLASH_ADR)

The DFLASH_ADR provides the first failing address in the event module failures (ECC,
RWW or FPEC) occur or the first address at which an ECC single error correction occurs.

Figure 453. DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS)

Offset: 0x00010 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0
LSL

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 410. DFLASH_LMS field descriptions

Field Description

LSL

Low address space block SeLect

A value of 1 in the select register signifies that the block is selected for erase.
A value of 0 in the select register signifies that the block is not selected for erase. The reset value
for the select register is 0, or unselected.
LSL[3:0] are related to sectors B1F3-0, respectively. LSL[15:4] are not used for this memory cut.
The blocks must be selected (or unselected) before doing an erase interlock write as part of the
erase sequence. The select register is not writable once an interlock write is completed or if a high
voltage operation is suspended.
In the event that blocks are not present (due to configuration or total memory size), the
corresponding LSL bits will default to unselected, and will not be writable. The reset value will
always be 0, and register writes will have no effect.
In the 80 KB flash memory module bits LSL[15:4] are read-only and locked at ‘0’.
0: Low Address Space Block is unselected for Erase.
1: Low Address Space Block is selected for Erase.
Doc ID 16886 Rev 6 754/868

Flash Memory RM0045

DFlash User Test 0 register (DFLASH_UT0)

The User Test Registers provide the user with the ability to test features on the flash
memory module.

Figure 454. DFlash Address Register (DFLASH_ADR)

Address offset: 0x00018 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 AD22 AD21 AD20 AD19 AD18 AD17 AD16

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R AD15 AD14 AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5 AD4 AD3 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 411. DFLASH_ADR field descriptions

Field Description

AD[22:3]

ADdress 22-3

The Address Register provides the first failing address in the event of ECC error
(DFLASH_MCR[EER] set) or the first failing address in the event of RWW error
(DFLASH_MCR[RWE] set), or the address of a failure that may have occurred in a FPEC operation
(DFLASH_MCR[PEG] cleared). The Address Register also provides the first address at which an
ECC single error correction occurs (DFLASH_MCR[EDC] set), if the device is configured to show
this feature.
The ECC double error detection takes the highest priority, followed by the RWW error, the FPEC
error and the ECC single error correction. When accessed DFLASH_ADR will provide the address
related to the first event occurred with the highest priority. The priorities between these four possible
events is summarized in the Table 412.
This address is always a Double Word address that selects 64 bits.
In case of a simultaneous ECC Double Error Detection on both Double Words of the same page, bit
AD3 will output 0. The same is valid for a simultaneous ECC Single Error Correction on both Double
Words of the same page.
In User Mode the Address Register is read only.

Table 412. DFLASH_ADR content: priority list

Priority level Error flag DFLASH_ADR content

1 DFLASH_MCR[EER] = 1 Address of first ECC Double Error

2 DFLASH_MCR[RWE] = 1 Address of first RWW Error

3 DFLASH_MCR[PEG] = 0 Address of first FPEC Error

4 DFLASH_MCR[EDC] = 1 Address of first ECC Single Error Correction
755/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
The User Test 0 Register allows to control the way in which the flash memory content check
is done.

Bits MRE, MRV, AIS, EIE and DSI[7:0] of the User Test 0 Register are not accessible
whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading returns
indeterminate data while writing has no effect.

Figure 455. DFlash User Test 0 register (DFLASH_UT0)

Offset: 0x0003C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R UTE 0 0 0 0 0 0 0
DSI

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0
X MRE MRV EIE AIS AIE

AID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 413. DFLASH_UT0 field descriptions

Field Description

UTE

User Test Enable

This status bit gives indication when User Test is enabled. All bits in DFLASH_UT0-2 and
DFLASH_UMISR0-4 are locked when this bit is 0.
This bit is not writeable to a 1, but may be cleared. The reset value is 0.
The method to set this bit is to provide a password, and if the password matches, the UTE bit is set to
reflect the status of enabled, and is enabled until it is cleared by a register write.
For UTE the password 0xF9F99999 must be written to the DFLASH_UT0 register.

DSI

Data Syndrome Input
These bits represent the input of Syndrome bits of ECC logic used in the ECC Logic Check. Bits
DSI[7:0] correspond to the 8 syndrome bits on a double word.
These bits are not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: The syndrome bit is forced at 0.
1: The syndrome bit is forced at 1.

X

Reserved

This bit can be written and its value can be read back, but there is no function associated.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
Doc ID 16886 Rev 6 756/868

Flash Memory RM0045
MRE

Margin Read Enable

MRE enables margin reads to be done. This bit, combined with MRV, enables regular user mode reads
to be replaced by margin reads.
Margin reads are only active during Array Integrity Checks; Normal User reads are not affected by
MRE.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data

while writing has no effect.

0: Margin reads are not enabled, all reads are User mode reads.
1: Margin reads are enabled.

MRV

Margin Read Value
If MRE is high, MRV selects the margin level that is being checked. Margin can be checked to an
erased level (MRV = 1) or to a programmed level (MRV = 0).
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: Zero’s (programmed) margin reads are requested (if MRE = 1).
1: One’s (erased) margin reads are requested (if MRE = 1).

EIE

ECC data Input Enable

EIE enables the ECC Logic Check operation to be done.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: ECC Logic Check is not enabled.

1: ECC Logic Check is enabled.

AIS

Array Integrity Sequence

AIS determines the address sequence to be used during array integrity checks or Margin Read.
The default sequence (AIS = 0) is meant to replicate sequences normal user code follows, and
thoroughly checks the read propagation paths. This sequence is proprietary.
The alternative sequence (AIS = 1) is just logically sequential. Proprietary sequence is forbidden in
Margin Read.
It should be noted that the time to run a sequential sequence is significantly shorter than the time to run
the proprietary sequence.
This bit is not accessible whenever DFLASH_MCR[DONE] or DFLASH_UT0[AID] are low: reading
returns indeterminate data while writing has no effect.
0: Array Integrity equence is proprietary sequence.
1: Array Integrity or Margin Read sequence is sequential.

AIE

Array Integrity Enable

AIE set to ‘1’ starts the Array Integrity Check done on all selected and unlocked blocks.
The pattern is selected by AIS, and the MISR (DFLASH_UMISR0-4) can be checked after the operation
is complete, to determine if a correct signature is obtained.
AIE can be set only if DFLASH_MCR[ERS], DFLASH_MCR[PGM] and DFLASH_MCR[EHV] are all
low.
0: Array Integrity Checks are not enabled.
1: Array Integrity Checks are enabled.

AID

Array Integrity Done

AID will be cleared upon an Array Integrity Check being enabled (to signify the operation is on-going).
Once completed, AID will be set to indicate that the Array Integrity Check is complete. At this time the
MISR (DFLASH_UMISR0-4) can be checked.
0: Array Integrity Check is on-going.
1: Array Integrity Check is done.

Table 413. DFLASH_UT0 field descriptions (continued)

Field Description
757/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
DFlash User Test 1 register (DFLASH_UT1)

The DFLASH_UT1 register allows to enable the checks on the ECC logic related to the 32
LSB of the Double Word.

The User Test 1 Register is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

DFlash User Test 2 register (DFLASH_UT2)

The DFLASH_UT2 register allows to enable the checks on the ECC logic related to the 32
MSB of the Double Word.

The User Test 2 Register is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 456. DFlash User Test 1 register (DFLASH_UT1)

Address offset: 0x00040 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 414. DFLASH_UT1 field descriptions

Field Description

DAI[31:16]

Data Array Input, bits 31-0

These bits represent the input of even word of ECC logic used in the ECC Logic Check. Bits DAI[31:00]
correspond to the 32 array bits representing Word 0 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
Doc ID 16886 Rev 6 758/868

Flash Memory RM0045

DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

The DFLASH_UMISR0 provides a means to evaluate the Array Integrity.

The DFLASH_UMISR0 represents the bits 31:0 of the whole 144 bits word (2 Double Words
including ECC).

The DFLASH_UMISR0 is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 457. DFlash User Test 2 register (DFLASH_UT2)

Offset: 0x00044 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
DAI[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
DAI[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 415. DFLASH_UT2 field descriptions

Field Description

DAI[63:32]

Data Array Input, bits 63-32

These bits represent the input of odd word of ECC logic used in the ECC Logic Check. Bits DAI[63:32]
correspond to the 32 array bits representing Word 1 within the double word.
0: The array bit is forced at 0.
1: The array bit is forced at 1.
759/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

The DFLASH_UMISR1 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR1 represents the bits 63:32 of the whole 144 bits word (2 Double
Words including ECC).

The DFLASH_UMISR1 is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 458. DFlash User Multiple Input Signature Register 0 (DFLASH_UMISR0)

Address offset: 0x00048 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[31:16]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[15:0]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 416. DFLASH_UMISR0 field descriptions

Field Description

MS[31:0]

Multiple input Signature, bits 31–0

These bits represent the MISR value obtained accumulating the bits 31:0 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR0 register.
Doc ID 16886 Rev 6 760/868

Flash Memory RM0045

DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

The DFLASH_UMISR2 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR2 represents the bits 95:64 of the whole 144 bits word (2 Double
Words including ECC).

The DFLASH_UMISR2 is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 459. DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)

Address offset: 0x0004C Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[63:48]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[47:32]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 417. DFLASH_UMISR1 field descriptions

Field Description

MS[63:32]

Multiple input Signature, bits 63-32

These bits represent the MISR value obtained accumulating the bits 63:32 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR1.
761/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

The DFLASH_UMISR3 provides a mean to evaluate the Array Integrity.

The DFLASH_UMISR3 represents the bits 127:96 of the whole 144 bits word (2 Double
Words including ECC).

The DFLASH_UMISR3 is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 460. DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2)

Address offset: 0x00050 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[95:80]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[79:64]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 418. DFLASH_UMISR2 field descriptions

Field Description

MS[95:64]

Multiple input Signature, bits 95-64

These bits represent the MISR value obtained accumulating the bits 95:64 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR2.
Doc ID 16886 Rev 6 762/868

Flash Memory RM0045

DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

The Multiple Input Signature Register provides a mean to evaluate the Array Integrity.

The User Multiple Input Signature Register 4 represents the ECC bits of the whole 144 bits
word (2 Double Words including ECC): bits 23-168:15 are ECC bits for the odd Double Word
and bits 7-024:31 are the ECC bits for the even Double Word; bits 27-264:5 and 11-1020:21
of MISR are respectively the double and single ECC error detection for odd and even
Double Word.

The DFLASH_UMISR4 Register is not accessible whenever DFLASH_MCR[DONE] or
DFLASH_UT0[AID] are low: reading returns indeterminate data while writing has no effect.

Figure 461. DFlash User Multiple Input Signature Register 3 (DFLASH_UMISR3)

Address offset: 0x00054 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[127:112]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[111:96]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 419. DFLASH_UMISR3 field descriptions

Field Description

MS[127:96]

Multiple input Signature, bits 127096

These bits represent the MISR value obtained accumulating the bits 127:96 of all the pages read from
the flash memory.
The MS can be seeded to any value by writing the DFLASH_UMISR3.
763/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

27.6 Programming considerations
In the following sections, register names can refer to the CFlash or DFlash versions of those
registers. Thus, for example, the term “MCR” can refer to the CFLASH_MCR or
DFLASH_MCR based on context.

27.6.1 Modify operation

All modify operations of the flash memory module are managed through the flash memory
User Registers Interface.

All the sectors of the flash memory module belong to the same partition (Bank), therefore
when a Modify operation is active on some sectors no read access is possible on any other
sector (Read-While-Write is not supported).

During a flash memory modify operation any attempt to read any flash memory location will
output invalid data and bit MCR[RWE] will be automatically set. This means that the flash
memory module is not fetchable when a modify operation is active and these commands
must be executed from another memory (internal SRAM or another flash memory module).

If during a Modify Operation a reset occurs, the operation is suddenly terminated and the
Macrocell is reset to Read Mode. The data integrity of the flash memory section where the

Figure 462. DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4)

Address offset: 0x00058 Reset value: 0x0000_0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
MS[159:144]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
MS[143:128]

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 420. DFLASH_UMISR4 field descriptions

Field Description

MS[159:128]

Multiple input Signature, bits 159-128

These bits represent the MISR value obtained accumulating:
the 8 ECC bits for the even Double Word (on MS[135:128]);
the single ECC error detection for even Double Word (on MS138);
the double ECC error detection for even Double Word (on MS139);
the 8 ECC bits for the odd Double Word (on MS[151:144]);
the single ECC error detection for odd Double Word (on MS154);
the double ECC error detection for odd Double Word (on MS155).
The MS can be seeded to any value by writing the DFLASH_UMISR4 register.
Doc ID 16886 Rev 6 764/868

Flash Memory RM0045
Modify Operation has been terminated is not guaranteed: the interrupted flash memory
Modify Operation must be repeated.

In general each modify operation is started through a sequence of three steps:

1. The first instruction is used to select the desired operation by setting its corresponding
selection bit in MCR (PGM or ERS) or UT0 (MRE or EIE).

2. The second step is the definition of the operands: the Address and the Data for
programming or the Sectors for erase or margin read.

3. The third instruction is used to start the modify operation, by setting MCR[EHV] or
UT0[AIE].

Once selected, but not yet started, one operation can be canceled by resetting the operation
selection bit.

A summary of the available flash memory modify operations is shown in Table 421.

Once the MCR[EHV] bit (or UT0[AIE]) is set, all the operands can no more be modified until
the MCR[DONE] bit (or UT0[AID]) is high.

In general each modify operation is completed through a sequence of four steps:

1. Wait for operation completion: wait for the MCR[DONE] bit (or UT0[AID]) to go high.

2. Check operation result: check the MCR[PEG] bit (or compare UMISR0-4 with expected
value).

3. Switch off FPEC by resetting the MCR[EHV] bit (or UT0[AIE]).

4. Deselect current operation by clearing the MCR[PGM] / MCR[ERS] fields (or
UT0[MRE] /UT0[EIE]).

If the device embeds more than one flash memory module and a modify operation is on-
going on one of them, then it is forbidden to start any other modify operation on the other
flash memory modules.

In the following all the possible modify operations are described and some examples of the
sequences needed to activate them are presented.

27.6.2 Double word program

A flash memory Program sequence operates on any Double Word within the flash memory
core.

Up to two words within the Double Word may be altered in a single Program operation.

ECC is handled on a 64-bit boundary. Thus, if only one word in any given 64-bit ECC
segment is programmed, the adjoining word (in that segment) should not be programmed

Table 421. Flash memory modify operations

Operation Select bit Operands Start bit

Double word program MCR[PGM] Address and data by interlock writes MCR[EHV]

Sector erase MCR[ERS] LMS MCR[EHV]

Array integrity check None LMS UT0[AIE]

Margin read UT0[MRE] UT0[MRV] + LMS UT0[AIE]

ECC Logic Check UT0[EIE] UT0[DSI], UT1, UT2 UT0[AIE]
765/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
since ECC calculation has already completed for that 64-bit segment. Attempts to program
the adjoining word will probably result in an operation failure. It is recommended that all
programming operations be of 64 bits. The programming operation should completely fill
selected ECC segments within the Double Word.

Programming changes the value stored in an array bit from logic 1 to logic 0 only.
Programming cannot change a stored logic 0 to a logic 1.

Addresses in locked/disabled blocks cannot be programmed.

The user may program the values in any or all of two words, of a Double Word, with a single
program sequence.

Double Word-bound words have addresses which differ only in address bit 2.

The Program operation consists of the following sequence of events:

1. Change the value in the MCR[PGM] bit from 0 to 1.

2. Ensure the block that contains the address to be programmed is unlocked.
Write the first address to be programmed with the program data.
The flash memory module latches address bits (22:3) at this time.
The flash memory module latches data written as well.
This write is referred to as a program data interlock write. An interlock write may be as
large as 64 bits, and as small as 32 bits (depending on the CPU bus).

3. If more than 1 word is to be programmed, write the additional address in the Double
Word with data to be programmed. This is referred to as a program data write.
The flash memory module ignores address bits (22:3) for program data writes.
The eventual unwritten data word default to 0xFFFFFFFF.

4. Write a logic 1 to the MCR[EHV] bit to start the internal program sequence or skip to
step 9 to terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm that the MCR[PEG] bit is 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more addresses are to be programmed, return to step 2.

9. Write a logic 0 to the MCR[PGM] bit to terminate the program operation.

Program may be initiated with the 0 to 1 transition of the MCR[PGM] bit or by clearing the
MCR[EHV] bit at the end of a previous program.

The first write after a program is initiated determines the page address to be programmed.
This first write is referred to as an interlock write. The interlock write determines if the
shadow, test or normal array space will be programmed by causing the MCR[PEAS] field to
be set/cleared.

An interlock write must be performed before setting MCR[EHV]. The user may terminate a
program sequence by clearing MCR[PGM] prior to setting MCR[EHV].

After the interlock write, additional writes only affect the data to be programmed at the word
location determined by address bit 2. Unwritten locations default to a data value of
0xFFFFFFFF. If multiple writes are done to the same location the data for the last write is
used in programming.

While MCR[DONE] is low and MCR[EHV] is high, the user may clear EHV, resulting in a
program abort.
A Program abort forces the module to step 8 of the program sequence.
Doc ID 16886 Rev 6 766/868

Flash Memory RM0045
An aborted program will result in MCR[PEG] being set low, indicating a failed operation.
MCR[DONE] must be checked to know when the aborting command has completed.

The data space being operated on before the abort will contain indeterminate data. This
may be recovered by repeating the same program instruction or executing an erase of the
affected blocks.

Example 10 Double word program of data 0x55AA55AA at address 0x00AAA8 and data
0xAA55AA55 at address 0x00AAAC

MCR = 0x00000010; /* Set PGM in MCR: Select Operation */
(0x00AAA8) = 0x55AA55AA; /* Latch Address and 32 LSB data */
(0x00AAAC) = 0xAA55AA55; /* Latch 32 MSB data */
MCR = 0x00000011; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200; /* Check PEG flag */
MCR = 0x00000010; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset PGM in MCR: Deselect Operation */

27.6.3 Sector erase

Erase changes the value stored in all bits of the selected block(s) to logic 1.

An erase sequence operates on any combination of blocks (sectors) in the low, mid or high
address space, or the shadow sector (if available). The test block cannot be erased.

The erase sequence is fully automated within the flash memory. The user only needs to
select the blocks to be erased and initiate the erase sequence.

Locked/disabled blocks cannot be erased.

If multiple blocks are selected for erase during an erase sequence, no specific operation
order must be assumed.

The erase operation consists of the following sequence of events:

1. Change the value in the MCR[ERS] bit from 0 to 1.

2. Select the block(s) to be erased by writing ‘1’s to the appropriate bit(s) in the LMS
register.
If the shadow sector is to be erased, this step may be skipped, and LMS is ignored.
Note that Lock and Select are independent. If a block is selected and locked, no erase
will occur.

3. Write to any address in flash memory. This is referred to as an erase interlock write.

4. Write a logic 1 to the MCR[EHV] bit to start the internal erase sequence or skip to step
9 to terminate.

5. Wait until the MCR[DONE] bit goes high.

6. Confirm MCR[PEG] = 1.

7. Write a logic 0 to the MCR[EHV] bit.

8. If more blocks are to be erased, return to step 2.

9. Write a logic 0 to the MCR[ERS] bit to terminate the erase operation.

After setting MCR[ERS], one write, referred to as an interlock write, must be performed
before MCR[EHV] can be set to ‘1’. Data words written during erase sequence interlock
writes are ignored.
767/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
The user may terminate the erase sequence by clearing ERS before setting EHV.

An erase operation may be aborted by clearing MCR[EHV] assuming MCR[DONE] is low,
MCR[EHV] is high and MCR[ESUS] is low.

An erase abort forces the module to step 8 of the erase sequence.

An aborted erase will result in MCR[PEG] being set low, indicating a failed operation.
MCR[DONE] must be checked to know when the aborting command has completed.

The block(s) being operated on before the abort contain indeterminate data. This may be
recovered by executing an erase on the affected blocks.

The user may not abort an erase sequence while in erase suspend.

Example 11 Erase of sectors B0F1 and B0F2
MCR = 0x00000004; /* Set ERS in MCR: Select Operation */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors to erase */
(0x000000) = 0xFFFFFFFF; /* Latch a flash memory Address with any data */
MCR = 0x00000005; /* Set EHV in MCR: Operation Start */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));
status = MCR & 0x00000200;/* Check PEG flag */
MCR = 0x00000004; /* Reset EHV in MCR: Operation End */
MCR = 0x00000000; /* Reset ERS in MCR: Deselect Operation */

Erase suspend/resume

The erase sequence may be suspended to allow read access to the flash memory core.

It is not possible to program or to erase during an erase suspend.

During erase suspend, all reads to blocks targeted for erase return indeterminate data.

An erase suspend can be initiated by changing the value of the MCR[ESUS] bit from 0 to 1.
MCR[ESUS] can be set to ‘1’ at any time when MCR[ERS] and MCR[EHV] are high and
MCR[PGM] is low. A 0 to 1 transition of MCR[ESUS] causes the module to start the
sequence which places it in erase suspend.

The user must wait until MCR[DONE] = 1 before the module is suspended and further
actions are attempted. MCR[DONE] will go high no more than tESUS after MCR[ESUS] is set
to ‘1’.

Once suspended, the array may be read. flash memory core reads while MCR[ESUS] = 1
from the block(s) being erased return indeterminate data.

Example 12 Sector erase suspend
MCR = 0x00000007; /* Set ESUS in MCR: Erase Suspend */
do /* Loop to wait for DONE=1 */
{ tmp = MCR; /* Read MCR */
} while (!(tmp & 0x00000400));

Notice that there is no need to clear MCR[EHV] and MCR[ERS] in order to perform reads
during erase suspend.

The erase sequence is resumed by writing a logic 0 to MCR[ESUS].

MCR[EHV] must be set to ‘1’ before MCR[ESUS] can be cleared to resume the operation.
Doc ID 16886 Rev 6 768/868

Flash Memory RM0045
The module continues the erase sequence from one of a set of predefined points. This may
extend the time required for the erase operation.

Example 13 Sector erase resume
MCR = 0x00000005; /* Reset ESUS in MCR: Erase Resume */

User Test mode

The user can perform specific tests to check flash memory module integrity by putting the
flash memory module in User Test Mode.

Three kinds of test can be performed:

● Array Integrity Self Check

● Margin Read

● ECC Logic Check

The User Test Mode is equivalent to a Modify operation: read accesses attempted by the
user during User Test Mode generates a Read-While-Write Error (MCR[RWE] set).

It is not allowed to perform User Test operations on the Test and shadow sectors.

Array integrity self check

Array Integrity is checked using a predefined address sequence (proprietary), and this
operation is executed on selected and unlocked blocks. Once the operation is completed,
the results of the reads can be checked by reading the MISR value (stored in UMISR0–4), to
determine if an incorrect read, or ECC detection was noted.

The internal MISR calculator is a 32-bit register.

The 128 bit data, the 16 ECC data and the single and double ECC errors of the two Double
Words are therefore captured by the MISR through five different read accesses at the same
location.

The whole check is done through five complete scans of the memory address space:

1. The first pass will scan only bits 31:0 of each page.

2. The second pass will scan only bits 63:32 of each page.

3. The third pass will scan only bits 95:64 of each page.

4. The fourth pass will scan only bits 127:96 of each page.

5. The fifth pass will scan only the ECC bits (8 + 8) and the single and double ECC errors
(2 + 2) of both Double Words of each page.

The 128 bit data and the 16 ECC data are sampled before the eventual ECC correction,
while the single and double error flags are sampled after the ECC evaluation.

Only data from existing and unlocked locations are captured by the MISR.

The MISR can be seeded to any value by writing the UMISR0–4 registers.

The Array Integrity Self Check consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing ‘1’s to the appropriate bit(s) in the LMS
register.
769/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Note that Lock and Select are independent. If a block is selected and locked, no Array
Integrity Check will occur.

3. Set eventually UT0[AIS] bit for a sequential addressing only.

4. Write a logic 1 to the UT0[AIE] bit to start the Array Integrity Check.

5. Wait until the UT0[AID] bit goes high.

6. Compare UMISR0-4 content with the expected result.

7. Write a logic 0 to the UT0[AIE] bit.

8. If more blocks are to be checked, return to step 2.

It is recommended to leave UT0[AIS] at 0 and use the proprietary address sequence that
checks the read path more fully, although this sequence takes more time. During the
execution of the Array Integrity Check operation it is forbidden to modify the content of Block
Select (LMS) and Lock (LML, SLL) registers, otherwise the MISR value can vary in an
unpredictable way. While UT0[AID] is low and UT0[AIE] is high, the User may clear AIE,
resulting in a Array Integrity Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 14 Array integrity check of sectors B0F1 and B0F2
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000002; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x00000000; /* Reset UTE and AIE in UT0: Operation End */

Margin read

Margin read procedure (either Margin 0 or Margin 1), can be run on unlocked blocks in order
to unbalance the Sense Amplifiers, respect to standard read conditions, so that all the read
accesses reduce the margin vs ‘0’ (UT0[MRV] = ‘0’) or vs ‘1’ (UT0[MRV] = ‘1’). Locked
sectors are ignored by MISR calculation and ECC flagging. The results of the margin reads
can be checked comparing checksum value in UMISR0-4. Since Margin reads are done at
voltages that differ than the normal read voltage, lifetime expectancy of the flash memory
macrocell is impacted by the execution of Margin reads. Doing Margin reads repetitively
results in degradation of the flash memory Array, and shorten expected lifetime experienced
at normal read levels. For these reasons the Margin Read usage is allowed only in Factory,
while it is forbidden to use it inside the User Application.

In any case the charge losses detected through the Margin Read cannot be considered
failures of the device and no Failure Analysis will be opened on them. The Margin Read
Setup operation consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Select the block(s) to be checked by writing 1’s to the appropriate bit(s) in the LMS
register.
Doc ID 16886 Rev 6 770/868

Flash Memory RM0045
Note that Lock and Select are independent. If a block is selected and locked, no Array
Integrity Check will occur.

3. Set T0.AIS bit for a sequential addressing only.

4. Change the value in the UT0[MRE] bit from 0 to 1.

5. Select the Margin level: UT0[MRV]=0 for 0’s margin, UT0[MRV]=1 for 1’s margin.

6. Write a logic 1 to the UT0[AIE] bit to start the Margin Read Setup or skip to step 6 to
terminate.

7. Wait until the UT0[AID] bit goes high.

8. Compare UMISR0-4 content with the expected result.

9. Write a logic 0 to the UT0[AIE], UT0[MRE] and UT0[MRV] bits.

10. If more blocks are to be checked, return to step 2.

It is mandatory to leave UT0[AIS] at 1 and use the linear address sequence, the usage of
the proprietary sequence in Margin Read is forbidden.

During the execution of the Margin Read operation it is forbidden to modify the content of
Block Select (LMS) and Lock (LML, SLL) registers, otherwise the MISR value can vary in an
unpredictable way.

The read accesses will be done with the addition of a proper number of Wait States to
guarantee the correctness of the result.

While UT0[AID] is low and UT0[AIE] is high, the User may clear AIE, resulting in a Array
Integrity Check abort.

UT0[AID] must be checked to know when the aborting command has completed.

