£_ RM0045
YI Reference manual
SPC560D30L1, SPC560D30L3, SPC560D40L1, SPC560D40L3
32-bit MCU family built on the embedded Power Architecture®

Introduction

The SPC560D30/40 is a Power Architecture® based microcontroller that target automotive
vehicle body applications such as:

Central body electronics

Vehicle body controllers

Smart junction boxes

Front modules

Body peripherals

Door control

Seat control

The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It
provides the scalability needed to implement platform approaches and delivers the
performance required through the use of increasingly sophisticated software architectures.
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive
controller complies with the Power Architecture specification, and only implements the VLE
(variable-length encoding) APU, providing improved code density. It operates at speeds of
up to 48 MHz and offers high performance processing optimized for low power consumption.
It also capitalizes on the available development infrastructure of current Power Architecture®
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.

This document describes the features of the SPC560D30/40 and options available within
the family members, and highlights important electrical and physical characteristics of the
device.

September 2013 Doc ID 16886 Rev 6 1/868

www.st.com

http://www.st.com

RMO0045 Contents

Contents
1 Preface i e i e e 40
1.1 OVeIVIBW L o e 40
1.2 AUudiENCE . .. 40
1.3 Guide to this reference manual 40
1.4 Register description conventions 43
1.5 References 44
1.6 Developer support 44
1.7 How to use the SPC560D30/40 documents 44
1.7.1 The SPC560D30/40 documentset 44
1.7.2 Reference manualcontent 45
1.8 Usingthe SPC560D30/40t e 46
1.8.1 Hardware design e 46
1.8.2 Input/output pins 47
1.8.3 Software design 47
1.8.4 Otherfeatures i e 48
2 Introductiont e e 49
2.1 The SPC560D30/40 microcontroller family 49
2.2 SPC560D30/40 device COMPAriSONo vt i i e s 49
2.3 Block diagram e 51
24 Feature summary e 52
3 Memory Mapcoiiiiiiiii ittt e ann s nnnnrnannnnnnns 53
4 SignalDescriptiont i e 56
4.1 Package pinouts e 56
4.2 Pad configuration duringresetphases 57
4.3 Voltage supply PinsSo 58
4.4 Pad types e 58
4.5 SyStem PiNS e 58
4.6 Functional ports 59
5 MicrocontrollerBootcciiiiii ittt it 71

K‘YI Doc ID 16886 Rev 6 2/868

Contents RMO0045
5.1 Bootmechanism 71
5.1.1 Flash memory boot 72

51.2 Serialbootmode 74

5.1.3 Censorship oo e 75

5.2 Boot Assist Module (BAM) 79
5.2.1 BAM software flow 79

5.2.2 LINFlex (RS232) boot 87

5.2.3 FlexCAN boOt 88

5.3 System Status and Configuration Module (SSCM) 90
5.3.1 Introduction e 90

5.3.2 Features 20

5.3.3 Modes of operation 91

5.3.4 Memory map and register description, 91

6 Clock Description.ttt it e et nnnaneennns 98
6.1 Clock architecture 98
6.2 Clock gatingt 99
6.3 Fast external crystal oscillator (FXOSC) digital interface 99
6.3.1 Main features 99

6.3.2 Functional description 99

6.3.3 Register description 101

6.4 Slow internal RC oscillator (SIRC) digital interface 102
6.4.1 Introduction 102

6.4.2 Functional description 102

6.4.3 Register description 103

6.5 Fast internal RC oscillator (FIRC) digital interface 103
6.5.1 Introduction 103

6.5.2 Functional description 104

6.5.3 Registerdescription 105

6.6 Frequency-modulated phase-locked loop (FMPLL) 105
6.6.1 Introduction 105

6.6.2 OVeIVIBW . o e 106

6.6.3 Features e 106

6.6.4 Memory map e 107

6.6.5 Register description 107

6.6.6 Functional description 110

3/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
6.6.7 Recommendations 113

6.7 Clock monitorunit (CMU) 113

6.7.1 Introduction 113

6.7.2 Main features 113

6.7.3 Block diagram 114

6.7.4 Functional description 115

6.7.5 Memory map and register description 116

7 Clock Generation Module (MC_CGM).ciiivnnnnnnn 121
7.1 Introduction e 121

711 OVIVIBW . . 121

71.2 Features 123

7.2 External Signal Description 123

7.3 Memory Map and Register Definition 123

7.3.1 Register Descriptions 127

7.4 Functional Description 131

7.41 System Clock Generation 131

7.4.2 Dividers Functional Description 133

7.4.3 Output Clock Multiplexing i 133

7.4.4 Output Clock Division Selection 133

8 Mode Entry Module (MC_ME)¢ciiiiiiiiiiinnnrnnnns 135
8.1 Introduction 135

8.1.1 OVIVIBW . . 135

8.1.2 Features 137

8.1.3 Modes of Operation 137

8.2 External Signal Description 138

8.3 Memory Map and Register Definition 138

8.3.1 Memory Map e 139

8.3.2 Register Description 146

8.4 Functional Description 168

8.4.1 Mode Transition Request i 168

8.4.2 Modes Details 169

8.4.3 Mode Transition Process 173

8.4.4 Protection of Mode Configuration Registers 181

8.4.5 Mode Transition Interrupts 181

Kﬁ Doc ID 16886 Rev 6 4/868

Contents RMO0045

8.4.6 Peripheral Clock Gating it 183

8.4.7 Application Example 183

9 Reset Generation Module MC_RGM).coinnn. 185
9.1 Introduction 185
9.1.1 OVEIVIBW . . 185

9.1.2 Features e 187

9.1.3 Resetsources 187

9.2 External signal description 188
9.3 Memory map and register definition o L 188
9.3.1 Register descriptions 190

9.4 Functional description 199
9.4.1 Reset State Machine 199

942 Destructive Resets 202

9.4.3 External Reset 203

9.4.4 Functional Resets 203

9.4.5 STANDBY Entry Sequence 204

9.4.6 Alternate Event Generation 204

9.4.7 Boot Mode Capturingot e 205

10 Power Control Unit (MC_PCU)¢iiiiiiiiiiiinnnnnns 206
10.1 Introduction e 206
1011 OVeIVIEW . ..o e 206

10.1.2 Features e 207

10.2 External Signal Description i 207
10.3 Memory Map and Register Definition 208
10.3.1 Memory Map e 208

10.3.2 Register Descriptions 209

10.4 Functional Description 212
10.4.1 General e 212

10.4.2 Reset/Power-OnReset 212

10.4.3 MC_PCU Configuration 212

10.4.4 Mode Transitions i 212

10.5 Initialization Information L. 214
10.6 Application Information L 214
10.6.1 STANDBY Mode Considerationsccoiiiien... 214

5/868 Doc ID 16886 Rev 6 KYI

RMO0045 Contents
11 Voltage Regulators and Power Suppliesccciiiinnn.. 215
11.1 Voltage regulators 215

11.1.1 High power regulator (HPREG) 215

11.1.2 Low power regulator (LPREG), 215

11.1.3 Ultra low power regulator (ULPREG) 215

11.1.4 LVDsand POR 216

11.1.5 VREGdigitalinterface 216

11.1.6 Registerdescription 216

11.2 Powersupply strategy 217

11.3 Powerdomain organization, 218

12 Wakeup Unit (WKPU)ttt e e s s ana e 219
12,1 OVeIVIEW . . e 219

12.2 Features 222

12.3 External signal description 222

12.4 Memory map and register description 222

1241 MemMOry Map .. oot 222

12.4.2 NMI Status Flag Register (NSR) 223

12.4.3 NMI Configuration Register (NCR) 224

12.4.4 Wakeup/Interrupt Status Flag Register (WISR) 225

12.4.5 Interrupt Request Enable Register (IRER) 226

12.4.6 Wakeup Request Enable Register (WRER) 226

12.4.7 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) ... 227

12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) ... 227

12.4.9 Wakeup/Interrupt Filter Enable Register (WIFER) 228

12.4.10 Wakeup/Interrupt Pullup Enable Register (WIPUER) 228

12.5 Functional description 229

12.5.1 General 229

12.5.2 Non-maskable interrupts 229

12.5.3 External wakeups/interrupts e 230

1254 On-chipwaKeupsttt e 232

13 Real Time Clock / Autonomous Periodic Interrupt (RTC/API) 233
131 OVerVIEW . e 233

13.2 Features 233

13.3 Device-specific information 235

Kﬁ Doc ID 16886 Rev 6 6/868

Contents RMO0045
134 Modesofoperation........... 235

13.4.1 Functionalmode e 235

13.42 Debugmode 236

13.5 Registerdescriptions 236

13.5.1 RTC Supervisor Control Register (RTCSUPV) 236

13.5.2 RTC Control Register (RTCC)c .. 237

13.5.3 RTC Status Register (RTCS)o 239

13.5.4 RTC Counter Register (RTCCNT) 240

13.6 RTC functional description i 240

13.7 APl functional description 241

14 €200Z0h COore i ittt et 242
141 OVEIVIEW ... e 242

14.2 Microarchitecture summary 242

14.3 Blockdiagram 244

144 Fealures e e e 245

14.41 Instructionunitfeatures il 245

1442 Integerunitfeatures e 246

14.4.3 Load/Store unitfeatures i 246

14.4.4 e200z0h systembus features 246

14.5 Core registers and programmers model 246

15 Enhanced Direct Memory Access (eDMA).cvvut 249
15.1 Device-specificfeatures 249

15.1.1 Registers unavailable on thisdevice 249

15.2 Introduction 250

15.2.1 Features e 251

15.3 Memory map and register definition 251

15.3.1 Memory mMap . ..o 251

15.3.2 Registerdescriptions 253

15.4 Functional description 274

15.4.1 eDMAbasicdataflow, 276

15.5 Initialization / application information 279

15.5.1 eDMAinitialization 279

15.5.2 DMA programming €rrorSo vttt e 281

15.5.3 DMArequestassignments 282

7/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
15.5.4 DMA arbitration mode considerations 282

15.5.5 DMAtransfer 283

1556 TCDsStatus 286

15.5.7 Channellinking e 287

15.5.8 Dynamic programmingttt e 288

16 eDMA Channel Multiplexer (DMA_MUX)cccieviivennn 290
16.1 Introduction 290

16.2 Features e 291

16.3 Modesofoperation e 291

16.4 External signal description 291

16.5 Memory map and register definition L. 291

16.5.1 Channel configuration registers (CHCONFIGn) 292

16.6 DMA_MUXInputs 293

16.6.1 DMA_MUX peripheral sources, 293

16.6.2 DMA_MUX periodic triggerinputs, 295

16.7 Functional description 295

16.7.1 eDMA channels with periodic triggering capability 295

16.7.2 eDMA channels with no triggering capability 297

16.8 Initialization/Application information 298

16.8.1 Reset . ..o e 298

16.8.2 Enabling and configuringsources 298

17 Interrupt Controller (INTC).ottt e e ans 301
17.1 Introduction 301

17.2 Features 301

17.3 Blockdiagram 302

17.4 Modesofoperation 303

1741 Normalmode e 303

17.5 Memory map and register description 304

17.5.1 Module memory mapoui ittt 304

17.5.2 Registerdescription e 305

17.6 Functional description 312

17.6.1 Interruptrequestsources i, 318

17.6.2 Priority management e 318

17.6.3 Handshaking with processor 320

Kﬁ Doc ID 16886 Rev 6 8/868

Contents RMO0045
17.7 Initialization/application information 322

17.7.1 Initialization flow 322

17.7.2 Interrupt exceptionhandler 322

17.7.3 ISR, RTOS, andtask hierarchy 324

17.7.4 Orderofexecution i 325

17.7.5 Priority ceiling protocol 326

17.7.6 Selecting priorities according to request rates and deadlines 327

17.7.7 Software configurable interruptrequests 327

17.7.8 Lowering priority withinan ISR 328

17.7.9 Negating an interrupt request outside of its ISR 328

17.7.10 ExaminingLIFOcontents 329

18 Crossbar Switch (XBAR)ciiii it it i e e ans 330
18.1 Introduction 330

18.2 Blockdiagram 330

18.3 OVervVieW e 331

18.4 Features 331

18.5 Modesofoperation 331

18.5.1 Normalmode e 331

18.5.2 Debugmode 331

18.6 Functional description 331

18.6.1 OVeIVIEW . ..o e 331

18.6.2 Generaloperation0t 332

18.6.3 Master portso 332

18.6.4 Slave portso e 333

18.6.5 Priority assignment 333

18.6.6 Arbitration e 333

19 System Integration UnitLite (SIUL), 335
19.1 Introduction 335

19.2 OVeIVIEW . .. e 335

19.3 Features e 337

19.4 External signal description 337

19.4.1 Detailed signal descriptions i 338

19.5 Memory map and register description 339

19.5.1 SIULMEemMOry map . ..ottt e e 339

9/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
19.5.2 Registerprotection e 340

19.5.3 Registerdescriptions e 340

19.6 Functional description e 357

19.6.1 Padcontrol e 357

19.6.2 General purpose input and output pads (GPIO) 358

19.6.3 Externalinterrupts 359

19.7 PiInmuxing o 360

20 LIN Controller (LINFlex).ottt iinnnnnnnnnnns 361
20.1 Introduction 361

20.2 Mainfeatures 361

20.2.1 LINmodefeatures 361

20.2.2 UARTmodefeatures i 361

20.2.3 Featurescommonto LINand UART 362

20.3 Generaldescription 362

20.4 Fractional baud rate generation 363

20.5 Operatingmodest e 365

20.5.1 Initialization mode 365

20.5.2 Normalmode e 365

20.5.3 Lowpowermode (Sleep) 365

20.6 Testmodest 366

20.6.1 LoopBackmode 366

20.6.2 SelfTestmode i 366

20.7 Memory map and registers description 367

20.7.1 MemoOry Mapottt et e e 367

20.8 Functional description 393

20.8.1 UART MOAE o e e 393

20.8.2 LINMOde e 395

20.8.3 8-bittimeoutcounter 403

20.8.4 Interrupts 404

21 LIN Controller (LINFlexD)ccciiiiiiinnnnnnnnnnnnnns 406
21.1 Introduction e 406

21.2 Mainfeatures 406

2121 LINmodefeatures i 407

2122 UARTmodefeatures i 407

Kﬁ Doc ID 16886 Rev 6 10/868

Contents RMO0045
21.3 TheLINprotocol i 408
21.3.1 Dominant and recessive logic levels 408

21.3.2 LINframeso 408

21.3.3 LINheader 409

21.3.4 ReSPONSE . . .ot 410

21.4 LINFlexD and software intervention 411
21.5 Summary of operatingmodes 411
21.6 Controller-level operatingmodes 412
21.6.1 Initialization mode 412