Example 15 Margin read setup versus ‘1’s
UMISR0 = 0x00000000; /* Reset UMISR0 content */
UMISR1 = 0x00000000; /* Reset UMISR1 content */
UMISR2 = 0x00000000; /* Reset UMISR2 content */
UMISR3 = 0x00000000; /* Reset UMISR3 content */
UMISR4 = 0x00000000; /* Reset UMISR4 content */
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
LMS = 0x00000006; /* Set LSL2-1 in LMS: Select Sectors */
UT0 = 0x80000004; /* Set AIS in UT0: Select Operation */
UT0 = 0x80000024; /* Set MRE in UT0: Select Operation */
UT0 = 0x80000034; /* Set MRV in UT0: Select Margin versus 1’s */
UT0 = 0x80000036; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content*/
data1 = UMISR1; /* Read UMISR1 content*/
data2 = UMISR2; /* Read UMISR2 content*/
data3 = UMISR3; /* Read UMISR3 content*/
data4 = UMISR4; /* Read UMISR4 content*/
UT0 = 0x80000034; /* Reset AIE in UT0: Operation End */
UT0 = 0x00000000; /* Reset UTE, MRE, MRV, AIS in UT0: Deselect Op. */

To exit from the Margin Read Mode a Read Reset operation must be executed.
771/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
ECC logic check

ECC logic can be checked by forcing the input of ECC logic: The 64 bits of data and the 8
bits of ECC syndrome can be individually forced and they will drive simultaneously at the
same value the ECC logic of the whole page (2 Double Words).

The results of the ECC Logic Check can be verified by reading the MISR value.

The ECC Logic Check operation consists of the following sequence of events:

1. Set UT0[UTE] by writing the related password in UT0.

2. Write in UT1[DAI31–0] and UT2[DAI63–32] the Double Word Input value.

3. Write in UT0[DSI7–0] the Syndrome Input value.

4. Select the ECC Logic Check: write a logic 1 to the UT0[EIE] bit.

5. Write a logic 1 to the UT0[AIE] bit to start the ECC Logic Check.

6. Wait until the UT0[AID] bit goes high.

7. Compare UMISR0–4 content with the expected result.

8. Write a logic 0 to the UT0[AIE] bit.

Notice that when UT0[AID] is low UMISR0–4, UT1–2 and bits MRE, MRV, EIE, AIS and
DSI7–0 of UT0 are not accessible: reading returns indeterminate data and write has no
effect.

Example 16 ECC logic check
UT0 = 0xF9F99999; /* Set UTE in UT0: Enable User Test */
UT1 = 0x55555555; /* Set DAI31-0 in UT1: Even Word Input Data */
UT2 = 0xAAAAAAAA; /* Set DAI63-32 in UT2: Odd Word Input Data */
UT0 = 0x80FF0000; /* Set DSI7-0 in UT0: Syndrome Input Data */
UT0 = 0x80FF0008; /* Set EIE in UT0: Select ECC Logic Check */
UT0 = 0x80FF000A; /* Set AIE in UT0: Operation Start */
do /* Loop to wait for AID=1 */
{ tmp = UT0; /* Read UT0 */
} while (!(tmp & 0x00000001));
data0 = UMISR0; /* Read UMISR0 content (expected 0x55555555) */
data1 = UMISR1; /* Read UMISR1 content (expected 0xAAAAAAAA) */
data2 = UMISR2; /* Read UMISR2 content (expected 0x55555555) */
data3 = UMISR3; /* Read UMISR3 content (expected 0xAAAAAAAA) */
data4 = UMISR4; /* Read UMISR4 content (expected 0x00FF00FF) */
UT0 = 0x00000000; /* Reset UTE, AIE and EIE in UT0: Operation End */

Error correction code

The flash memory module provides a method to improve the reliability of the data stored in
flash memory: the usage of an Error Correction Code. The word size is fixed at 64 bits.

Eight ECC bits, programmed to guarantee a Single Error Correction and a Double Error
Detection (SEC-DED), are associated to each 64-bit Double Word.

ECC circuitry provides correction of single bit faults and is used to achieve automotive
reliability targets. Some units will experience single bit corrections throughout the life of the
product with no impact to product reliability.

ECC algorithms

The flash memory module supports one ECC Algorithm: “All ‘1’s No Error”. A modified
Hamming code is used that ensures the all erased state (that is, 0xFFFF.....FFFF) data is a
Doc ID 16886 Rev 6 772/868

Flash Memory RM0045
valid state, and will not cause an ECC error. This allows the user to perform a blank check
after a sector erase operation.

EEPROM emulation

The choosen ECC algorithm allows some bit manipulations so that a Double Word can be
rewritten several times without needing an erase of the sector. This allows to use a Double
Word to store flags useful for the Eeprom Emulation. As an example the choosen ECC
algorithm allows to start from an All ‘1’s Double Word value and rewrite whichever of its four
16-bits Half-Words to an All ‘0’s content by keeping the same ECC value.

Table 422 shows a set of Double Words sharing the same ECC value.

When some flash memory sectors are used to perform an Eeprom Emulation, it is
reccomended for safety reasons to reserve at least 3 sectors to this purpose.

All ‘1’s No Error

The All ‘1’s No Error Algorithm detects as valid any Double Word read on a just erased
sector (all the 72 bits are ‘1’s).

This option allows to perform a Blank Check after a Sector Erase operation.

Protection strategy

Two kinds of protection are available: Modify Protection to avoid unwanted program/erase in
flash memory sectors and Censored Mode to avoid piracy.

Table 422. Bit manipulation: Double words with the same ECC value

Double word ECC all ‘1’s no error

0xFFFF_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_FFFF_0000 0xFF

0xFFFF_FFFF_0000_FFFF 0xFF

0xFFFF_0000_FFFF_FFFF 0xFF

0x0000_FFFF_FFFF_FFFF 0xFF

0xFFFF_FFFF_0000_0000 0xFF

0xFFFF_0000_FFFF_0000 0xFF

0x0000_FFFF_FFFF_0000 0xFF

0xFFFF_0000_0000_FFFF 0xFF

0x0000_FFFF_0000_FFFF 0xFF

0x0000_0000_FFFF_FFFF 0xFF

0xFFFF_0000_0000_0000 0xFF

0x0000_FFFF_0000_0000 0xFF

0x0000_0000_0000_0000 0xFF
773/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Modify protection

The flash memory Modify Protection information is stored in nonvolatile flash memory cells
located in the TestFlash. This information is read once during the flash memory initialization
phase following the exiting from Reset and is stored in volatile registers that act as
actuators.

The reset state of all the volatile modify protection registers is the protected state.

All the nonvolatile modify protection registers can be programmed through a normal Double
Word Program operation at the related locations in TestFlash.

The nonvolatile modify protection registers cannot be erased.

● The nonvolatile Modify Protection Registers are physically located in TestFlash their
bits can be programmed to ‘0’ only once and they can no more be restored to ‘1’.

● The Volatile Modify Protection Registers are Read/Write registers which bits can be
written at ‘0’ or ‘1’ by the user application.

A software mechanism is provided to independently lock/unlock each Low, Mid and High
Address Space Block against program and erase.

Software locking is done through the LML register.

An alternate means to enable software locking for blocks of Low Address Space only is
through the SLL.

All these registers have a nonvolatile image stored in TestFlash (NVLML, NVSLL), so that
the locking information is kept on reset.

On delivery the TestFlash nonvolatile image is at all ‘1’s, meaning all sectors are locked.

By programming the nonvolatile locations in TestFlash the selected sectors can be
unlocked.

Being the TestFlash One Time Programmable (that is, not erasable), once unlocked the
sectors cannot be locked again.

Of course, on the contrary, all the volatile registers can be written at 0 or 1 at any time,
therefore the user application can lock and unlock sectors when desired.

Censored mode

The Censored Mode information is stored in nonvolatile flash memory cells located in the
Shadow Sector. This information is read once during the flash memory initialization phase
following the exiting from Reset and is stored in volatile registers that act as actuators.

The reset state of all the Volatile Censored Mode Registers is the protected state.

All the nonvolatile Censored Mode registers can be programmed through a normal Double
Word Program operation at the related locations in the Shadow Sector.

The nonvolatile Censored Mode registers can be erased by erasing the Shadow Sector.

● The nonvolatile Censored Mode Registers are physically located in the Shadow Sector
their bits can be programmed to ‘0’ and restored to ‘1’ by erasing the Shadow Sector.

● The Volatile Censored Mode Registers are registers not accessible by the user
application.
Doc ID 16886 Rev 6 774/868

Flash Memory RM0045
The flash memory module provides two levels of protection against piracy:

● If bits CW15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the
Censored Mode is disabled, while all the other possible values enable the Censored
Mode.

● If bits SC15:0 of NVSCC0 are programmed at 0x55AA and NVSC1 = NVSCC0 the
Public Access is disabled, while all the other possible values enable the Public Access.

The parts are delivered to the user with Censored Mode and Public Access disabled.

27.7 Platform flash memory controller

27.7.1 Introduction

The platform flash memory controller acts as the interface between the system bus (AHB-
Lite 2.v6) and up to two banks of integrated flash memory arrays (Program and Data). It
intelligently converts the protocols between the system bus and the dedicated flash memory
array interfaces.

A block diagram of the e200z0h Power Architecture reduced product platform (RPP)
reference design is shown below in Figure 463 with the platform flash memory controller
module and its attached off-platform flash memory arrays highlighted.

775/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

Figure 463. Power Architecture e200z0h RPP reference platform block diagram

The module list includes:

● Power Architecture e200z0h (Harvard) core with Nexus1 or optional Nexus2+ debug

● AHB crossbar switch “lite” (XBAR)

● Memory Protection Unit (MPU)

● Platform flash memory controller with connections to 2 memory banks

● Platform SRAM memory controller (PRAM)

● AHB-to-IPS/APB bus controller (PBRIDGE) for access to on- and off-platform slave
modules

● Interrupt Controller (INTC)

● 4-channel System Timers (STM)

● Software Watchdog Timer (SWT)

● Error Correction Status Module (ECSM)

XBAR
MemArray

RPP_Z0H_REF

s0

s2

m0

s7

MemArray

PRAM

PFlash

IPS/APB

INTC

AHB platform flash memory controller

Branch Unit

Load/Store

I-Fetcher

Dispatch

GPR Integer
Unit

e200z0h Core

p_i_h*p_d_h*

m1

m2

MPU

On-platform IRQs
Off-Platform IRQs

Debug

Unit
Nexus1,
Nexus2+

m3

STM
IPS Bus IPS+APB Bus

Flash Regs

IPS+APB
Slave
Modules

MemArray

Flash Regs

Bank0

Bank1

ECSM

SWT
Doc ID 16886 Rev 6 776/868

Flash Memory RM0045
Throughout this document, several important terms are used to describe the platform flash
memory controller module and its connections. These terms are defined here:

● Port — This is used to describe the AMBA-AHB connection(s) into the platform flash
memory controller. From an architectural and programming model viewpoint, the
definition supports up to two AHB ports, even though this specific controller only
supports a single AHB connection.

● Bank — This term is used to describe the attached flash memories. From the platform
flash memory controller’s perspective, there may be one or two attached banks of flash
memory. The “code flash memory” is required and always attached to bank0.
Additionally, there is a “data flash memory” attached to bank1. The platform flash
memory controller interface supports two separate connections, one to each memory
bank.

● Array — Within each memory bank, there is one flash memory array instantiations.

● Page — This value defines the number of bits read from the flash memory array in a
single access. For this controller and memory, the page size is 128 bits (16 bytes).

The nomenclature “page buffers and “line buffers” are used interchangeably.

Overview

The platform flash memory controller supports a 32-bit data bus width at the AHB port and
connections to 128-bit read data interfaces from two memory banks, where each bank
contains one instantiations of the flash memory array. One flash memory bank is connected
to the code flash memory and the other bank is connected to the optional data flash
memory. The memory controller capabilities vary between the two banks with each bank’s
functionality optimized with the typical use cases associated with the attached flash
memory. As an example, the platform flash memory controller logic associated with the code
flash memory bank contains a four-entry “page” buffer, each entry containing 128 bits of
data (1 flash memory page) plus an associated controller which prefetches sequential lines
of data from the flash memory array into the buffer, while the controller logic associated with
the data flash memory bank only supports a 128-bit register which serves as a temporary
page holding register and does not support any prefetching. Prefetch buffer hits from the
code flash memory bank support zero-wait AHB data phase responses. AHB read requests
which miss the buffers generate the needed flash memory array access and are forwarded
to the AHB upon completion, typically incurring two wait-states at an operating frequency of
60–64 MHz.

This memory controller is optimized for applications where a cacheless processor core, e.g.,
the Power e200z0h, is connected through the platform to on-chip memories, e.g., flash
memory and SRAM, where the processor and platform operate at the same frequency. For
these applications, the 2-stage pipeline AMBA-AHB system bus is effectively mapped
directly into stages of the processor’s pipeline and zero wait-state responses for most
memory accesses are critical for providing the required level of system performance.
777/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Features

The following list summarizes the key features of the platform flash memory controller:

● Dual array interfaces support up to a total of 16 MB of flash memory, partitioned as two
separate 8 MB banks

● Single AHB port interface supports a 32-bit data bus. All AHB aligned and unaligned
reads within the 32-bit container are supported. Only aligned word writes are
supported.

● Array interfaces support a 128-bit read data bus and a 64-bit write data bus for each
bank

● Interface with code flash memory (bank0) provides configurable read buffering and
page prefetch support. Four page read buffers (each 128 bits wide) and a prefetch
controller are used to support single-cycle read responses (zero AHB data phase wait-
states) for hits in the buffers. The buffers implement a least-recently-used replacement
algorithm to maximize performance.

● Interface with optional data flash memory (bank1) includes a 128-bit register to
temporarily hold a single flash memory page. This logic supports single-cycle read
responses (zero AHB data phase wait-states) for accesses that hit in the holding
register. There is no support for prefetching associated with this bank.

● Programmable response for read-while-write sequences including support for stall-
while-write, optional stall notification interrupt, optional flash memory operation abort,
and optional abort notification interrupt

● Separate and independent configurable access timing (on a per bank basis) to support
use across a wide range of platforms and frequencies

● Support of address-based read access timing for emulation of other memory types

● Support for reporting of single- and multi-bit flash memory ECC events

● Typical operating configuration loaded into programming model by system reset

27.7.2 Memory map and register description

Two memory maps are associated with the platform flash memory controller: one for the
flash memory space and another for the program-visible control and configuration registers.
The flash memory space is accessed via the AMBA-AHB port and the program-visible
registers are accessed via the slave peripheral bus. Details on both memory spaces are
provided in Section , Memory map.

There are no program-visible registers that physically reside inside the platform flash
memory controller. Rather, the platform flash memory controller receives control and
configuration information from the flash memory array controller(s) to determine the
operating configuration. These are part of the flash memory array’s configuration registers
mapped into its slave peripheral (IPS) address space but are described here.

Memory map

First, consider the flash memory space accessed via transactions from the platform flash
memory controller’s AHB port.

To support the two separate flash memory banks, each up to 8 MB in size, the platform flash
memory controller uses address bit 23 (haddr[23]) to steer the access to the appropriate
memory bank. In addition to the actual flash memory regions, the system memory map
includes shadow and test sectors. The program-visible control and configuration registers
associated with each memory array are included in the slave peripheral address region. The
Doc ID 16886 Rev 6 778/868

Flash Memory RM0045
system memory map defines one code flash memory array and one data flash memory
array. See Table 423.

For additional information on the address-based read access timing for emulation of other
memory types, see Section 27.8.11, Wait-state emulation.

Next, consider the memory map associated with the control and configuration registers.

Regardless of the number of populated banks or the number of flash memory arrays
included in a given bank, the configuration of the platform flash memory controller is wholly
specified by the platform flash memory controller registers associated with code flash
memory array 0. The code array0 register settings define the operating behavior of both
flash memory banks; it is recommended that the platform flash memory controller registers
for all physically-present arrays be set to the code flash memory array0 values.

Note: To perform program and erase operations, the control registers in the actual referenced
flash memory array must be programmed, but the configuration of the platform flash
memory controller module is defined by the platform flash controller registers of code
array0.

The 32-bit memory map for the platform flash memory controller control registers is shown
in Table 424. The base address of the controller is 0xC3F8_8000.

Table 423. Flash memory-related regions in the system memory map

Start address End address Size [KB] Region

0x0000_0000 0x0003_FFFF 256 Code flash memory array 0

0x0004_0000 0x001F_FFFF 1792 Reserved

0x0020_0000 0x0027_FFFF 16 Code flash memory array 0: shadow sector

0x0028_0000 0x002F_FFFF 1536 Reserved

0x0040_0000 0x0040_3FFF 16 Code flash memory array 0: test sector

0x0040_4000 0x007F_FFFF 4078 Reserved

0x0080_0000 0x0080_FFFF 64 Data flash memory array 0

0x0081_0000 0x00BF_FFFF 4032 Reserved

0x00C0_0000 0x00C7_FFFF 16 Data flash memory array 0: test sector

0x00C8_0000 0x00FF_FFFF 3584 Reserved

0x0100_0000 0x1FFF_FFFF 507904 Emulation mapping

0xC3F8_8000 0xC3F8_BFFF 16 Code flash memory array 0 configuration

0xC3F8_C000 0xC3F8_FFFF 16 Data flash memory array 0 configuration

Table 424. Platform flash memory controller 32-bit memory map

Address offset Register Location

0x1C Platform Flash Configuration Register 0 (PFCR0) on page 27-780

0x20 Platform Flash Configuration Register 1 (PFCR1) on page 27-783

0x24 Platform Flash Access Protection Register (PFAPR) on page 27-786
779/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
See the SPC560D30/40 data sheet for detailed settings for different values of frequency.

Register description

This section details the individual registers of the platform flash memory controller.

Flash memory configuration registers must be written only with 32-bit write operations to
avoid any issues associated with register “incoherency” caused by bits spanning smaller-
size (8- or 16-bit) boundaries.

Platform Flash Configuration Register 0 (PFCR0)

This register defines the configuration associated with the code flash memory bank0. It
includes fields that provide specific information for up to two separate AHB ports (p0 and the
optional p1). For the platform flash memory controller module, the fields associated with
AHB port p1 are ignored. The register is described in Figure 464 and Table 425.

Note: Do not execute code from flash memory when you are programming PFCR0. If you wish to
program PFCR0, execute your application code from RAM.

Figure 464. PFlash Configuration Register 0 (PFCR0)

Offset 0x01C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

BK0_APC BK0_WWSC BK0_RWSC

B
K

0_
R

W
W

C

W

Reset 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
K

0_
R

W
W

C 0 0 0 0 0 0 0

B
K

0_
R

W
W

C

B
0_

P
0_

B
C

F
G

B
0_

P
0_

D
P

F
E

B
0_

P
0_

IP
F

E

B
0_

P
0_

P
F

LM

B
0_

P
0_

B
F

E

W

Reset 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1
Doc ID 16886 Rev 6 780/868

Flash Memory RM0045

Table 425. PFCR0 field descriptions

Field Description

BK0_APC

Bank0 Address Pipelining Control

This field is used to control the number of cycles between flash memory array access requests.
This field must be set to a value appropriate to the operating frequency of the PFlash. The required
settings are documented in the device datasheet. Higher operating frequencies require non-zero
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles
Note:

BK0_WWSC

Bank0 Write Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access
time for writes. This field must be set to a value appropriate to the operating frequency of the
PFlash. The required settings are documented in the device datasheet. Higher operating
frequencies require non-zero settings for this field for proper flash memory operation. This field is
set to an appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added
Note:

BK0_RWSC

Bank0 Read Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access
time for reads. This field must be set to a value corresponding to the operating frequency of the
PFlash and the actual read access time of the PFlash. The required settings are documented in the
device datasheet.

00000: No additional wait-states are added
00001: One additional wait-state is added
00010: Two additional wait-states are added
...
11111: 31 additional wait-states are added
781/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
BK0_RWWC

Bank0 Read-While-Write Control

This 3-bit field defines the controller response to flash memory reads while the array is busy with a
program (write) or erase operation.

0––: This state should be avoided. Setting to this state can cause unpredictable operation.
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the
abort and notification interrupts.

B0_P0_BCFG

Bank0, Port 0 Page Buffer Configuration

This field controls the configuration of the four page buffers in the PFlash controller. The buffers can
be organized as a “pool” of available resources, or with a fixed partition between instruction and
data buffers.

If enabled, when a buffer miss occurs, it is allocated to the least-recently-used buffer within the
group and the just-fetched entry then marked as most-recently-used. If the flash memory access is
for the next-sequential line, the buffer is not marked as most-recently-used until the given address
produces a buffer hit.

00: All four buffers are available for any flash memory access, that is, there is no partitioning of the
buffers based on the access type.

01: Reserved
10: The buffers are partitioned into two groups with buffers 0 and 1 allocated for instruction fetches

and buffers 2 and 3 for data accesses.
11: The buffers are partitioned into two groups with buffers 0,1,2 allocated for instruction fetches and

buffer 3 for data accesses.

This field is set to 2b11 by hardware reset.

B0_P0_DPFE

Bank0, Port 0 Data Prefetch Enable

This field enables or disables prefetching initiated by a data read access. This field is cleared by
hardware reset. Prefetching can be enabled/disabled on a per Master basis at PFAPR[MxPFD].

0: No prefetching is triggered by a data read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any data read access

Table 425. PFCR0 field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 782/868

Flash Memory RM0045

Platform Flash Configuration Register 1 (PFCR1)

This register defines the configuration associated with flash memory bank1. This
corresponds to the “data flash memory”. It includes fields that provide specific information
for up to two separate AHB ports (p0 and the optional p1). For the platform flash memory
controller module, the fields associated with AHB port p1 are ignored. The register is
described below in Figure 465 and Table 426.

Note: Do not execute code from flash memory when you are programming PFCR1. If you wish to
program PFCR1, execute your application code from RAM.

B0_P0_IPFE

Bank0, Port 0 Instruction Prefetch Enable

This field enables or disables prefetching initiated by an instruction fetch read access. This field is
set by hardware reset. Prefetching can be enabled/disabled on a per Master basis at
PFAPR[MxPFD].

0: No prefetching is triggered by an instruction fetch read access
1: If page buffers are enabled (B0_P0_BFE = 1), prefetching is triggered by any instruction fetch read

access

B0_P0_PFLM

Bank0, Port 0 Prefetch Limit
This field controls the prefetch algorithm used by the PFlash controller. This field defines the
prefetch behavior. In all situations when enabled, only a single prefetch is initiated on each buffer
miss or hit. This field is set to 2b10 by hardware reset.

00: No prefetching is performed.
01: The referenced line is prefetched on a buffer miss, that is, prefetch on miss.
1–: The referenced line is prefetched on a buffer miss, or the next sequential page is prefetched on

a buffer hit (if not already present), that is, prefetch on miss or hit.

B0_P0_BFE

Bank0, Port 0 Buffer Enable
This bit enables or disables page buffer read hits. It is also used to invalidate the buffers. This bit is
set by hardware reset.

0: The page buffers are disabled from satisfying read requests, and all buffer valid bits are cleared.
1: The page buffers are enabled to satisfy read requests on hits. Buffer valid bits may be set when

the buffers are successfully filled.

Table 425. PFCR0 field descriptions (continued)

Field Description
783/868 Doc ID 16886 Rev 6

RM0045 Flash Memory

Figure 465. PFlash Configuration Register 1 (PFCR1)

Offset 0x020 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

BK1_APC BK1_WWSC BK1_RWSC

B
K

1_
R

W
W

C

W

Reset 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R

B
K

1_
R

W
W

C 0 0 0 0 0 0 0

B
K

1_
R

W
W

C 0 0 0 0 0 0

B
1_

P
0_

B
F

E

W

Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
Doc ID 16886 Rev 6 784/868

Flash Memory RM0045

Table 426. PFCR1 field descriptions

Field Description

BK1_APC

Bank1 Address Pipelining Control

This field is used to control the number of cycles between flash memory array access requests.
This field must be set to a value appropriate to the operating frequency of the PFlash. The required
settings are documented in the device datasheet. Higher operating frequencies require non-zero
settings for this field for proper flash memory operation.

00000: Accesses may be initiated on consecutive (back-to-back) cycles
00001: Access requests require one additional hold cycle
00010: Access requests require two additional hold cycles
...
11110: Access requests require 30 additional hold cycles
11111: Access requests require 31 additional hold cycles

This field is ignored in single bank flash memory configurations.

Note:

BK1_WWSC

Bank1 Write Wait-State Control

This field is used to control the number of wait-states to be added to the flash memory array access
time for writes. This field must be set to a value appropriate to the operating frequency of the
PFlash. The required settings are documented in the device datasheet. Higher operating
frequencies require non-zero settings for this field for proper flash memory operation. This field is
set to an appropriate value by hardware reset.

00000: No additional wait-states are added
00001: One additional wait-state is added

00010: Two additional wait-states are added

...
11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.
Note:

BK1_RWSC

Bank1 Read Wait-State Control
This field is used to control the number of wait-states to be added to the flash memory array access
time for reads. This field must be set to a value corresponding to the operating frequency of the
PFlash and the actual read access time of the PFlash. The required settings are documented in the
device datasheet.

00000: No additional wait-states are added

00001: One additional wait-state is added
00010: Two additional wait-states are added

...

11111: 31 additional wait-states are added

This field is ignored in single bank flash memory configurations.
785/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Platform Flash Access Protection Register (PFAPR)

The PFlash Access Protection Register (PFAPR) is used to control read and write accesses
to the flash memory based on system master number. Prefetching capabilities are defined
on a per master basis. This register also defines the arbitration mode for controllers
supporting two AHB ports. The register is described below in Figure 466 and Table 427.

The contents of the register are loaded from location 0x203E00 of the shadow region in the
code flash memory (bank0) array at reset. To temporarily change the values of any of the
fields in the PFAPR, a write to the IPS-mapped register is performed. To change the values
loaded into the PFAPR at reset, the word location at address 0x203E00 of the shadow
region in the flash memory array must be programmed using the normal sequence of
operations. The reset value shown in Table 466 reflects an erased or unprogrammed value
from the shadow region.

BK1_RWWC

Bank1 Read-While-Write Control

This 3-bit field defines the controller response to flash memory reads while the array is busy with a
program (write) or erase operation.

0––: Terminate any attempted read while write/erase with an error response
111: Generate a bus stall for a read while write/erase, disable the stall notification interrupt, disable

the abort + abort notification interrupt
110: Generate a bus stall for a read while write/erase, enable the stall notification interrupt, disable

the abort + abort notification interrupt
101: Generate a bus stall for a read while write/erase, enable the operation abort, disable the abort

notification interrupt
100: Generate a bus stall for a read while write/erase, enable the operation abort and the abort

notification interrupt

This field is set to 0b111 by hardware reset enabling the stall-while-write/erase and disabling the
abort and notification interrupts.

This field is ignored in single bank flash memory configurations.

B1_P0_PFE

Bank1, Port 0 Buffer Enable

This bit enables or disables read hits from the 128-bit holding register. It is also used to invalidate
the contents of the holding register. This bit is set by hardware reset, enabling the use of the holding
register.

0: The holding register is disabled from satisfying read requests.
1: The holding register is enabled to satisfy read requests on hits.

Table 426. PFCR1 field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 786/868

Flash Memory RM0045

Figure 466. PFlash Access Protection Register (PFAPR)

Offset 0x024 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0

M
2P

F
D 0

M
0P

F
D

W

Reset Defined by NVPFAPR at CFlash Test Sector Address 0x203E00

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
M2AP

0 0
M0AP

W

Reset Defined by NVPFAPR at CFlash Test Sector Address 0x203E00

Table 427. PFAPR field descriptions

Field Description

M2PFD

eDMA Master 2 Prefetch Disable
This field controls whether prefetching may be triggered based on the master number of the
requesting AHB master. This field is further qualified by the PFCR0[B0_Px_DPFE, B0_Px_IPFE,
Bx_Py_BFE] bits. For master numbering, see Table 145.

0: Prefetching may be triggered by this master

1: No prefetching may be triggered by this master

M0PFD

e200z0 core Master 0 Prefetch Disable

This field controls whether prefetching may be triggered based on the master number of the
requesting AHB master. This field is further qualified by the PFCR0[B0_Px_DPFE, B0_Px_IPFE,
Bx_Py_BFE] bits. For master numbering, see Table 145.

0: Prefetching may be triggered by this master

1: No prefetching may be triggered by this master

M2AP

eDMA Master 2 Access Protection

These fields control whether read and write accesses to the flash memory are allowed based on
the master number of the initiating module. For master numbering, see Table 145.

00: No accesses may be performed by this master
01: Only read accesses may be performed by this master

10: Only write accesses may be performed by this master

11: Both read and write accesses may be performed by this master

M0AP

e200z0 core Master 0 Access Protection

These fields control whether read and write accesses to the flash memory are allowed based on
the master number of the initiating module. For master numbering, see Table 145.

00: No accesses may be performed by this master

01: Only read accesses may be performed by this master

10: Only write accesses may be performed by this master
11: Both read and write accesses may be performed by this master
787/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

The NVPFAPR register has a related Nonvolatile PFAPR located in the Shadow Sector that
contains the default reset value for PFAPR. During the reset phase of the flash memory
module, the NVPFAPR register content is read and loaded into the PFAPR.

The NVPFAPR register is a 64-bit register, of which the 32 most significant bits 63:32 are
‘don’t care’ and are used to manage ECC codes.

27.8 Functional description
The platform flash memory controller interfaces between the AHB system bus and the flash
memory arrays.

The platform flash memory controller generates read and write enables, the flash memory
array address, write size, and write data as inputs to the flash memory array. The platform
flash memory controller captures read data from the flash memory array interface and drives
it onto the AHB. Up to four pages of data (128-bit width) from bank0 are buffered by the
platform flash memory controller. Lines may be prefetched in advance of being requested by
the AHB interface, allowing single-cycle (zero AHB wait-states) read data responses on
buffer hits.

Several prefetch control algorithms are available for controlling page read buffer fills.
Prefetch triggering may be restricted to instruction accesses only, data accesses only, or
may be unrestricted. Prefetch triggering may also be controlled on a per-master basis.

Figure 467. Nonvolatile Platform Flash Access Protection Register (NVPFAPR)

Offset: 0x203E00 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 1 1 1 1 1 1 1 1 1 1 1 1 1

M
2P

F
D 1

M
0P

F
D

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0
M2AP

0 0
M0AP

W

Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 428. NVPFAPR field descriptions

Field Description

M2PFD See Table 427.

M0PFD See Table 427.

M2AP See Table 427.

M0AP See Table 427.
Doc ID 16886 Rev 6 788/868

Flash Memory RM0045
Buffers may also be selectively enabled or disabled for allocation by instruction and data
prefetch; see Section , Platform Flash Configuration Register 0 (PFCR0), and Section ,
Platform Flash Configuration Register 1 (PFCR1).

Access protections may be applied on a per-master basis for both reads and writes to
support security and privilege mechanisms; see Section , Platform Flash Access Protection
Register (PFAPR).

Throughout this discussion, bkn_ is used as a prefix to refer to two signals, each for each
bank: bk0_ and bk1_. Also, the nomenclature Bx_Py_RegName is used to reference a
program-visible register field associated with bank “x” and port “y”.

27.8.1 Access protections

The platform flash memory controller provides programmable configurable access
protections for both read and write cycles from masters via the PFlash Access Protection
Register (PFAPR). It allows restriction of read and write requests on a per-master basis.
This functionality is described in Section , Platform Flash Access Protection Register
(PFAPR). Detection of a protection violation results in an error response from the platform
flash memory controller on the AHB transfer.

27.8.2 Read cycles – Buffer miss

Read cycles from the flash memory array are initiated by the platform flash memory
controller. The platform flash memory controller then waits for the programmed number of
read wait-states before sampling the read data from the flash memory array. This data is
normally stored in the least-recently updated page read buffer for bank0 in parallel with the
requested data being forwarded to the AHB. For bank1, the data is captured in the page-
wide temporary holding register as the requested data is forwarded to the AHB bus.

If the flash memory access was the direct result of an AHB transaction, the page buffer is
marked as most-recently-used as it is being loaded. If the flash memory access was the
result of a speculative prefetch to the next sequential line, it is first loaded into the least-
recently-used buffer. The status of this buffer is not changed to most-recently-used until a
subsequent buffer hit occurs.

27.8.3 Read cycles – Buffer hit

Single cycle read responses to the AHB are possible with the platform flash memory
controller when the requested read access was previously loaded into one of the bank0
page buffers. In these “buffer hit” cases, read data is returned to the AHB data phase with a
zero wait-state response.

Likewise, the bank1 logic includes a single 128-bit temporary holding register and
sequential accesses which “hit” in this register are also serviced with a zero wait-state
response.

27.8.4 Write cycles

Write cycles are initiated by the platform flash memory controller. The platform flash
memory controller then waits for the appropriate number of write wait-states before
terminating the write operation.
789/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
27.8.5 Error termination

The first case that can cause an error response to the AHB is when an access is attempted
by an AHB master whose corresponding Read Access Control or Write Access Control
settings do not allow the access, thus causing a protection violation. In this case, the
platform flash memory controller does not initiate a flash memory array access.

The second case that can cause an error response to the AHB is when an access is
performed to the flash memory array and is terminated with a flash memory error response.
See Section 27.8.7, Flash error response operation. This may occur for either a read or a
write operation.

A third case involves an attempted read access while the flash memory array is busy doing
a write (program) or erase operation if the appropriate read-while-write control field is
programmed for this response. The 3-bit read-while-write control allows for immediate
termination of an attempted read, or various stall-while-write/erase operations are occurring.

27.8.6 Access pipelining

The platform flash memory controller does not support access pipelining since this
capability is not supported by the flash memory array. As a result, the APC (Address
Pipelining Control) field should typically be the same value as the RWSC (Read Wait-State
Control) field for best performance, that is, BKn_APC = BKn_RWSC. It cannot be less than
the RWSC.

27.8.7 Flash error response operation

The flash memory array may signal an error response to terminate a requested access with
an error. This may occur due to an uncorrectable ECC error, or because of improper
sequencing during program/erase operations. When an error response is received, the
platform flash memory controller does not update or validate a bank0 page read buffer nor
the bank1 temporary holding register. An error response may be signaled on read or write
operations. For additional information on the system registers which capture the faulting
address, attributes, data and ECC information, see the chapter “Error Correction Status
Module (ECSM).”

27.8.8 Bank0 page read buffers and prefetch operation

The logic associated with bank0 of the platform flash memory controller contains four 128-
bit page read buffers which are used to hold instructions and data read from the flash
memory array. Each buffer operates independently, and is filled using a single array access.
The buffers are used for both prefetch and normal demand fetches.

For the general case, a page buffer is written at the completion of an error-free flash
memory access and the valid bit asserted. Subsequent flash memory accesses that “hit” the
buffer, that is, the current access address matches the address stored in the buffer, can be
serviced in 0 AHB wait-states as the stored read data is routed from the given page buffer
back to the requesting bus master.

As noted in Section 27.8.7, Flash error response operation, a page buffer is not marked as
valid if the flash memory array access terminated with any type of transfer error. However,
the result is that flash memory array accesses that are tagged with a single-bit correctable
ECC event are loaded into the page buffer and validated. For additional comments on this
topic, see Section , Buffer invalidation.
Doc ID 16886 Rev 6 790/868

Flash Memory RM0045
Prefetch triggering is controllable on a per-master and access-type basis. Bus masters may
be enabled or disabled from triggering prefetches, and triggering may be further restricted
based on whether a read access is for instruction or data. A read access to the platform
flash memory controller may trigger a prefetch to the next sequential page of array data on
the first idle cycle following the request. The access address is incremented to the next-
higher 16-byte boundary, and a flash memory array prefetch is initiated if the data is not
already resident in a page buffer. Prefetched data is always loaded into the least-recently-
used buffer.

Buffers may be in one of six states, listed here in order of priority:

1. Invalid — The buffer contains no valid data.

2. Used — The buffer contains valid data which has been provided to satisfy an AHB burst
type read.

3. Valid — The buffer contains valid data which has been provided to satisfy an AHB
single type read.

4. Prefetched — The buffer contains valid data which has been prefetched to satisfy a
potential future AHB access.

5. Busy AHB — The buffer is currently being used to satisfy an AHB burst read.

6. Busy Fill — The buffer has been allocated to receive data from the flash memory array,
and the array access is still in progress.

Selection of a buffer to be loaded on a miss is based on the following replacement algorithm:

1. First, the buffers are examined to determine if there are any invalid buffers. If there are
multiple invalid buffers, the one to be used is selected using a simple numeric priority,
where buffer 0 is selected first, then buffer 1, etc.

2. If there are no invalid buffers, the least-recently-used buffer is selected for replacement.

Once the candidate page buffer has been selected, the flash memory array is accessed and
read data loaded into the buffer. If the buffer load was in response to a miss, the just-loaded
buffer is immediately marked as most-recently-used. If the buffer load was in response to a
speculative fetch to the next-sequential line address after a buffer hit, the recently-used
status is not changed. Rather, it is marked as most-recently-used only after a subsequent
buffer hit.

This policy maximizes performance based on reference patterns of flash memory accesses
and allows for prefetched data to remain valid when non-prefetch enabled bus masters are
granted flash memory access.

Several algorithms are available for prefetch control which trade off performance versus
power. They are defined by the Bx_Py_PFLM (prefetch limit) register field. More aggressive
prefetching increases power slightly due to the number of wasted (discarded) prefetches,
but may increase performance by lowering average read latency.

In order for prefetching to occur, a number of control bits must be enabled. Specifically, the
global buffer enable (PFCRn[Bx_Py_BFE]) must be set, the prefetch limit
(PFCRn[Bx_Py_PFLM]) must be non-zero, either instruction prefetching
(PFCRn[Bx_Py_IPFE]) or data prefetching (PFCRn[Bx_Py_DPFE]) enabled, and Master
Access must be enabled (PFAPR[MxPFD]). See Section , Register description, for a
description of these control fields.

Instruction/Data prefetch triggering

Prefetch triggering may be enabled for instruction reads via the Bx_Py_IPFE control field,
while prefetching for data reads is enabled via the Bx_Py_DPFE control field. Additionally,
791/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
the Bx_Py_PFLIM field must be set to enable prefetching. Prefetches are never triggered by
write cycles.

Per-master prefetch triggering

Prefetch triggering may be also controlled for individual bus masters. See Section , Platform
Flash Access Protection Register (PFAPR), for details on these controls.

Buffer allocation

Allocation of the line read buffers is controlled via page buffer configuration (Bx_Py_BCFG)
field. This field defines the operating organization of the four page buffers. The buffers can
be organized as a “pool” of available resources (with all four buffers in the pool) or with a
fixed partition between buffers allocated to instruction or data accesses. For the fixed
partition, two configurations are supported. In one configuration, buffers 0 and 1 are
allocated for instruction fetches and buffers 2 and 3 for data accesses. In the second
configuration, buffers 0, 1 and 2 are allocated for instruction fetches and buffer 3 reserved
for data accesses.

Buffer invalidation

The page read buffers may be invalidated under hardware or software control.

At the beginning of all program/erase operations, the flash memory array will invalidate the
page read buffers. Buffer invalidation occurs at the next AHB non-sequential access
boundary, but does not affect a burst from a page read buffer which is in progress.

Software may invalidate the buffers by clearing the Bx_Py_BFE bit, which also disables the
buffers. Software may then re-assert the Bx_Py_BFE bit to its previous state, and the buffers
will have been invalidated.

One special case needing software invalidation relates to page buffer “hits” on flash memory
data which was tagged with a single-bit ECC event on the original array access. Recall that
the page buffer structure includes an status bit signaling the array access detected and
corrected a single-bit ECC error. On all subsequent buffer hits to this type of page data, a
single-bit ECC event is signaled by the platform flash memory controller. Depending on the
specific hardware configuration, this reporting of a single-bit ECC event may generate an
ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need
to be invalidated by software after the first notification of the single-bit ECC event.

Finally, the buffers are invalidated by hardware on any non-sequential access with a non-
zero value on haddr[28:24] to support wait-state emulation.

27.8.9 Bank1 Temporary Holding Register

Recall the bank1 logic within the platform flash memory controller includes a single 128-bit
data register, used for capturing read data. Since this bank does not support prefetching, the
read data for the referenced address is bypassed directly back to the AHB data bus. The
page is also loaded into the temporary data register and subsequent accesses to this page
can hit from this register, if it is enabled (B1_P0_BFE).

For the general case, a temporary holding register is written at the completion of an error-
free flash memory access and the valid bit asserted. Subsequent flash memory accesses
that “hit” the buffer, that is, the current access address matches the address stored in the
temporary holding register, can be serviced in 0 AHB wait-states as the stored read data is
routed from the temporary register back to the requesting bus master.
Doc ID 16886 Rev 6 792/868

Flash Memory RM0045
The contents of the holding register are invalidated by the flash memory array at the
beginning of all program/erase operations and on any non-sequential access with a non-
zero value on haddr[28:24] (to support wait-state emulation) in the same manner as the
bank0 page buffers. Additionally, the B1_P0_BFE register bit can be cleared by software to
invalidate the contents of the holding register.

As noted in Section 27.8.7, Flash error response operation, the temporary holding register
is not marked as valid if the flash memory array access terminated with any type of transfer
error. However, the result is that flash memory array accesses that are tagged with a single-
bit correctable ECC event are loaded into the temporary holding register and validated.
Accordingly, one special case needing software invalidation relates to holding register “hits”
on flash memory data which was tagged with a single-bit ECC event. Depending on the
specific hardware configuration, the reporting of a single-bit ECC event may generate an
ECC alert interrupt. In order to prevent repeated ECC alert interrupts, the page buffers need
to be invalidated by software after the first notification of the single-bit ECC event.

The bank1 temporary holding register effectively operates like a single page buffer.

27.8.10 Read-while-write functionality

The platform flash memory controller supports various programmable responses for read
accesses while the flash memory is busy performing a write (program) or erase operation.
For all situations, the platform flash memory controller uses the state of the flash memory
array’s MCR[DONE] output to determine if it is busy performing some type of high voltage
operation, namely, if MCR[DONE] = 0, the array is busy.

Specifically, two 3-bit read-while-write (BKn_RWWC) control register fields define the
platform flash memory controller’s response to these types of access sequences. Five
unique responses are defined by the BKn_RWWC setting: one that immediately reports an
error on an attempted read and four settings that support various stall-while-write
capabilities. Consider the details of these settings.

● BKn_RWWC = 0b0--

For this mode, any attempted flash memory read to a busy array is immediately
terminated with an AHB error response and the read is blocked in the controller and not
seen by the flash memory array.

● BKn_RWWC = 0b111

This defines the basic stall-while-write capability and represents the default reset
setting. For this mode, the platform flash memory controller module simply stalls any
read reference until the flash memory has completed its program/erase operation. If a
read access arrives while the array is busy or if MCR[DONE] goes low while a read is
still in progress, the AHB data phase is stalled and the read access address is saved.
Once the array has completed its program/erase operation, the platform flash memory
controller uses the saved address and attribute information to create a pseudo address
phase cycle to “retry” the read reference and sends the registered information to the
array. Once the retried address phase is complete, the read is processed normally and
once the data is valid, it is forwarded to the AHB bus to terminate the system bus
transfer.

● BKn_RWWC = 0b110

This setting is similar to the basic stall-while-write capability provided when
BKn_RWWC = 0b111 with the added ability to generate a notification interrupt if a read
arrives while the array is busy with a program/erase operation. There are two
793/868 Doc ID 16886 Rev 6

RM0045 Flash Memory
notification interrupts, one for each bank (see the INTC chapter of this reference
manual).

● BKn_RWWC = 0b101

Again, this setting provides the basic stall-while-write capability with the added ability to
abort any program/erase operation if a read access is initiated. For this setting, the
read request is captured and retried as described for the basic stall-while-write, plus
the program/erase operation is aborted by the platform flash memory controller. For
this setting, no notification interrupts are generated.

● BKn_RWWC = 0b100

This setting provides the basic stall-while-write capability with the ability to abort any
program/erase operation if a read access is initiated plus the generation of an abort
notification interrupt. For this setting, the read request is captured and retried as
described for the basic stall-while-write, the program/erase operation is aborted by the
platform flash memory controller and an abort notification interrupt generated. There
are two abort notification interrupts, one for each bank.

As detailed above, a total of four interrupt requests are associated with the stall-while-write
functionality. These interrupt requests are captured as part of ECSM’s interrupt register and
logically summed together to form a single request to the interrupt controller.

27.8.11 Wait-state emulation

Emulation of other memory array timings are supported by the platform flash memory
controller on read cycles to the flash memory. This functionality may be useful to maintain
the access timing for blocks of memory which were used to overlay flash memory blocks for
the purpose of system calibration or tuning during code development.

The platform flash memory controller inserts additional wait-states according to the values
of haddr[28:24]. When these inputs are non-zero, additional cycles are added to AHB read
cycles. Write cycles are not affected. In addition, no page read buffer prefetches are
initiated, and buffer hits are ignored.

Table 430 and Table 431 show the relationship of haddr[28:24] to the number of additional
primary wait-states. These wait-states are applied to the initial access of a burst fetch or to
single-beat read accesses on the AHB system bus.

Note that the wait-state specification consists of two components: haddr[28:26] and
haddr[25:24] and effectively extends the flash memory read by (8 * haddr[25:24] +
haddr[28:26]) cycles.

Table 429. Platform flash memory controller stall-while-write interrupts

MIR[n] Interrupt description

ECSM.MIR[0] Platform flash memory bank0 abort notification, MIR[FB0AI]

ECSM.MIR[1] Platform flash memory bank0 stall notification, MIR[FB0SI]

ECSM.MIR[2] Platform flash memory bank1 abort notification, MIR[FB1AI]

ECSM.MIR[3] Platform flash memory bank1 stall notification, MIR[FB1S1]
Doc ID 16886 Rev 6 794/868

Flash Memory RM0045

Table 431 shows the relationship of haddr[25:24] to the number of additional wait-states.
These are applied in addition to those specified by haddr[28:26] and thus extend the total
wait-state specification capability.

Table 430. Additional wait-state encoding

Memory address

haddr[28:26]
Additional wait-states

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Table 431. Extended additional wait-state encoding

Memory address

haddr[25:24]

Additional wait-states

(added to those specified by haddr[28:26])

00 0

01 8

10 16

11 24
795/868 Doc ID 16886 Rev 6

RM0045 Static RAM (SRAM)
28 Static RAM (SRAM)

28.1 Introduction
This device has up to 16 KB of general-purpose static RAM (SRAM).

The SRAM provides the following features:

● SRAM can be read/written from any bus master

● Byte, halfword and word addressable

● ECC (error correction code) protected with single-bit correction and double-bit
detection

The SRAM has only one operating mode. The RAM domain (all 16 KB) will be joined directly
to the ‘always_on’ digital domain.

28.2 Register memory map
The L2SRAM occupies 16 KB of memory starting at the base address as shown in
Table 432.

The internal SRAM has no registers. Registers for the SRAM ECC are located in the ECSM
(see the Error Correction Status Module (ECSM) chapter of the reference manual for more
information).

28.3 SRAM ECC mechanism
The SRAM ECC detects the following conditions and produces the following results:

● Detects and corrects all 1-bit errors

● Detects and flags all 2-bit errors as non-correctable errors

● Detects 39-bit reads (32-bit data bus plus the 7-bit ECC) that return all zeros or all
ones, asserts an error indicator on the bus cycle, and sets the error flag

SRAM does not detect all errors greater than 2 bits.

Internal SRAM write operations are performed on the following byte boundaries:

● 1 byte (0:7 bits)

● 2 bytes (0:15 bits)

● 4 bytes or 1 word (0:31 bits)

If the entire 32 data bits are written to SRAM, no read operation is performed and the ECC is
calculated across the 32-bit data bus. The 8-bit ECC is appended to the data segment and
written to SRAM.

Table 432. SRAM memory map

Address Register name Register description Size

0x4000_0000 (Base) — SRA up to 16 KB
Doc ID 16886 Rev 6 796/868

Static RAM (SRAM) RM0045
If the write operation is less than the entire 32-bit data width (1 or 2-byte segment), the
following occurs:

1. The ECC mechanism checks the entire 32-bit data bus for errors, detecting and either
correcting or flagging errors.

2. The write data bytes (1 or 2-byte segment) are merged with the corrected 32 bits on the
data bus.

3. The ECC is then calculated on the resulting 32 bits formed in the previous step.

4. The 7-bit ECC result is appended to the 32 bits from the data bus, and the 39-bit value
is then written to SRAM.

28.3.1 Access timing

The system bus is a two-stage pipelined bus, which makes the timing of any access
dependent on the access during the previous clock cycle. Table 433 lists the various
combinations of read and write operations to SRAM and the number of wait states used for
the each operation. The table columns contain the following information:

● Current operation — Lists the type of SRAM operation currently executing

● Previous operation — Lists the valid types of SRAM operations that can precede the
current SRAM operation (valid operation during the preceding clock)

● Wait states — Lists the number of wait states (bus clocks) the operation requires which
depends on the combination of the current and previous operation

Table 433. Number of wait states required for SRAM operations

Operation type Current operation Previous operation Number of wait states required

Read

Read Idle
1

Pipelined read

8, 16 or 32-bit write

0
(read from the same address)

1
(read from a different address)

Pipelined read Read 0

Write

8 or 16-bit write

Idle
1

Read

Pipelined 8 or 16-bit write
2

32-bit write

8 or 16-bit write
0

(write to the same address)

Pipelined 8, 16 or 32-bit write 8, 16 or 32-bit write 0

32-bit write

Idle

032-bit write

Read
797/868 Doc ID 16886 Rev 6

RM0045 Static RAM (SRAM)
28.3.2 Reset effects on SRAM accesses

Asynchronous reset will possibly corrupt SRAM if it asserts during a read or write operation
to SRAM. The completion of that access depends on the cycle at which the reset occurs.
Data read from or written to SRAM before the reset event occurred is retained, and no other
address locations are accessed or changed. In case of no access ongoing when reset
occurs, the SRAM corruption does not happen.

Instead, synchronous reset (SW reset) should be used in controlled function (without SRAM
accesses) in case an initialization procedure without SRAM initialization is needed.

28.4 Functional description
ECC checks are performed during the read portion of an SRAM ECC read/write (R/W)
operation, and ECC calculations are performed during the write portion of a R/W operation.
Because the ECC bits can contain random data after the device is powered on, the SRAM
must be initialized by executing 32-bit write operations prior to any read accesses. This is
also true for implicit read accesses caused by any write accesses of less than 32 bits as
discussed in Section 28.3 SRAM ECC mechanism.

28.5 Initialization and application information
To use the SRAM, the ECC must check all bits that require initialization after power on. All
writes must specify an even number of registers performed on 32-bit word-aligned
boundaries. If the write is not the entire 32 bits (8 or 16 bits), a read / modify / write operation
is generated that checks the ECC value upon the read. See Section 28.3 SRAM ECC
mechanism.

Doc ID 16886 Rev 6 798/868

Register Protection RM0045
29 Register Protection

29.1 Introduction
The Register Protection module offers a mechanism to protect defined memory-mapped
address locations in a module under protection from being written. The address locations
that can be protected are module-specific.

The protection module is located between the module under protection and the peripheral
bridge. This is shown in Figure 468.

Figure 468. Register Protection block diagram

Please see the “Registers Under Protection” appendix for the list of protected registers.

29.2 Features
The Register Protection includes these distinctive features:

● Restrict write accesses for the module under protection to supervisor mode only

● Lock registers for first 6 KB of memory-mapped address space

● Address mirror automatically sets corresponding lock bit

● Once configured lock bits can be protected from changes

PBRIDGE

supervisor access /

Lock
Registers

Module
under

Protection

Protection Module

write data

address / access size

UAA

HLB
GCR

Access allowed?

peripheral enable

Other control signals

peripheral
enable
799/868 Doc ID 16886 Rev 6

RM0045 Register Protection
29.3 Modes of operation
The Register Protection module is operable when the module under protection is operable.

29.4 External signal description
There are no external signals.

29.5 Memory map and register description
This section provides a detailed description of the memory map of a module using the
Register Protection. The original 16 KB module memory space is divided into five areas as
shown in Figure 469.

Figure 469. Register protection memory diagram

Area 1 spans 6 KB and holds the normal functional module registers and is transparent for
all read/write operations.

Area 2 spans 2 KB starting at address 0x1800. It is a reserved area, which cannot be
accessed.

Area 3 spans 6 KB, starting at address 0x2000 and is a mirror of area 1. A read/write
access to a 0x2000+X address will reads/writes the register at address X. As a side effect, a
write access to address 0x2000+X sets the optional soft lock bits for address X in the same

module register space
Base + 0x0000

6 KB

2 KB Reserved

mirror module register space

6 KB

1.5 KB Lock Bits

with user defined

Base + 0x1800

Base + 0x2000

Base + 0x3800

soft locking function

512 B Configuration
Base + 0x3E00

Base + 0x3FFF

Area 1

Area 2

Area 3

Area 4

Area 5
Doc ID 16886 Rev 6 800/868

Register Protection RM0045
cycle as the register at address X is written. Not all registers in area 1 need to have
protection defined by associated soft lock bits. For unprotected registers at address Y,
accesses to address 0x2000+Y will be identical to accesses at address Y. Only for registers
implemented in area 1 and defined as protectable soft lock bits are available in area 4.

Area 4 is 1.5 KB and holds the soft lock bits, one bit per byte in area 1. The four soft lock bits
associated with a module register word are arranged at byte boundaries in the memory
map. The soft lock bit registers can be directly written using a bit mask.

Area 5 is 512 byte and holds the configuration bits of the protection mode. There is one
configuration hard lock bit per module that prevents all further modifications to the soft lock
bits and can only be cleared by a system reset once set. The other bits, if set, will allow user
access to the protected module.

If any locked byte is accessed with a write transaction, a transfer error will be issued to the
system and the write transaction will not be executed. This is true even if not all accessed
bytes are locked.

Accessing unimplemented 32-bit registers in Areas 4 and 5 results in a transfer error.

29.5.1 Memory map

Table 434 gives an overview on the Register Protection registers implemented.

Note: Reserved registers in area #2 will be handled according to the protected IP (module under
protection).