21.6.2 Normalmode e 413

21.6.3 Sleep (low-power) mode 413

21.7 LINMOAES e 413
2171 Mastermode e 413

21.7.2 Slave moOde i e 415

21.7.3 Slave mode with identifier filtering 418

21.7.4 Slave mode with automatic resynchronization 420

21.8 Testmodes e 422
21.8.1 LoopBackmode 422

21.8.2 SelfTestmode 422

21.9 UARTMode 423
21.9.1 Dataframestructure i 423

21.9.2 Buffer 424

21.9.3 UART transmitter e 425

21.9.4 UART reCeiVer e e 426

21.10 Memory map and register description 428
21.10.1 LIN control register 1 (LINCR1) 430
21.10.2 LIN interrupt enable register (LINIER) 433
21.10.3 LIN statusregister (LINSR) 435
21.10.4 LIN error status register (LINESR) 438
21.10.5 UART mode control register (UARTCR) 439
21.10.6 UART mode status register (UARTSR) 442
21.10.7 LIN timeout control status register (LINTCSR) 444
21.10.8 LIN output compare register (LINOCR) 445
21.10.9 LIN timeout control register (LINTOCR) 446
21.10.10 LIN fractional baud rate register (LINFBRR) 447
21.10.11 LIN integer baud rate register (LINIBRR) 447

11/868

Doc ID 16886 Rev 6 KYI

RMO0045 Contents

21.10.12 LIN checksum field register (LINCFR) 448
21.10.13 LIN control register 2 (LINCR2) 449
21.10.14 Buffer identifier register (BIDR) 450
21.10.15 Buffer data register least significant (BDRL) 451
21.10.16 Buffer data register most significant (BDRM) 452
21.10.17 Identifier filter enable register (IFER) 453
21.10.18 Identifier filter match index (IFMI) 454
21.10.19 Identifier filter mode register IFMR) 455
21.10.20 Identifier filter control registers (IFCRO-IFCR15) 456
21.10.21 Global control register (GCR) 457
21.10.22 UART preset timeout register (UARTPTO) 458
21.10.23 UART current timeout register (UARTCTO) 459
21.10.24 DMA Tx enable register (DMATXE), 460
21.10.25 DMA Rx enable register (DMARXE) 461

21.11 DMA INterface oo 462
21.11.1 Masternode, TXmode 462
21.11.2 Masternode, RXmode i 465
21.11.3 Slavenode, TXmode 467
21.11.4 Slavenode, RXmode 470
21.11.5 UART node, TXmode 0 .. 473
21.11.6 UART node, RXmode 475
21.11.7 Usecases andlimitations 478

21.12 Functional description e 479
21.12.1 8-bittimeoutcounter 479
21.12.2 Interrupts e 480
21.12.3 Fractional baud rate generation 482

21.13 Programming considerations 483
21.13.1 Masternode e 484
21.13.2 Slave Node e 485
21.13.3 Extendedframes 488
21.13.4 TimeouUl e 489
21135 UARTMOCE . ..ottt e 489

22 FIeXCAN ... i it ittt eeeaaanaaannnaenns 490
22.1 Information specific to thisdevice 490
22.1.1 Device-specificfeatures 490

22.2 Introduction 490

K‘YI Doc ID 16886 Rev 6 12/868

Contents RMO0045
2221 OVEIVIBW ..ottt 491

22.2.2 FlexCAN module features 492

22.2.3 Modesofoperation 493

22.3 External signal description 493
22.3.1 OVEIVIBW ..ottt e 493

22.3.2 Signaldescriptions 494

22.4 Memory map/register definition L. 494
2241 FlexCAN memory mappingueuiueunnennennnn.. 494

22.4.2 Message Buffer Structure 496

2243 RBxFIFOstructure i 498

22.4.4 Registerdescriptions i 500

22.5 Functional description 521
22,51 OVEIVIBW ..ottt e e 521

22.5.2 Local Priority Transmission uiiiiiiinnnnn.. 521

22.5.83 TransSmit PrOCESSo vttt e e 521

22.5.4 Arbitration process 522

2255 ReCeIVE PrOCESS . . .ottt 523

22.5.6 MatChing proCesso vttt e 524

2257 Datacoherence e 525

2258 BRXFIFO ... 528

22.5.9 CAN Protocol Related Features 529
22.5.10 Modes of operationdetails 533

22511 Interrupts e 534
22512 Businterface 534

22.6 Initialization/application information 535
22.6.1 FlexCAN initialization sequenceo .. 535

22.6.2 FlexCAN Addressing and RAM size configurations 536

23 Deserial Serial Peripheral Interface (DSPI) 537
23.1 Introduction 537
23.2 Fealures 538
23.3 Modesofoperation 539
23.3.1 Mastermode e 539

23.3.2 Slavemode 539

23.3.3 Module Disablemode 539

23.3.4 ExternalStopmode 540

13/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
23.35 Debugmode e 540
23.4 External signal description 540
23.4.1 Signal OVervieWottt 540
23.4.2 Signal names and descriptionsc. ... 540
23.5 Memory map and register description 541
2351 MemOry mMapttt e 541
23.5.2 DSPI Module Configuration Register (DSPIx MCR) 542
23.5.3 DSPI Transfer Count Register (DSPIX_TCR) 545
23.5.4 DSPI Clock and Transfer Attributes Registers 0-5 (DSPIx_CTARN) .. 546
23.5.5 DSPI Status Register (DSPIX_SR)o i .. 554
23.5.6 DSPI DMA / Interrupt Request Select and Enable Register
(DSPIX_RSER) ... 556
23.5.7 DSPIPUSH TX FIFO Register (DSPIx_PUSHR) 558
23.5.8 DSPI POP RX FIFO Register (DSPIx_POPR) 560
23.5.9 DSPI Transmit FIFO Registers 0-3 (DSPIX_TXFRn) 561
23.6 Functional description 562
23.6.1 Modesofoperation 563
23.6.2 Startand stop of DSPItransfers 564
23.6.3 Serial peripheral interface (SPI) configuration 565
23.6.4 DSPI baud rate and clock delay generation 568
23.6.5 Transferformats 571
23.6.6 Continuous serial communicationsclock 579
23.6.7 Interrupt/DMA requestst 582
23.6.8 Powersavingfeatures 583
23.7 Initialization and application information 584
23.7.1 Howtochangequeues, 584
23.7.2 Baudratesettings 585
23.7.3 Delaysettings 587
23.7.4 Calculation of FIFO pointer addresses 587
24 11T 590
241 Introduction e 590
242 Technicaloverview 590
2421 Overviewofthe STM e 592
2422 OverviewoftheeMIOS 592
2423 Overviewofthe PIT i 593
24.3 System Timer Module (STM) e 594
Kﬁ Doc ID 16886 Rev 6 14/868

Contents RMO0045
24.3.1 IntroduCtion 594

24.3.2 External signaldescription i, 594

24.3.3 Memory map and register definition 594

24.3.4 Functional description 598

24.4 Enhanced Modular IO Subsystem (eMIOS) 598
24.41 Introduction 598

24.4.2 External signal description i 601

24.4.3 Memory map and register description 601

24.4.4 Functional description 613

24.4.5 |Initialization/Application information 643

24.5 Periodic Interrupt Timer (PIT) 647
2451 IntroduCtion 647

2452 Features i 647

24.5.3 Signaldescription 648

24.5.4 Memory map and register description oL 648

2455 Functional description 652

24.5.6 Initialization and application information 653

25 Analog-to-Digital Converter (ADC)...........cciiiiiiiinnnrnnn 655
251 OVeIVIEW . .o e 655
25.1.1 Device-specificfeatures 655

25.1.2 Device-specific implementation, 656

25.2 Introduction 656
25.3 Functional description 657
25.3.1 Analogchannelconversion i .. 657

25.3.2 Analog clock generator and conversion timings 660

25.3.3 ADC sampling and conversion timing 660

25.3.4 ADC CTU (Cross Triggering Unit)o .. 663

25.3.5 Presampling e 664

25.3.6 Programmable analog watchdog 665

25.3.7 DMAfunctionality 666

25.3.8 Interrupts 666

25.3.9 Externaldecode signalsdelay 666
25.3.10 Power-downmode 667

25.3.11 Auto-clock-off mode 667

25.4 Registerdescriptions e 667
15/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
25.4.1 IntroduCtion 667

25.4.2 Controllogic registersi it 671

25.4.3 Interruptregisters e 675

25.4.4 DMA Tegisters 681

25.4.5 Thresholdregisters 684

25.4.6 Presamplingregisters 684

25.4.7 Conversion timing registers CTR[0..2] 687

25.4.8 Maskregisters 687

25.49 Delayregisters 692

25.4.10 Dataregisters 693

25.4.11 Watchdogregister 694

26 Cross TriggeringUnit (CTU)coiiiiiiiii it iiiie e 698
26.1 Introduction 698

26.2 Mainfeatures 698

26.3 Blockdiagram 698

26.4 Memory map and register descriptions 699

26.4.1 Event Configuration Registers (CTU_EVTCFGRXx) (x=0...31) 699

26.5 Functional description 700

26.5.1 Channelvalue i, 701

27 FlashMemory.ciiiiiiiiiii ittt asnnnnnnrnnnns 703
27.1 Introduction 703

27.2 Mainfeatures i 704

27.3 Blockdiagram 704

27.4 Functional description 705

27.41 Module structure 705

27.4.2 Flash memory module sectorization 706

2743 TestFlashblock 707

27.4.4 Shadow SECIOrt e 708

27.45 Usermode operationt 709

2746 Reset 710

27.47 Power-down mode 710

27.4.8 LOWPOWEr mMOde e 710

27.5 Registerdescription 711

27.5.1 CFlashregister description 713

ﬂ Doc ID 16886 Rev 6 16/868

Contents RMO0045
27.5.2 DFlashregisterdescription i, 740

27.6 Programming considerations 764

27.6.1 Modify operation 764

27.6.2 Doubleword program 765

27.6.3 SECIOr Braseot e 767

27.7 Platform flash memory controller 775

27.7.1 Introduction 775

27.7.2 Memory map and register description o ... 778

27.8 Functional description 788

27.8.1 Accessprotections 789

27.8.2 Readcycles—Buffermiss i 789

27.8.3 Readcycles—Bufferhit 789

27.8.4 Write CyCles 789

27.8,5 Errortermination 790

27.8.6 Accesspipelining 790

27.8.7 Flash error response operation 790

27.8.8 BankO0 page read buffers and prefetch operation 790

27.8.9 Banki1 Temporary Holding Register 792

27.8.10 Read-while-write functionality, 793

27.8.11 Wait-state emulation 794

28 Static RAM (SRAM) i ittt e e ennnnnns 796
28.1 Introduction 796

28.2 Registermemory map e 796

28.3 SRAMECC mechanismt 796

28.3.1 Accesstiming e 797

28.3.2 Reseteffectson SRAM accesses, 798

28.4 Functional description 798

28.5 Initialization and application information 798

29 Register Protectionc i, 799
29.1 Introduction 799

29.2 Features 799

29.3 Modesofoperation 800

29.4 External signal description 800

29.5 Memory map and register description 800

17/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Contents
29.5.1 MemMOry Mapottt e 801

29.5.2 Registerdescription 802

29.6 Functional description 804

29.6.1 General 804

29.6.2 Changelocksettings 804

29.6.3 ACCESS BITOIS . . .t ittt et e e e 807

20.7 ReSet ... 808

29.8 Protectedregisters 808

30 Software Watchdog Timer (SWT)ciii it 813
30.1 OVeIVIEW ..o 813

30.2 Features e 813

30.3 Modesofoperation 813

30.4 External signal description i 813

30.5 Memory map and register description 814

30.5.1 Memory mapttt e 814

30.5.2 Registerdescription 814

30.6 Functional description 819

31 Error Correction Status Module (ECSM)t 821
31.1 Introduction 821

B1.2 OVeIVIEW ..o 821

31.3 Features 821

31.4 Memory map and register description 821

31.4.1 MemoOry Mapottt e e 821

31.4.2 Registerdescription 822

31.4.3 Registerprotection 843

32 IEEE 1149.1 Test Access Port Controller (JTAGC) 844
32.1 Introduction 844

32.2 Blockdiagram 844

32.3 OVeIVIEW ..o 844

32.4 Features e 845

325 Modesofoperation. 845

32.5.1 Reset 845

ﬂ Doc ID 16886 Rev 6 18/868

Contents RMO0045
32.5.2 |IEEE 1149.1-2001 definedtestmodes 845

32.6 External signal description 846

32.7 Memory map and register description 846

32.7.1 Instruction Register 846

32.7.2 BypassRegister 847

32.7.3 Device Identification Register 847

32.7.4 Boundary Scan Register 848

32.8 Functional Description 848

32.8.1 JTAGC Reset Configuration 848

32.8.2 IEEE 1149.1-2001 (JTAG) Test AccessPort 848

32.8.3 TAP controller state machine, 848

32.8.4 JTAGCinstructions i 850

32.8.5 Boundary Scan 852

32.9 e200z0 OnCE controller e 852

32.9.1 e200z0 OnCE Controller Block Diagram 852

32.9.2 e200z0 OnCE Controller Functional Description 853

32.9.3 e200z0 OnCE Controller Register Description 853

32.10 Initialization/application information 855

Revision history i i i e n e e e e 856

19/868

Doc ID 16886 Rev 6 KYI

RMO0045 List of tables
List of tables

Table 1. Guide tothisreference manual. e 40
Table 2. Reference manual integration and functionalcontent 46
Table 3. SPC560D30/40 device COMPANSONo vttt e e e e e e 49
Table 4. SPC560D30/40 MeMOIY MaP. . . vttt et it e e e e e e e e 53
Table 5. Voltage supply pin descriptions e 58
Table 6. System pin descCriptions e 59
Table 7. Functional port pin descriptions e 59
Table 8. Boot mode selection e 71
Table 9. RCHW field descriptions. e 73
Table 10. Examples of legal and illegal passwords 75
Table 11. Censorship configuration and truthtable 76
Table 12. SSCM_STATUS[BMODE] valuesasusedby BAM 81
Table 13. Serialboot mode —baudrates e 81
Table 14. BAM censorship mode detection e 82
Table 15. UART boot mode download protocol e 87
Table 16. FlexCAN boot mode download protocol i e 89
Table 17. SSCM MeMOIY MaPottt e e e e e e e e e e 91
Table 18. SSCM_STATUS allowed register aCCesses.ottt i it e e e e 91
Table 19. SSCM_STATUS field descriptions i e e 92
Table 20. SSCM_MEMCONFIG field descriptions e e 92
Table 21. SSCM_MEMCONFIG allowed register accesses. 93
Table 22. SSCM_ERROR field descriptions. 94
Table 23. SSCM_ERROR allowed register accesses 94
Table 24. SSCM_DEBUGPORT field descriptions. e 95
Table 25. Debug status port modes e 95
Table 26. SSCM_DEBUGPORT allowed registeraccesses. 95
Table 27. Password Comparison Register field descriptions 96
Table 28. SSCM_PWCMPH/L allowed register acCcesses, 97
Table 29. SPC560D30/40 — Peripheral ClOCK SOUICESottt e e e 929
Table 30. Truthtable of crystal oscillator e 100
Table 31. FXOSC_CTL field descriptions. i e e e e e 101
Table 32. SIRC_CTL field descCriptions.ttt e e e e e a 103
Table 33. FIRC_CTL field descriptions.ttt e e e e e 105
Table 34. FMPLL MemMOrY Mapottt e e e e e e e ettt 107
Table 35. CRfield descriptions. o e e e e 107
Table 36. Inputdivide ratios 108
Table 37. OQutputdivide ratios.o e e 109
Table 38. Loopdivide ratios 109
Table 39. MR field descriptions e e 110
Table 40. FMPLL lookup table e 111
Table 41. Progressive clock switching on pll_selectrisingedge 111
Table 42. CMU MemMoOry Map . ..o vttt ittt e ettt e e ettt 116
Table 43. CMU_CSR field descriptions o et 117
Table 44. CMU_FDR field descriptions e 118
Table 45. CMU_HFREFR field descriptions e i e e 118
Table 46. CMU_LFREFR field descriptionst e e e 119
Table 47. CMU_ISRfield descriptions e e e e 119
Table 48. CMU_MDR field descCriptions e e e e e e 120
ﬂ Doc ID 16886 Rev 6 20/868

List of tables RMO0045

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.