Table 434. Register protection memory map

Address offset Register Location

0x0000 Module Register 0 (MR0) on page 29-802

0x0001 Module Register 1 (MR1) on page 29-802

0x0002 Module Register 2 (MR2) on page 29-802

0x0003–0x17FF Module Register 3 (MR3) - Module Register 6143 (MR6143) on page 29-802

0x1800–0x1FFF Reserved —

0x2000 Module Register 0 (MR0) + Set soft lock bit 0 (LMR0) on page 29-802

0x2001 Module Register 1 (MR1) + Set soft lock bit 1 (LMR1) on page 29-802

0x2002–0x37FF
Module Register 2 (MR2) + Set soft lock bit 2 (LMR2) –

Module Register 6143 (MR6143) + Set soft lock bit 6143 (LMR6143)
on page 29-802

0x3800 Soft Lock Bit Register 0 (SLBR0): soft lock bits 0-3 on page 29-802

0x3801 Soft Lock Bit Register 1 (SLBR1): soft lock bits 4-7 on page 29-802

0x3802–0x3DFF
Soft Lock Bit Register 2 (SLBR2): soft lock bits 8-11 –

Soft Lock Bit Register 1535 (SLBR1535): soft lock bits 6140-6143
on page 29-802

0x3E00–0x3FFB Reserved —

0x3FFC Global Configuration Register (GCR) on page 29-803
801/868 Doc ID 16886 Rev 6

RM0045 Register Protection
29.5.2 Register description

Module Registers (MR0-6143)

This is the lower 6 KB module memory space which holds all the functional registers of the
module that is protected by the Register Protection module.

Module Register and Set Soft Lock Bit (LMR0-6143)

This is memory area #3 that provides mirrored access to the MR0-6143 registers with the
side effect of setting soft lock bits in case of a write access to a MR that is defined as
protectable by the locking mechanism. Each MR is protectable by one associated bit in a
SLBRn.SLBm, according to the mapping described in Table 435.

Soft Lock Bit Register (SLBR0-1535)

These registers hold the soft lock bits for the protected registers in memory area #1.

Figure 436 gives some examples how SLBRn.SLB and MRn go together.

Figure 470. Soft Lock Bit Register (SLBRn)

 Address 0x3800-0x3DFF
Access: Read always

Supervisor write

0 1 2 3 4 5 6 7

R 0 0 0 0
SLB0 SLB1 SLB2 SLB3

W WE0 WE1 WE2 WE3

Reset 0 0 0 0 0 0 0 0

Table 435. SLBRn field descriptions

Field Description

WE0

WE1

WE2
WE3

Write Enable Bits for soft lock bits (SLB):
WE0 enables writing to SLB0

WE1 enables writing to SLB1

WE2 enables writing to SLB2
WE3 enables writing to SLB3

1 Value is written to SLB
0 SLB is not modified

SLB0

SLB1

SLB2
SLB3

Soft lock bits for one MRn register:
SLB0 can block accesses to MR[n *4 + 0]

SLB1 can block accesses to MR[n *4 + 1]

SLB2 can block accesses to MR[n *4 + 2]
SLB3 can block accesses to MR[n *4 + 3]

1 Associated MRn byte is locked against write accesses
0 Associated MRn byte is unprotected and writeable
Doc ID 16886 Rev 6 802/868

Register Protection RM0045

Global Configuration Register (GCR)

This register is used to make global configurations related to register protection.

Table 436. Soft lock bits vs. protected address

Soft lock bit Protected address

SLBR0.SLB0 MR0

SLBR0.SLB1 MR1

SLBR0.SLB2 MR2

SLBR0.SLB3 MR3

SLBR1.SLB0 MR4

SLBR1.SLB1 MR5

SLBR1.SLB2 MR6

SLBR1.SLB3 MR7

SLBR2.SLB0 MR8

... ...

Figure 471. Global Configuration Register (GCR)

Address 0x3FFC Access: Read Always Supervisor write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R HLB 0 0 0 0 0 0 0 UAA 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

803/868 Doc ID 16886 Rev 6

RM0045 Register Protection

Note: The GCR.UAA bit has no effect on the allowed access modes for the registers in the
Register Protection module.

29.6 Functional description

29.6.1 General

This module provides a generic register (address) write-protection mechanism. The
protection size can be:

● 32-bit (address == multiples of 4)

● 16-bit (address == multiples of 2)

● 8-bit (address == multiples of 1)

● unprotected (address == multiples of 1)

Which addresses are protected and the protection size depend on the SoC and/or module.
Therefore this section can just give examples for various protection configurations.

For all addresses that are protected there are SLBRn.SLBm bits that specify whether the
address is locked. When an address is locked it can be read but not written in any mode
(supervisor/normal). If an address is unprotected the corresponding SLBRn.SLBm bit is
always 0b0 no matter what software is writing to.

29.6.2 Change lock settings

To change the setting whether an address is locked or unlocked the corresponding
SLBRn.SLBm bit needs to be changed. This can be done using the following methods:

● Modify the SLBRn.SLBm directly by writing to area #4

● Set the SLBRn.SLBm bit(s) by writing to the mirror module space (area #3)

Both methods are explained in the following sections.

Table 437. GCR field descriptions

Field Description

HLB

Hard Lock Bit.

This register can not be cleared once it is set by software. It can only be cleared by a system reset.

1 All SLB bits are write protected and can not be modified
0 All SLB bits are accessible and can be modified.

UAA

User Access Allowed.

1 The registers in the module under protection can be accessed in the mode defined for the module
registers without any additional restrictions.

0 The registers in the module under protection can only be written in supervisor mode. All write
accesses in non-supervisor mode are not executed and a transfer error is issued. This access
restriction is in addition to any access restrictions imposed by the protected IP module.
Doc ID 16886 Rev 6 804/868

Register Protection RM0045
Change lock settings directly via area #4

Memory area #4 contains the lock bits. They can be modified by writing to them. Each
SLBRn.SLBm bit has a mask bit SLBRn.WEm, which protects it from being modified. This
masking makes clear-modify-write operations unnecessary.

Figure 472 shows two modification examples. In the left example there is a write access to
the SLBRn register specifying a mask value which allows modification of all SLBRn.SLBm
bits. The example on the right specifies a mask which only allows modification of the bits
SLBRn.SLB[3:1].

Figure 472. Change Lock Settings Directly Via Area #4

Figure 472 shows four registers that can be protected 8-bit wise. In Figure 473 registers with
16-bit protection and in Figure 474 registers with 32-bit protection are shown:

Figure 473. Change Lock Settings for 16-bit Protected Addresses

On the right side of Figure 473 it is shown that the data written to SLBRn.SLB[0] is
automatically written to SLBRn.SLB[1] also. This is done as the address reflected by
SLBRn.SLB[0] is protected 16-bit wise. Note that in this case the write enable SLBRn.WE[0]
must be set while SLBRn.WE[1] does not matter. As the enable bits SLBRn.WE[3:2] are
cleared the lock bits SLBRn.SLB[3:2] remain unchanged.

In the example on the left side of Figure 473 the data written to SLBRn.SLB[0] is mirrored to
SLBRn.SLB[1] and the data written to SLBRn.SLB[2] is mirrored to SLBRn.SLB[3] as for
both registers the write enables are set.

1

SLB3SLB2SLB1SLB0

SLBRn.WE[3:0]

SLBRn.SLB[3:0] SLB3SLB2SLB1SLB0 SLBRn.SLB[3:0]

change allowed

to SLB3 write datato SLB2to SLB1to SLB0

111 1 SLBRn.WE[3:0]

to SLB3 write datato SLB2to SLB1to SLB0

110

change allowed

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 1 X

SLB0 SLB1 SLB2 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X 0 0
805/868 Doc ID 16886 Rev 6

RM0045 Register Protection
In Figure 474 a 32-bit wise protected register is shown. When SLBRn.WE[0] is set the data
written to SLBRn.SLB[0] is automatically written to SLBRn.SLB[3:1] also. Otherwise
SLBRn.SLB[3:0] remains unchanged.

Figure 474. Change Lock Settings for 32-bit Protected Addresses

In Figure 475 an example is shown which has a mixed protection size configuration:

Figure 475. Change Lock Settings for Mixed Protection

The data written to SLBRn.SLB[0] is mirrored to SLBRn.SLB[1] as the corresponding
register is 16-bit protected. The data written to SLBRn.SLB[2] is blocked as the
corresponding register is unprotected. The data written to SLBRn.SLB[3] is written to
SLBRn.SLB[3].

Enable locking via mirror module space (area #3)

It is possible to enable locking for a register after writing to it. To do so the mirrored module
address space must be used. Figure 476 shows one example:

1

SLB0 SLB1 SLB2 SLB3

SLBRn.WE[3:0]

SLBR.SLB[3:0]

update lock bits

to SLB0 write datato SLB1 to SLB2 to SLB3

X X X

SLB0 SLB1 0 SLB3 SLBR

update lock bits

1 SLBRn.WE[3:0]

to SLB0 write datato SLB1 to SLB2 to SLB3

X X 1
Doc ID 16886 Rev 6 806/868

Register Protection RM0045

Figure 476. Enable Locking Via Mirror Module Space (Area #3)

When writing to address 0x0008 the registers MR9 and MR8 in the protected module are
updated. The corresponding lock bits remain unchanged (left part of Figure 473).

When writing to address 0x2008 the registers MR9 and MR8 in the protected module are
updated. The corresponding lock bits SLBR2.SLB[1:0] are set while the lock bits
SLBR2.SLB[3:2] remain unchanged (right part of Figure 473).

Figure 477 shows an example where some addresses are protected and some are not:

Figure 477. Enable Locking for Protected and Unprotected Addresses

In the example in Figure 477 addresses 0x0C and 0x0D are unprotected. Therefore their
corresponding lock bits SLBR3.SLB[1:0] are always 0b0 (shown in bold). When doing a 32-
bit write access to address 0x200C only lock bits SLBR3.SLB[3:2] are set while bits
SLBR3.SLB[1:0] stay 0b0.

Note: Lock bits can only be set via writes to the mirror module space. Reads from the mirror
module space will not change the lock bits.

Write protection for locking bits

Changing the locking bits through any of the procedures mentioned in Section , Change lock
settings directly via area #4 and Section , Enable locking via mirror module space (area #3)
is only possible as long as the bit GCR.HLB is cleared. Once this bit is set the locking bits
can no longer be modified until there is a system reset.

29.6.3 Access errors

The protection module generates transfer errors under several circumstances. For the area
definition refer to Figure 469.

SLBR2

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

16-bit write to address 0x0008

no change

write to MR[9:8]

SLBR2

WE[3:0]

0 0 0 0 1 1 0 0

SLB[3:0]

16-bit write to address 0x2008

set lock bits

write to MR[9:8]

SLBR3

WE[3:0]

0 0 0 0 0 0 0 0

SLB[3:0]

Before write access

SLBR3

WE[3:0]

0 0 0 0 0 0 1 1

SLB[3:0]

32-bit write to address 0x200C

set lock bits

write to MR[15:12]

After
write access
807/868 Doc ID 16886 Rev 6

RM0045 Register Protection
1. If accessing area #1 or area #3, the protection module transfers any access error from
the underlying Module under Protection.

2. If user mode is not allowed, user write attempts to all areas will assert a transfer error
and the writes will be blocked.

3. Access attempts to the reserved area #2 cause a transfer error to be asserted.

4. Access attempts to unimplemented 32-bit registers in area #4 or area #5 cause a
transfer error to be asserted.

5. Attempted writes to a register in area #1 or area #3 with soft lock bit set for any of the
affected bytes causes a transfer error to be asserted and the write is blocked. The
complete write operation to non-protected bytes in this word is ignored.

6. If writing to a soft lock register in area #4 with the hard lock bit being set a transfer error
is asserted.

7. Any write operation in any access mode to area #3 while GCR.HLB is set result in a
error.

29.7 Reset
The reset state of each individual bit is shown within the Register Description section (See
Section 29.5.2, Register description). In summary, after reset, locking for all MRn registers is
disabled. The registers can be accessed in Supervisor Mode only.

29.8 Protected registers
For SPC560D30/40 the Register Protection module protects the registers shown in
Table 438.

Table 438. Protected registers

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits

Code flash memory , 4 registers to protect

Code Flash MCR 32 C3F88000 000 bits[0:31]

Code Flash PFCR0 32 C3F88000 01C bits[0:31]

Code Flash PFCR1 32 C3F88000 020 bits[0:31]

Code Flash PFAPR 32 C3F88000 024 bits[0:31]

Data flash memory, 1 register to protect

Data Flash MCR 32 C3F8C000 000 bits[0:31]

SIU lite, 64 registers to protect

SIUL IRER 32 C3F90000 018 bits[0:31]

SIUL IREER 32 C3F90000 028 bits[0:31]

SIUL IFEER 32 C3F90000 02C bits[0:31]

SIUL IFER 32 C3F90000 030 bits[0:31]
Doc ID 16886 Rev 6 808/868

Register Protection RM0045
SIUL PCR0 16 C3F90000 040 bits[0:15]

SIUL PCR1 16 C3F90000 042 bits[0:15]

SIUL PCR2 16 C3F90000 044 bits[0:15]

SIUL PCR3 16 C3F90000 046 bits[0:15]

SIUL PCR4 16 C3F90000 048 bits[0:15]

SIUL PCR5 16 C3F90000 04A bits[0:15]

SIUL PCR6 16 C3F90000 04C bits[0:15]

SIUL PCR7 16 C3F90000 04E bits[0:15]

SIUL PCR8 16 C3F90000 050 bits[0:15]

SIUL PCR9 16 C3F90000 052 bits[0:15]

SIUL PCR10 16 C3F90000 054 bits[0:15]

SIUL PCR11 16 C3F90000 056 bits[0:15]

SIUL PCR12 16 C3F90000 058 bits[0:15]

SIUL PCR13 16 C3F90000 05A bits[0:15]

SIUL PCR14 16 C3F90000 05C bits[0:15]

SIUL PCR15 16 C3F90000 05E bits[0:15]

SIUL PCR16 16 C3F90000 060 bits[0:15]

SIUL PCR17 16 C3F90000 062 bits[0:15]

SIUL PCR18 16 C3F90000 064 bits[0:15]

SIUL PCR19 16 C3F90000 066 bits[0:15]

SIUL PCR34 16 C3F90000 084 bits[0:15]

SIUL PCR35 16 C3F90000 086 bits[0:15]

SIUL PCR36 16 C3F90000 088 bits[0:15]

SIUL PCR37 16 C3F90000 08A bits[0:15]

SIUL PCR38 16 C3F90000 08C bits[0:15]

SIUL PCR39 16 C3F90000 08E bits[0:15]

SIUL PCR40 16 C3F90000 090 bits[0:15]

SIUL PCR41 16 C3F90000 092 bits[0:15]

SIUL PCR42 16 C3F90000 094 bits[0:15]

SIUL PCR43 16 C3F90000 096 bits[0:15]

SIUL PCR44 16 C3F90000 098 bits[0:15]

SIUL PCR45 16 C3F90000 09A bits[0:15]

Table 438. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits
809/868 Doc ID 16886 Rev 6

RM0045 Register Protection
SIUL PCR46 16 C3F90000 09C bits[0:15]

SIUL PCR47 16 C3F90000 09E bits[0:15]

SIUL PSMI0_3 8 C3F90000 500 bits[0:7]

SIUL PSMI4_7 8 C3F90000 504 bits[0:7]

SIUL PSMI8_11 8 C3F90000 508 bits[0:7]

SIUL PSMI12_15 8 C3F90000 50C bits[0:7]

SIUL PSMI16_19 8 C3F90000 510 bits[0:7]

SIUL PSMI20_23 32 C3F90000 514 bits[0:7]

SIUL PSMI24_27 32 C3F90000 518 bits[0:7]

SIUL PSMI28_31 32 C3F90000 51C bits[0:7]

SIUL PSMI32_35 32 C3F90000 520 bits[0:7]

SIUL PSMI36_39 32 C3F90000 524 bits[0:7]

SIUL PSMI40_43 32 C3F90000 528 bits[0:7]

SIUL PSMI44_47 32 C3F90000 52C bits[0:7]

SIUL PSMI48_51 32 C3F90000 530 bits[0:7]

SIUL PSMI52_55 32 C3F90000 534 bits[0:7]

SIUL PSMI56_59 32 C3F90000 538 bits[0:7]

SIUL PSMI61_63 32 C3F90000 53C bits[0:7]

SIUL IFMC0 32 C3F90000 1000 bits[0:31]

SIUL IFMC1 32 C3F90000 1004 bits[0:31]

SIUL IFMC2 32 C3F90000 1008 bits[0:31]

SIUL IFMC3 32 C3F90000 100C bits[0:31]

SIUL IFMC4 32 C3F90000 1010 bits[0:31]

SIUL IFMC5 32 C3F90000 1014 bits[0:31]

SIUL IFMC6 32 C3F90000 1018 bits[0:31]

SIUL IFMC7 32 C3F90000 101C bits[0:31]

SIUL IFMC8 32 C3F90000 1020 bits[0:31]

SIUL IFMC9 32 C3F90000 1024 bits[0:31]

SIUL IFMC10 32 C3F90000 1028 bits[0:31]

SIUL IFMC11 32 C3F90000 102C bits[0:31]

SIUL IFMC12 32 C3F90000 1030 bits[0:31]

SIUL IFMC13 32 C3F90000 1034 bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits
Doc ID 16886 Rev 6 810/868

Register Protection RM0045
SIUL IFMC14 32 C3F90000 1038 bits[0:31]

SIUL IFMC15 32 C3F90000 103C bits[0:31]

SIUL IFCPR 32 C3F90000 1080 bits[0:31]

 Mode Entry Module, 41 registers to protect

MC ME ME_ME 32 C3FDC000 008 bits[0:31]

MC ME ME_IM 32 C3FDC000 010 bits[0:31]

MC ME ME_TEST_MC 32 C3FDC000 024 bits[0:31]

MC ME ME_SAFE_MC 32 C3FDC000 028 bits[0:31]

MC ME ME_DRUN_MC 32 C3FDC000 02C bits[0:31]

MC ME ME_RUN0_MC 32 C3FDC000 030 bits[0:31]

MC ME ME_RUN1_MC 32 C3FDC000 034 bits[0:31]

MC ME ME_RUN2_MC 32 C3FDC000 038 bits[0:31]

MC ME ME_RUN3_MC 32 C3FDC000 03C bits[0:31]

MC ME ME_HALT_MC 32 C3FDC000 040 bits[0:31]

MC ME ME_STOP_MC 32 C3FDC000 048 bits[0:31]

MC ME ME_STANDBY_MC 32 C3FDC000 054 bits[0:31]

MC ME ME_RUN_PC0 32 C3FDC000 080 bits[0:31]

MC ME ME_RUN_PC1 32 C3FDC000 084 bits[0:31]

MC ME ME_RUN_PC2 32 C3FDC000 088 bits[0:31]

MC ME ME_RUN_PC3 32 C3FDC000 08C bits[0:31]

MC ME ME_RUN_PC4 32 C3FDC000 090 bits[0:31]

MC ME ME_RUN_PC5 32 C3FDC000 094 bits[0:31]

MC ME ME_RUN_PC6 32 C3FDC000 098 bits[0:31]

MC ME ME_RUN_PC7 32 C3FDC000 09C bits[0:31]

MC ME ME_LP_PC0 32 C3FDC000 0A0 bits[0:31]

MC ME ME_LP_PC1 32 C3FDC000 0A4 bits[0:31]

MC ME ME_LP_PC2 32 C3FDC000 0A8 bits[0:31]

MC ME ME_LP_PC3 32 C3FDC000 0AC bits[0:31]

MC ME ME_LP_PC4 32 C3FDC000 0B0 bits[0:31]

MC ME ME_LP_PC5 32 C3FDC000 0B4 bits[0:31]

MC ME ME_LP_PC6 32 C3FDC000 0B8 bits[0:31]

MC ME ME_LP_PC7 32 C3FDC000 0BC bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits
811/868 Doc ID 16886 Rev 6

RM0045 Register Protection
MC ME ME_PCTL[4..7] 32 C3FDC000 0C4 bits[0:31]

MC ME ME_PCTL[16..19] 32 C3FDC000 0D0 bits[0:31]

MC ME ME_PCTL[20..23] 32 C3FDC000 0D4 bits[0:31]

MC ME ME_PCTL[32..35] 32 C3FDC000 0E0 bits[0:31]

MC ME ME_PCTL[44..47] 32 C3FDC000 0EC bits[0:31]

MC ME ME_PCTL[48..51] 32 C3FDC000 0F0 bits[0:31]

MC ME ME_PCTL[56..59] 32 C3FDC000 0F8 bits[0:31]

MC ME ME_PCTL[60..63] 32 C3FDC000 0FC bits[0:31]

MC ME ME_PCTL[68..71] 32 C3FDC000 104 bits[0:31]

MC ME ME_PCTL[72..75] 32 C3FDC000 108 bits[0:31]

MC ME ME_PCTL[88..91] 32 C3FDC000 118 bits[0:31]

MC ME ME_PCTL[92..95] 32 C3FDC000 11C bits[0:31]

MC ME ME_PCTL[104..107] 32 C3FDC000 128 bits[0:31]

 Clock Generation Module, 3 registers to protect

MC CGM CGM_OC_EN 8 C3FE0000 373 bits[0:7]

MC CGM CGM_OCDS_SC 8 C3FE0000 374 bits[0:7]

MC CGM CGM_SC_DC[0..3] 32 C3FE0000 37C bits[0:31]

CMU, 1 register to protect

CMU CMU_CSR 8 C3FE00E0 000 bits[24:31]

 Reset Generation Module, 7 registers to protect

MC RGM RGM_FERD 16 C3FE4000 004 bits[0:15]

MC RGM RGM_DERD 16 C3FE4000 006 bits[0:15]

MC RGM RGM_FEAR 16 C3FE4000 010 bits[0:15]

MC RGM RGM_DEAR 16 C3FE4000 012 bits[0:15]

MC RGM RGM_FESS 16 C3FE4000 018 bits[0:15]

MC RGM RGM_STDBY 16 C3FE4000 01A bits[0:15]

MC RGM RGM_FBRE 16 C3FE4000 01C bits[0:15]

Power Control Unit, 2 registers to protect

MC PCU PCONF2 32 C3FE8000 008 bits[0:31]

MC PCU PCONF3 32 C3FE8000 00C bits[0:31]

Table 438. Protected registers (continued)

Module Register
Protected
size (bits)

Module base
address

Register
offset

Protected
bits
Doc ID 16886 Rev 6 812/868

Software Watchdog Timer (SWT) RM0045
30 Software Watchdog Timer (SWT)

30.1 Overview
The SWT is a peripheral module that can prevent system lockup in situations such as
software getting trapped in a loop or if a bus transaction fails to terminate. When enabled,
the SWT requires periodic execution of a watchdog servicing sequence. Writing the
sequence resets the timer to a specified time-out period. If this servicing action does not
occur before the timer expires the SWT generates an interrupt or hardware reset. The SWT
can be configured to generate a reset or interrupt on an initial time-out, a reset is always
generated on a second consecutive time-out.

The SWT provides a window functionality. When this functionality is programmed, the
servicing action should take place within the defined window. When occurring outside the
defined period, the SWT generates a reset.

30.2 Features
The SWT has the following features:

● 32-bit time-out register to set the time-out period

● The unique SWT counter clock is the undivided slow internal RC oscillator 128 kHz
(SIRC), no other clock source can be selected

● Programmable selection of window mode or regular servicing

● Programmable selection of reset or interrupt on an initial time-out

● Master access protection

● Hard and soft configuration lock bits

● The SWT is started on exit of power-on phase (RGM phase 2) to monitor flash boot
sequence phase. It is then reset during RGM phase3 and optionally enabled when
platform reset is released depending on value of flash user option bit 31
(WATCHDOG_EN).

30.3 Modes of operation
The SWT supports three device modes of operation: normal, debug and stop. When the
SWT is enabled in normal mode, its counter runs continuously. In debug mode, operation of
the counter is controlled by the FRZ bit in the SWT_CR. If the FRZ bit is set, the counter is
stopped in debug mode, otherwise it continues to run. In STOP mode, operation of the
counter is controlled by the STP bit in the SWT_CR. If the STP bit is set, the counter is
stopped in STOP mode, otherwise it continues to run. On exit from STOP mode, the SWT
will continue from the state it was before entering this mode.

The software watchdog is not available during standby. On exit from standby, the SWT
behaves in a usual “out of reset” situation.

30.4 External signal description
The SWT module does not have any external interface signals.
813/868 Doc ID 16886 Rev 6

RM0045 Software Watchdog Timer (SWT)
30.5 Memory map and register description
The SWT programming model has six 32-bit registers. The programming model can only be
accessed using 32-bit (word) accesses. References using a different size are invalid. Other
types of invalid accesses include: writes to read only registers, incorrect values written to the
service register when enabled, accesses to reserved addresses and accesses by masters
without permission. If the SWT_CR[RIA] bit is set, then the SWT generates a system reset
on an invalid access otherwise a bus error is generated. If either the HLK or SLK bits in the
SWT_CR are set then the SWT_CR, SWT_TO and SWT_WN registers are read only.

30.5.1 Memory map

The SWT memory map is shown in Table 439. The reset values of SWT_CR, SWT_TO and
SWT_WN are device specific. These values are determined by SWT inputs.

30.5.2 Register description

SWT Control Register (SWT_CR)

The SWT_CR contains fields for configuring and controlling the SWT. The reset value of this
register is device specific. Some devices can be configured to automatically clear the
SWT_CR.WEN bit during the boot process. This register is read only if either the
SWT_CR.HLK or SWT_CR.SLK bits are set.

Table 439. SWT memory map

Base address: 0xFFF3_8000

Address offset Register Location

0x0000 SWT Control Register (SWT_CR) on page 30-814

0x0004 SWT Interrupt Register (SWT_IR) on page 30-816

0x0008 SWT Time-Out Register (SWT_TO) on page 30-817

0x000C SWT Window Register (SWT_WN) on page 30-817

0x0010 SWT Service Register (SWT_SR) on page 30-818

0x0014 SWT Counter Output Register (SWT_CO) on page 30-818
Doc ID 16886 Rev 6 814/868

Software Watchdog Timer (SWT) RM0045

Default value for SWT_CR_RST is 0x4000_011B, corresponding to MAP1 = 1 (only data
bus access allowed), RIA = 1 (reset on invalid SWT access), SLK = 1 (soft lock), CSL = 1
(IRC clock source for counter), FRZ = 1 (freeze on debug), WEN = 1 (watchdog enable).
This last bit is cleared when exiting ME RESET mode in case flash user option bit 31
(WATCHDOG_EN) is ‘0’.

Figure 478. SWT Control Register (SWT_CR)

Offset 0x0000 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MAP
0

MAP
1

MAP
2

MAP
3

MAP
4

MAP
5

MAP
6

MAP
7

0 0 0 0 0 0 0 0

W

Reset1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0
KEY RIA WND ITR HLK SLK CSL STP FRZ WEN

W

Reset1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1

1. The reset value for the SWT_CR is device specific.

Table 440. SWT_CR field descriptions

Field Description

MAPn
Master Access Protection for Master n. The platform bus master assignments are device specific.
0 = Access for the master is not enabled
1 = Access for the master is enabled

KEY

Keyed Service Mode.

0 = Fixed Service Sequence, the fixed sequence 0xA602, 0xB480 is used to service the watchdog
1 = Keyed Service Mode, two pseudorandom key value are used to service the watchdog

RIA
Reset on Invalid Access.
0 = Invalid access to the SWT generates a bus error

1 = Invalid access to the SWT causes a system reset if WEN=1

WND

Window Mode.

0 = Regular mode, service sequence can be done at any time

1 = Windowed mode, the service sequence is only valid when the down counter is less than the value
in the SWT_WN register.

ITR
Interrupt Then Reset.
0 = Generate a reset on a time-out

1 = Generate an interrupt on an initial time-out, reset on a second consecutive time-out

HLK

Hard Lock. This bit is only cleared at reset.

0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if SLK=0

1 = SWT_CR, SWT_TO and SWT_WN are read only registers
815/868 Doc ID 16886 Rev 6

RM0045 Software Watchdog Timer (SWT)
SWT Interrupt Register (SWT_IR)

The SWT_IR contains the time-out interrupt flag.

SLK

Soft Lock. This bit is cleared by writing the unlock sequence to the service register.

0 = SWT_CR, SWT_TO and SWT_WN are read/write registers if HLK=0
1 = SWT_CR, SWT_TO and SWT_WN are read only registers

CSL

Clock Selection. Selects the SIRC oscillator clock that drives the internal timer.
CSL bit can be written.The status of the bit has no effect on counter clock selection on
SPC560D30/40 device.
0 = System clock (Not applicable in SPC560D30/40)

1 = Oscillator clock

STP

Stop Mode Control. Allows the watchdog timer to be stopped when the device enters STOP mode.

0 = SWT counter continues to run in STOP mode

1 = SWT counter is stopped in STOP mode

FRZ

Debug Mode Control. Allows the watchdog timer to be stopped when the device enters debug mode.

0 = SWT counter continues to run in debug mode
1 = SWT counter is stopped in debug mode

WEN
Watchdog Enabled.
0 = SWT is disabled
1 = SWT is enabled

Table 440. SWT_CR field descriptions

Field Description

Figure 479. SWT Interrupt Register (SWT_IR)

Offset 0x0004 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TIF

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 816/868

Software Watchdog Timer (SWT) RM0045

SWT Time-Out Register (SWT_TO)

The SWT Time-Out (SWT_TO) register contains the 32-bit time-out period. The reset value
for this register is device specific. This register is read only if either the SWT_CR.HLK or
SWT_CR.SLK bits are set.

Default counter value (SWT_TO_RST) is 1280 (0x00000500 hexadecimal) which
correspond to around 10 ms with a 128 kHz clock.

SWT Window Register (SWT_WN)

The SWT Window (SWT_WN) register contains the 32-bit window start value. This register
is cleared on reset. This register is read only if either the SWT_CR.HLK or SWT_CR.SLK
bits are set.

Table 441. SWT_IR field descriptions

Field Description

TIF

Time-out Interrupt Flag. The flag and interrupt are cleared by writing a 1 to this bit. Writing a 0 has no
effect.
0 = No interrupt request
1 = Interrupt request due to an initial time-out

Figure 480. SWT Time-Out Register (SWT_TO)

Offset
0x008 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WTO

W

Reset
(1)

1. The reset value of the SWT_TO register is device specific.

0 1 0 1 0 0 0 0 0 0 0 0

Table 442. SWT_TO Register field descriptions

Field Description

WTO
Watchdog time-out period in clock cycles. An internal 32-bit down counter is loaded with this value or
0x100 which ever is greater when the service sequence is written or when the SWT is enabled.

Figure 481. SWT Window Register (SWT_WN)

Offset
0x00C Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
WST

W

Reset 0
817/868 Doc ID 16886 Rev 6

RM0045 Software Watchdog Timer (SWT)

SWT Service Register (SWT_SR)

The SWT Time-Out (SWT_SR) service register is the target for service sequence writes
used to reset the watchdog timer.

SWT Counter Output Register (SWT_CO)

The SWT Counter Output (SWT_CO) register is a read only register that shows the value of
the internal down counter when the SWT is disabled.

Table 443. SWT_WN Register field descriptions

Field Description

WST
Window start value. When window mode is enabled, the service sequence can only be written when
the internal down counter is less than this value.

Figure 482. SWT Service Register (SWT_SR)

Offset
0x010 Access: Read/Write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0

W WSC

Reset 0

Table 444. SWT_SR field descriptions

Field Description

WSC

Watchdog Service Code.This field is used to service the watchdog and to clear the soft lock bit
(SWT_CR.SLK). To service the watchdog, the value 0xA602 followed by 0xB480 is written to the
WSC field. To clear the soft lock bit (SWT_CR.SLKSWT_CR.), the value 0xC520 followed by 0xD928
is written to the WSC field.

Figure 483. SWT Counter Output Register (SWT_CO)

Offset
0x014 Access: Read Only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R CNT

W

Reset 0
Doc ID 16886 Rev 6 818/868

Software Watchdog Timer (SWT) RM0045

30.6 Functional description
The SWT is a 32-bit timer designed to enable the system to recover in situations such as
software getting trapped in a loop or if a bus transaction fails to terminate. It includes a a
control register (SWT_CR), an interrupt register (SWT_IR), time-out register (SWT_TO), a
window register (SWT_WN), a service register (SWT_SR) and a counter output register
(SWT_CO).

The SWT_CR includes bits to enable the timer, set configuration options and lock
configuration of the module. The watchdog is enabled by setting the SWT_CR.WEN bit. The
reset value of the SWT_CR.WEN bit is device specific1 (enabled). This last bit is cleared
when exiting ME RESET mode in case flash user option bit 31 (WATCHDOG_EN) is ‘0’. If
the reset value of this bit is 1, the watchdog starts operation automatically after reset is
released. Some devices can be configured to clear this bit automatically during the boot
process.

The SWT_TO register holds the watchdog time-out period in clock cycles unless the value is
less than 0x100 in which case the time-out period is set to 0x100. This time-out period is
loaded into an internal 32-bit down counter when the SWT is enabled and each time a valid
service sequence is written. The SWT_CR.CSL bit selects which clock (system or oscillator)
is used to drive the down counter. The reset value of the SWT_TO register is device-specific
as described previously.

The configuration of the SWT can be locked through use of either a soft lock or a hard lock.
In either case, when locked the SWT_CR, SWT_TO and SWT_WN registers are read only.
The hard lock is enabled by setting the SWT_CR.HLK bit which can only be cleared by a
reset. The soft lock is enabled by setting the SWT_CR.SLK bit and is cleared by writing the
unlock sequence to the service register. The unlock sequence is a write of 0xC520 followed
by a write of 0xD928 to the SWT_SR.WSC field. There is no timing requirement between
the two writes. The unlock sequence logic ignores service sequence writes and recognizes
the 0xC520, 0xD928 sequence regardless of previous writes. The unlock sequence can be
written at any time and does not require the SWT_CR.WEN bit to be set.

When enabled, the SWT requires periodic execution of the watchdog servicing sequence.
The service sequence is a write of 0xA602 followed by a write of 0xB480 to the
SWT_SR.WSC field. Writing the service sequence loads the internal down counter with the
time-out period. There is no timing requirement between the two writes. The service
sequence logic ignores unlock sequence writes and recognizes the 0xA602, 0xB480
sequence regardless of previous writes. Accesses to SWT registers occur with no
peripheral bus wait states. (The peripheral bus bridge may add one or more system wait
states.) However, due to synchronization logic in the SWT design, recognition of the service
sequence or configuration changes may require up to three system plus seven counter clock
cycles.

Table 445. SWT_CO field descriptions

Field Description

CNT

Watchdog Count. When the watchdog is disabled (SWT_CR.WENSWT_CR.=0) this field shows the
value of the internal down counter. When the watchdog is enabled the value of this field is
0x0000_0000. Values in this field can lag behind the internal counter value for up to six system plus
eight counter clock cycles. Therefore, the value read from this field immediately after disabling the
watchdog may be higher than the actual value of the internal counter.
819/868 Doc ID 16886 Rev 6

RM0045 Software Watchdog Timer (SWT)
If window mode is enabled (SWT_CR.WND bit is set), the service sequence must be
performed in the last part of the time-out period defined by the window register. The window
is open when the down counter is less than the value in the SWT_WN register. Outside of
this window, service sequence writes are invalid accesses and generate a bus error or reset
depending on the value of the SWT_CR.RIA bit. For example, if the SWT_TO register is set
to 5000 and SWT_WN register is set to 1000 then the service sequence must be performed
in the last 20% of the time-out period. There is a short lag in the time it takes for the window
to open due to synchronization logic in the watchdog design. This delay could be up to three
system plus four counter clock cycles.

The interrupt then reset bit (SWT_CR.ITR) controls the action taken when a time-out occurs.
If the SWT_CR.ITR bit is not set, a reset is generated immediately on a time-out. If the
SWT_CR.ITR bit is set, an initial time-out causes the SWT to generate an interrupt and load
the down counter with the time-out period. If the service sequence is not written before the
second consecutive time-out, the SWT generates a system reset. The interrupt is indicated
by the time-out interrupt flag (SWT_IR.TIF). The interrupt request is cleared by writing a one
to the SWT_IR.TIF bit.

The SWT_CO register shows the value of the down counter when the watchdog is disabled.
When the watchdog is enabled this register is cleared. The value shown in this register can
lag behind the value in the internal counter for up to six system plus eight counter clock
cycles.

The SWT_CO can be used during a software self test of the SWT. For example, the SWT
can be enabled and not serviced for a fixed period of time less than the time-out value. Then
the SWT can be disabled (SWT_CR.WEN cleared) and the value of the SWT_CO read to
determine if the internal down counter is working properly.

Note: Watchdog is disabled at the start of BAM execution. In the case of an unexpected issue
during BAM execution, the CPU may be stalled and an external reset needs to be generated
to recover.

Doc ID 16886 Rev 6 820/868

Error Correction Status Module (ECSM) RM0045
31 Error Correction Status Module (ECSM)

31.1 Introduction
The Error Correction Status Module (ECSM) provides a myriad of miscellaneous control
functions for the device including program-visible information about configuration and
revision levels, a reset status register, and information on memory errors reported by error-
correcting codes.

31.2 Overview
The Error Correction Status Module is mapped into the IPS space and supports a number of
miscellaneous control functions for the device.

31.3 Features
The ECSM includes these features:

● Program-visible information on the device configuration and revision

● Registers for capturing information on memory errors due to error-correction codes

● Registers to specify the generation of single- and double-bit memory data inversions for
test purposes to check ECC protection

● Configuration for additional SRAM WS for system frequency above 64 + 4% MHz

31.4 Memory map and register description
This section details the programming model for the Error Correction Status Module. This is a
128-byte space mapped to the region serviced by an IPS bus controller.

31.4.1 Memory map

The Error Correction Status Module does not include any logic which provides access
control. Rather, this function is supported using the standard access control logic provided
by the IPS controller.

Table 446 shows the ECSM’s memory map.

Table 446. ECSM memory map

Base address: 0xFFF4_0000

Address offset Register Location

0x00 Processor Core Type Register (PCT) on page 31-823

0x02 SoC-Defined Platform Revision Register (REV) on page 31-823

0x04 Reserved

0x08 IPS On-Platform Module Configuration Register (IOPMC) on page 31-823

0x0C–0x12 Reserved
821/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
31.4.2 Register description

Attempted accesses to reserved addresses result in an error termination, while attempted
writes to read-only registers are ignored and do not terminate with an error. Unless noted
otherwise, writes to the programming model must match the size of the register, e.g., an n-
bit register only supports n-bit writes, etc. Attempted writes of a different size than the
register width produce an error termination of the bus cycle and no change to the targeted
register.

0x13 Miscellaneous Wakeup Control Register (MWCR) on page 31-824

0x14–0x1E Reserved

0x1F Miscellaneous Interrupt Register (MIR) on page 31-826

0x20–0x23 Reserved

0x24 Miscellaneous User-Defined Control Register (MUDCR) on page 31-827

0x28–0x42 Reserved

0x43 ECC Configuration Register (ECR) on page 31-828

0x44–0x46 Reserved

0x47 ECC Status Register (ESR) on page 31-830

0x48–0x49 Reserved

0x4A ECC Error Generation Register (EEGR) on page 31-832

0x4C–0x4F Reserved

0x50 Platform Flash ECC Address Register (PFEAR) on page 31-834

0x54–0x55 Reserved

0x56 Platform Flash ECC Master Number Register (PFEMR) on page 31-836

0x57 Platform Flash ECC Attributes Register (PFEAT) on page 31-836

0x58–0x5B Reserved

0x5C Platform Flash ECC Data Register (PFEDR) on page 31-837

0x60 Platform RAM ECC Address Register (PREAR) on page 31-838

0x64 Reserved

0x65 Platform RAM ECC Syndrome Register (PRESR) on page 31-838

0x66 Platform RAM ECC Master Number Register (PREMR) on page 31-840

0x67 Platform RAM ECC Attributes Register (PREAT) on page 31-841

0x68–0x6B Reserved

0x6C Platform RAM ECC Data Register (PREDR) on page 31-842

Table 446. ECSM memory map (continued)

Base address: 0xFFF4_0000

Address offset Register Location
Doc ID 16886 Rev 6 822/868

Error Correction Status Module (ECSM) RM0045
Processor Core Type Register (PCT)

The PCT is a 16-bit read-only register specifying the architecture of the processor core in
the device. The state of this register is defined by a module input signal; it can only be read
from the IPS programming model. Any attempted write is ignored.

SoC-Defined Platform Revision Register (REV)

The REV is a 16-bit read-only register specifying a revision number. The state of this
register is defined by an input signal; it can only be read from the IPS programming model.
Any attempted write is ignored.

IPS On-Platform Module Configuration Register (IOPMC)

The IOPMC is a 32-bit read-only register identifying the presence/absence of the 32 low-
order IPS peripheral modules connected to the primary IPI slave bus controller. The state of
this register is defined by a module input signal; it can only be read from the IPS
programming model. Any attempted write is ignored.

Figure 484. Processor Core Type Register (PCT)

Offset: 0x00 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R PCT

W

Reset 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 447. PCT field descriptions

Field Description

PCT
Processor Core Type

Figure 485. SoC-Defined Platform Revision Register (REV)

Offset: 0x02 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REV

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 448. REV field descriptions

Field Description

REV
Revision
The REV field is specified by an input signal to define a software-visible revision number.
823/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)

Miscellaneous Wakeup Control Register (MWCR)

Implementation of low-power sleep modes and exit from these modes via an interrupt
require communication between the ECSM, the interrupt controller and off-platform external
logic typically associated with phase-locked loop clock generation circuitry. The
Miscellaneous Wakeup Control Register (MWCR) provides an 8-bit register controlling entry
into these types of low-power modes as well as definition of the interrupt level needed to exit
the mode.

The following sequence of operations is generally needed to enable this functionality. Note
that the exact details are likely to be system-specific.

1. The processor core loads the appropriate data value into the MWCR, setting the
ENBWCR bit and the desired interrupt priority level.

2. At the appropriate time, the processor ceases execution. The exact mechanism varies
by processor core. In some cases, a processor-is-stopped status is signaled to the
ECSM and off-platform external logic. This assertion, if properly enabled by
MWCR[ENBWCR], causes the ECSM output signal “enter_low_power_mode” to be
set. This, in turn, causes the selected off-platform external, low-power mode, as
specified by MWCR[LPMD], to be entered, and the appropriate clock signals disabled.
In most implementations, there are multiple low-power modes, where the exact clocks
to be disabled vary across the different modes.

3. After entering the low-power mode, the interrupt controller enables a special
combinational logic path which evaluates all unmasked interrupt requests. The device

Figure 486. IPS On-Platform Module Configuration Register (IOPMC)

Offset: 0x08 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R MC[31:16]

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R MC[15:0]

W

Reset: 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1

Table 449. IOPMC field descriptions

Field Description

MC

IPS Module Configuration
MC[n] = 0 if an IPS module connection to decoded slot “n” is absent
MC[n] = 1 if an IPS module connection to decoded slot “n” is present
Doc ID 16886 Rev 6 824/868

Error Correction Status Module (ECSM) RM0045
remains in this mode until an event which generates an unmasked interrupt request
with a priority level greater than the value programmed in the MWCR[PRILVL] occurs.

4. Once the appropriately-high interrupt request level arrives, the interrupt controller
signals its presence, and the ECSM responds by asserting an “exit_low_power_mode”
signal.

5. The off-platform external logic senses the assertion of the “exit” signal, and re-enables
the appropriate clock signals.

6. With the processor core clocks enabled, the core handles the pending interrupt
request.

Figure 487. Miscellaneous Wakeup Control (MWCR) Register

Offset: 0x13 Access: Read/write

0 1 2 3 4 5 6 7

R
ENBWCR

0 0 0
PRILVL

W

Reset: 0 0 0 0 0 0 0 0

Table 450. MWCR field descriptions

Field Description

ENBWCR
Enable WCR
0 MWCR is disabled.
1 MWCR is enabled.

PRILVL

Interrupt Priority Level
The interrupt priority level is a core-specific definition. It specifies the interrupt priority level needed
to exit the low-power mode. Specifically, an unmasked interrupt request of a priority level greater
than the PRILVL value is required to exit the mode.

Certain interrupt controller implementations include logic associated with this priority level that
restricts the data value contained in this field to a [0, maximum - 1] range. See the specific interrupt
controller module for details.
825/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
Miscellaneous Interrupt Register (MIR)

All interrupt requests associated with ECSM are collected in the MIR. This includes the
processor core system bus fault interrupt.

During the appropriate interrupt service routine handling these requests, the interrupt
source contained in the MIR must be explicitly cleared. See Figure 488 and Table 451.

Figure 488. Miscellaneous Interrupt (MIR) Register

Offset: 0x1F Access: Special

0 1 2 3 4 5 6 7

R FB0AI FB0SI FB1AI FB1SI 0 0 0 0

W 1 1 1 1

Reset: 0 0 0 0 0 0 0 0

Table 451. MIR field descriptions

Field Description

FB0AI

Flash Bank 0 Abort Interrupt
0 A flash bank 0 abort has not occurred.
1 A flash bank 0 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB0SI

Flash Bank 0 Stall Interrupt
0 A flash bank 0 stall has not occurred.
1 A flash bank 0 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.

FB1AI

Flash Bank 1 Abort Interrupt
0 A flash bank 1 abort has not occurred.
1 A flash bank 1 abort has occurred. The interrupt request is negated by writing a 1 to this bit.

Writing a 0 has no effect.

FB1SI

Flash Bank 1 Stall Interrupt
0 A flash bank 1 stall has not occurred.
1 A flash bank 1 stall has occurred. The interrupt request is negated by writing a 1 to this bit. Writing

a 0 has no effect.
Doc ID 16886 Rev 6 826/868

Error Correction Status Module (ECSM) RM0045
Miscellaneous User-Defined Control Register (MUDCR)

The MUDCR provides a program-visible register for user-defined control functions. It
typically is used as configuration control for miscellaneous SoC-level modules. The contents
of this register is simply output from the ECSM to other modules where the user-defined
control functions are implemented.

Figure 489. Miscellaneous User-Defined Control (MUDCR) Register

Offset: 0x24 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

M
U

D
C

R
[3

1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 452. MUDCR field descriptions

Field Description

MUDCR[31]

XBAR force_round_robin bit
This bit is used to drive the force_round_robin bit of the XBAR. This will force the slaves into
round robin mode of arbitration rather than fixed mode (unless a master is using priority
elevation, which forces the design back into fixed mode regardless of this bit). By setting the
hardware definition to ENABLE_ROUND_ROBIN_RESET, this bit will reset to 1.

1 XBAR is in round robin mode
0 XBAR is in fixed priority mode
827/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
ECC registers

For designs including error-correcting code (ECC) implementations to improve the quality
and reliability of memories, there are a number of program-visible registers for the sole
purpose of reporting and logging of memory failures. These registers include:

● ECC Configuration Register (ECR)

● ECC Status Register (ESR)

● ECC Error Generation Register (EEGR)

● Platform Flash ECC Address Register (PFEAR)

● Platform Flash ECC Master Number Register (PFEMR)

● Platform Flash ECC Attributes Register (PFEAT)

● Platform Flash ECC Data Register (PFEDR)

● Platform RAM ECC Address Register (PREAR)

● Platform RAM ECC Syndrome Register (PRESR)

● Platform RAM ECC Master Number Register (PREMR)

● Platform RAM ECC Attributes Register (PREAT)

● Platform RAM ECC Data Register (PREDR)

The details on the ECC registers are provided in the subsequent sections.

ECC Configuration Register (ECR)

The ECC Configuration Register is an 8-bit control register for specifying which types of
memory errors are reported. In all systems with ECC, the occurrence of a non-correctable
error causes the current access to be terminated with an error condition. In many cases, this
error termination is reported directly by the initiating bus master. However, there are certain
situations where the occurrence of this type of non-correctable error is not reported by the
master. Examples include speculative instruction fetches which are discarded due to a
change-of-flow operation, and buffered operand writes. The ECC reporting logic in the
ECSM provides an optional error interrupt mechanism to signal all non-correctable memory
errors. In addition to the interrupt generation, the ECSM captures specific information
(memory address, attributes and data, bus master number, etc.) which may be useful for
subsequent failure analysis.

Figure 490. ECC Configuration (ECR) Register

Offset: 0x43 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
ER1BR EF1BR

0 0
ERNCR EFNCR

W

Reset: 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 828/868

Error Correction Status Module (ECSM) RM0045

Table 453. ECR field descriptions

Field Description

ER1BR

Enable SRAM 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a
single-bit SRAM correction generates a ECSM ECC interrupt request as signalled by the assertion
of ESR[R1BC]. The address, attributes and data are also captured in the PREAR, PRESR,
PREMR, PREAT and PREDR registers.

0 Reporting of single-bit SRAM corrections is disabled.
1 Reporting of single-bit SRAM corrections is enabled.

EF1BR

Enable Flash 1-bit Reporting
This bit can only be set if the SoC-configurable input enable signal is asserted. The occurrence of a
single-bit flash correction generates a ECSM ECC interrupt request as signalled by the assertion of
ESR[F1BC]. The address, attributes and data are also captured in the PFEAR, PFEMR, PFEAT
and PFEDR registers.

0 Reporting of single-bit flash corrections is disabled.
1 Reporting of single-bit flash corrections is enabled.

ERNCR

Enable SRAM Non-Correctable Reporting
The occurrence of a non-correctable multi-bit SRAM error generates a ECSM ECC interrupt
request as signalled by the assertion of ESR[RNCE]. The faulting address, attributes and data are
also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers.
0 Reporting of non-correctable SRAM errors is disabled.
1 Reporting of non-correctable SRAM errors is enabled.

EFNCR

Enable Flash Non-Correctable Reporting
The occurrence of a non-correctable multi-bit flash error generates a ECSM ECC interrupt request
as signalled by the assertion of ESR[FNCE]. The faulting address, attributes and data are also
captured in the PFEAR, PFEMR, PFEAT and PFEDR registers.

0 Reporting of non-correctable flash errors is disabled.
1 Reporting of non-correctable flash errors is enabled.
829/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
ECC Status Register (ESR)

The ECC Status Register is an 8-bit control register for signaling which types of properly-
enabled ECC events have been detected. The ESR signals the last, properly-enabled
memory event to be detected. ECC interrupt generation is separated into single-bit error
detection/correction, uncorrectable error detection and the combination of the two as
defined by the following boolean equations:

ECSM_ECC1BIT_IRQ

 = ECR[ER1BR] & ESR[R1BC]// ram, 1-bit correction

 | ECR[EF1BR] & ESR[F1BC]// flash, 1-bit correction

ECSM_ECCRNCR_IRQ

 = ECR[ERNCR] & ESR[RNCE]// ram, noncorrectable error

ECSM_ECCFNCR_IRQ

 = ECR[EFNCR] & ESR[FNCE]// flash, noncorrectable error

ECSM_ECC2BIT_IRQ

 = ECSM_ECCRNCR_IRQ// ram, noncorrectable error

 | ECSM_ECCFNCR_IRQ// flash, noncorrectable error

ECSM_ECC_IRQ

 = ECSM_ECC1BIT_IRQ // 1-bit correction

 | ECSM_ECC2BIT_IRQ// noncorrectable error

where the combination of a properly-enabled category in the ECR and the detection of the
corresponding condition in the ESR produces the interrupt request.

The ECSM allows a maximum of one bit of the ESR to be asserted at any given time. This
preserves the association between the ESR and the corresponding address and attribute
registers, which are loaded on each occurrence of an properly-enabled ECC event. If there
is a pending ECC interrupt and another properly-enabled ECC event occurs, the ECSM
hardware automatically handles the ESR reporting, clearing the previous data and loading
the new state and thus guaranteeing that only a single flag is asserted.

To maintain the coherent software view of the reported event, the following sequence in the
ECSM error interrupt service routine is suggested:

1. Read the ESR and save it.

2. Read and save all the address and attribute reporting registers.

3. Re-read the ESR and verify the current contents matches the original contents. If the
two values are different, go back to step 1 and repeat.

4. When the values are identical, write a 1 to the asserted ESR flag to negate the interrupt
request.
Doc ID 16886 Rev 6 830/868

Error Correction Status Module (ECSM) RM0045

In the event that multiple status flags are signaled simultaneously, ECSM records the event
with the R1BC as highest priority, then F1BC, then RNCE, and finally FNCE.

Figure 491. ECC Status Register (ESR)

Offset: 0x47 Access: Read/write

0 1 2 3 4 5 6 7

R 0 0
R1BC F1BC

0 0
RNCE FNCE

W

Reset: 0 0 0 0 0 0 0 0

Table 454. ESR field descriptions

Field Description

R1BC

SRAM 1-bit Correction
This bit can only be set if ECR[EPR1BR] is asserted. The occurrence of a properly-enabled single-
bit SRAM correction generates a ECSM ECC interrupt request. The address, attributes and data
are also captured in the PREAR, PRESR, PREMR, PREAT and PREDR registers. To clear this
interrupt flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit SRAM correction has been detected.
1 A reportable single-bit SRAM correction has been detected.

F1BC

Flash Memory 1-bit Correction
This bit can only be set if ECR[EPF1BR] is asserted. The occurrence of a properly-enabled single-
bit flash memory correction generates a ECSM ECC interrupt request. The address, attributes and
data are also captured in the PFEAR, PFEMR, PFEAT and PFEDR registers. To clear this interrupt
flag, write a 1 to this bit. Writing a 0 has no effect.
0 No reportable single-bit flash memory correction has been detected.
1 A reportable single-bit flash memory correction has been detected.

RNCE

SRAM Non-Correctable Error
The occurrence of a properly-enabled non-correctable SRAM error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PREAR,
PRESR, PREMR, PREAT and PREDR registers. To clear this interrupt flag, write a 1 to this bit.
Writing a 0 has no effect.
0 No reportable non-correctable SRAM error has been detected.
1 A reportable non-correctable SRAM error has been detected.

FNCE

Flash Memory Non-Correctable Error
The occurrence of a properly-enabled non-correctable flash memory error generates a ECSM ECC
interrupt request. The faulting address, attributes and data are also captured in the PFEAR,
PFEMR, PFEAT and PFEDR registers. To clear this interrupt flag, write a 1 to this bit. Writing a 0
has no effect.

0 No reportable non-correctable flash memory error has been detected.
1 A reportable non-correctable flash memory error has been detected.
831/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
ECC Error Generation Register (EEGR)

The ECC Error Generation Register is a 16-bit control register used to force the generation
of single- and double-bit data inversions in the memories with ECC, most notably the SRAM.
This capability is provided for two purposes:

● It provides a software-controlled mechanism for “injecting” errors into the memories
during data writes to verify the integrity of the ECC logic.

● It provides a mechanism to allow testing of the software service routines associated
with memory error logging.

It should be noted that while the EEGR is associated with the SRAM, similar capabilities
exist for the flash, that is, the ability to program the non-volatile memory with single- or
double-bit errors is supported for the same two reasons previously identified.

For both types of memories (SRAM and flash), the intent is to generate errors during data
write cycles, such that subsequent reads of the corrupted address locations generate ECC
events, either single-bit corrections or double-bit non-correctable errors that are terminated
with an error response.