21/868

MC_CGM Register Descriptiont e 123
MC_CGM MEMOIY MaPpottt e e e e e 124
Output Clock Enable Register (CGM_OC_EN) Field Descriptions. 128
Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions 129
System Clock Select Status Register (CGM_SC_SS) Field Descriptions 130
System Clock Divider Configuration Registers (CGM_SC_DCO...2) Field Descriptions . 130
MC_ME Mode Descriptions it e e 137
MC_ME Register Descriptiono e 139
MC_ME Memory Map. 141
Global Status Register (ME_GS) Field Descriptions, 147
Mode Control Register (ME_MCTL) Field Descriptions 149
Mode Enable Register (ME_ME) Field Descriptions. 150
Interrupt Status Register (ME_IS) Field Descriptions. 152
Interrupt Mask Register (ME_IM) Field Descriptions 153
Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions 153
Debug Mode Transition Status Register (ME_DMTS) Field Descriptions 155
Mode Configuration Registers (ME_<mode>_MC) Field Descriptions. 161
Peripheral Status Registers 0...4 (ME_PS0...4) Field Descriptions. 165
Run Peripheral Configuration Registers (ME_RUN_PCO...7) Field Descriptions. 165
Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions. . . 166
Peripheral Control Registers (ME_PCTLO...143) Field Descriptions 167
Peripheral control registers by peripheral 167
MC_ME Resource Control OVEIVIEW it e 174
MC_ME System Clock Selection Overview, 178
MC_RGM register description e 188
MC_RGM MEMOIY MAP . o o vttt et et et et e e e e e 189
Functional Event Status Register (RGM_FES) Field Descriptions. 191
Destructive Event Status Register (RGM_DES) Field Descriptions 193
Functional Event Reset Disable Register (RGM_FERD) Field Descriptions 194
Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions 195
Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions 196
Functional Event Short Sequence Register (RGM_FESS) Field Descriptions. 197
STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions 198
Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions. 199
MC_RGM Reset Implications e 200
MC_RGM Alternate Event Selection 204
MC_PCU Register Descriptionot e 208
MC_PCU Memory Map.ottt e e e e e 208
Power Domain Configuration Register Field Descriptions 210
Power Domain Status Register (PCU_PSTAT) Field Descriptions. 212
VREG_CTL field descriptionsot e i 217
Wakeup vector mapping. oot 219
WHKPU MeMOIY MaP . . . o ettt et e e e e e e e e e 223
NSR field descriptions 224
NCR field descriptions e 224
WISR field descriptions.o e 225
IRER field descriptions 226
WRER field descriptions. e 226
WIREER field descriptions e 227
WIFEER field descriptions e 227
WIFER field descriptions e 228
WIPUER field descriptions e 228

Doc ID 16886 Rev 6 KYI

RMO0045 List of tables
Table 101. RTC/API register Map.ot e 236
Table 102. RTCSUPV field descriptions. e e e 236
Table 103. RTCC field descriplionsot e e e e 237
Table 104. RTCSfield descCriptions i e e e e 239
Table 105. RTCCNTfield descriptionst e e 240
Table 106. eDMA MemMOIrY MaPottt e e e e e e e e e 251
Table 107. EDMA_CR field descriptions i e e 254
Table 108. EDMA_ESR field descriptions i e 256
Table 109. EDMA_ERQRL field descriptionsot e e 258
Table 110. EDMA_EEIRL field descriptionsottt e e 259
Table 111. EDMA_SERQR field descriptions.t e e 259
Table 112. EDMA_CERQR field descriptions. e 260
Table 113. EDMA_SEEIR field descriptions.ottt e e e 260
Table 114. EDMA_CEEIR field descriptions. i e e 261
Table 115. EDMA_CIRQR field descriptions i e 261
Table 116. EDMA_CER field descriptions i e e 262
Table 117. EDMA_SSBR field descriptions e e 263
Table 118. EDMA_CDSBR field descriptions. e 263
Table 119. EDMA_IRQRL field descriptions. i e e 264
Table 120. EDMA_ERL field descriptions. oottt e e e 265
Table 121. EDMA_HRSL field descriptions e e 266
Table 122. EDMA_CPRn field descriptions e 267
Table 123. TCDn 32-bitmemory structure 267
Table 124. TCDn field desCriptions.ot e e et e e 269
Table 125. TCD primary control and status fields. i i 280
Table 126. DMA Request Summary for eDMA. 282
Table 127. Modulo Feature Example e 286
Table 128. Channel linking parameters e 288
Table 129. DMA_MUX MEMOIY MAP . . o . vttt et e e e e e e e e e e e e e e e 292
Table 130. CHCONFIGN field descriptions. e 292
Table 131. Channel and triggerenabling e e 293
Table 132. eDMA channel mappingo ot e 293
Table 133. DMA_MUX periodic trigger inputs e 295
Table 134. |Interrupt sources available 302
Table 135. INTC MEMOIY MaAP . . . o ottt ettt et et e e e e e e e e et 305
Table 136. INTC_MCR field descriptionsot e 306
Table 137. INTC_CPR field descriptions e 306
Table 138. PRIValUES 307
Table 139. INTC_IACKR field descriptions.ot e i 308
Table 140. INTC_SSCIR[0:7] field desCriptionsottt e e e 310
Table 141. INTC_PSRO_3-INTC_PSR152_154 field descriptions. 311
Table 142. INTC Priority Select Register address offsets. i .. 311
Table 143. Interruptvectortable. e 312
Table 144. Order of ISR execution example. e i 325
Table 145. XBAR switch ports for SPC560D30/40. ottt e e e 330
Table 146. Hardwired bus master priorities e 333
Table 147. SIUL signal propertiest e e 337
Table 148. SIUL MEMOIY MaAP . . . oottt et et et e e e e et e e e e i i i ae 339
Table 149. MIDR1 field descriptions. e 341
Table 150. MIDR2 field descriptions.t 342
Table 151. ISR field descriptions i e 343
Table 152. [IRER field descriptions e 344
ﬂ Doc ID 16886 Rev 6 22/868

List of tables RMO0045

Table 153.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 193.
Table 194.
Table 195.
Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 203.
Table 204.

23/868

IREER field descriptions e 345
IFEER field descriptions e 345
IFER field descriptions e e 346
PCRXx field descriptions.o e e e 347
PSMIO_3 field descriptionsottt e 349
Peripheral input pin selection e 349
GPDOO0_3 field descriptionsot e e 352
GPDIO_3field descriptions oo e e 353
PGPDOO — PGPDO3 register map.v vt e e e 354
PGPDIO — PGPDI3register mapt 354
MPGPDOO — MPGPDO7 register Mmap. oo vv it it it e i e 355
MPGPDOO0..MPGPDO?7 field descriptionst 356
IFMC field descriptions e e e 357
IFCPR field desCriptions oo e e 357
Error calculation for programmed baudrates i 364
LINFIEX MemMOry Mapot e e e 367
LINCR1 field desCriptions oot e e 369
Checksum bits configuration. 370
LIN master break length selection i 370
Operating mode selection. 371
LINIER field descriptions i e e e e 371
LINSR field descriptionso e 374
LINESR field descriplionsot e e e e 376
UARTCR field descriptions. i e e 378
UARTSR field desCriptionsot e e 379
LINTCSR field descriptions.ot e e e 381
LINOCR field descCriptions i e 382
LINTOCR field descriptionso e 383
LINFBRR field descriptions. e 383
LINIBRR field descriptionso e 384
Integer baud rate selection e 384
LINCFR field descriptionsot e 385
LINCR2 field descriptionso e 386
BIDR field descCriptionsot e 387
BDRL field descriptions i e 388
BDRM field descriptionso e 389
IFER field descriptionso e 389
IFER[FACT] configuration. e e e e 389
IFMI field descriptions.o e 390
IFMR field descriptions 391
IFMRIIFM] configuration e 391
IFCR2nfield descriptionst 392
IFCR2n + 1 field descriptionsot e 393
Message buffer. e 394
Filter to interrupt vector correlation. 401
LINFlex interrupt control e 404
Errorsin Master mode e 415
Errorsin Slave mode e e e 417
Filter submodes e 418
Filter to interrupt vector correlation. 420
UART buffer structure. e 425
BDRL access iINnUART Mode e e 425

Doc ID 16886 Rev 6 Ky_l

RMO0045 List of tables
Table 205. BDRM access in UART MOde e 426
Table 206. UART reCeiVEr SCENANIOS v vttt i et e e e e e et et e e 427
Table 207. LINFIeXD_0 MemoOry Map.o ottt e e e e e e et e 428
Table 208. LINFIeXD_1 Memory Map.ottt e e et 429
Table 209. LINCRI1 field desCriptionsottt e e e e e 430
Table 211. LIN master break length selection 432
Table 212. Operating mode selection.t e 432
Table 210. Checksum bits configuration. i e e 432
Table 213. LINIER field descriptions e 433
Table 214. LINSR field descriptionst e e 436
Table 215. LINESR field descriptions. i e e 438
Table 216. UARTCR field descriptions. e e e e 440
Table 217. UARTSR field descriptions i e e e e 442
Table 218. LINTCSR field descriptions. e e e 444
Table 219. LINOCR field descriptions i e e e 445
Table 220. LINTOCR field descriptions e e e 446
Table 221. LINFBRR field descriptions. e e e 447
Table 222. LINIBRR field descCriptionst 448
Table 223. Integer baud rate selection. e 448
Table 224. LINCFR field descriptions. i e e e e 448
Table 225. LINCR2 field desCriptions oottt e e e e 449
Table 226. BIDR field descriptionst e e e 451
Table 227. BDRL field descriptions i e e e e 451
Table 228. BDRM field descriptionst e e 452
Table 229. [IFER field descriptions i e e e 453
Table 230. IFER[FACT] configuration. i e e 453
Table 231. [IFMIfield descriptions. o e 454
Table 232. [IFMR field descriptions e 455
Table 233. IFMRI[IFM] configuration e 455
Table 234. IFCR functionality basedonmode i 456
Table 235. IFCR field descriptions 457
Table 236. GCR field descriptions e e 458
Table 237. UARTPTO field descriptions. i e e 459
Table 238. UARTCTO field descriptions. i e 460
Table 239. DMATXE field descriptions. e 461
Table 240. DMARXE field descriptions. e 462
Table 241. Register settings (masternode, TXmode). 463
Table 242. TCD settings (master node, TXmode). i e 465
Table 243. TCD settings (master node, RXmode). i 467
Table 244. Register settings (slave node, TXmode)t 468
Table 245. TCD settings (slave node, TXmode)t e 470
Table 246. Register settings (slave node, RXmode) i 471
Table 247. TCD settings (slave node, RXmode) 472
Table 248. TCD settings (UART node, TXmode)ot i 475
Table 249. TCD settings (UART node, RXmode) i 478
Table 250. LINFlexD interruptcontrol. e 480
Table 251. Error calculation for programmed baud rates 483
Table 252. FIexCAN Signals.o e 494
Table 253. FIEXCAN MEMOIY MaAP .« . . o ottt i e et et e e e e e e et 495
Table 254. Message Buffer MBO memory mapping oottt e 495
Table 255. Message Buffer Structure field description. i i i 496
Table 256. Message Buffer Code for Rx buffers i i 497
ﬂ Doc ID 16886 Rev 6 24/868

List of tables RMO0045

Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.
Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.
Table 280.
Table 281.
Table 282.
Table 283.
Table 284.
Table 285.
Table 286.
Table 287.
Table 288.
Table 289.
Table 290.
Table 291.
Table 292.
Table 293.
Table 294.
Table 295.
Table 296.
Table 297.
Table 298.
Table 299.
Table 300.
Table 301.
Table 302.
Table 303.
Table 304.
Table 305.
Table 306.
Table 307.
Table 308.

25/868

Message Buffer Code for Tx buffers. 498
Rx FIFO Structure field description. 500
MCR field desCriplionsot e e 501
IDAM COOING .+« ottt e e e 505
CTRL field desCriptions.ot e e e e e 506
TIMER field desCriptions. oot e e 509
RXGMASK field desCriptionso e 511
ECR field desCriptions e e 513
ESR field descriptions. e e 514
Faultconfinementstate 516
MASK2 field descriptions e e 517
IMASKT field desCriptions.ot e e 518
IFLAG2 field desCriptions oot e e e 519
IFLAGH field desCriptionsot e e e 520
Time Segment Syntax 531
CAN Standard Compliant Bit Time Segment Settings 531
Minimum Ratio Between Peripheral Clock Frequency and CAN BitRate 532
Signal PropPerties.ot e e 540
DSPIMEeMOIY MaP . . o . ettt e et e e e e e e e e e e 541
DSPIX_MCR field descriptionsot e 543
DSPIx_TCR field descriptions e e e 546
DSPIx_CTARnNfield descriptions e 547
DSPISCK AUty CYClEt e 550
DSPItransfer frame size. e 550
DSPIPCSto SCKdelay scaler e 551
DSPI After SCK delay scaler e 551
DSPI delay after transfer scaler 551
DSPIbaud rate sCaler. e 552
DSPISCK AUty CYCIE . . . oot e e 552
DSPIltransfer frame Size. e 552
DSPIPCSto SCKdelay scaler i e e 553
DSPI After SCK delay scaler e 553
DSPI delay after transferscaler 553
DSPIbaud rate sCaler. 554
DSPIx_SR field descriptions. e 555
DSPIx_RSER field descriptionst 557
DSPIx_PUSHR field descriptionst e 559
DSPIx_POPR field descriptions e 560
DSPIx_TXFRn field descriptions e 561
DSPIx_RXFRn field description o e 562
State transitions for start and stop of DSPItransfers 565
Baud rate computation example. 569
CS to SCK delay computation example 569
After SCK delay computation example. i e 570
Delay after transfer computation example i 570
Peripheral chip select strobe assert computation example. 571
Peripheral chip select strobe negate computationexample 571
Delayed master sample point 575
Interrupt and DMA Request Conditions i 582
Baud rate values. e 586
Delay values e 587
eMIOS_O0 channelto pin mappingot e 593