Figure 492. ECC Error Generation Register (EEGR)

Offset: 0x4A Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R 0 0

F
R

C
1B

I

F
R

11
B

I

0 0

F
R

C
N

C
I

F
R

1N
C

I

0
ERRBIT

W

Reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 455. EEGR field descriptions

Field Description

FRC1BI

Force SRAM Continuous 1-bit Data Inversions
The assertion of this bit forces the SRAM controller to create 1-bit data inversions, as defined by
the bit position specified in ERRBIT[6:0], continuously on every write operation.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate another continuous 1-bit data inversion, it must be
cleared before being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM continuous 1-bit data inversions are generated.
1 1-bit data inversions in the SRAM are continuously generated.
Doc ID 16886 Rev 6 832/868

Error Correction Status Module (ECSM) RM0045
FR11BI

Force SRAM One 1-bit Data Inversion
The assertion of this bit forces the SRAM controller to create one 1-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0], on the first write operation after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT is inverted to introduce a 1-bit ECC event in the SRAM.

After this bit has been enabled to generate a single 1-bit data inversion, it must be cleared before
being set again to properly re-enable the error generation logic.

This bit can only be set if the same SoC configurable input enable signal (as that used to enable
single-bit correction reporting) is asserted.

0 No SRAM single 1-bit data inversion is generated.
1 One 1-bit data inversion in the SRAM is generated.

FRCNCI

Force SRAM Continuous Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create 2-bit data inversions, as defined by
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, continuously on every write
operation.

After this bit has been enabled to generate another continuous non-correctable data inversion, it
must be cleared before being set again to properly re-enable the error generation logic.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

0 No SRAM continuous 2-bit data inversions are generated.
1 2-bit data inversions in the SRAM are continuously generated.

FR1NCI

Force SRAM One Non-correctable Data Inversions
The assertion of this bit forces the SRAM controller to create one 2-bit data inversion, as defined by
the bit position specified in ERRBIT[6:0] and the overall odd parity bit, on the first write operation
after this bit is set.

The normal ECC generation takes place in the SRAM controller, but then the polarity of the bit
position defined by ERRBIT and the overall odd parity bit are inverted to introduce a 2-bit ECC error
in the SRAM.

After this bit has been enabled to generate a single 2-bit error, it must be cleared before being set
again to properly re-enable the error generation logic.

0 No SRAM single 2-bit data inversions are generated.
1 One 2-bit data inversion in the SRAM is generated.

Table 455. EEGR field descriptions (continued)

Field Description
833/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
If an attempt to force a non-correctable inversion (by asserting EEGR[FRCNCI] or
EEGR[FRC1NCI]) and EEGR[ERRBIT] equals 64, then no data inversion will be generated.

The only allowable values for the 4 control bit enables {FR11BI, FRC1BI, FRCNCI, FR1NCI}
are {0,0,0,0}, {1,0,0,0}, {0,1,0,0}, {0,0,1,0} and {0,0,0,1}. All other values result in undefined
behavior.

Platform Flash ECC Address Register (PFEAR)

The PFEAR is a 32-bit register for capturing the address of the last, properly-enabled ECC
event in the flash memory. Depending on the state of the ECC Configuration Register, an
ECC event in the flash causes the address, attributes and data associated with the access
to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR registers, and the appropriate
flag (F1BC or FNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

ERRBIT

Error Bit Position
The vector defines the bit position which is complemented to create the data inversion on the write
operation. For the creation of 2-bit data inversions, the bit specified by this field plus the odd parity
bit of the ECC code are inverted.

The SRAM controller follows a vector bit ordering scheme where LSB = 0. Errors in the ECC
syndrome bits can be generated by setting this field to a value greater than the SRAM width. For
example, consider a 32-bit SRAM implementation.

The 32-bit ECC approach requires 7 code bits for a 32-bit word. For PRAM data width of 32 bits,
the actual SRAM (32b data + 7b for ECC) = 39 bits. The following association between the ERRBIT
field and the corrupted memory bit is defined:

if ERRBIT = 0, then SRAM[0] of the odd bank is inverted

if ERRBIT = 1, then SRAM[1] of the odd bank is inverted
...

if ERRBIT = 31, then SRAM[31] of the odd bank is inverted

if ERRBIT = 64, then ECC Parity[0] of the odd bank is inverted
if ERRBIT = 65, then ECC Parity[1] of the odd bank is inverted

...

if ERRBIT = 70, then ECC Parity[6] of the odd bank is inverted

For ERRBIT values of 32 to 63 and greater than 70, no bit position is inverted.

Table 455. EEGR field descriptions (continued)

Field Description
Doc ID 16886 Rev 6 834/868

Error Correction Status Module (ECSM) RM0045

Figure 493. Platform Flash ECC Address Register (PFEAR)

Offset: 0x50 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 456. PFEAR field descriptions

Field Description

FEAR
Flash ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled flash ECC
event.
835/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
Platform Flash ECC Master Number Register (PFEMR)

The PFEMR is a 4-bit register for capturing the XBAR bus master number of the last,
properly-enabled ECC event in the flash memory. Depending on the state of the ECC
Configuration Register, an ECC event in the flash causes the address, attributes and data
associated with the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR
registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be
asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

 .

Platform Flash ECC Attributes Register (PFEAT)

The PFEAT is an 8-bit register for capturing the XBAR bus master attributes of the last,
properly-enabled ECC event in the flash memory. Depending on the state of the ECC
Configuration Register, an ECC event in the flash causes the address, attributes and data
associated with the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR
registers, and the appropriate flag (F1BC or FNCE) in the ECC Status Register to be
asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Figure 494. Platform Flash ECC Master Number Register (PFEMR)

Offset: 0x56 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 FEMR

W

Reset: 0 0 0 0 – – – –

Table 457. PFEMR field descriptions

Field Description

FEMR
Flash ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled flash ECC event.

Figure 495. Platform Flash ECC Attributes Register (PFEAT)

Offset: 0x57 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –
Doc ID 16886 Rev 6 836/868

Error Correction Status Module (ECSM) RM0045

Platform Flash ECC Data Register (PFEDR)

The PFEDR is a 32-bit register for capturing the data associated with the last, properly-
enabled ECC event in the flash memory. Depending on the state of the ECC Configuration
Register, an ECC event in the flash causes the address, attributes and data associated with
the access to be loaded into the PFEAR, PFEMR, PFEAT and PFEDR registers, and the
appropriate flag (F1BC or FNCE) in the ECC Status Register to be asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Table 458. PFEAT field descriptions

Field Description

WRITE
AMBA-AHB HWRITE
0 AMBA-AHB read access
1 AMBA-AHB write access

SIZE

AMBA-AHB HSIZE[2:0]
000 8-bit AMBA-AHB access
001 16-bit AMBA-AHB access
010 32-bit AMBA-AHB access
1xx Reserved

PROTECTION

AMBA-AHB HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable

Protection[2]: Bufferable 0 = Non-bufferable, 1 = Bufferable

Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

Figure 496. Platform Flash ECC Data Register (PFEDR)

Offset: 0x5C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R FEDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R FEDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –
837/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)

Platform RAM ECC Address Register (PREAR)

The PREAR is a 32-bit register for capturing the address of the last, properly-enabled ECC
event in the SRAM memory. Depending on the state of the ECC Configuration Register, an
ECC event in the SRAM causes the address, attributes and data associated with the access
to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR registers, and the
appropriate flag (R1BC or RNCE) in the ECC Status Register to be asserted.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Platform RAM ECC Syndrome Register (PRESR)

The PRESR is an 8-bit register for capturing the error syndrome of the last, properly-
enabled ECC event in the SRAM memory. Depending on the state of the ECC Configuration
Register, an ECC event in the SRAM causes the address, attributes and data associated
with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR
registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to be
asserted.

Table 459. PFEDR field descriptions

Field Description

FEDR
Flash ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-
enabled flash ECC event. The register contains the data value taken directly from the data bus.

Figure 497. Platform RAM ECC Address Register (PREAR)

Offset: 0x60 Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REAR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REAR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 460. PREAR field descriptions

Field Description

REAR
SRAM ECC Address Register
This 32-bit register contains the faulting access address of the last, properly-enabled SRAM ECC
event.
Doc ID 16886 Rev 6 838/868

Error Correction Status Module (ECSM) RM0045
This register can only be read from the IPS programming model; any attempted write is
ignored.

Table 462 associates the upper 7 bits of the ECC syndrome with the exact data bit in error
for single-bit correctable codewords. This table follows the bit vectoring notation where the
LSB = 0. Note that the syndrome value of 0x01 implies no error condition but this value is
not readable when the PRESR is read for the no error case.

Figure 498. Platform RAM ECC Syndrome Register (PRESR)

Offset: 0x65 Access: Read

0 1 2 3 4 5 6 7

R RESR

W

Reset: – – – – – – – –

Table 461. PRESR field descriptions

Field Description

RESR

SRAM ECC Syndrome Register
This 8-bit syndrome field includes 6 bits of Hamming decoded parity plus an odd-parity bit for the
entire 39-bit (32-bit data + 7 ECC) code word. The upper 7 bits of the syndrome specify the exact
bit position in error for single-bit correctable codewords, and the combination of a non-zero 7-bit
syndrome plus overall incorrect parity bit signal a multi-bit, non-correctable error.

For correctable single-bit errors, the mapping shown in Table 462 associates the upper 7 bits of the
syndrome with the data bit in error.

Table 462. RAM syndrome mapping for single-bit correctable errors

PRESR[RESR] Data bit in error

0x00 ECC ODD[0]

0x01 No error

0x02 ECC ODD[1]

0x04 ECC ODD[2]

0x06 DATA ODD BANK[31]

0x08 ECC ODD[3]

0x0a DATA ODD BANK[30]

0x0c DATA ODD BANK[29]

0x0e DATA ODD BANK[28]

0x10 ECC ODD[4]

0x12 DATA ODD BANK[27]

0x14 DATA ODD BANK[26]

0x16 DATA ODD BANK[25]
839/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)
Platform RAM ECC Master Number Register (PREMR)

The PREMR is a 4-bit register for capturing the XBAR bus master number of the last,
properly-enabled ECC event in the SRAM memory. Depending on the state of the ECC
Configuration Register, an ECC event in the SRAM causes the address, attributes and data
associated with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and

0x18 DATA ODD BANK[24]

0x1a DATA ODD BANK[23]

0x1c DATA ODD BANK[22]

0x50 DATA ODD BANK[21]

0x20 ECC ODD[5]

0x22 DATA ODD BANK[20]

0x24 DATA ODD BANK[19]

0x26 DATA ODD BANK[18]

0x28 DATA ODD BANK[17]

0x2a DATA ODD BANK[16

0x2c DATA ODD BANK[15]

0x58 DATA ODD BANK[14]

0x30 DATA ODD BANK[13]

0x32 DATA ODD BANK[12]

0x34 DATA ODD BANK[11]

0x64 DATA ODD BANK[10]

0x38 DATA ODD BANK[9]

0x62 DATA ODD BANK[8]

0x70 DATA ODD BANK[7]

0x60 DATA ODD BANK[6]

0x40 ECC ODD[6]

0x42 DATA ODD BANK[5]

0x44 DATA ODD BANK[4]

0x46 DATA ODD BANK[3]

0x48 DATA ODD BANK[2]

0x4a DATA ODD BANK[1]

0x4c DATA ODD BANK[0]

0x03,0x05........0x4d Multiple bit error

> 0x4d Multiple bit error

Table 462. RAM syndrome mapping for single-bit correctable errors (continued)

PRESR[RESR] Data bit in error
Doc ID 16886 Rev 6 840/868

Error Correction Status Module (ECSM) RM0045
PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to
be asserted.

See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

This register can only be read from the IPS programming model; any attempted write is
ignored.

Platform RAM ECC Attributes Register (PREAT)

The PREAT is an 8-bit register for capturing the XBAR bus master attributes of the last,
properly-enabled ECC event in the SRAM memory. Depending on the state of the ECC
Configuration Register, an ECC event in the SRAM causes the address, attributes and data
associated with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and
PREDR registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to
be asserted.

Figure 499. Platform RAM ECC Master Number Register (PREMR)

Offset: 0x66 Access: Read

0 1 2 3 4 5 6 7

R 0 0 0 0 REMR

W

Reset: 0 0 0 0 – – – –

Table 463. PREMR field descriptions

Field Description

REMR

SRAM ECC Master Number Register
This 4-bit register contains the XBAR bus master number of the faulting access of the last,
properly-enabled SRAM ECC event.
See the XBAR chapter of this reference manual for a listing of XBAR bus master numbers.

Figure 500. Platform RAM ECC Attributes Register (PREAT)

Offset: 0x67 Access: Read

0 1 2 3 4 5 6 7

R WRITE SIZE PROTECTION

W

Reset: – – – – – – – –
841/868 Doc ID 16886 Rev 6

RM0045 Error Correction Status Module (ECSM)

Platform RAM ECC Data Register (PREDR)

The PREDR is a 32-bit register for capturing the data associated with the last, properly-
enabled ECC event in the SRAM memory. Depending on the state of the ECC Configuration
Register, an ECC event in the SRAM causes the address, attributes and data associated
with the access to be loaded into the PREAR, PRESR, PREMR, PREAT and PREDR
registers, and the appropriate flag (R1BC or RNCE) in the ECC Status Register to be
asserted.

The data captured on a multi-bit non-correctable ECC error is undefined.

Table 464. PREAT field descriptions

Field Description

WRITE
XBAR HWRITE
0 XBAR read access
1 XBAR write access

SIZE

XBAR HSIZE[2:0]
000 8-bit XBAR access
001 16-bit XBAR access
010 32-bit XBAR access
1xx Reserved

PROTECTION

XBAR HPROT[3:0]
Protection[3]: Cacheable 0 = Non-cacheable, 1 = Cacheable

Protection[2]: Bufferable 0 = Non-bufferable,1 = Bufferable

Protection[1]: Mode 0 = User mode, 1 = Supervisor mode
Protection[0]: Type 0 = I-Fetch, 1 = Data

Figure 501. Platform RAM ECC Data Register (PREDR)

Offset: 0x6C Access: Read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R REDR[31:16]

W

Reset: – – – – – – – – – – – – – – – –

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R REDR[15:0]

W

Reset: – – – – – – – – – – – – – – – –

Table 465. PREDR field descriptions

Field Description

REDR
SRAM ECC Data Register
This 32-bit register contains the data associated with the faulting access of the last, properly-
enabled SRAM ECC event. The register contains the data value taken directly from the data bus.
Doc ID 16886 Rev 6 842/868

Error Correction Status Module (ECSM) RM0045
31.4.3 Register protection

Logic exists which restricts accesses to INTC, ECSM, MPU, STM and SWT to supervisor
mode only. Accesses in User mode are not possible.
843/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
32 IEEE 1149.1 Test Access Port Controller (JTAGC)

32.1 Introduction
The JTAG port of the device consists of three inputs and one output. These pins include test
data input (TDI), test data output (TDO), test mode select (TMS), and test clock input (TCK).
TDI, TDO, TMS and TCK are compliant with the IEEE 1149.1-2001 standard and are shared
with the NDI through the test access port (TAP) interface.

32.2 Block diagram
Figure 502 is a block diagram of the JTAG Controller (JTAGC) block.

Figure 502. JTAG Controller Block Diagram

32.3 Overview
The JTAGC provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in TEST mode. Testing is performed via a boundary
scan technique, as defined in the IEEE 1149.1-2001 standard. In addition, instructions can
be executed that allow the Test Access Port (TAP) to be shared with other modules on the
MCU. All data input to and output from the JTAGC is communicated in serial format.

TCK

TMS

TDI

Test access port (TAP)

TDO

32-bit device identification register

Boundary scan register

.

.

controller

1-bit bypass register.

5-bit TAP instruction decoder

5-bit TAP instruction register

.

.

.

Power-on
reset
Doc ID 16886 Rev 6 844/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
32.4 Features
The JTAGC is compliant with the IEEE 1149.1-2001 standard, and supports the following
features:

● IEEE 1149.1-2001 Test Access Port (TAP) interface

● 4 pins (TDI, TMS, TCK, and TDO)—Refer to Section 32.6 External signal description

● A 5-bit instruction register that supports several IEEE 1149.1-2001 defined instructions,
as well as several public and private MCU specific instructions

● 2 test data registers:

– Bypass register

– Device identification register

● A TAP controller state machine that controls the operation of the data registers,
instruction register and associated circuitry

32.5 Modes of operation
The JTAGC uses a power-on reset indication as its primary reset signals. Several IEEE
1149.1-2001 defined TEST modes are supported, as well as a bypass mode.

32.5.1 Reset

The JTAGC is placed in reset when the TAP controller state machine is in the TEST-LOGIC-
RESET state. The TEST-LOGIC-RESET state is entered upon the assertion of the power-on
reset signal, or through TAP controller state machine transitions controlled by TMS.
Asserting power-on reset results in asynchronous entry into the reset state. While in reset,
the following actions occur:

● The TAP controller is forced into the test-logic-reset state, thereby disabling the test
logic and allowing normal operation of the on-chip system logic to continue unhindered.

● The instruction register is loaded with the IDCODE instruction.

In addition, execution of certain instructions can result in assertion of the internal system
reset. These instructions include EXTEST.

32.5.2 IEEE 1149.1-2001 defined test modes

The JTAGC supports several IEEE 1149.1-2001 defined TEST modes. The TEST mode is
selected by loading the appropriate instruction into the instruction register while the JTAGC
is enabled. Supported test instructions include EXTEST, SAMPLE and SAMPLE/PRELOAD.
Each instruction defines the set of data registers that can operate and interact with the on-
chip system logic while the instruction is current. Only one test data register path is enabled
to shift data between TDI and TDO for each instruction.

The boundary scan register is external to JTAGC but can be accessed by JTAGC TAP
through EXTEST,SAMPLE,SAMPLE/PRELOAD instructions. The functionality of each
TEST mode is explained in more detail in Section 32.8.4 JTAGC instructions.

Bypass Mode

When no test operation is required, the BYPASS instruction can be loaded to place the
JTAGC into bypass mode. While in bypass mode, the single-bit bypass shift register is used
to provide a minimum-length serial path to shift data between TDI and TDO.
845/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
TAP sharing mode

There are two selectable auxiliary TAP controllers that share the TAP with the JTAGC. The
instructions required to grant ownership of the TAP to the auxiliary TAP controllers are
ACCESS_AUX_TAP_ONCE and ACCESS_AUX_TAP_TCU. Instruction opcodes for each
instruction are shown in Table 468.

When the access instruction for an auxiliary TAP is loaded, control of the JTAG pins is
transferred to the selected TAP controller. Any data input via TDI and TMS is passed to the
selected TAP controller, and any TDO output from the selected TAP controller is sent back to
the JTAGC to be output on the pins. The JTAGC regains control of the JTAG port during the
UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held in
RUN-TEST/IDLE while they are inactive.

For more information on the TAP controllers refer to the Nexus port controller chapter of the
reference manual.

32.6 External signal description
The JTAGC consists of four signals that connect to off-chip development tools and allow
access to test support functions. The JTAGC signals are outlined in Table 466:

The JTAGC pins are shared with GPIO. TDO at reset is a input pad and output direction
control from JTAGC. Once TAP enters shift-ir or shift-dr then output direction control from
JTAGC which allows the value to see on pad. It is up to the user to configure them as GPIOs
accordingly, .

32.7 Memory map and register description
This section provides a detailed description of the JTAGC registers accessible through the
TAP interface, including data registers and the instruction register. Individual bit-level
descriptions and reset states of each register are included. These registers are not memory-
mapped and can only be accessed through the TAP.

32.7.1 Instruction Register

The JTAGC uses a 5-bit instruction register as shown in Table 503. The instruction register
allows instructions to be loaded into the module to select the test to be performed or the test
data register to be accessed or both. Instructions are shifted in through TDI while the TAP
controller is in the Shift-IR state, and latched on the falling edge of TCK in the Update-IR
state. The latched instruction value can only be changed in the update-IR and test-logic-
reset TAP controller states. Synchronous entry into the test-logic-reset state results in the

Table 466. JTAG signal properties

Name I/O Function Reset State

TCK I Test clock Pull Up

TDI I Test data in Pull Up

TDO O Test data out High Z

TMS I Test mode select Pull Up
Doc ID 16886 Rev 6 846/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
IDCODE instruction being loaded on the falling edge of TCK. Asynchronous entry into the
test-logic-reset state results in asynchronous loading of the IDCODE instruction. During the
capture-IR TAP controller state, the instruction shift register is loaded with the value
0b10101, making this value the register’s read value when the TAP controller is sequenced
into the Shift-IR state.

32.7.2 Bypass Register

The bypass register is a single-bit shift register path selected for serial data transfer
between TDI and TDO when the BYPASS, or reserve instructions are active. After entry into
the capture-DR state, the single-bit shift register is set to a logic 0. Therefore, the first bit
shifted out after selecting the bypass register is always a logic 0.

32.7.3 Device Identification Register

The device identification register, shown in Table 504, allows the part revision number,
design center, part identification number, and manufacturer identity code to be determined
through the TAP. The device identification register is selected for serial data transfer
between TDI and TDO when the IDCODE instruction is active. Entry into the capture-DR
state while the device identification register is selected loads the IDCODE into the shift
register to be shifted out on TDO in the Shift-DR state. No action occurs in the update-DR
state.

Figure 503. 5-bit Instruction Register

4 3 2 1 0

R 1 0 1 0 1

W Instruction Code

Reset 0 0 0 0 1

Figure 504. Device Identification Register

IR[4:0]: 0_0001 (IDCODE) Access: R/O

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PRN DC PIN MIC ID

W

Reset 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

Table 467. Device Identification Register Field Descriptions

Field Description

0–3
PRN

Part revision number. Contains the revision number of the device. This field changes with each revision of
the device or module.

4–9
DC

Design center. For the SPC560D30/40 this value is 0x2B.

10–19
PIN

Part identification number. Contains the part number of the device. For the SPC560D30/40, this value is
0x244.
847/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
32.7.4 Boundary Scan Register

The boundary scan register is connected between TDI and TDO when the EXTEST,
SAMPLE or SAMPLE/PRELOAD instructions are active. It is used to capture input pin data,
force fixed values on output pins, and select a logic value and direction for bidirectional pins.
Each bit of the boundary scan register represents a separate boundary scan register cell, as
described in the IEEE 1149.1-2001 standard and discussed in Section 32.8.5 Boundary
Scan. The size of the boundary scan register is 464 bits.

32.8 Functional Description

32.8.1 JTAGC Reset Configuration

While in reset, the TAP controller is forced into the test-logic-reset state, thus disabling the
test logic and allowing normal operation of the on-chip system logic. In addition, the
instruction register is loaded with the IDCODE instruction.

32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port

The JTAGC uses the IEEE 1149.1-2001 TAP for accessing registers. This port can be
shared with other TAP controllers on the MCU. For more detail on TAP sharing via JTAGC
instructions refer to Section ACCESS_AUX_TAP_x instructions.

Data is shifted between TDI and TDO though the selected register starting with the least
significant bit, as illustrated in Figure 505. This applies for the instruction register, test data
registers, and the bypass register.

Figure 505. Shifting data through a register

32.8.3 TAP controller state machine

The TAP controller is a synchronous state machine that interprets the sequence of logical
values on the TMS pin. Figure 506 shows the machine’s states. The value shown next to
each state is the value of the TMS signal sampled on the rising edge of the TCK signal.

As Figure 506 shows, holding TMS at logic 1 while clocking TCK through a sufficient
number of rising edges also causes the state machine to enter the test-logic-reset state.

20–30

MIC
Manufacturer identity code. Contains the reduced Joint Electron Device Engineering Council (JEDEC) ID
for STMIcroelectronics, 0x20.

31

ID
IDCODE register ID. Identifies this register as the device identification register and not the bypass
register. Always set to 1.

Table 467. Device Identification Register Field Descriptions

Field Description

Selected register

MSB LSB

TDI TDO
Doc ID 16886 Rev 6 848/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045

Figure 506. IEEE 1149.1-2001 TAP controller finite state machine

Selecting an IEEE 1149.1-2001 register

Access to the JTAGC data registers is done by loading the instruction register with any of
the JTAGC instructions while the JTAGC is enabled. Instructions are shifted in via the select-
IR-scan path and loaded in the update-IR state. At this point, all data register access is
performed via the select-DR-scan path.

Test logic
reset

Run-test/idle Select-DR-scan Select-IR-scan

Capture-DR Capture-IR

Shift-DR Shift-IR

Exit1-DR Exit1-IR

Pause-DR Pause-IR

Exit2-DR Exit2-IR

Update-DR Update-IR

1

0

111

0 0

0 0

1 1

0 0

1 1

1 1

0 0

0 0

1 1

1 1

0 0

1 1
0 0

0

NOTE: The value shown adjacent to each state transition in this figure represents the value of TMS at the time
of a rising edge of TCK.
849/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
The select-DR-scan path is used to read or write the register data by shifting in the data
(LSB first) during the shift-DR state. When reading a register, the register value is loaded
into the IEEE 1149.1-2001 shifter during the capture-DR state. When writing a register, the
value is loaded from the IEEE 1149.1-2001 shifter to the register during the update-DR
state. When reading a register, there is no requirement to shift out the entire register
contents. Shifting can be terminated after fetching the required number of bits.

32.8.4 JTAGC instructions

This section gives an overview of each instruction, refer to the IEEE 1149.1-2001 standard
for more details.

The JTAGC implements the IEEE 1149.1-2001 defined instructions listed in Table 468.

BYPASS instruction

BYPASS selects the bypass register, creating a single-bit shift register path between TDI
and TDO. BYPASS enhances test efficiency by reducing the overall shift path when no test
operation of the MCU is required. This allows more rapid movement of test data to and from
other components on a board that are required to perform test functions. While the BYPASS
instruction is active the system logic operates normally.

ACCESS_AUX_TAP_x instructions

The ACCESS_AUX_TAP_x instructions allow the Nexus modules on the MCU to take
control of the TAP. When this instruction is loaded, control of the TAP pins is transferred to
the selected auxiliary TAP controller. Any data input via TDI and TMS is passed to the
selected TAP controller, and any TDO output from the selected TAP controller is sent back to

Table 468. JTAG Instructions

Instruction Code[4:0] Instruction Summary

IDCODE 00001 Selects device identification register for shift

SAMPLE/PRELOAD 00010
Selects boundary scan register for shifting, sampling, and
preloading without disturbing functional operation

SAMPLE 00011
Selects boundary scan register for shifting and sampling without
disturbing functional operation

EXTEST 00100
Selects boundary scan register while applying preloaded values to
output pins and asserting functional reset

ACCESS_AUX_TAP_TCU 11011 Grants the TCU ownership of the TAP

ACCESS_AUX_TAP_ONCE 10001 Grants the PLATFORM ownership of the TAP

Reserved 10010 —

BYPASS 11111 Selects bypass register for data operations

Factory Debug Reserved(1)

1. Intended for factory debug, and not customer use

00101
00110

01010
Intended for factory debug only

Reserved(2)

2. STMicroelectronics reserves the right to change the decoding of reserved instruction codes

All other codes Decoded to select bypass register
Doc ID 16886 Rev 6 850/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
the JTAGC to be output on the pins. The JTAGC regains control of the JTAG port during the
UPDATE-DR state if the PAUSE-DR state was entered. Auxiliary TAP controllers are held in
RUN-TEST/IDLE while they are inactive.