Doc ID 16886 Rev 6 Ky_l

RMO0045 List of tables
Table 309. STM MEMOIY MaP . . .ottt ittt et e e e e e e e e e e 594
Table 310. STM_CR field desCriptionst e e e 596
Table 311. STM_CNT field desCriptionst e e 596
Table 312. STM_CCRN field descriptions.ot e e e 597
Table 313. STM_CIRn field descriptions e e e 597
Table 314. STM_CMPn field descriptions e e 598
Table 315. eMIOS MEMOIY MaAP.ttt et e et e e e i 601
Table 316. Unified Channel memory mapttt e i 602
Table 317. EMIOSMCR field descriptions i e e 603
Table 318. Gilobal prescaler clock divider. e e e 603
Table 319. EMIOSGFLAG field descriptionst e e 604
Table 320. EMIOSOUDIS field descriptions. oot 605
Table 321. EMIOSUCDIS field descriptionsottt e e 605
Table 322. EMIOSA[n], EMIOSB[n] and EMIOSALTA[n] values assignment. 607
Table 323. EMIOSC[n] field descriptions i e e 608
Table 324. UC internalprescaler clock divider. i i e 610
Table 325. UC inputfilter bits e e e 610
Table 326. UC BSL bits e 611
Table 327. Channel mode selection e 611
Table 328. EMIOSS[n] field descCriptionst e e 612
Table 329. PIT MemoOry Mapot e e e e e 648
Table 330. Timerchannel n e e 648
Table 331. PITMCR field descriptions i e e e 649
Table 332. LDVAL field desCriptions.o ot e e e 650
Table 333. CVAL field desCriptions.ot e e e e e 650
Table 334. TCTRL field descriptions i e e e e 651
Table 335. TFLG field descriptions. e 652
Table 336. ADC sampling and conversion timingat5V forADC_1.......................... 662
Table 337. ADC sampling and conversion timingat3.3VforADC_1........................ 662
Table 338. Max/Min ADC_clk frequency and related configuration settings at 5 V for ADC_1 662
Table 339. Max/Min ADC_clk frequency and related configuration settings at 3.3 V for ADC_1. ... 663
Table 340. Presampling voltage selection based on PREVALx fields 664
Table 341. Values of WDGxH and WDGXxL fields. i 665
Table 342. 12-bit ADC_1 digital registers. e 668
Table 343. MCR field descriptions e 672
Table 344. MSR field descriptions e 674
Table 345. ISR field descriptions 675
Table 346. Interrupt Mask Register (IMR) field descriptions. 677
Table 347. CIMR field descriptions. e 679
Table 348. ADC_1 WTISR field descriptions« .o i 679
Table 349. ADC_1 WTIMR field descriptionst e 680
Table 350. DMAE field descriptions e 681
Table 351. DMARX field descriptions e 683
Table 352. ADC_1 THRHLR field descriptions. e 684
Table 353. PSCR field descriptionst e 685
Table 354. PSR field descriptions. 686
Table 355. CTR field descriptions. e 687
Table 356. NCMR field descriptions i e i i 689
Table 357. JCMR field descriptionst e 691
Table 358. DSDR field descriptions i 692
Table 359. PDEDR field descriptions e 693
Table 360. CDR field descriptions e e 694
ﬂ Doc ID 16886 Rev 6 26/868

List of tables RMO0045

Table 361.
Table 362.
Table 363.
Table 364.
Table 365.
Table 366.
Table 367.
Table 368.
Table 369.
Table 370.
Table 371.
Table 372.
Table 373.
Table 374.
Table 375.
Table 376.
Table 378.
Table 379.
Table 377.
Table 380.
Table 381.
Table 382.
Table 383.
Table 384.
Table 385.
Table 386.
Table 387.
Table 388.
Table 389.
Table 390.
Table 391.
Table 392.
Table 393.
Table 394.
Table 395.
Table 396.
Table 397.
Table 398.
Table 399.
Table 400.
Table 401.
Table 402.
Table 403.
Table 404.
Table 405.
Table 406.
Table 407.
Table 408.
Table 409.
Table 410.
Table 411.
Table 412,

27/868

CWSELR field desCriptions.ot e e 695
CWENRKX field desCriptions. oot e e e 696
AWORRKX field descriptions e e e 697
CTUMEMOIY MaAP . .t ittt et et e e e e e e e e e 699
CTU_EVTCFGRx field descriptionst e e 699
THQQEr SOUICE. . . o ottt it e e e e e e e e e 700
CTU-to-ADC channel assignmentt 702
Flash memory features. e 704
CFlash module sectorizationt 706
DFlash module sectorization e 707
CFlash TestFlash structure. i e e 707
DFlash TestFlash structure. e 708
Shadow sector structure. 708
CFlash registerso 711
DFlash registers e e 712
CFLASH_MCR field descriptions oot e e e 713
Low address space configuration. e 717
Mid address space configuration e 717
Array SPACE SIZE . . . o o e 717
CFLASH_MCR bits set/clear priority levels 718
CFLASH_LML field descriptions.ot e e e 719
CFLASH_NVLML field descriptionsot 721
CFLASH_SLL field descriptionsottt e e e 723
CFLASH_NVSLL field descriptions i 725
CFLASH_LMS field descriptionsttt e e e e 726
CFLASH_ADR field descriptionst e 727
CFLASH_ADR content: priority list. e 727
CFLASH_UTO field descriptions oo ot e 728
CFLASH_UT1 field descriptionso oot e e e 730
CFLASH_UT2 field descriptionso oot e 731
CFLASH_UMISRO field descriptions i e e 732
CFLASH_UMISRT1 field descriptions i e 733
CFLASH_UMISR2 field descriptionsot e 734
CFLASH_UMISRS field descriptionst 735
CFLASH_UMISRA4 field descriptionst e 736
NVPWODO field descriptions. e 737
NVPWD1 field descriptions. e 738
NVSCCO field descriptionso i e 738
NVSCCH1 field descriptionso i e 739
NVUSRO field descriptions. i 740
DFLASH_MCR field descriptionsot e 741
AITaY SPACE SIZE . . . ot 744
Low address space configuration. e 745
Mid address space configuration e 745
DFLASH_MCR bits set/clear priority levels i i 745
DFLASH_LML field descriptions. e 747
DFLASH_NVLML field descriptionsot e e 749
DFLASH_SLL field descriptionsot 751
DFLASH_NVSLL field descriptions e 753
DFLASH_LMS field descriptionst e e 754
DFLASH_ADR field descriptions 755
DFLASH_ADR content: priority list. 755

Doc ID 16886 Rev 6 Ky_l

RMO0045 List of tables
Table 413. DFLASH_UTO field descriptions. i e e 756
Table 414. DFLASH_UT1 field descriptions. i e e 758
Table 415. DFLASH_UT2 field descriptions.o i e e e 759
Table 416. DFLASH_UMISRO field descriptionst 760
Table 417. DFLASH_UMISR1 field descriptionst 761
Table 418. DFLASH_UMISR2 field descriptionst 762
Table 419. DFLASH_UMISRS field descriptionst 763
Table 420. DFLASH_UMISRA4 field descriptionsttt e e 764
Table 421. Flash memory modify operations 765
Table 422. Bit manipulation: Double words with the same ECCvalue. 773
Table 423. Flash memory-related regions in the systemmemorymap 779
Table 424. Platform flash memory controller 32-bitmemorymap 779
Table 425. PFCRO field desCriptionst e e e 781
Table 426. PFCRI1 field desCriptions it e e e e 785
Table 427. PFAPR field descriptions i e e e 787
Table 428. NVPFAPR field desCriptionso e e e e 788
Table 429. Platform flash memory controller stall-while-write interrupts. 794
Table 430. Additional wait-state encoding i e 795
Table 431. Extended additional wait-state encoding 795
Table 432. SRAM MEMOIY MAP . . o o vttt i e et e e e e et et e et e e i e 796
Table 433. Number of wait states required for SRAM operations. 797
Table 434. Register protection memory mapttt e 801
Table 435. SLBRnfield descriptions.ottt e 802
Table 436. Soft lock bits vs. protectedaddress i e 803
Table 437. GCR field descCriptions e e 804
Table 438. Protected registers e 808
Table 439. SWT MEeMOIY MaAP . . . oottt e et et et et e et e e e i e 814
Table 440. SWT_CR field descriptions. e 815
Table 441. SWT_IR field descriptions it e 817
Table 442. SWT_TO Register field descriptions. i e 817
Table 443. SWT_WN Register field descriptions 818
Table 444. SWT_SR field descriptionsot i 818
Table 445. SWT_CO field descriptions.t e i 819
Table 446. ECSM MEeMOIY MaP . . o o vttt it it et e e e e et e e i i i i e 821
Table 447. PCT field descCriptions. i e 823
Table 448. REV field descriptions. e 823
Table 449. 1OPMC field descriptionst e i 824
Table 450. MWCR field descriptions i e 825
Table 451. MIR field descCriptions e 826
Table 452. MUDCR field descriptions. 827
Table 453. ECR field descriptionst e 829
Table 454. ESR field descriptions. 831
Table 455. EEGR field descriptions i 832
Table 456. PFEAR field descriptions e 835
Table 457. PFEMR field descriptions e 836
Table 458. PFEAT field descriptions e e 837
Table 459. PFEDR field descriptions e 838
Table 460. PREAR field descriptions e 838
Table 461. PRESR field descriptions 839
Table 462. RAM syndrome mapping for single-bit correctable errors. 839
Table 463. PREMR field descriptions. 841
Table 464. PREAT field descriptions e e 842
ﬂ Doc ID 16886 Rev 6 28/868

List of tables RMO0045

Table 465.
Table 466.
Table 467.
Table 468.
Table 469.
Table 474.

29/868

PREDR field descriptionsot e 842
JTAG Signal propertieso v i e e 846
Device Identification Register Field Descriptions 847
JTAG INStrUCHONS o 850
€200z0 OnCE Register Addressing. oottt et 854
Document revision history e e 856

Doc ID 16886 Rev 6 Ky_l

RMO0045

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

574

Register figure conventions e 43
SPC560D30/40 series block diagram. e 51
LQFP64 pin configuration (top VIEW)t 56
LQFP100 pin configuration (fop View)o 57
Boot mode selection e e 72
Boot sector structure. e 73
Flash memory boot mode sequence i 74
Censorship control in flash memorybootmode oL 78
Censorship control in serial bootmode 79
BAM logiC flowo 80
BAM censorship mode detection 83
BAM serial boot mode flow for censorship enabled and private password. 85
Start address, VLE bit and download sizeinbytes. 86
LINFlex bit timing in UART mode e 87
FIexCAN bit timingo e 89
SSCM block diagram e 20
System Status Register (SSCM_STATUS) e, 91
System Memory Configuration Register (SSCM_MEMCONFIG). 92
Error Configuration (SSCM_ERROR). 93
Debug Status Port Register (SSCM_DEBUGPORT) i 94
Password Comparison Register High Word (SSCM_PWCMPH). 96
Password Comparison Register Low Word (SSCM_PWCMPL). 96
SPC560D30/40 system clock generation.t 98
Fast External Crystal Oscillator Control Register (FXOSC_CTL). 101
Low Power RC Control Register (SIRC_CTL)t 103
FIRC Oscillator Control Register (FIRC_CTL)t 105
FMPLL block diagram. e 106
Control Register (CR) e 107
Modulation Register (MR). e 109
FMPLL output clock division flow during progressive switching. 111
Frequency modulation e 112
Clock Monitor Unit diagram e e 114
Control Status Register (CMU_CSR) i e e e 117
Frequency Display Register (CMU_FDR). e 118
High Frequency Reference Register FMPLL (CMU_HFREFR) 118
Low Frequency Reference Register FMPLL (CMU_LFREFR)..................... 119
Interrupt status register (CMU_ISR) e e 119
Measurement Duration Register (CMU_MDR). 120
MC_CGM block diagram e e 122
Output Clock Enable Register (CGM_OC_EN) i, 128
Output Clock Division Select Register (CGM_OCDS_SC). 128
System Clock Select Status Register (CGM_SC_SS) 129
System Clock Divider Configuration Registers (CGM_SC_DCO0...2) 130
MC_CGM System Clock Generation Overview 132
MC_CGM Output Clock Multiplexer and PA[0] Generation 133
MC_ME Block Diagramttt e e e 136
Global Status Register (ME_GS) i e e 146
Mode Control Register (ME_MCTL)ot e e 148

Doc ID 16886 Rev 6 30/868

List of figures RMO0045

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
Figure 99.
Figure 100.

31/868

Mode Enable Register (ME_ME) i e e 150
Interrupt Status Register (ME_IS). e 151
Interrupt Mask Register (ME_IM) e 152
Invalid Mode Transition Status Register (ME_IMTS) 153
Debug Mode Transition Status Register ME_DMTS), 154
RESET Mode Configuration Register ME_RESET_MC). 157
TEST Mode Configuration Register (ME_TEST_MC) 158
SAFE Mode Configuration Register ME_SAFE_MC), 158
DRUN Mode Configuration Register (ME_DRUN_MC) 159
RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC) 159
HALT Mode Configuration Register (ME_HALT_MC) i, 160
STOP Mode Configuration Register ME_STOP_MC). 160
STANDBY Mode Configuration Register (ME_STANDBY_MC). 161
Peripheral Status Register O (ME_PSO) e 163
Peripheral Status Register 1 (ME_PS1) i 163
Peripheral Status Register2 (ME_PS2) i i e 164
Peripheral Status Register 3(ME_PS3) i e 164
Run Peripheral Configuration Registers (ME_RUN_PCO0...7) 165
Low-Power Peripheral Configuration Registers (ME_LP_PCO0...7) 166
Peripheral Control Registers (ME_PCTLO...143)ot 167
MC_ME Mode Diagramt e 169
MC_ME Transition Diagramt 180
MC_ME Application Example Flow Diagram i, 184
MC_RGM block diagram 186
Functional Event Status Register (RGM_FES). 191
Destructive Event Status Register (RGM_DES). i, 192
Functional Event Reset Disable Register (RGM_FERD) 193
Destructive Event Reset Disable Register (RGM_DERD) 195
Functional Event Alternate Request Register (RGM_FEAR) 195
Functional Event Short Sequence Register (RGM_FESS). 196
STANDBY Reset Sequence Register (RGM_STDBY), 198
Functional Bidirectional Reset Enable Register (RGM_FBRE) 198
MC_RGM State Machine 201
MC_PCU Block Diagramo e 207
Power Domain #0 Configuration Register (PCU_PCONFOQ). 209
Power Domain #1 Configuration Register (PCU_PCONF1).......... 211
Power Domain Status Register (PCU_PSTAT) 211
MC_PCU Events During Power Sequences (STANDBY mode). 213
Voltage Regulator Control Register (VREG_CTL)t 217
WKPU block diagram e 221
NMI Status Flag Register (NSR). e 223
NMI Configuration Register (NCR) e 224
Wakeup/Interrupt Status Flag Register (WISR) 225
Interrupt Request Enable Register (IRER) i 226
Wakeup Request Enable Register (WRER) e 226
Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER). 227
Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER). 227
Wakeup/Interrupt Filter Enable Register (WIFER) 228
Wakeup/Interrupt Pullup Enable Register (WIPUER). 228
NMIpad diagram e e 229
External interrupt pad diagram e 231
RTC/API block diagram e e 234

Doc ID 16886 Rev 6 KYI

RMO0045

List of figures

Figure 101.
Figure 102.
Figure 103.
Figure 104.
Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.
Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.
Figure 120.
Figure 121.
Figure 122.
Figure 123.
Figure 124.
Figure 125.
Figure 126.
Figure 127.
Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.
Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.

574

Clock gating for RTC ClOCKS ot e 235
RTC Supervisor Control Register (RTCSUPV). i 236
RTC Control Register (RTCC)o e e e 237
RTC Status Register (RTCS)t e e e 239
RTC Counter Register (RTCCNT)ot e e e 240
€200z0h block diagram.t 244
€200z0 SUPERVISOR Mode Program Model SPRs oot 248
eDMA block diagram e 250
DMA Control Register (EDMA_CR)o e e 254
DMA Error Status (EDMA_ESR) Register i 256
DMA Enable Request (EDMA_ERQRL) Registers., 258
DMA Enable Error Interrupt (EDMA_EEIRL) Register 259
DMA Set Enable Request (EDMA_SERQR) Register 259
DMA Clear Enable Request (EDMA_CERQR) Register. 260
DMA Set Enable Error Interrupt (EDMA_SEEIR) Register. 260
DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register 261
DMA Clear Interrupt Request (EDMA_CIRQR) Fields 261
DMA Clear Error (EDMA_CER) Register e 262
DMA Set START Bit (EDMA_SSBR) Register i 262
DMA Clear DONE Status (EDMA_CDSBR) Register.ot 263
DMA Interrupt Request (EDMA_IRQRL) Registers, 264
DMA Error (EDMA_ERL) Registerst e e e 265
DMA Hardware Request Status (EDMA_HRSL) Register 265
DMA Channel n Priority (EDMA_CPRn) Register. 266
TCD SIUCIUIE . . . oot e e e e e 268
eDMA operation, part 1. 277
eDMA operation, part 2. e 278
eDMA operation, part 3. e 279
Example of multiple loop iterations. 281
Memory array 1ermMsSo e 281
DMA_MUX block diagram e 290
Channel Configuration Registers (CHCONFIGN) e 292
DMA_MUX channel 0-3 block diagram e 296
DMA_MUX channel triggering: Normal operation. 296
DMA_MUX channel triggering: Ignored trigger. 297
DMA_MUX channel 4—15 block diagram i 298
INTC block diagram 303
INTC Module Configuration Register INTC_MCR), 306
INTC Current Priority Register (INTC_CPR). e 306

INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =0. ... 308
INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =1.... 308

INTC End-of-Interrupt Register (INTC_EOIR) 309
INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIR[0:3]).ot 309
INTC Software Set/Clear Interrupt Register 47 (INTC_SSCIR[4:7]). oot s 310
INTC Priority Select Register 0-3 (INTC_PSR[0:3]).« oot 311
INTC Priority Select Register 152-154 (INTC_PSR[152:154]) v nt. 311
Software vector mode handshaking timing diagram. 321
Hardware vector mode handshaking timingdiagram 322
XBAR block diagram. 330
System Integration Unit Lite block diagram 336
MCU ID Register #1 (MIDR1)o e 341
MCU ID Register #2 (MIDR2)ot e 342

Doc ID 16886 Rev 6 32/868

List of figures RMO0045

Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.
Figure 186.
Figure 187.
Figure 188.
Figure 189.
Figure 190.
Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.

33/868

Interrupt Status Flag Register (ISR) 343
Interrupt Request Enable Register (IRER) i i 344
Interrupt Rising-Edge Event Enable Register (IREER). 344
Interrupt Falling-Edge Event Enable Register (IFEER). 345
Interrupt Filter Enable Register (IFER) i e 346
Pad Configuration Registers (PCRX)t e 347
Pad Selection for Multiplexed Inputs Register (PSMIO_3) 349
Port GPIO Pad Data Output Register 0-3 (GPDOO0_3) vt 352
Port GPIO Pad Data Input Register 0-3 (GPDIO_3). 353
Interrupt Filter Maximum Counter Registers (IFMCO-IFMC23) 356
Interrupt Filter Clock Prescaler Register (IFCPR). 357
Data Port example arrangement showing configuration for different port width accesses 358
External interrupt pad diagram 359
LIN topology Network e 363
LINFlex block diagram e e 363
LINFlex operating modesottt e e 365
LINFlexinloop backmode e 366
LINFlex inselftestmode e 367
LIN control register 1 (LINCR1) e e e 368
LIN interrupt enable register (LINIER) i 371
LIN status register (LINSR). i e e e 373
LIN error status register (LINESR) i 376
UART mode control register (UARTCR). it e 377
UART mode status register (UARTSR) i 379
LIN timeout control status register (LINTCSR) i 381
LIN output compare register (LINOCR) i i 382
LIN timeout control register (LINTOCR) i e 382
LIN fractional baud rate register (LINFBRR). i 383
LIN integer baud rate register (LINIBRR) 384
LIN checksum field register (LINCFR) i 385
LIN control register 2 (LINCR2)ot e 385
Buffer identifier register (BIDR). e 387
Buffer data register LSB (BDRL)ttt e 388
Buffer data register MSB (BDRM) 388
Identifier filter enable register (IFER) 389
Identifier filter match index (IFMI) e 390
Identifier filter mode register (IFMR). o 391
Identifier filter control register (IFCR2n) e 392
Identifier filter control register (IFCR2n+ 1) i 393
UART mode 8-bitdataframe 394
UART mode 9-bitdataframe 394
Filter configuration—register organization 400
Identifier match index e 401
LIN synch field measurement 402
Header and response timeout e 404
LINFlexD block diagramo e 406
LIN network topologyo e 408
LIN frame structure e 409
Break field. e 409
SyNC pattern . . . e 410
Structure of the datafield 410
Identifier e 410

Doc ID 16886 Rev 6 KYI

RMO0045

List of figures

Figure 205.
Figure 206.
Figure 207.
Figure 208.
Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.
Figure 227.
Figure 228.
Figure 229.
Figure 230.
Figure 231.
Figure 232.
Figure 233.
Figure 234.
Figure 235.
Figure 236.
Figure 237.
Figure 238.
Figure 239.
Figure 240.
Figure 241.
Figure 242.
Figure 243.
Figure 244.
Figure 245.
Figure 246.
Figure 247.
Figure 248.
Figure 249.
Figure 250.
Figure 251.
Figure 252.
Figure 253.
Figure 254.
Figure 255.
Figure 256.

574

LINFlexD controller operatingmodest e 412
Filter configuration - register organization 419
[dentifier matchindex 420
LIN sync field measurement i e 421
LINFlexDin Loop Backmode. i e e e e 422
LINFlexD in Self Testmode e 423
UART mode 8-bitdataframe 423
UART mode 9-bitdataframe 424
UART mode 16-bitdataframe e 424
UART mode 17-bitdataframe e 424
LIN control register 1 (LINCR1) e e e 430
LIN interrupt enable register (LINIER) i 433
LIN status register (LINSR). i e e 435
LIN error status register (LINESR) e 438
UART mode control register (UARTCR).ot e e 439
UART mode status register (UARTSR) i 442
LIN timeout control status register (LINTCSR) i 444
LIN output compare register (LINOCR) i 445
LIN timeout control register (LINTOCR)t e 446
LIN timeout control register (LINTOCR) e 447
LIN integer baud rate register (LINIBRR) i 447
LIN checksum field register (LINCFR) i 448
LIN control register 2 (LINCR2) i e e 449
Buffer identifier register (BIDR).o 450
Buffer data register least significant (BDRL). i 451
Buffer data register most significant (BDRM) i 452
Identifier filter enable register (IFER) i 453
Identifier filter match index (IFMI) e 454
Identifier filter mode register (IFMR). 455
Identifier filter control registers (IFCRO-IFCR15) 456
Global control register (GCR)o e 457
UART preset timeout register (UARTPTO). 459
UART current timeout register (UARTCTO)ot e 460
DMA Tx enable register (DMATXE)o oot e e 461
DMA Rx enable register (DMARXE). i e 461
TCD chain memory map (master node, TXmode). 463
FSM to control the DMA TX interface (masternode) 464
TCD chain memory map (master node, RXmode). 465
FSM to control the DMA RX interface (masternode) 466
TCD chain memory map (slave node, TXmode), 467
FSM to control the DMA TX interface (slavenode)ot 469
TCD chain memory map (slave node, RXmode). 470
FSM to control the DMA RX interface (slavenode) it 472
TCD chain memory map (UART node, TXmode), 473
FSM to control the DMA TX interface (UARTnode)., 474
TCD chain memory map (UART node, RXmode) 475
FSM to control the DMA RX interface (UARTnode). oot 477
Header and response timeout e 480
Interrupt diagram e 482
Programming consideration: master node, transmitter. 484
Programming consideration: master node, receiver. 484
Programming consideration: master node, transmitter, biterror. 484

Doc ID 16886 Rev 6 34/868

List of figures RMO0045

Figure 257.
Figure 258.
Figure 259.
Figure 260.
Figure 261.
Figure 262.

Figure 263.
Figure 264.

Figure 265.
Figure 266.
Figure 267.
Figure 268.
Figure 269.
Figure 270.
Figure 271.
Figure 272.
Figure 273.
Figure 274.
Figure 275.
Figure 276.
Figure 277.
Figure 278.
Figure 279.
Figure 280.
Figure 281.
Figure 282.
Figure 283.
Figure 284.
Figure 285.
Figure 286.
Figure 287.
Figure 288.
Figure 289.
Figure 290.
Figure 291.
Figure 292.
Figure 293.
Figure 294.
Figure 295.
Figure 296.
Figure 297.
Figure 298.
Figure 299.
Figure 300.
Figure 301.
Figure 302.
Figure 303.
Figure 304.
Figure 305.

35/868

Programming consideration: master node, receiver, checksumerror 484
Programming consideration: slave node, transmitter, nofilters 485
Programming consideration: slave node, receiver, nofilters 485
Programming consideration: slave node, transmitter, no filters, biterror 485
Programming consideration: slave node, receiver, no filters, checksumerror. 485
Programming consideration: slave node, at least one TX filter, BF is reset, ID matches filter
... 486
Programming consideration: slave node, at least one RX filter, BF is reset, ID matches filter
... 486
Programming consideration: slave node, RX only, TX only, RX and TX filters, ID not matching
filter, BE IS reset 486
Programming consideration: slave node, TX filter, BFisset 487
Programming consideration: slave node, RX filter, BFisset 487
Programming consideration: slave node, TX filter, RX filter, BFisset............... 488
Programming consideration: extended frames. 488
Programming consideration: response timeout 489
Programming consideration: frame timeout i L 489
Programming consideration: headertimeout 489
Programming consideration: UARTmode it 489
FlexCAN block diagram i e 491
Message Buffer Structure. e 496
RX FIFO StrUCIUrE o e e e 499
ID Table O—7 . .o 499
Module Configuration Register (MCR) 501
Control Register (CTRL)ot e e e e e e 505
Free Running Timer (TIMER) e e 509
Rx Global Mask Register (RXGMASK). e 510
Error Counter Register (ECR).o 513
Error and Status Register (ESR) 514
Interrupt Masks 2 Register (IMASK2) 517
Interrupt Masks 1 Register (IMASKT) 518
Interrupt Flags 2 Register (IFLAG2) e 519
Interrupt Flags 1 Register (IFLAGT) e 520
CAN Engine Clocking Scheme e 530
Segments withinthe Bit Time 531
Arbitration, Match and Move Time Windows 532
DSPIblock diagram 537
DSPI with queues and eDMA 538
DSPI Module Configuration Register (DSPIX_MCR) oo, 543
DSPI Transfer Count Register (DSPIX_TCR) 546
DSPI Clock and Transfer Attributes Registers 0-5 (DSPIx_CTARNn) 547
DSPI Status Register (DSPIX_SR)o 554
DSPI DMA / Interrupt Request Select and Enable Register (DSPIx_RSER) 557
DSPI PUSH TX FIFO Register (DSPIXx_PUSHR) i 558
DSPI POP RX FIFO Register (DSPIX_POPR) e 560
DSPI Transmit FIFO Register 0-3 (DSPIX_TXFRn). oo, 561
DSPI Receive FIFO Registers 0-3 (DSPIX_RXFRn), 562
SPI serial protocol OVEIVIEWo e 563
DSPI start and stop state diagram L 565
Communications clock prescalersandscalers.o ... 569
Peripheral chip select strobe timing 571
DSPI transfer timing diagram (MTFE =0, CPHA=0,FMSZ=8) 573
Doc ID 16886 Rev 6 KY_I

RMO0045

List of figures

Figure 306.
Figure 307.
Figure 308.
Figure 309.
Figure 310.
Figure 311.
Figure 312.
Figure 313.
Figure 314.
Figure 315.
Figure 316.
Figure 317.
Figure 318.
Figure 319.
Figure 320.
Figure 321.
Figure 322.
Figure 323.
Figure 324.
Figure 325.
Figure 326.
Figure 327.
Figure 328.
Figure 329.
Figure 330.
Figure 331.
Figure 332.
Figure 333.
Figure 334.
Figure 335.
Figure 336.
Figure 337.
Figure 338.
Figure 339.
Figure 340.
Figure 341.
Figure 342.
Figure 343.
Figure 344.
Figure 345.
Figure 346.
Figure 347.
Figure 348.
Figure 349.
Figure 350.
Figure 351.
Figure 352.
Figure 353.
Figure 354.
Figure 355.
Figure 356.
Figure 357.

574

DSPI transfer timing diagram (MTFE =0, CPHA=1,FMSZ=8) 574
DSPI modified transfer format (MTFE =1, CPHA =0, fgck =fgys/4) 576
DSPI modified transfer format (MTFE =1, CPHA =1, fgck =fgyg/4)t 577
Example of non-continuous format (CPHA=1,CONT=0)....................... 578
Example of continuous transfer (CPHA =1, CONT=1)............. 578
Polarity switching betweenframes 579
Continuous SCK timing diagram (CONT=0)t 580
Continuous SCK timing diagram (CONT=1). ot e 581
TX FIFO pointers and CoOUNter it e e 588
Interaction between timers and relevant peripherals 591
STM Control Register (STM_CR)o e e 595
STM Count Register (STM_CNT)ttt e e e e 596
STM Channel Control Register (STM_CCRN) i 597
STM Channel Interrupt Register (STM_CIRN) i 597
STM Channel Compare Register (STM_CMPN). i 598
Channel configuration. 600
eMIOS Module Configuration Register (EMIOSMCR) o... 602
eMIOS Global FLAG (EMIOSGFLAG) Register.o 604
eMIOS Output Update Disable (EMIOSOUDIS) Register. 604
eMIOS Enable Channel (EMIOSUCDIS) Register............. 605
eMIOS UC A Register (EMIOSA[N]) ... oo it e e e 606
eMIOS UC B Register (EMIOSBIN])o oo e e e 606
eMIOS UC Counter Register (EMIOSCNTIN]) oot v 607
eMIOS UC Control Register (EMIOSCIN]) . ..ot i it e e 608
eMIOS UC Status Register (EMIOSS[N])o oot e e 612
eMIOS UC Alternate A register (EMIOSALTA[N]). . .« o oot i i e 613
Single action input capture with rising edge triggeringexample. 615
Single action input capture with both edges triggering example. 615
SAOC example with EDPOL value being transferred to the output flip-flop........... 616
SAOC example toggling the output flip-flop i 616
SAOC example with flag behavior 617
Input pulse width measurementexample i 618
B1 and A1 updates at EMIOSA[n] and EMIOSB[n]reads 618
Input period measurement example e 619
A1 and B1 updates at EMIOSA[n] and EMIOSB[n]readscc.ou... 620
Double action output compare with FLAG set on the secondmatch 621
Double action output compare with FLAG set on both matches. 621
DAOC with transfer disabling example. 622
Modulus Counter Up mode examplet e e 623
Modulus Counter Up/Down mode examplei it 624
Modulus Counter Buffered (MCB) Up Countmodecoiuiuinn... 625
Modulus Counter Buffered (MCB) Up/Downmode.uitiiueinnnne... 625
MCB Mode A1 Register Update in Up Countermode 626
MCB Mode A1 Register Update in Up/Down Countermode 626
OPWFMB A1 and B1 match to Output RegisterDelay. 627
OPWFMB Mode with A1 =0 (0% dutycycle). 628
OPWFMB A1 and B1 registers update andflags, 629
OPWFMB mode from 100% to 0% duty cycle 629
OPWMCB A1 and Bl registersload. i 631
OPWMCB with lead dead time insertion. 632
OPWMCB with trail dead time insertion i i 633
OPWMCB with 100% Duty Cycle (A1 =4andB1=3)......... 635

Doc ID 16886 Rev 6 36/868

List of figures RMO0045

Figure 358.
Figure 359.
Figure 360.
Figure 361.
Figure 362.
Figure 363.
Figure 364.
Figure 365.
Figure 366.
Figure 367.
Figure 368.
Figure 369.
Figure 370.
Figure 371.
Figure 372.
Figure 373.
Figure 374.
Figure 375.
Figure 376.
Figure 377.
Figure 378.
Figure 379.
Figure 380.
Figure 381.
Figure 382.
Figure 383.
Figure 384.
Figure 385.
Figure 386.
Figure 387.
Figure 388.
Figure 389.
Figure 390.
Figure 391.
Figure 392.
Figure 393.
Figure 394.
Figure 395.
Figure 396.
Figure 397.
Figure 398.
Figure 399.
Figure 400.
Figure 401.
Figure 402.
Figure 403.
Figure 404.
Figure 405.
Figure 406.
Figure 407.
Figure 408.
Figure 409.