EXTEST — External Test Instruction

EXTEST selects the boundary scan register as the shift path between TDI and TDO. It
allows testing of off-chip circuitry and board-level interconnections by driving preloaded data
contained in the boundary scan register onto the system output pins. Typically, the
preloaded data is loaded into the boundary scan register using the SAMPLE/PRELOAD
instruction before the selection of EXTEST. EXTEST asserts the internal system reset for
the MCU to force a predictable internal state while performing external boundary scan
operations.

IDCODE instruction

IDCODE selects the 32-bit device identification register as the shift path between TDI and
TDO. This instruction allows interrogation of the MCU to determine its version number and
other part identification data. IDCODE is the instruction placed into the instruction register
when the JTAGC is reset.

SAMPLE instruction

The SAMPLE instruction obtains a sample of the system data and control signals present at
the MCU input pins and just before the boundary scan register cells at the output pins. This
sampling occurs on the rising edge of TCK in the capture-DR state when the SAMPLE
instruction is active. The sampled data is viewed by shifting it through the boundary scan
register to the TDO output during the Shift-DR state. There is no defined action in the
update-DR state. Both the data capture and the shift operation are transparent to system
operation.

During the SAMPLE instruction, the following pad status is enforced:

● Weak pull is disabled (independent from PCRx[WPE])

● Analog switch is disabled (independent of PCRx[APC])

● Slew rate control is forced to the slowest configuration (independent from
PCRx[SRC[1]])

SAMPLE/PRELOAD instruction

The SAMPLE/PRELOAD instruction has two functions:

● The SAMPLE part of the instruction samples the system data and control signals on
the MCU input pins and just before the boundary scan register cells at the output pins.
This sampling occurs on the rising-edge of TCK in the capture-DR state when the
SAMPLE/PRELOAD instruction is active. The sampled data is viewed by shifting it
through the boundary scan register to the TDO output during the shift-DR state. Both
the data capture and the shift operation are transparent to system operation.

● The PRELOAD part of the instruction initializes the boundary scan register cells before
selecting the EXTEST instructions to perform boundary scan tests. This is achieved by
shifting in initialization data to the boundary scan register during the shift-DR state. The
initialization data is transferred to the parallel outputs of the boundary scan register
cells on the falling edge of TCK in the update-DR state. The data is applied to the
external output pins by the EXTEST instruction. System operation is not affected.
851/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
During the SAMPLE/PRELOAD instruction, the following pad status is enforced:

● Weak pull is disabled (independent from PCRx[WPE])

● Analog switch is disabled (independent of PCRx[APC])

● Slew rate control is forced to the slowest configuration (independent from
PCRx[SRC[1]])

32.8.5 Boundary Scan

The boundary scan technique allows signals at component boundaries to be controlled and
observed through the shift-register stage associated with each pad. Each stage is part of a
larger boundary scan register cell, and cells for each pad are interconnected serially to form
a shift-register chain around the border of the design. The boundary scan register consists
of this shift-register chain, and is connected between TDI and TDO when the EXTEST,
SAMPLE, or SAMPLE/PRELOAD instructions are loaded. The shift-register chain contains
a serial input and serial output, as well as clock and control signals.

32.9 e200z0 OnCE controller
The e200z0 core OnCE controller supports a complete set of Nexus 1 debug features. A
complete discussion of the e200z0 OnCE debug features is available in the e200z0
Reference Manual.

32.9.1 e200z0 OnCE Controller Block Diagram

Figure 507 is a block diagram of the e200z0 OnCE block.
Doc ID 16886 Rev 6 852/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045

Figure 507. e200z0 OnCE Block Diagram

32.9.2 e200z0 OnCE Controller Functional Description

The functional description for the e200z0 OnCE controller is the same as for the JTAGC,
with the differences described below.

Enabling the TAP Controller

To access the e200z0 OnCE controller, the proper JTAGC instruction needs to be loaded in
the JTAGC instruction register, as discussed in Section TAP sharing mode.

32.9.3 e200z0 OnCE Controller Register Description

Most e200z0 OnCE debug registers are fully documented in the e200z0 Reference Manual.

OnCE Command Register (OCMD)

The OnCE command register (OCMD) is a 10-bit shift register that receives its serial data
from the TDI pin and serves as the instruction register (IR). It holds the 10-bit commands to
be used as input for the e200z0 OnCE Decoder. The OCMD is shown in Table 508. The
OCMD is updated when the TAP controller enters the update-IR state. It contains fields for
controlling access to a resource, as well as controlling single-step operation and exit from
OnCE mode.

Although the OCMD is updated during the update-IR TAP controller state, the corresponding
resource is accessed in the DR scan sequence of the TAP controller, and as such, the

TCK

e200z0_TMS

TDI

Test Access Port (TAP)

e200z0_TDO

Bypass Register

External Data Register

.

.

Controller

TAP Instruction Register
.

OnCE Mapped Debug Registers

Auxiliary Data Register

.

.

.

e200z0_TRST

(OnCE OCMD)

TDO Mux
Control

{From
JTAGC

(to JTAGC)
853/868 Doc ID 16886 Rev 6

RM0045 IEEE 1149.1 Test Access Port Controller (JTAGC)
update-DR state must be transitioned through in order for an access to occur. In addition,
the update-DR state must also be transitioned through in order for the single-step and/or exit
functionality to be performed, even though the command appears to have no data resource
requirement associated with it.

Figure 508. OnCE Command Register (OCMD)

0 1 2 3 4 5 6 7 8 9

R
R/W GO EX RS[0:6]

W

Reset: 0 0 0 0 0 1 1 0 1 1

Table 469. e200z0 OnCE Register Addressing

RS[0:6] Register Selected

000 0000 000 0001 Reserved

000 0010 JTAG ID (read-only)

000 0011 – 000 1111 Reserved

001 0000 CPU Scan Register (CPUSCR)

001 0001 No Register Selected (Bypass)

001 0010 OnCE Control Register (OCR)

001 0011 – 001 1111 Reserved

010 0000 Instruction Address Compare 1 (IAC1)

010 0001 Instruction Address Compare 2 (IAC2)

010 0010 Instruction Address Compare 3 (IAC3)

010 0011 Instruction Address Compare 4 (IAC4)

010 0100 Data Address Compare 1 (DAC1)

010 0101 Data Address Compare 2 (DAC2)

010 0110 Data Value Compare 1 (DVC1)

010 0111 Data Value Compare 2 (DVC2)

010 1000 – 010 1111 Reserved

011 0000 Debug Status Register (DBSR)

011 0001 Debug Control Register 0 (DBCR0)

011 0010 Debug Control Register 1 (DBCR1)

011 0011 Debug Control Register 2 (DBCR2)

011 0100 – 101 1111 Reserved (do not access)

110 1111
Shared Nexus Control Register (SNC)

(only available on the e200z0 core)

111 0000 – 111 1001 General Purpose Register Selects [0:9]

111 1010 – 111 1011 Reserved

111 1100 Reserved
Doc ID 16886 Rev 6 854/868

IEEE 1149.1 Test Access Port Controller (JTAGC) RM0045
32.10 Initialization/application information
The test logic is a static logic design, and TCK can be stopped in either a high or low state
without loss of data. However, the system clock is not synchronized to TCK internally. Any
mixed operation using both the test logic and the system functional logic requires external
synchronization.

To initialize the JTAGC module and enable access to registers, the following sequence is
required:

1. Place the JTAGC in reset through TAP controller state machine transitions controlled by
TMS

2. Load the appropriate instruction for the test or action to be performed.

111 1101
LSRL Select

(factory test use only)

111 1110 Enable_OnCE

111 1111 Bypass

Table 469. e200z0 OnCE Register Addressing (continued)

RS[0:6] Register Selected
855/868 Doc ID 16886 Rev 6

RM0045 Revision history
Revision history

Table 474. Document revision history

Date Revision Changes

14-Apr-2010 1 Initial release

01-Sep-2010 2 Internal release

17-Sep-2010 3

Editorial changes and improvements.

Chapter 1, “Overview”:

In the block diagram:
– Replaced “CAN” with “FlexCAN” in the legend

– Replaced “RAM“ with “SRAM“

– Replaced “DMA” with “eDMA”
– Updated the meaning of “ECSM” in legend

Chapter 2, Signal Descriptions”:
Deleted pin multiplexing from all LQFP diagrams.

Chapter 4, “Clock description”:
Revised the “System clock generation” figure.

Updated peripheral clock sources table.

Corrected Clock architecture description.
Revised the “System clock generation” figure.

Chapter 8, “Enhanced Direct Memory Access (eDMA)”:
In the feature list: ‘C’ pseudocode specification of TCD deleted.

In the “Memory map/register definition” section:

All registers have been renamed. Details are below.
Previously, eDMA controller was documented generically, showing support for up to 64

channels. Registers changed to match implementation of 16 channels. Several registers

are shown as 32-bit registers even though the most significant 16-bits are reserved.
Updates to registers:

– DMACR[GRP3PRI] field deleted

– DMACR[GRP2PRI] field deleted

– DMACR[GRP1PRI] field deleted
– DMACR renamed to EDMA_CR

– DMAES[ECX] field deleted

– DMAES[GPE] field deleted
– DMAES renamed to EDMA_ESR

– DMAERQH register deleted

– DMAERQL register renamed EDMA_ERQRL
– DMAEEIH register deleted
Doc ID 16886 Rev 6 856/868

Revision history RM0045
17-Sep-2010
3

(cont.)

– DMAEEIL register renamed to EDMA_EEIRL

– DMACEEI[NOP] field deleted
– DMACEEI register renamed to EDMA_CEEIR

– DMASEEI[NOP] field deleted

– DMASEEI register renamed to EDMA_SEEIR
– DMACERQ[NOP] field deleted

– DMACERQ register renamed to EDMA_CERQR

– DMASERQ[NOP] field deleted
– DMASERQ register renamed to EDMA_SERQR

– DMASSRT[NOP] field deleted

– DMASSRT register renamed to EDMA_SSBR
– DMACDNE[NOP] field deleted

– DMACDNE register renamed to EDMA_CDSBR

– DMACERR[NOP] field deleted
– DMACERR register renamed to EDMA_CER

– DMACINT[NOP] field deleted

– DMACINT register renamed to EDMA_CIRQR
– DMAINTH register deleted

– DMAINTL register renamed to EDMA_IRQRL

– DMAERRH register deleted
– DMAERRL register renamed to EDMA_ERL

– DMAHRSH register deleted

– DMAHRSL register renamed to EDMA_HRSL
– DMAGPOR register deleted

– DCHPRIx registers renamed to EDMACPRx

Chapter 12, “Flash memory”:

Updated UT0 field description-27 and 31

Updated ECC Logic check for UT0 addresses
Updated delivery values of NVPWD0 and NVPWD1 for Code Flash

Revised the “Margin read“ section for both Flash

Removed old Revision history.
Replaced “Margin Mode“ with “Margin Read”

Censorship password register sections: Added note “In a secured device, starting with a

serial boot, it is possible to read the content of the four Flash locations where the RCHW

can be stored.”
Module Configuration Register (MCR): Added information on RWW-Error during

stall-while-write.

Chapter 14, “Interrupt Controller (INTC)”:

Updated “INTC Priority Select Registers“ and “INTC Priority Select Register Address

Offsets“ table in according to “Interrupt Vector Table“ table
Replaced INTC_PSR121 with “INTC_PSR154”

Updated interrupt vector table: IRQ No. 9

Table 474. Document revision history (continued)

Date Revision Changes
857/868 Doc ID 16886 Rev 6

RM0045 Revision history
17-Sep-2010 3
(cont.)

Chapter 15, “System Integration Unit Lite (SIUL)”:

Clarified description of I/O pad function in overview section.
Clarification: Not all GPIO pins have both input and output functions.

Replaced parallel port register sections (PGPDO, PGPDI, and MPGDO), clarifying
register

function and bit ordering.

Chapter 18, “Real Time Clock / Autonomous Periodic Interrupt (RTC/API)”:

Updated the APIVAL description in the RTCC register

Chapter 19, “Boot Assist Module (BAM)”:

Renamed the flag "Standby-RAM Boot Flag" to "BOOT_FROM_BKP_RAM" as it is
named

in the RGM chapter.

“Download 64-bit password and password check“ section:
– Added note about password management.

“Boot from FlexCAN“ section:

– Added note about the distirb provided by CAN traffic.
Changed the footnote of BAM logic flow

Added note in the section Download start address, VLE bit and code size

Figure Password check flow updated
NVPWD[0:1] changed to NVPWD[1:0]

Added notes in the following section:

Download 64-bit password and password check
Download data

Execute code

Chapter 21, “Wakeup Unit (WKPU)”:

Added Note about Wakeup pin termination in “External Signal description”

Overview section: Updated the interrupt vectors

Chapter 23, “Analog-to-Digital Converter (ADC)”:
ADC digital registers: Removed Channel Pending Registers (CEOCFR[x]) and Decode

Signals Delay Register (DSDR)
Section “ADC sampling and conversion timing“: Corrected instances of bitfield name

INPSAMPLE to INPSAMP

Section “Interrupts“: Removed content concerning register CEOCFR
Added a footnote on “Max AD_clk frequency and related configuration settings“ table.

Added max/min AD_clk frequency tables.

Revised the Overview, Introduction, “Injected channel conversion”, “Abort conversion”,
“ADC CTU (Cross Triggering Unit)” and Presampling sections.

Table 474. Document revision history (continued)

Date Revision Changes
Doc ID 16886 Rev 6 858/868

Revision history RM0045
17-Sep-2010 3
(cont.)

Updated following registers:

– CEOCFR
– CIMR

– WTISR

– DMAR
– PSR

– NCMR

– JCMR
– CDR

– CWSEL

– CWENR
– AWORR

Inserted "CTU triggered conversion" in the conversion list of "Functional description"

section
Replaced generic “system clock” with “peripheral set 3 clock”

“ADC sampling and conversion timing” section, added information about “ADC_1”

Moved CWSEL, CWENR and AWORR register to “Watchdog register“ section
CTR register: Inserted a footnote about OFFSHIFT field stating: “available only for
CTR0”
Changed the access type of DSDR in "read/write"

Updated the DSD description in the DSDR field description table

Chapter 24, “Safety”
Added note about Watchdog performance during BAM execution.

Chapter 25, “Deserial Serial Peripheral Interface (DSPI)”:

Included Bit fields CLR_TXF and CLR_RXF in DSPIx_MCR register

Removed the space between DSPI AND #.

Chapter 26, “FlexCAN module”:

Updated the MCR and CTRL descriptions.
Added text to the RXGMASK, RX14MASK, and RX15MASK sections.

Revised the ESR descripton.

Added note at the end of Rx Global Mask (RXGMASK) section indicating special
handling

of global masks misalignment.

Chapter 28, “Cross Triggering Unit (CTU)”:

Replaced “Channel number value mapping” table with “CTU-to-ADC Channel
Assignment”

table.

Removed “Control Status Register (CTU_CSR)” because the interrupt feature is not
implemented.

Cross Triggering Unit block diagram: trigger output control and output signals removed

Main Features section: Removed “Maskable interrupt generation whenever a trigger
output is generated”. Feature not implemented

Table 474. Document revision history (continued)

Date Revision Changes
859/868 Doc ID 16886 Rev 6

RM0045 Revision history
17-Sep-2010 3
(cont)

Chapter 30, “LIN Controller (LINFlexD)”:

In the “Fractional baud rate generation” section, changed the note from “LFDIV must be
greater than or equal to 1.0d” to “LFDIV must be greater than or equal to 1.5d, i.e.

LINIBRR=1 and LINFBRR=8. Therefore, the maximum possible baudrate is

fperiph_set_1_clk / 24”.

Chapter 33, “IEEE 1149.1 Test Access Port Controller (JTAGC)”:

Added a paragraph into “External Signal Description“ that explain when the device get
incompliance with IEEE 1149.1-2001.

Changed the code values for ACCESS_AUX_TAP_TCU and ACCESS_AUX_TAP_NPC
in the “JTAG Instructions” table.

16-Sep-2011 4

Chapter Throughout
Editorial changes and improvements (including reformatting of memory maps, register

figures, and field descriptions to a consistent format).
Rearranged the chapter order.

Chapter Preface
Added this chapter.

Chapter Introduction
Changed the chapter title (was “Overview”, is “Introduction”).
Renamed “Introduction” to “The SPC560D30/40 microcontroller family”.
In the device-comparison table, for the “Total timer I/O eMIOS”, changed “13 ch” to “14

ch”.
Moved the “Memory map” section to its own separate chapter.
In the “Feature summary” section, changed “LINFlex 0: Master capable and slave

capable” to “LINFlex 0: Master capable and slave capable; connected to eDMA”.

Added content to the “Feature summary” section.

Chapter Memory Map

Added this chapter (content previously contained in the Overview chapter).

Consolidated multiple adjacent reserved rows into single rows.

Chapter Signal Description

Replaced “eMIOS0”/”eMIOS 0” with eMIOS_0.

Replaced “DSPIx“/”DSPI x” with DSPI_x (x = 0, 1).
Replaced “LINFlex x” with “LINFlex_x” (x = 0, 1, 2).

Replaced “FlexCAN 0” with “FlexCAN_0”.

In the 64-pin pinout, changed pin 6 from VPP_TEST to VSS_HV.
Changed “Functional ports A, B, C, D, E, H” to “Functional ports” and modified the
entries in that table as follows:

Table 474. Document revision history (continued)

Date Revision Changes
Doc ID 16886 Rev 6 860/868

Revision history RM0045
16-Sep-2011
4

(cont.)

– PA[2] (added MA[2])

– PA[3] (added CS4_0 as AF3)
– PA[4] (added CS0_1 as AF3)

– PA[6] (added CS1_1 as AF3

– PA[9] (added CS2_1 as AF3)
– PA[10] (was LIN1TX, is LIN2TX)

– PA[13] (added CS3_1 as AF3)

– PB[0] (added LIN2TX as AF3)
– PB[1] (added LIN0RX as AF3)

– PC[8] (added E0UC[3] as AF2)

– PC[9] (added E0UC[7] as AF2)
– PE[6] (was EIRQ[21], IS EIRQ[22])

– PE[7] (was EIRQ[21], is EIRQ[23])

Chapter Safety
Migrated the chapter contents to the “Register Protection” and “SWT” chapters.

Chapter Microcontroller Boot

Added this chapter.

Chapter Clock Description
Fast external crystal oscillator (FXOSC) digital interface section:

- Changed the sentence from “The FXOSC digital interface controls the 4–40 MHz fast
external crystal oscillator (FXOSC).” to “The FXOSC digital interface controls the
operation of the 4–40 MHz fast external crystal oscillator (FXOSC).”

Truth table of crystal oscillator table: Replaced "ME_GS.S_XOSC" with
“ME_xxx_MC[FXOSCON]", replaced “FXOSC_CTL.OSCBYP” with
“FXOSC_CTL[OSCBYP]”

Slow external crystal oscillator (SXOSC) digital interface section:
- Changed the sentence from “The SXOSC digital interface controls the 32 KHz slow
external crystal oscillator (SXOSC).” to “The SXOSC digital interface controls the
operation of the 32 KHz slow external crystal oscillator (SXOSC).”

SXOSC truth table: Replaced "S_OSC” with “OSCON"
In the FXOSC_CTL figure, added footnotes to clarify the access to the OSCBYP and

I_OSC fields.
Deleted the “CMU register map” section.
Added notes for clarifying field access to the following registers

– FXOSC_CTL

– SXOSC_CTL
– CMU_CSR

In the “SPC560D30/40 system clock generation” figure, revised the first input to API/RTC
(was “FIRC_div”, is “FIRC_clk”).

In the “SPC560D30/40 — Peripheral clock sources” table, deleted the entry for CANS.
In the “SPC560D30/40 system clock generation” figure, revised the first input to API/RTC

(was “FIRC_div”, is “FIRC_clk”).
In the “SPC560D30/40 — Peripheral clock sources” table, deleted the entry for CANS.
In the FIRC “Functional description” section, changed “provided by

RC_CTL[FIRC_STDBY] bit” to “provided by RC_CTL[FIRCON_STDBY] bit”.

Table 474. Document revision history (continued)

Date Revision Changes
861/868 Doc ID 16886 Rev 6

RM0045 Revision history
16-Sep-2011

4

(cont.)

In the SIRC “Functional description” section, revised the information of SIRC output
frequency trimming.

In the FIRC “Functional description” section, revised the information of FIRC output
frequency trimming.

Revised the reset values in the FMPLL CR.
Revised the SIRC_CTL[SIRCTRIM] field description.
Revised the FIRC_CTL[FIRCTRIM] field description.
Changed STANDBY0 to STANDBY.
In the FMPLL features, changed “SSCG” to “frequency modulation”.
In the FMPLL functional description, added the “FMPLL lookup table” table.
In the CMU introduction, changed “towards the mode” to “towards the MC_ME”.
In the CMU introduction, deleted the “CMU block diagram” figure.
In the CMU Introduction section, changed “clock management unit” to MC_CGM.

Chapter Mode Entry Module
Made the CFLAON and DFLAON bits in the ME_mode_MC registers read-only (were

read/write).
Changed “WARNING” to “CAUTION”.
In the “STANDBY0 Mode” section, deleted “CANSampler”.
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.
Added the “Peripheral control registers by peripheral” table.
In the ME_<mode>_MC[DFLAON] field description, added a note about configuring

reset sources as long resets.

Chapter Reset Generation Module
Revised the RGM_DERD section to indicate that the register is always read-only.
Revised the RGM_FEAR[AR_CMU_OLR] field description.
Changed the RGM_FERD[D_EXR] field from read-only to read/write.
Changed STANDBY0 to STANDBY.
Revised the RGM_FES[F_CORE] field description.
Changed “core reset” to “debug control core reset”.

Chapter Power Control Unit
Changed HALT0 to HALT.
Changed STOP0 to STOP.
Changed STANDBY0 to STANDBY.

Chapter Voltage Regulators and Power Supplies
Revised the “Register description” section to include the address offset and MC_PCU

mapping.

Chapter Wakeup Unit
Changed WKUP to WKPU to match the official module abbreviation.
In the Overview section, replaced the wakeup vector mapping information with a table.
In the Overview section, deleted CAN1RX.
In the “NMI management” section, changed “This register is a clear-by-write-1 register

type, preventing inadvertent overwriting of other flags in the same register.” to “The NIF
and NOVF fields in this register are cleared by writing a ‘1’ to them; this prevents
inadvertent overwriting of other flags in the register.”

Table 474. Document revision history (continued)

Date Revision Changes
Doc ID 16886 Rev 6 862/868

Revision history RM0045
16-Sep-2011
4

(cont.)

In the “External interrupt management” section, changed “This register is a clear-by-
write-1 register type, preventing inadvertent overwriting of other flags in the same
register.” to “The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this
prevents inadvertent overwriting of other flags in the register.”

In the NSR, changed NIF to NIF0 and NOVF to NOVF0.
In the NCR, changed all field names to contain a trailing ‘0’ (example: NLOCK0).
In the “WKPU block diagram” figure, deleted single 0s.
In the “Memory map” section, changed “If supported and enabled by the SoC” to “If

SSCM_ERROR[RAE] is enabled”.
In the WIFER section, deleted “The number of wakeups ... 1 and 18”.
Revised the definitions of the following registers:

– WISR

– IRER
– WRER

– WIREER

– WIFEER
– WIFER

– WIPUER

In the “WKPU memory map” table, added the module base address.
In the NCR[NWRE0] field description, added a note about the proper sequence for

enabling the NMI.

Chapter Real Time Clock / Autonomous Periodic Interrupt
Replaced ipg_clk with “system clock”.
Changed “32 kHz” to “32 KHz”.
Revised the RTCC[FRZEN] field description.
In the “RTC functional description” section, revised the paragraph on clock sources.
In the “RTC functional description” section, deleted “The RTCC[RTCVAL] field may only

be updated when the RTCC[CNTEN] bit is cleared to disable the counter”.
In the “RTC/API register map” table, added the module base address.

Chapter e200z0h Core
In the “e200z0h block diagram” figure, added a box around the core elements.
Deleted the “Nexus 2+” section.

Chapter Enhanced Direct Memory Access
In the “DMA Clear Error (EDMA_CER)” section, corrected the offset from 0x001E to

0x001D.
Deleted the “eDMA 32-bit memory map” table (information already present in the “eDMA

memory map” table).
Added the following note to the CX and ECX fields in the EDMA_CR: “This bit cannot be

set when the eDMA is in IDLE mode.”
In the “eDMA memory map” table, added the module base address.

Table 474. Document revision history (continued)

Date Revision Changes
863/868 Doc ID 16886 Rev 6

RM0045 Revision history
16-Sep-2011
4

(cont.)

Chapter eDMA Channel Multiplexer
Changed the chapter title (was “DMA Channel Multiplexer”, is “eDMA Channel

Multiplexer”) and changed “DMA” to “eDMA” as appropriate to match the title.
In the CHCONFIG register figure, revised the bit order (was 7..0, is 0..7) to match

Power Architecture convention.
In the Features section, changed “12 channels with normal capability” to “13 channels

with normal capability”.
In the “Modes of operation” section, revised the number of available eDMA channels.
In the “eDMA channel mapping” table, for DMA mux channels 60 and 61, removed

“PIT_0” and “PIT_1” from the Module column.
Revised the “eDMA channel mapping” table to show that channels 19–22 are for

eMIOS0.
In the “DMA_MUX memory map” table, added the module base address.

Chapter Interrupt Controller
Revised the INTC_IACKR section to illustrate the register’s dependence on

INTC_MCR[VTES] more clearly.
In the INTC_EOIR register figure, added “See text” to the W row.
In the “Interrupt vector table” table, changed “WKUP” to “WKPU”.
In the “Interrupt sources available” table, changed the number of ADC1 sources (was 3,

is 2).
In the “Interrupt vector table” table, changed IRQ 83 to “reserved”.
In the “INTC memory map” table, added the module base address.

Chapter System Integration Unit Lite
Changed “WARNING” to “CAUTION”.
In the register figures, changed “Access: None” to the corresponding actual level of

access.
Revised the description of the PARTNUM field in MIDR1 and MIDR2 to clarify that the

field is split between the two registers.
In the PCRx section, revised the WPS and WPE field descriptions to indicate the correct

functionality.
In the “External interrupts” section, changed “This register is a clear-by-write-1 register

type, preventing inadvertent overwriting of other flags in the same register.” to “The bits
in the ISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.”

In the MIDR1[PKG] field description, added “Any values not explicitly specified are
reserved”.

Revised the “MIDR2 field descriptions” table to show how to calculate total flash memory
size.

In the “MIDR2 field descriptions” table, deleted the entry for FR (not implemented).
In the “SIUL memory map” table, added the module base address.

Chapter LIN Controller (LINFlex)
In the “IFER field descriptions” table, switched “activated” and “deactivated” in order to

match with “IFER[FACT] configuration” table.
Deleted the “Register map and reset values” section (duplicate content).
In the “UART mode” section, in the “9-bit frames” subsection, changed “sum of the 7 data

bits” to “sum of the 8 data bits”.
In the “Memory map and registers description” section, added the address for LINFlex_2.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved

and always reads 1”.
Changed “kbps” to “Kbit/s”.

Table 474. Document revision history (continued)

Date Revision Changes
Doc ID 16886 Rev 6 864/868

Revision history RM0045
16-Sep-2011

4

(cont.)