37/868

OPWMB mode matchesandflags 636
OPWMB mode with 0% duty cycle e 637
OPWMB mode from 100% to 0% duty cyclet 637
OPWMT eXample . ..o e e e e e 640
OPWMT with 0% Duty Cycle e 640
OPWMT with 100% duty CYCle o e e 641
Input programmable filter submodule diagram oL 641
Input programmable filter example e 642
Time base period when running in the fastest prescalerratio 644
Time base generation with external clock and clearon match start. 645
Time base generation with internal clock and clearon match start 645
Time base generation with clearonmatchend 646
PIT block diagram. e 647
PIT Module Control Register (PITMCR)o e 649
Timer Load Value Register (LDVAL) e e 649
Current Timer Value Register (CVAL) e e 650
Timer Control Register (TCTRL).ot e e e e 651
Timer Flag Register (TFLG) oot 651
Stopping and startingatimer 652
Modifying running timer period e 653
Dynamically settinganew loadvalue. 653
ADC implementation. 656
Normal conversion flow e 657
Injected sample/conversion SEQUENCEo oottt e 659
Sampling and conversion timings.o e 661
Presampling SEQUENCEt e 664
Presampling sequence with PRECONV =1. i 664
GuAarded @rea 665
Main Configuration Register (MCR) e e 672
Main Status Register (MSR) i e 674
Interrupt Status Register (ISR) 675
Channel Pending Register 0 (CEOCFRO)ttt 676
Channel Pending Register 1 (CEOCFRT) i 676
Channel Pending Register 2 (CEOCFR2)t 677
Interrupt Mask Register (IMR) 677
Channel Interrupt Mask Register 0 (CIMRO).ot 678
Channel Interrupt Mask Register 1 (CIMR1). e 678
Channel Interrupt Mask Register 2 (CIMR2). e 679
ADC_1 Watchdog Threshold Interrupt Status Register (WTISR). 679
ADC_1 Watchdog Threshold Interrupt Mask Register (WTIMR) 680
DMA Enable Register (DMAE) i e 681
DMA Channel Select Register 0 (DMAROQ)t e 682
DMA Channel Select Register 1 (DMART) i e 682
DMA Channel Select Register 2 (DMAR2) e 683
ADC_1 Threshold Register THRHLR[0..2] i e 684
Presampling Control Register (PSCR) e 684
Presampling Register 0 (PSRO)t e 685
Presampling Register 1 (PSR1) e 686
Presampling Register 2 (PSR2) e 686
Conversion timing registers CTR[0..2] oottt e e 687
Normal Conversion Mask Register O (NCMRO) 688
Normal Conversion Mask Register 1 (NCMR1) 688

Doc ID 16886 Rev 6 KYI

RMO0045

List of figures

Figure 410.
Figure 411.
Figure 412.
Figure 413.
Figure 414.
Figure 415.
Figure 416.
Figure 417.
Figure 418.
Figure 419.
Figure 420.
Figure 421.
Figure 422.
Figure 423.
Figure 424.
Figure 425.
Figure 426.
Figure 427.
Figure 428.
Figure 429.
Figure 430.
Figure 431.
Figure 432.

Figure 433.
Figure 434.
Figure 435.
Figure 436.
Figure 437.
Figure 438.
Figure 439.
Figure 440.
Figure 441.
Figure 442.
Figure 443.
Figure 444.
Figure 445.
Figure 446.
Figure 447.
Figure 448.
Figure 449.
Figure 450.
Figure 451.
Figure 452.

Figure 453.
Figure 454.
Figure 455.
Figure 456.
Figure 457.
Figure 458.
Figure 459.

574

Normal Conversion Mask Register 2 (NCMR2), 689
Injected Conversion Mask Register 0 (JCMRO) 690
Injected Conversion Mask Register 1 (JCMR1) 690
Injected Conversion Mask Register2 (JCMR2) 691
Decode Signals Delay Register (DSDR).t e 692
Power-down Exit Delay Register (PDEDR) it 692
Channel Data Register (CDR[0..95]) i it e e e 693
Channel Watchdog Select Register (CWSELR[0..11]). oot 694
Channel Watchdog Enable Register 0 (CWENRO). 695
Channel Watchdog Enable Register 1 (CWENR1). 695
Channel Watchdog Enable Register2 (CWENR2). 696
Analog Watchdog Out of Range Register 0 (AWORRO). 696
Analog Watchdog Out of Range Register 1 (AWORR1). 697
Analog Watchdog Out of Range Register2 (AWORR2). 697
Cross Triggering Unit block diagram e 698
Event Configuration Registers (CTU_EVTCFGRx) (x=0...31) 699
Flash memory architecture 703
CFlash and DFlash module structures i e e 705
CFlash Module Configuration Register (CFLASH_MCR). 713
CFlash Low/Mid Address Space Block Locking Register (CFLASH_LML). 718
CFlash Nonvolatile Low/Mid address space block Locking register (CFLASH_NVLML) . 720

CFlash Secondary Low/mid address space block Locking Register (CFLASH_SLL) . .. 722
CFlash Nonvolatile Secondary Low/mid address space block Locking register

(CFLASH _NVSLL) . .o e e e 724
CFlash Low/Mid address space block Select register (CFLASH_LMS) 726
CFlash Address Register (CFLASH_ADR). i e e 727
CFlash User Test 0 register (CFLASH_UTO)ot 728
CFlash User Test 1 register (CFLASH_UT1)o 730
CFlash User Test 2 register (CFLASH_UT2)o 731
CFlash User Multiple Input Signature Register 0 (CFLASH_UMISRO). 732
CFlash User Multiple Input Signature Register 1 (CFLASH_UMISR1)............... 733
CFlash User Multiple Input Signature Register 2 (CFLASH_UMISR2). 734
CFlash User Multiple Input Signature Register 3 (CFLASH_UMISRS3)............... 735
CFlash User Multiple Input Signature Register 4 (CFLASH_UMISR4). 736
CFlash Nonvolatile Private Censorship Password 0 Register (NVPWDO) 737
CFlash Nonvolatile Private Censorship Password 1 Register (NVPWD1) 737
CFlash Nonvolatile System Censorship Control 0 register (NVSCCO)............... 738
CFlash Nonvolatile System Censorship Control 1 register (NVSCC1)............... 739
CFlash Nonvolatile User Options register (NVUSRO), 740
DFlash Module Configuration Register (DFLASH_MCR). 741
DFlash Low/Mid Address Space Block Locking Register (DFLASH_LML). 746

DFlash Nonvolatile Low/Mid address space block Locking register (DFLASH_NVLML) . 748
DFlash Secondary Low/mid address space block Locking register (DFLASH_SLL) 750
DFlash Nonvolatile Secondary Low/mid address space block Locking register

(DFLASH _NVSLL) ..o e e 752
DFlash Low/Mid Address Space Block Select Register (DFLASH_LMS). 754
DFlash Address Register (DFLASH_ADR).ot e 755
DFlash User Test 0 register (DFLASH_UTO)ot 756
DFlash User Test 1 register (DFLASH_UT1) e 758
DFlash User Test 2 register (DFLASH_UT2) e 759
DFlash User Multiple Input Signature Register 0 (DFLASH_UMISRO). 760
DFlash User Multiple Input Signature Register 1 (DFLASH_UMISR1)............... 761

Doc ID 16886 Rev 6 38/868

List of figures RMO0045

Figure 460.
Figure 461.
Figure 462.
Figure 463.
Figure 464.
Figure 465.
Figure 466.
Figure 467.
Figure 468.
Figure 469.
Figure 470.
Figure 471.
Figure 472.
Figure 473.
Figure 474.
Figure 475.
Figure 476.
Figure 477.
Figure 478.
Figure 479.
Figure 480.
Figure 481.
Figure 482.
Figure 483.
Figure 484.
Figure 485.
Figure 486.
Figure 487.
Figure 488.
Figure 489.
Figure 490.
Figure 491.
Figure 492.
Figure 493.
Figure 494.
Figure 495.
Figure 496.
Figure 497.
Figure 498.
Figure 499.
Figure 500.
Figure 501.
Figure 502.
Figure 503.
Figure 504.
Figure 505.
Figure 506.
Figure 507.
Figure 508.

39/868

DFlash User Multiple Input Signature Register 2 (DFLASH_UMISR2). 762
DFlash User Multiple Input Signature Register 3 (DFLASH_UMISRS3). 763
DFlash User Multiple Input Signature Register 4 (DFLASH_UMISR4). 764
Power Architecture e200z0h RPP reference platform block diagram................ 776
PFlash Configuration Register 0 (PFCRO) e 780
PFlash Configuration Register 1 (PFCR1) 784
PFlash Access Protection Register (PFAPR) i 787
Nonvolatile Platform Flash Access Protection Register (NVPFAPR) 788
Register Protection block diagram 799
Register protection memory diagram e 800
Soft Lock Bit Register (SLBRN) e 802
Global Configuration Register (GCR)t e 803
Change Lock Settings Directly Via Area #4 e 805
Change Lock Settings for 16-bit Protected Addresses. 805
Change Lock Settings for 32-bit Protected Addresses. 806
Change Lock Settings for Mixed Protection i, 806
Enable Locking Via Mirror Module Space (Area #3).ot 807
Enable Locking for Protected and Unprotected Addresses 807
SWT Control Register (SWT_CR) e e e e 815
SWT Interrupt Register (SWT_IR) e e 816
SWT Time-Out Register (SWT_TO)o e e e 817
SWT Window Register (SWT_WN) i e e 817
SWT Service Register (SWT_SR)o e e 818
SWT Counter Output Register (SWT_CO) e e 818
Processor Core Type Register (PCT).ot e e 823
SoC-Defined Platform Revision Register (REV). it 823
IPS On-Platform Module Configuration Register IOPMC). 824
Miscellaneous Wakeup Control (MWCR) Register. oo 825
Miscellaneous Interrupt (MIR) Register i 826
Miscellaneous User-Defined Control (MUDCR) Register. 827
ECC Configuration (ECR) Register e 828
ECC Status Register (ESR) o 831
ECC Error Generation Register (EEGR). i 832
Platform Flash ECC Address Register (PFEAR) 835
Platform Flash ECC Master Number Register (PFEMR) 836
Platform Flash ECC Attributes Register (PFEAT). it 836
Platform Flash ECC Data Register (PFEDR) it 837
Platform RAM ECC Address Register (PREAR). i, 838
Platform RAM ECC Syndrome Register (PRESR) 839
Platform RAM ECC Master Number Register (PREMR) 841
Platform RAM ECC Attributes Register (PREAT).o 841
Platform RAM ECC Data Register (PREDR) it 842
JTAG Controller Block Diagram i i 844
5-bit Instruction Register. e 847
Device Identification Register. 847
Shifting data through aregister. 848
IEEE 1149.1-2001 TAP controller finite state machine. 849
€200z0 OnCE Block Diagram. ottt e e e 853
OnCE Command Register (OCMD)ot e 854

Doc ID 16886 Rev 6 Ky_l

RMO0045 Preface
1 Preface
1.1 Overview
The primary objective of this document is to define the functionality of the SPC560D30/40
microcontroller for use by software and hardware developers. The SPC560D30/40 is built on
Power Architecture® technology and integrates technologies that are important for today’s
automotive vehicle body applications.
The information in this book is subject to change without notice, as described in the
disclaimers on the title page. As with any technical documentation, it is the reader’s
responsibility to be sure he or she is using the most recent version of the documentation.
To locate any published errata or updates for this document, visit the ST Web site at
www.st.com.
1.2 Audience
This manual is intended for system software and hardware developers and applications
programmers who want to develop products with the SPC560D30/40 device. It is assumed
that the reader understands operating systems, microprocessor system design, basic
principles of software and hardware, and basic details of the Power Architecture.
1.3 Guide to this reference manual
Table 1. Guide to this reference manual
Chapter
Description Functional group
Title
General overview, family description, feature list and Introductor
2 |Introduction information on how to use the reference manual in ory
. : . . material
conjunction with other available documents.
3 |Memory Map Memory map of all peripherals and memory. Memory map
4 | Signal Description Pinout diagrams and descriptions of all pads. Signals
Microcontroller Boot
— Describes what configuration is required by the user
and what processes are involved when the
— Boot mechanism microcontroller boots from flash memory or serial
boot modes.
5 — Describes censorship. Boot
— Boot Assist Module (BAM) |Features of BAM code and when it's used.
- Sy stgm Stgtus and Reports information about current state and
Configuration Module configuration of the microcontroller.
(SSCM) 9 :
1S7 Doc ID 16886 Rev 6 40/868

Preface

RMO0045

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group
Title
— Covers configuration of all of the clock sources in
6 |Clock Description the system.
— Describes the Clock Monitor Unit (CMU).
Clock Generation Module Determ_mes how the clock sources are used (including
7 clock dividers) to generate the reference clocks for all
(MC_CGM))
of the modules and peripherals.
8 | Mode Entry Module (MC_ME) Detgrmlnes the clock squrce, .memory, powgr and
peripherals that are available in each operating mode.
Clocks and power
o Reset Generation Module I\/lllanages thte process; oL enterlpg an(cji e_xﬂ:ng_reset,
(MC_RGM) a ovlvs reset sources to be configure (including (includes operating
LVD's) and provides status reporting. mode configuration
Controls the power to different power domains within |and how to wake up
10 | Power Control Unit (MC_PCU) |the microcontroller (allowing SRAM to be selectively from low power
powered in STANDBY mode). mode)
11 Voltage Regulators and Power |Information on voltage regulator implementation.
Supplies Includes enable bit for 5 V LVD (see also MC_RGM).
Always-active analog block. Details configuration of 2
12 | Wakeup Unit (WKPU) internal (API/RTC) and 30 external (pin) low power
mode wakeup sources.
13 Real Time Clock / Autonomous |Details configuration and operation of timers that are
Periodic Interrupt (RTC/API) predominately used for system wakeup.
14 | e20020n Core Overview on cores. For_ more details consult the core
reference manuals available on www.st.com.
Operation and configuration information on the 32-
channel direct memory access that can be used to
15 Enhanced Direct Memory transfer data between any memory mapped locations.
Access (eDMA) Certain peripherals have eDMA triggers that can be
used to feed configuration data to, or read results from
the peripherals.
Operation and configuration information for the eDMA Core platform
eDMA Channel Multiplexer multlplexerz which takes the 56 possible eIgMA modules
16 (DMA_MUX) sources (triggers from the DSPI, eMIOS, I1-C, ADC
- and LINFlexD) and multiplexes them onto the 32
eDMA channels.
Provides the configuration and control of all of the
17 |Interrupt Controller (INTC) external interrupts (non-core) that are then routed to
the IVORA4 core interrupt vector.
18 | Crossbar Switch (XBAR) Describes the cqnnectlons of the XBAR masters and
slaves on this microcontroller.
. o How to configure the pins or ports for input or output
19 System Integration Unit Lite functions including external interrupts and DSI Ports
(SIUL) oo
serialization.
41/868 Doc ID 16886 Rev 6 1S

RMO0045

Preface

Table 1. Guide to this reference manual (continued)

Chapter
Description Functional group
Title
20 |[LIN Controller (LINFlex)
21 |LIN Controller (LINFlexD) These chapters describe the configuration and
operation of the various communication modules. Communication
22 |FlexCAN Some of these modules support eDMA requests to fill modules
03 Deserial Serial Peripheral / empty buffer queues to minimize CPU overhead.
Interface (DSPI)
Timers
Gives an overview of the available system timer
. . modules showing links to other modules as well as
— Technical overview [. . .
tables detailing the external pins associated with
eMIOS timer channels.
A simple 32-bit free running counter with 4 compare
— System Timer Module (STM) |channels with interrupt on match. It can be read at any .
24 .) S Timer modules
time; this is very useful for measuring execution times.
_ Enhanced Modular 10 Highly configurable tl_mer module(s) supporting PWM,
Subsystem (eMIOS) output compare and input capture features. Includes
interrupt and eDMA support.
Set of 32-bit countdown timers that provide periodic
— Periodic Interrupt Timer (PIT) |events (which can trigger an interrupt) with automatic
re-load.
Details the configuration and operation of the ADC
modules as well as detailing the channels that are
Analoa-to-Diaital Converter shared between the 10-bit and 12-bit ADC. The ADC
25 "0 C)g 9 is tightly linked to the INTC, eDMA, PIT_RTl and CTU.
When used in conjunction with these other modules,
the CPU overhead for an ADC conversion is ADC system
significantly reduced.
The CTU allows an ADC conversion to be
. . . automatically triggered based on an eMIOS event
26 | Cross Triggering Unit (CTU) (like a PWM output going high) or a PIT_RTI event
with no CPU intervention.
Details the code and data flash memory structure
27 | Flash Memory (wnh ECQ), blgck sizes ant_j the flash memory port
configuration, including wait states, line buffer
configuration and pre-fetch control. Memory
Details the structure of the SRAM (with ECC). There
28 |Static RAM (SRAM) are no user configurable registers associated with the
SRAM.
1S7 Doc ID 16886 Rev 6 42/868

Preface RMO0045
Table 1. Guide to this reference manual (continued)
Chapter
Description Functional group
Title
Certain registers in each peripheral can be protected
from further writes using the register protection
29 |Register Protection mechanism detailed in this section. Registers can

either be configured to be unlocked via a soft lock bit
or locked unit the next reset.

The SWT offers a selection of configurable modes

Software Watchdog Timer thgt can be used to monitor the oper_atlon of_the Integrity
30 (SWT) microcontroller and /or reset the device or trigger an
interrupt if the SWT is not correctly serviced. The
SWT is enabled out of reset.
Error Correction Status Module Proylde:s |nformat|on about the Ia.st reset,.general
31 (ECSM) device information, system fault information and
detailed ECC error information.
IEEE 1149.1 Test Access Port .
32 Controller (JTAGC) Used for boundary scan as well as device debug. Debug
.. . Summarizes the changes between each successive Revision history
A | Revision History - . . .
revision of this reference manual information
1.4 Register description conventions

43/868

The register information for SPC560D30/40 is presented in:
® Memory maps containing:
— An offset from the module’s base address
— The name and acronym/abbreviation of each register
— The page number on which each register is described
® Reqgister figures
® Field-description tables
® Associated text

The register figures show the field structure using the conventions in Figure 1.

R| O

W

Reserved bits

1 R| FIELD1 FIELD2 R
FIELD
w w
Read-only fields Read/write fields
0 0 0 R| FIELD
FIELD1 FIELD2 W| wic
Write-only fields Write 1 to clear field

(field will always read 0)

Figure 1. Register figure conventions

Doc ID 16886 Rev 6

RMO0045

Preface

1.5

1.6

1.7

1.7.1

The numbering of register bits and fields on SPC560D30/40 is as follows:

® Register bit numbers, shown at the top of each figure, use the standard
Power Architecture bit ordering (0, 1, 2, ...) where bit 0 is the most significant bit (MSB).

® Multi-bit fields within a register use conventional bit ordering (..., 2, 1, 0) where bit 0 is
the least significant bit (LSB).

References

In addition to this reference manual, the following documents provide additional information
on the operation of the SPC560D30/40:

e |EEE-ISTO 5001-2003 Standard for a Global Embedded Processor Interface (Nexus)

e |EEE 1149.1-2001 standard - IEEE Standard Test Access Port and Boundary-Scan
Architecture

Developer support

The SPC560D30/40 MCU family uses tools and third-party developers which offer a
widespread, established network of tool and software vendors. It also features a high-
performance Nexus debug interface.

The following development support is available:

® Automotive evaluation boards (EVB) featuring CAN, LIN interfaces, and more

® Compilers

® Debuggers

® JTAG and Nexus interfaces

The following software support is available:

® OSEK solutions will be available from multiple third parties
® CAN and LIN drivers

® AUTOSAR package

How to use the SPC560D30/40 documents

This section:

® Describes how the SPC560D30/40 documents provide information on the
microcontroller

® Makes recommendations on how to use the documents in a system design

The SPC560D30/40 document set

The SPC560D30/40 document set comprises:

® This reference manual (provides information on the features of the logical blocks on the
device and how they are integrated with each other)

® The device data sheet (specifies the electrical characteristics of the device)
® The device product brief

Doc ID 16886 Rev 6 44/868

Preface

RMO0045

1.7.2

45/868

The following reference documents (available online at www.st.com) are also available to
support the CPU on this device:

® Programmer’s Reference Manual for Book E Processors
® Variable-Length Encoding (VLE) Extension - Programming Interface Manual

The aforementioned documents describe all of the functional and electrical characteristics
of the SPC560D30/40 microcontroller.

Depending on your task, you may need to refer to multiple documents to make design
decisions. However, in general the use of the documents can be divided up as follows:

® Use the reference manual (this document) during software development and when
allocating functions during system design.

® Use the data sheet when designing hardware and optimizing power consumption.

® Use the CPU reference documents when doing detailed software development in
assembly language or debugging complex software interactions.

Reference manual content

The content in this document focuses on the functionality of the microcontroller rather than
its performance. Most chapters describe the functionality of a particular on-chip module,
such as a CAN controller or timer. The remaining chapters describe how these modules are
integrated into the memory map, how they are powered and clocked, and the pinout of the
device.

In general, when an individual module is enabled for use all of the detail required to
configure and operate it is contained in the dedicated chapter. In some cases there are
multiple implementations of this module, however, there is only one chapter for each type of
module in use. For this reason, the address of registers in each module is normally provided
as an offset from a base address which can be found in Chapter 3: Memory Map. The
benefit of this approach is that software developed for a particular module can be easily
reused on this device and on other related devices that use the same modules.

The steps to enable a module for use varies but typically these require configuration of the

integration features of the microcontroller. The module will normally have to be powered and
enabled at system level, then a clock may have to be explicitly chosen and finally if required
the input and output connections to the external system must be configured.

The primary integration chapters of the reference manual contain most of the information
required to enable the modules. There are special cases where a chapter may describe
module functionality and some integration features for convenience — for example, the
microcontroller input/output (SIUL) module. Integration and functional content is provided in
the manual as shown in Table 2.

Doc ID 16886 Rev 6 KYI

RMO0045

Preface

Table 2. Reference manual integration and functional content

Chapter

Integration content

Functional content

Introduction

— The main features on chip

— A summary of the functions provided by
each module

Memory Map

How the memory map is allocated,

including:

— Internal RAM

— Flash memory

— External memory-mapped resources
and the location of the registers used by
the peripherals("

Signal Description

How the signals from each of the modules
are combined and brought to a particular
pin on a package

Boot Assist Module

CPU boot sequence from reset

Implementation of the boot options if
internal flash memory is not used

Clock Description

Clocking architecture of the device (which
clock is available for the system and each
peripheral)

Description of operation of different clock
sources

Interrupt Controller

Interrupt vector table

Operation of the module

Mode Entry Module

Module numbering for control and status

Operation of operating modes

System Integration Unit Lite

How input signals are mapped to
individual modules including external
interrupt pins

Operation of GPIO

Voltage regulators and
power supplies

Power distribution to the MCU

Wakeup Unit

Allocation of inputs to the Wakeup Unit

Operation of the wakeup feature

1. To find the address of a register in a particular module take the start address of the module given in the memory map and
add the offset for the register given in the module chapter.

1.8

Using the SPC560D30/40

There are many different approaches to designing a system using the SPC560D30/40 so
the guidance in this section is provided as an example of how the documents can be applied

in this task.

Familiarity with the SPC560D30/40 modules can help ensure that its features are being
optimally used in a system design. Therefore, the current chapter is a good starting point.
Further information on the detailed features of a module are provided within the module
chapters. These, combined with the current chapter, should provide a good introduction to
the functions available on the MCU.

1.8.1

Hardware design

The SPC560D30/40 requires that certain pins are connected to particular power supplies,
system functions and other voltage levels for operation.

Doc ID 16886 Rev 6

46/868

Preface

RMO0045

1.8.2

1.8.3

47/868

The SPC560D30/40 internal logic operates from 1.2 V (nominal) supplies that are normally
supplied by the on-chip voltage regulator from a 5 V or 3.3 V supply. The 3.3-5 V (x10%)
supply is also used to supply the input/output pins on the MCU. Chapter 4: Signal
Description, describes the power supply pin names, numbers and their purpose. For more
detail on the voltage supply of each pin, see Chapter 11: Voltage Regulators and Power
Supplies. For specifications of the voltage ranges and limits and decoupling of the power
supplies see the SPC560D30/40 data sheet.

Certain pins have dedicated functions that affect the behavior of the MCU after reset. These
include pins to force test or alternate boot conditions and debug features. These are
described in Chapter 4: Signal Description, and a hardware designer should take care that
these pins are connected to allow correct operation.

Beyond power supply and pins that have special functions there are also pins that have
special system purposes such as oscillator and reset pins. These are also described in
Chapter 4: Signal Description. The reset pin is bidirectional and its function is closely tied to
the reset generation module [Chapter 9: Reset Generation Module (MC_RGM)]. The crystal
oscillator pins are dedicated to this function but the oscillator is not started automatically
after reset. The oscillator module is described in Chapter 6: Clock Description, along with
the internal clock architecture and the other oscillator sources on chip.

Input/output pins

The majority of the pins on the MCU are input/output pins which may either operate as
general purpose pins or be connected to a particular on-chip module. The arrangement
allows a function to be available on several pins. The system designer should allocate the
function for the pin before connecting to external hardware. The software should then
choose the correct function to match the hardware. The pad characteristics can vary
depending on the functions on the pad. Chapter 4: Signal Description, describes each pad
type (for example, S, M, or J). Two pads may be able to carry the same function but have
different pad types. The electrical specification of the pads is described in the data sheet
dependent on the function enabled and the pad type.

There are two modules that configure the various functions available:

® System Integration Unit Lite (SIUL)

® Wakeup Unit (WKPU)

The SIUL configures the digital pin functions. Each pin has a register (PCR) in the module
that allows selection of the output functions that is connected to the pin. The available
settings for the PCR are described in Section 4.6: Functional ports. Inputs are selected
using the PSMI registers; these are described in Chapter 19: System Integration Unit Lite

(SIUL). (PSMI registers connect a module to one of several pins, whereas the PCR registers
connect a pin to one of several modules).

The WKPU provides the ability to cause interrupts and wake the MCU from low power
modes and operates independently from the SIUL.

The ADC functions are enabled using the PCRs.

Software design

Certain modules provide system integration functions, and other modules (such as timers)
provide specific functions.

Doc ID 16886 Rev 6 KYI

RMO0045

Preface

1.8.4

From reset, the modules involved in configuring the system for application software are:
® Boot Assist Module (BAM) — determines the selected boot source

® Reset Generation Module (MC_RGM) — determines the behavior of the MCU when
various reset sources are triggered and reports the source of the reset

® Mode Entry Module (MC_ME) — controls which operating mode the MCU is in and
configures the peripherals and clocks and power supplies for each of the modes

® Power Control Unit (MC_PCU) — determines which power domains are active

® Clock Generation Module (MC_CGM) — chooses the clock source for the system and
many peripherals

After reset, the MCU will automatically select the appropriate reset source and begin to
execute code. At this point the system clock is the 16 MHz FIRC oscillator, the CPU is in
supervisor mode and all the memory is available. Initialization is required before most
peripherals may be used and before the SRAM can be read (since the SRAM is protected
by ECC, the syndrome will generally be uninitialized after reset and reads would fail the
check). Accessing disabled features causes error conditions or interrupts.

A typical startup routine would involve initializing the software environment including stacks,
heaps, variable initialization and so on and configuring the MCU for the application.

The MC_ME module enables the modules and other features like clocks. It is therefore an
essential part of the initialization and operation software. In general, the software will
configure an MC_ME mode to make certain peripherals, clocks, and memory active and
then switch to that mode.

Chapter 6: Clock Description, includes a graphic of the clock architecture of the MCU. This
can be used to determine how to configure the MC_CGM module. In general software will
configure the module to enable the required clocks and PLLs and route these to the active
modules.

After these steps are complete it is possible to configure the input/output pins and the
modules for the application.

Other features

The MC_ME module manages low power modes and so it is likely that it will be used to
switch into different configurations (module sets, clocks) depending on the application
requirements.

The MCU includes two other features to improve the integrity of the application:

® Itis possible to enable a software watchdog (SWT) immediately at reset or afterwards
to help detect code runaway.

® Individual register settings can be protected from unintended writes using the features
of the Register Protection module. The protected registers are shown in Chapter 29:
Register Protection.

Other integration functionality is provided by the System Status and Configuration Module
(SSCM).