Chapter LIN Controller (LINFlexD)
In the register figures:

– Added “Access: User read/write” to all register figures.

– Updated instances of “These fields are writable only in Initialization mode.” to “These
fields are writable only in Initialization mode (LINCR1[INIT] = 1).”.

In the LINESR figure, changed the footnote “If LINTCSR[LTOM] is set, these fields are
read-only.“ to read “If LINTCSR[LTOM] = 1, these fields are read-only.“

In the LINTOCR figure, added the footnote “The HTO field can only be written in slave
mode, LINCR1[MME] = 1“.

In the “UART mode” section, in the “9-bit frames” subsection, changed “sum of the 7 data
bits” to “sum of the 8 data bits”.

In the “9-bit data frame” section, changed “sum of the 7 data bits” to “sum of the 8 data
bits” and “8-bit UART data frame” to “9-bit UART data frame”.

In the “Filter submodes” section, changed “eight IFCR registers” to “16 IFCRs” and “eight
identifiers” to “16 identifiers”.

In the “9-bit data frame” section, changed “The 8-bit UART data frame” to “The 9-bit
UART data frame” and “sum of the 7 data bits” to “sum of the 8 data bits”.

Revised the IFER section.
Revised the “Memory map and register description” section to show the differences in

register availability on the various LINFlexD modules on this chip.
In the LINCR1[BF] field description, changed “this bit is reserved” to “this bit is reserved

and always reads 1”.
Changed “kbps” to “Kbit/s”.
In the “TCD chain memory map (master node, TX mode)” figure, changed the second

instance of “Extended Frame (n+2)” to “Extended Frame (n+3)”.
In the “TCD chain memory map (master node, RX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, TX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.
In the “TCD chain memory map (slave node, RX mode)” figure, changed the second

instance of “Extended Frame (n+1)” to “Extended Frame (n+2)”.

Chapter FlexCAN
Changed the chapter title (was “FlexCAN module”, is “FlexCAN”).
Deleted references to Stop mode (not supported on this chip).
Revised the “FlexCAN block diagram” figure to show that this chip has 32 MBs.
Deleted references to the RXIMR0–RXIMR63 registers.
In the CTRL field descriptions, added “0” and “1” to indicate what the bit values of 0 and

1 mean, respectively.
In the “Modes of operation” section, revised the description of Module Disable mode.
Revised the “Module Disable mode” section.
In the “FlexCAN memory map” table, added the module base address.

Chapter Deserial Serial Peripheral Interface
In the “Continuous selection format” section, added a note about filling the TX FIFO.
Added new rules to the “Continuous serial communications clock” section.
In the “DSPI memory map” table, added the module base address.

Chapter Timers
Added this chapter (incorporates content from STM, eMIOS, and PIT chapters).

Table 474. Document revision history (continued)

Date Revision Changes
865/868 Doc ID 16886 Rev 6

RM0045 Revision history
16-Sep-2011

4

(cont.)

Chapter Analog-to-Digital Converter
Replaced “ipg_clk” and “system clock” with “MC_PLL_CLK”.
Updated MCR[WLSIDE] bit description.
Updated CDR register.
Replaced ADCDig with ADC, rewriting content as necessary.
In the PDEDR[PDED] field description, added “The delay is to allow time for the ADC

power supply to settle before commencing conversions.”.
In the AWORR0 figure, changed the fields from read-only to w1c.
In the “12-bit ADC_1 digital registers” table, revised the base address (was

0xFFE0_0000, is 0xFFE0_4000).
Deleted the “Bit access descriptions” table.
In the CIMR section, deleted the duplicate CIMR1 figure.

Chapter Cross Triggering Unit
Removed remaining references to CTU_CSR (not implemented on this chip).
In the “CTU memory map” table, changed the end address of the reserved space (was

0x002C, is 0x002F).
In the “CTU-to-ADC channel assignment” table, deleted the entries for ADC1_X[n].
In the “CTU memory map” table, added the module base address.

Chapter Flash Memory
Replaced the entire chapter.

Chapter Static RAM
In the Introduction section, replaced the text “Except in standby mode...” with the “SRAM

behavior in chip modes” table.

Chapter Register Protection
Added this chapter.

Chapter Software Watchdog Timer
Added this chapter.

Chapter Error Correction Status Module
Revised the Introduction section.
Revised the Features section.
Revised the MUDCR section to show completely that bit 1 is reserved.
In the register descriptions, revised the names as needed to match the names in the

memory map.
In the PREMR section, added text on where to find bus master IDs.
Aligned register names in the descriptions and the memory map.
Deleted the second paragraph in the Introduction section.
Deleted the last bullet (about spp_ips_reg_protection) in the Features section.
In the PREAT field descriptions, changed “AMBA-AHB” to “XBAR”.
Renamed the “Spp_ips_reg_protection” section to “Register protection” and revised the

section.
Revised the “ECC registers” section.
In the “ECSM memory map” table, added the module base address.

Table 474. Document revision history (continued)

Date Revision Changes
Doc ID 16886 Rev 6 866/868

Revision history RM0045
16-Sep-2011

4

(cont.)

Chapter IEEE 1149.1 Test Access Port Controller
In the Features section, changed “3 test data registers” to “2 test data registers”.
In the “SAMPLE instruction” section, added information about pad status.
In the “SAMPLE/PRELOAD instruction” section, added information about pad status.
In the “e200z0 OnCE controller” section, deleted references to Nexus 2+.

Chapter Multi-Layer AHB Crossbar Switch
Renamed the chapter (is “Crossbar Switch”) and replaced the entire contents.

Chapter Boot Assist Module
Deleted this chapter (relevant content is now represented by the “Microcontroller Boot”

chapter).

Chapter Enhanced Modular IO Subsystem
Deleted this chapter (relevant content is now represented by the “Timers” chapter).

Chapter System Status and Configuration Module
Deleted this chapter (relevant content is now represented by the “Microcontroller Boot”

chapter).

Appendix: Registers Under Protection
Deleted this appendix (relevant content is now represented by the “Register Protection”

chapter).

04-Jun-2012 5 Added SIUL chapter.

18-Sep-2013 6 Updated Disclaimer.

Table 474. Document revision history (continued)

Date Revision Changes
867/868 Doc ID 16886 Rev 6

RM0045

Doc ID 16886 Rev 6 868/868

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Preface
	1.1 Overview
	1.2 Audience
	1.3 Guide to this reference manual
	1.4 Register description conventions
	1.5 References
	1.6 Developer support
	1.7 How to use the SPC560D30/40 documents
	1.7.1 The SPC560D30/40 document set
	1.7.2 Reference manual content

	1.8 Using the SPC560D30/40
	1.8.1 Hardware design
	1.8.2 Input/output pins
	1.8.3 Software design
	1.8.4 Other features

	2 Introduction
	2.1 The SPC560D30/40 microcontroller family
	2.2 SPC560D30/40 device comparison
	2.3 Block diagram
	2.4 Feature summary

	3 Memory Map
	4 Signal Description
	4.1 Package pinouts
	4.2 Pad configuration during reset phases
	4.3 Voltage supply pins
	4.4 Pad types
	4.5 System pins
	4.6 Functional ports

	5 Microcontroller Boot
	5.1 Boot mechanism
	5.1.1 Flash memory boot
	5.1.2 Serial boot mode
	5.1.3 Censorship

	5.2 Boot Assist Module (BAM)
	5.2.1 BAM software flow
	5.2.2 LINFlex (RS232) boot
	5.2.3 FlexCAN boot

	5.3 System Status and Configuration Module (SSCM)
	5.3.1 Introduction
	5.3.2 Features
	5.3.3 Modes of operation
	5.3.4 Memory map and register description

	6 Clock Description
	6.1 Clock architecture
	6.2 Clock gating
	6.3 Fast external crystal oscillator (FXOSC) digital interface
	6.3.1 Main features
	6.3.2 Functional description
	6.3.3 Register description

	6.4 Slow internal RC oscillator (SIRC) digital interface
	6.4.1 Introduction
	6.4.2 Functional description
	6.4.3 Register description

	6.5 Fast internal RC oscillator (FIRC) digital interface
	6.5.1 Introduction
	6.5.2 Functional description
	6.5.3 Register description

	6.6 Frequency-modulated phase-locked loop (FMPLL)
	6.6.1 Introduction
	6.6.2 Overview
	6.6.3 Features
	6.6.4 Memory map
	6.6.5 Register description
	6.6.6 Functional description
	6.6.7 Recommendations

	6.7 Clock monitor unit (CMU)
	6.7.1 Introduction
	6.7.2 Main features
	6.7.3 Block diagram
	6.7.4 Functional description
	6.7.5 Memory map and register description

	7 Clock Generation Module (MC_CGM)
	7.1 Introduction
	7.1.1 Overview
	7.1.2 Features

	7.2 External Signal Description
	7.3 Memory Map and Register Definition
	7.3.1 Register Descriptions

	7.4 Functional Description
	7.4.1 System Clock Generation
	7.4.2 Dividers Functional Description
	7.4.3 Output Clock Multiplexing
	7.4.4 Output Clock Division Selection

	8 Mode Entry Module (MC_ME)
	8.1 Introduction
	8.1.1 Overview
	8.1.2 Features
	8.1.3 Modes of Operation

	8.2 External Signal Description
	8.3 Memory Map and Register Definition
	8.3.1 Memory Map
	8.3.2 Register Description

	8.4 Functional Description
	8.4.1 Mode Transition Request
	8.4.2 Modes Details
	8.4.3 Mode Transition Process
	8.4.4 Protection of Mode Configuration Registers
	8.4.5 Mode Transition Interrupts
	8.4.6 Peripheral Clock Gating
	8.4.7 Application Example

	9 Reset Generation Module (MC_RGM)
	9.1 Introduction
	9.1.1 Overview
	9.1.2 Features
	9.1.3 Reset sources

	9.2 External signal description
	9.3 Memory map and register definition
	9.3.1 Register descriptions

	9.4 Functional description
	9.4.1 Reset State Machine
	9.4.2 Destructive Resets
	9.4.3 External Reset
	9.4.4 Functional Resets
	9.4.5 STANDBY Entry Sequence
	9.4.6 Alternate Event Generation
	9.4.7 Boot Mode Capturing

	10 Power Control Unit (MC_PCU)
	10.1 Introduction
	10.1.1 Overview
	10.1.2 Features

	10.2 External Signal Description
	10.3 Memory Map and Register Definition
	10.3.1 Memory Map
	10.3.2 Register Descriptions

	10.4 Functional Description
	10.4.1 General
	10.4.2 Reset / Power-On Reset
	10.4.3 MC_PCU Configuration
	10.4.4 Mode Transitions

	10.5 Initialization Information
	10.6 Application Information
	10.6.1 STANDBY Mode Considerations

	11 Voltage Regulators and Power Supplies
	11.1 Voltage regulators
	11.1.1 High power regulator (HPREG)
	11.1.2 Low power regulator (LPREG)
	11.1.3 Ultra low power regulator (ULPREG)
	11.1.4 LVDs and POR
	11.1.5 VREG digital interface
	11.1.6 Register description

	11.2 Power supply strategy
	11.3 Power domain organization

	12 Wakeup Unit (WKPU)
	12.1 Overview
	12.2 Features
	12.3 External signal description
	12.4 Memory map and register description
	12.4.1 Memory map
	12.4.2 NMI Status Flag Register (NSR)
	12.4.3 NMI Configuration Register (NCR)
	12.4.4 Wakeup/Interrupt Status Flag Register (WISR)
	12.4.5 Interrupt Request Enable Register (IRER)
	12.4.6 Wakeup Request Enable Register (WRER)
	12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)
	12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)
	12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER)
	12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER)

	12.5 Functional description
	12.5.1 General
	12.5.2 Non-maskable interrupts
	12.5.3 External wakeups/interrupts
	12.5.4 On-chip wakeups

	13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
	13.1 Overview
	13.2 Features
	13.3 Device-specific information
	13.4 Modes of operation
	13.4.1 Functional mode
	13.4.2 Debug mode

	13.5 Register descriptions
	13.5.1 RTC Supervisor Control Register (RTCSUPV)
	13.5.2 RTC Control Register (RTCC)
	13.5.3 RTC Status Register (RTCS)
	13.5.4 RTC Counter Register (RTCCNT)

	13.6 RTC functional description
	13.7 API functional description

	14 e200z0h Core
	14.1 Overview
	14.2 Microarchitecture summary
	14.3 Block diagram
	14.4 Features
	14.4.1 Instruction unit features
	14.4.2 Integer unit features
	14.4.3 Load/Store unit features
	14.4.4 e200z0h system bus features

	14.5 Core registers and programmer’s model

	15 Enhanced Direct Memory Access (eDMA)
	15.1 Device-specific features
	15.1.1 Registers unavailable on this device

	15.2 Introduction
	15.2.1 Features

	15.3 Memory map and register definition
	15.3.1 Memory map
	15.3.2 Register descriptions

	15.4 Functional description
	15.4.1 eDMA basic data flow

	15.5 Initialization / application information
	15.5.1 eDMA initialization
	15.5.2 DMA programming errors
	15.5.3 DMA request assignments
	15.5.4 DMA arbitration mode considerations
	15.5.5 DMA transfer
	15.5.6 TCD status
	15.5.7 Channel linking
	15.5.8 Dynamic programming

	16 eDMA Channel Multiplexer (DMA_MUX)
	16.1 Introduction
	16.2 Features
	16.3 Modes of operation
	16.4 External signal description
	16.5 Memory map and register definition
	16.5.1 Channel configuration registers (CHCONFIGn)

	16.6 DMA_MUX inputs
	16.6.1 DMA_MUX peripheral sources
	16.6.2 DMA_MUX periodic trigger inputs

	16.7 Functional description
	16.7.1 eDMA channels with periodic triggering capability
	16.7.2 eDMA channels with no triggering capability

	16.8 Initialization/Application information
	16.8.1 Reset
	16.8.2 Enabling and configuring sources

	17 Interrupt Controller (INTC)
	17.1 Introduction
	17.2 Features
	17.3 Block diagram
	17.4 Modes of operation
	17.4.1 Normal mode

	17.5 Memory map and register description
	17.5.1 Module memory map
	17.5.2 Register description

	17.6 Functional description
	17.6.1 Interrupt request sources
	17.6.2 Priority management
	17.6.3 Handshaking with processor

	17.7 Initialization/application information
	17.7.1 Initialization flow
	17.7.2 Interrupt exception handler
	17.7.3 ISR, RTOS, and task hierarchy
	17.7.4 Order of execution
	17.7.5 Priority ceiling protocol
	17.7.6 Selecting priorities according to request rates and deadlines
	17.7.7 Software configurable interrupt requests
	17.7.8 Lowering priority within an ISR
	17.7.9 Negating an interrupt request outside of its ISR
	17.7.10 Examining LIFO contents

	18 Crossbar Switch (XBAR)
	18.1 Introduction
	18.2 Block diagram
	18.3 Overview
	18.4 Features
	18.5 Modes of operation
	18.5.1 Normal mode
	18.5.2 Debug mode

	18.6 Functional description
	18.6.1 Overview
	18.6.2 General operation
	18.6.3 Master ports
	18.6.4 Slave ports
	18.6.5 Priority assignment
	18.6.6 Arbitration

	19 System Integration Unit Lite (SIUL)
	19.1 Introduction
	19.2 Overview
	19.3 Features
	19.4 External signal description
	19.4.1 Detailed signal descriptions

	19.5 Memory map and register description
	19.5.1 SIUL memory map
	19.5.2 Register protection
	19.5.3 Register descriptions

	19.6 Functional description
	19.6.1 Pad control
	19.6.2 General purpose input and output pads (GPIO)
	19.6.3 External interrupts

	19.7 Pin muxing

	20 LIN Controller (LINFlex)
	20.1 Introduction
	20.2 Main features
	20.2.1 LIN mode features
	20.2.2 UART mode features
	20.2.3 Features common to LIN and UART

	20.3 General description
	20.4 Fractional baud rate generation
	20.5 Operating modes
	20.5.1 Initialization mode
	20.5.2 Normal mode
	20.5.3 Low power mode (Sleep)

	20.6 Test modes
	20.6.1 Loop Back mode
	20.6.2 Self Test mode

	20.7 Memory map and registers description
	20.7.1 Memory map

	20.8 Functional description
	20.8.1 UART mode
	20.8.2 LIN mode
	20.8.3 8-bit timeout counter
	20.8.4 Interrupts

	21 LIN Controller (LINFlexD)
	21.1 Introduction
	21.2 Main features
	21.2.1 LIN mode features
	21.2.2 UART mode features

	21.3 The LIN protocol
	21.3.1 Dominant and recessive logic levels
	21.3.2 LIN frames
	21.3.3 LIN header
	21.3.4 Response

	21.4 LINFlexD and software intervention
	21.5 Summary of operating modes
	21.6 Controller-level operating modes
	21.6.1 Initialization mode
	21.6.2 Normal mode
	21.6.3 Sleep (low-power) mode

	21.7 LIN modes
	21.7.1 Master mode
	21.7.2 Slave mode
	21.7.3 Slave mode with identifier filtering
	21.7.4 Slave mode with automatic resynchronization

	21.8 Test modes
	21.8.1 Loop Back mode
	21.8.2 Self Test mode

	21.9 UART mode
	21.9.1 Data frame structure
	21.9.2 Buffer
	21.9.3 UART transmitter
	21.9.4 UART receiver

	21.10 Memory map and register description
	21.10.1 LIN control register 1 (LINCR1)
	21.10.2 LIN interrupt enable register (LINIER)
	21.10.3 LIN status register (LINSR)
	21.10.4 LIN error status register (LINESR)
	21.10.5 UART mode control register (UARTCR)
	21.10.6 UART mode status register (UARTSR)
	21.10.7 LIN timeout control status register (LINTCSR)
	21.10.8 LIN output compare register (LINOCR)
	21.10.9 LIN timeout control register (LINTOCR)
	21.10.10 LIN fractional baud rate register (LINFBRR)
	21.10.11 LIN integer baud rate register (LINIBRR)
	21.10.12 LIN checksum field register (LINCFR)
	21.10.13 LIN control register 2 (LINCR2)
	21.10.14 Buffer identifier register (BIDR)
	21.10.15 Buffer data register least significant (BDRL)
	21.10.16 Buffer data register most significant (BDRM)
	21.10.17 Identifier filter enable register (IFER)
	21.10.18 Identifier filter match index (IFMI)
	21.10.19 Identifier filter mode register (IFMR)
	21.10.20 Identifier filter control registers (IFCR0–IFCR15)
	21.10.21 Global control register (GCR)
	21.10.22 UART preset timeout register (UARTPTO)
	21.10.23 UART current timeout register (UARTCTO)
	21.10.24 DMA Tx enable register (DMATXE)
	21.10.25 DMA Rx enable register (DMARXE)

	21.11 DMA interface
	21.11.1 Master node, TX mode
	21.11.2 Master node, RX mode
	21.11.3 Slave node, TX mode
	21.11.4 Slave node, RX mode
	21.11.5 UART node, TX mode
	21.11.6 UART node, RX mode
	21.11.7 Use cases and limitations

	21.12 Functional description
	21.12.1 8-bit timeout counter
	21.12.2 Interrupts
	21.12.3 Fractional baud rate generation

	21.13 Programming considerations
	21.13.1 Master node
	21.13.2 Slave node
	21.13.3 Extended frames
	21.13.4 Timeout
	21.13.5 UART mode

	22 FlexCAN
	22.1 Information specific to this device
	22.1.1 Device-specific features

	22.2 Introduction
	22.2.1 Overview
	22.2.2 FlexCAN module features
	22.2.3 Modes of operation

	22.3 External signal description
	22.3.1 Overview
	22.3.2 Signal descriptions

	22.4 Memory map/register definition
	22.4.1 FlexCAN memory mapping
	22.4.2 Message Buffer Structure
	22.4.3 Rx FIFO structure
	22.4.4 Register descriptions

	22.5 Functional description
	22.5.1 Overview
	22.5.2 Local Priority Transmission
	22.5.3 Transmit process
	22.5.4 Arbitration process
	22.5.5 Receive process
	22.5.6 Matching process
	22.5.7 Data coherence
	22.5.8 Rx FIFO
	22.5.9 CAN Protocol Related Features
	22.5.10 Modes of operation details
	22.5.11 Interrupts
	22.5.12 Bus interface

	22.6 Initialization/application information
	22.6.1 FlexCAN initialization sequence
	22.6.2 FlexCAN Addressing and RAM size configurations

	23 Deserial Serial Peripheral Interface (DSPI)
	23.1 Introduction
	23.2 Features
	23.3 Modes of operation
	23.3.1 Master mode
	23.3.2 Slave mode
	23.3.3 Module Disable mode
	23.3.4 External Stop mode
	23.3.5 Debug mode

	23.4 External signal description
	23.4.1 Signal overview
	23.4.2 Signal names and descriptions

	23.5 Memory map and register description
	23.5.1 Memory map
	23.5.2 DSPI Module Configuration Register (DSPIx_MCR)
	23.5.3 DSPI Transfer Count Register (DSPIx_TCR)
	23.5.4 DSPI Clock and Transfer Attributes Registers 0–5 (DSPIx_CTARn)
	23.5.5 DSPI Status Register (DSPIx_SR)
	23.5.6 DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER)
	23.5.7 DSPI PUSH TX FIFO Register (DSPIx_PUSHR)
	23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR)
	23.5.9 DSPI Transmit FIFO Registers 0–3 (DSPIx_TXFRn)

	23.6 Functional description
	23.6.1 Modes of operation
	23.6.2 Start and stop of DSPI transfers
	23.6.3 Serial peripheral interface (SPI) configuration
	23.6.4 DSPI baud rate and clock delay generation
	23.6.5 Transfer formats
	23.6.6 Continuous serial communications clock
	23.6.7 Interrupt/DMA requests
	23.6.8 Power saving features

	23.7 Initialization and application information
	23.7.1 How to change queues
	23.7.2 Baud rate settings
	23.7.3 Delay settings
	23.7.4 Calculation of FIFO pointer addresses

	24 Timers
	24.1 Introduction
	24.2 Technical overview
	24.2.1 Overview of the STM
	24.2.2 Overview of the eMIOS
	24.2.3 Overview of the PIT

	24.3 System Timer Module (STM)
	24.3.1 Introduction
	24.3.2 External signal description
	24.3.3 Memory map and register definition
	24.3.4 Functional description

	24.4 Enhanced Modular IO Subsystem (eMIOS)
	24.4.1 Introduction
	24.4.2 External signal description
	24.4.3 Memory map and register description
	24.4.4 Functional description
	24.4.5 Initialization/Application information

	24.5 Periodic Interrupt Timer (PIT)
	24.5.1 Introduction
	24.5.2 Features
	24.5.3 Signal description
	24.5.4 Memory map and register description
	24.5.5 Functional description
	24.5.6 Initialization and application information

	25 Analog-to-Digital Converter (ADC)
	25.1 Overview
	25.1.1 Device-specific features
	25.1.2 Device-specific implementation

	25.2 Introduction
	25.3 Functional description
	25.3.1 Analog channel conversion
	25.3.2 Analog clock generator and conversion timings
	25.3.3 ADC sampling and conversion timing
	25.3.4 ADC CTU (Cross Triggering Unit)
	25.3.5 Presampling
	25.3.6 Programmable analog watchdog
	25.3.7 DMA functionality
	25.3.8 Interrupts
	25.3.9 External decode signals delay
	25.3.10 Power-down mode
	25.3.11 Auto-clock-off mode

	25.4 Register descriptions
	25.4.1 Introduction
	25.4.2 Control logic registers
	25.4.3 Interrupt registers
	25.4.4 DMA registers
	25.4.5 Threshold registers
	25.4.6 Presampling registers
	25.4.7 Conversion timing registers CTR[0..2]
	25.4.8 Mask registers
	25.4.9 Delay registers
	25.4.10 Data registers
	25.4.11 Watchdog register

	26 Cross Triggering Unit (CTU)
	26.1 Introduction
	26.2 Main features
	26.3 Block diagram
	26.4 Memory map and register descriptions
	26.4.1 Event Configuration Registers (CTU_EVTCFGRx) (x = 0...31)

	26.5 Functional description
	26.5.1 Channel value

	27 Flash Memory
	27.1 Introduction
	27.2 Main features
	27.3 Block diagram
	27.4 Functional description
	27.4.1 Module structure
	27.4.2 Flash memory module sectorization
	27.4.3 TestFlash block
	27.4.4 Shadow sector
	27.4.5 User mode operation
	27.4.6 Reset
	27.4.7 Power-down mode
	27.4.8 Low power mode

	27.5 Register description
	27.5.1 CFlash register description
	27.5.2 DFlash register description

	27.6 Programming considerations
	27.6.1 Modify operation
	27.6.2 Double word program
	27.6.3 Sector erase

	27.7 Platform flash memory controller
	27.7.1 Introduction
	27.7.2 Memory map and register description

	27.8 Functional description
	27.8.1 Access protections
	27.8.2 Read cycles – Buffer miss
	27.8.3 Read cycles – Buffer hit
	27.8.4 Write cycles
	27.8.5 Error termination
	27.8.6 Access pipelining
	27.8.7 Flash error response operation
	27.8.8 Bank0 page read buffers and prefetch operation
	27.8.9 Bank1 Temporary Holding Register
	27.8.10 Read-while-write functionality
	27.8.11 Wait-state emulation

	28 Static RAM (SRAM)
	28.1 Introduction
	28.2 Register memory map
	28.3 SRAM ECC mechanism
	28.3.1 Access timing
	28.3.2 Reset effects on SRAM accesses

	28.4 Functional description
	28.5 Initialization and application information

	29 Register Protection
	29.1 Introduction
	29.2 Features
	29.3 Modes of operation
	29.4 External signal description
	29.5 Memory map and register description
	29.5.1 Memory map
	29.5.2 Register description

	29.6 Functional description
	29.6.1 General
	29.6.2 Change lock settings
	29.6.3 Access errors

	29.7 Reset
	29.8 Protected registers

	30 Software Watchdog Timer (SWT)
	30.1 Overview
	30.2 Features
	30.3 Modes of operation
	30.4 External signal description
	30.5 Memory map and register description
	30.5.1 Memory map
	30.5.2 Register description

	30.6 Functional description

	31 Error Correction Status Module (ECSM)
	31.1 Introduction
	31.2 Overview
	31.3 Features
	31.4 Memory map and register description
	31.4.1 Memory map
	31.4.2 Register description
	31.4.3 Register protection

	32 IEEE 1149.1 Test Access Port Controller (JTAGC)
	32.1 Introduction
	32.2 Block diagram
	32.3 Overview
	32.4 Features
	32.5 Modes of operation
	32.5.1 Reset
	32.5.2 IEEE 1149.1-2001 defined test modes

	32.6 External signal description
	32.7 Memory map and register description
	32.7.1 Instruction Register
	32.7.2 Bypass Register
	32.7.3 Device Identification Register
	32.7.4 Boundary Scan Register

	32.8 Functional Description
	32.8.1 JTAGC Reset Configuration
	32.8.2 IEEE 1149.1-2001 (JTAG) Test Access Port
	32.8.3 TAP controller state machine
	32.8.4 JTAGC instructions
	32.8.5 Boundary Scan

	32.9 e200z0 OnCE controller
	32.9.1 e200z0 OnCE Controller Block Diagram
	32.9.2 e200z0 OnCE Controller Functional Description
	32.9.3 e200z0 OnCE Controller Register Description

	32.10 Initialization/application information

	Revision history