Doc ID 16886 Rev 6 48/868

Introduction

RMO0045

2 Introduction
2.1 The SPC560D30/40 microcontroller family
The SPC560D30/40 is a Power Architecture® based microcontroller that targets automotive
vehicle body applications such as:
® Central body electronics
® Vehicle body controllers
® Smart junction boxes
® Front modules
® Body peripherals
® Door control
® Seat control
The SPC560D30/40 family expands the range of the SPC560B microcontroller family. It
provides the scalability needed to implement platform approaches and delivers the
performance required through the use of increasingly sophisticated software architectures.
The advanced and cost-efficient host processor core of the SPC560D30/40 automotive
controller complies with the Power Architecture specification, and only implements the VLE
(variable-length encoding) APU, providing improved code density. It operates at speeds of
up to 48 MHz and offers high performance processing optimized for low power consumption.
It also capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to
assist with users implementations.
This document describes the features of the SPC560D30/40 and options available within
the family members, and highlights important electrical and physical characteristics of the
device.
2.2 SPC560D30/40 device comparison
Table 3 summarizes the SPC560D30/40 family of microcontrollers.
Table 3. SPC560D30/40 device comparison
Device
Feature
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
CPU €200z0
Execution speed Static — up to 48 MHz
Code Flash 128 KB l 256 KB
Data Flash 64 KB (4 x 16 KB)
SRAM 12 KB ‘ 16 KB
eDMA 16 ch
ADC 16 ch, 12-bit 33 ch, 12-bit ‘ 16 ch, 12-bit 33 ch, 12-bit
49/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Introduction
Table 3. SPC560D30/40 device comparison (continued)
Device
Feature
SPC560D30L1 SPC560D30L3 SPC560D40L1 SPC560D40L3
CTU 16
T eV ot 14 ch, 16-bit 28 ch, 16-bit 14 ch, 16-bit 28 ch, 16-bit
- Type X® 2c¢h 5ch 2ch 5ch
— Type YO — 9ch — 9ch
— Type G® 7 ch 7 ch 7 ch 7 ch
— Type H®) 4ch 7 ch 4 ch 7 ch
SCI (LINFlex) 3
SPI (DSPI) 2
CAN (FlexCAN) 1
GPIO® 45 ‘ 79 ‘ 45 ‘ 79
Debug JTAG
Package LQFP64 ‘ LQFP100 ‘ LQFP64 ‘ LQFP100
1. Refer to eMIOS section of device reference manual for information on the channel configuration and functions.
2. Type X = MC + MCB + OPWMT + OPWMB + OPWFMB + SAIC + SAOC
3. Type Y = OPWMT + OPWMB + SAIC + SAOC
4. Type G = MCB + IPWM + IPM + DAOC + OPWMT + OPWMB + OPWFMB + OPWMCB + SAIC + SAOC
5. Type H = IPWM + IPM + DAOC + OPWMT + OPWMB + SAIC + SAOC
6. 1/O count based on multiplexing with peripherals

Doc ID 16886 Rev 6

50/868

Introduction

RMO0045

2.3

Block diagram

Figure 2 shows a top-level block diagram of the SPC560D30/40.

Figure 2. SPC560D30/40 series block diagram

SRAM Code Flash | |Data Flash
16 KB 256 KB 64 KB
TAG Port
e . > 3 5 3
Instructions S v v v
kS SRAM Flash
<—> (Master) f% Controller Con?r?)ller
€200z0h I
Data 2 A
NMI — 3 <«— save)
Mast 5 ave
siuL |y (Master) g
Voltage 5 | (Slave)
Regulator l T =
Interrupt requests v | (Slave)
NMI from peripheral — A > ©
blocks (/
INTC eDMA
Clocks CMU
&—E FMPLL >
4 4
}
RTC || STM || swT ||ECSM|| PIT MC_RGM| MC_CGM| | MC_ME | IMC_PCU| || BamM || SSCM
y N y A A A A A
A 4 4 A 4 A A 4 A A4 v
| Peripheral Bridge |
4 A 4 4 A 4 4
v 4 v v 4 v A
SIUL 33 ch. 1x 3x 2x 1x
ADc [€7% CTU eMIOS LINFlex DSPI FlexCAN WKPU
Hé%ﬁgg{ External A A A A A
3| Interrupt
Request
GPIO & Interrupt
Pad Control Request
AAAA ?
W i , , ,
w X X - X
Legend:
ADC Analog-to-Digital Converter MC_CGM Clock Generation Module
BAM Boot Assist Module MC_ME Mode Entry Module
CMU Clock Monitor Unit MC_PCU Power Control Unit
CTU Cross Triggering Unit MC_RGM Reset Generation Module
DSPI Deserial Serial Peripheral Interface NMI Non-Maskable Interrupt
ECSM Error Correction Status Module PIT Periodic Interrupt Timer
eDMA Enhanced Direct Memory Access RTC Real-Time Clock
eMIOS Enhanced Modular Input Output System SIUL System Integration Unit Lite
Flash Flash memory SRAM Static Random-Access Memory
FlexCAN Controller Area Network (FlexCAN) SSCM System Status Configuration Module
FMPLL Frequency-Modulated Phase-Locked Loop STM System Timer Module
IMUX Internal Multiplexer SWT Software Watchdog Timer
INTC Interrupt Controller WKPU Wakeup Unit
JTAG JTAG controller XBAR Crossbar switch
LINFlex Serial Communication Interface (LIN support)

51/868 Doc ID 16886 Rev 6

RMO0045

Introduction

24

Feature summary

Single issue, 32-bit CPU core complex (€200z0h)
— Compliant with the Power Architecture® embedded category

— Includes an instruction set enhancement allowing variable length encoding (VLE)
for code size footprint reduction. With the optional encoding of mixed 16-bit and
32-bit instructions, it is possible to achieve significant code size footprint reduction.

Up to 256 KB on-chip Code Flash supported with Flash controller and ECC
64 KB on-chip Data Flash with ECC
Up to 16 KB on-chip SRAM with ECC

Interrupt controller (INTC) with multiple interrupt vectors, including 20 external interrupt
sources and 18 external interrupt/wakeup sources

Frequency modulated phase-locked loop (FMPLL)

Crossbar switch architecture for concurrent access to peripherals, Flash, or SRAM
from multiple bus masters

Boot assist module (BAM) supports internal Flash programming via a serial link (CAN
or SCI)

Timer supports input/output channels providing a range of 16-bit input capture, output
compare, and pulse width modulation functions (eMIOS-lite)

Up to 33 channel 12-bit analog-to-digital converter (ADC)

2 serial peripheral interface (DSPI) modules

3 serial communication interface (LINFlex) modules

— LINFlex 1 and 2: Master capable

— LINFlex 0: Master capable and slave capable; connected to eDMA
1 enhanced full CAN (FlexCAN) module with configurable buffers

Up to 79 configurable general purpose pins supporting input and output operations
(package dependent)

Real Time Counter (RTC) with clock source from 128 kHz or 16 MHz internal RC
oscillator supporting autonomous wakeup with 1 ms resolution with max timeout of 2
seconds

Up to 4 periodic interrupt timers (PIT) with 32-bit counter resolution
1 System Timer Module (STM)
Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class 1 standard

Device/board boundary Scan testing supported with per Joint Test Action Group
(JTAG) of IEEE (IEEE 1149.1)

On-chip voltage regulator (VREG) for regulation of input supply for all internal levels

Doc ID 16886 Rev 6 52/868

Memory Map

RMO0045

3

53/868

Memory Map

Table 4 shows the memory map for the SPC560D30/40. All addresses on the device,

including those that are reserved, are identified in the table. The addresses represent the
physical addresses assigned to each IP block.

Table 4. SPC560D30/40 memory map

Start address End address Size (KB) Region name
0x0000_0000 0x0000_7FFF 32 Code Flash Array 0
0x0000_8000 0x0000_BFFF 16 Code Flash Array 0
0x0000_C000 0x0000_FFFF 16 Code Flash Array 0
0x0001_0000 0x0001_7FFF 32 Code Flash Array 0
0x0001_8000 0x0001_FFFF 32 Code Flash Array 0
0x0002_0000 0x0003_FFFF 128 Code Flash Array 0
0x0004_0000 0x001F_FFFF 512 Reserved
0x0020_0000 0x0020_3FFF 16 Flash Shadow Array
0x0020_4000 0x003F_FFFF 2032 Reserved
0x0040_0000 0x0040_3FFF 16 Code Flash Array 0 Test Sector
0x0040_4000 0x007F_FFFF 4080 Reserved
0x0080_0000 0x0080_3FFF 16 Data Flash Array 0
0x0080_4000 0x0080_7FFF 16 Data Flash Array 0
0x0080_8000 0x0080_BFFF 16 Data Flash Array 0
0x0080_C000 0x0080_FFFF 16 Data Flash Array 0
0x0081_0000 0x00BF_FFFF 4032 Reserved
0x00C0_2000 0x00CO_3FFF 8 Test Sector Data Flash Array 0
0x00C0_4000 0x00FF_FFFF 4080 Reserved
0x0100_0000 Ox1FFF_FFFF 507904 Flash Emulation Mapping
0x2000_0000 Ox3FFF_FFFF 524288 Reserved for External Bus Interface
0x4000_0000 0x4000_3FFF 16 SRAM
0x4000_4000 OxBFFF_FFFF 2097136 Reserved

Off-platform peripherals PBRIDGE_1
0xC000_0000 0xC3F8_7FFF 65056 Reserved
0xC3F8_8000 0xC3F8_BFFF 16 Code Flash 0 Configuration
0xC3F8_C000 O0xC3F8_FFFF 16 Data Flash 0 Configuration
0xC3F9_0000 0xC3F9_3FFF 16 SIUL
0xC3F9_4000 0xC3F9_7FFF 16 WKPU
0xC3F9_8000 O0xC3F9_FFFF 32 Reserved

Doc ID 16886 Rev 6

RMO0045 Memory Map
Table 4. SPC560D30/40 memory map (continued)
Start address End address Size (KB) Region name
0xC3FA_0000 OxC3FA_3FFF 16 eMIOS_0
0xC3FA_4000 0xC3FD_7FFF 208 Reserved
0xC3FD_8000 0xC3FD_BFFF 16 SSCM
0xC3FD_C000 O0xC3FD_FFFF 16 MC_ME
0xC3FE_0000 OxC3FE_3FFF 16 MC_CGM
0xC3FE_4000 OxC3FE_7FFF 16 MC_RGM
0xC3FE_8000 O0xC3FE_BFFF 16 MC_PCU
0xC3FE_CO000 OxC3FE_FFFF 16 RTC/API
0xC3FF_0000 OxC3FF_3FFF 16 PIT
0xC3FF_4000 OxDFFF_FFFF 458800 Reserved
Off-platform peripherals PBRIDGE_0
0xE000_0000 OxFFEO_3FFF 522256 Reserved
OxFFEO_4000 OxFFEO_7FFF 16 ADC_1
OxFFEO0_8000 OxFFE3_FFFF 224 Reserved
OxFFE4_0000 OxFFE4_3FFF 16 LINFlex_0
OxFFE4_4000 OxFFE4_7FFF 16 LINFlex_1
OxFFE4_8000 OxFFE4_BFFF 16 LINFlex_2
OxFFE4_C000 OxFFE6_3FFF 96 Reserved
OxFFE6_4000 OxFFEG6_7FFF 16 CTU
OxFFE6_8000 OxFFE7_FFFF 96 Reserved
OxFFE8_0000 | OxFFEF_FFFF 512 g")iggfg;ﬁ;ge 0x3F80000
O0xFFFO0_0000 OxFFF3_7FFF 224 Reserved
OxFFF3_8000 OxFFF3_BFFF 16 SWT
OxFFF3_C000 OxFFF3_FFFF 16 STM
OxFFF4_0000 OxFFF4_3FFF 16 ECSM
OxFFF4_4000 OxFFF4_7FFF 16 eDMA
OxFFF4_8000 OxFFF4_BFFF 16 INTC
OxFFF4_C000 OxFFF8_FFFF 272 Reserved
O0xFFF9_0000 OxFFF9_3FFF 16 DSPI_0
OxFFF9_4000 OxFFF9O_7FFF 16 DSPI_1
OxFFF9_8000 OxFFFB_FFFF 160 Reserved
OxFFFC_0000 OxFFFC_3FFF 16 FlexCAN_O
ﬂ Doc ID 16886 Rev 6 54/868

Memory Map

RMO0045

55/868

Table 4. SPC560D30/40 memory map (continued)

Start address End address Size (KB) Region name
OxFFFC_4000 OxFFFD_BFFF 96 Reserved

O0xFFFD_C000 OxFFFD_FFFF 16 DMA_MUX

OxFFFE_0000 OxFFFF_BFFF 144 Reserved

OxFFFF_CO000 OxFFFF_FFFF 16 BAM

Doc ID 16886 Rev 6

RMO0045

Signal Description

4

4.1

Signal Description

Package pinouts

Figure 3 and Figure 4 show the location of the signals on the packages that this device is

available in.

For more information on pin multiplexing on this device, see Table 5 through Table 7.

2322 o
NEIE®Snad0n mren D
DO0O0O0OTITONAONOIILIOO
oooo0QA>>>>000000
imEnEnlnlnSnEnEslnEnlnEnEnEnEnNn)

/V("}C\IV—OU)COI\(OLDV(‘QN‘—OCD
QOO OVOULULLWLWLLWLWLWLWLWS
PR3 1 48 b PA[1]
pclo]d 2 47 B PA[10]
PA[2] 3 46 P PA[9]
PA[1]1T] 4 45 [PA[8]
PAj0] 5 44 B PA[7]
vss_Hvd 6 43 b PA[3]
vDD_Hv O 7 42 b PB[15]
vss_Hvd s 41 hPB[14]
RESET 9 LQFP64 40 b PB[13]
vss_Lvd 10 39 b PB[12]
vbD_Lvd 11 38 f PB[11]
vDD_BV o 12 37 B PBI[7]
PCH01d 13 36 1 PB[6]
PBl0] O] 14 35 b1 PBI5]
PB[1] 15 34 p VDD_HV_ADC
Pcle] d 16 33 b VSS_HV_ADC
Se2RRYRILENERE 5
S N N N S N I [[Ny R |
EOSSEN337222080F
St =Rl Sl
Lo Huy o
> > > S

Figure 3. LQFP64 pin configuration (top view)

Doc ID 16886 Rev 6

56/868

Signal Description RMO0045

>=2>
S —— 3|_I\III|—~3,_,_—’—N
N ENOOIIOVONDONHNAOQY DO NN -
DOO0OO0OWWHLHOOWULIONOQNOI OO0 W
ooooQoQoQoOQQOOOQOQAO0OOQA>>>>0000000
0000000000 nnnn
/ COONOUTNONATONDONOUTNONAT-TOOMONO©
‘O_CDO')CDCDO')G)CDO')CDCDODwCOOOwCOOOwCOOOI\I\l\l\
PB[3] 1 75 B PA[11]
Pciol 2 74 [PA[10]
PC[14]d 3 73 [1 PA[9]
PCl15] O 4 72 [PA[8]
PAI21 5 71 [PA[7]
PE[0] 6 70 [VDD_HV
PAIIH 7 69 [VSS_HV
PE[] 8 68 |1 PA[3]
PE[8] 9 67 [1 PB[15]
PE[9] O 10 66 [PD[15]
PE[10]] 11 65 [PB[14]
PA0]] 12 64 [PD[14]
PE[11]] 13 LQFP100 63 [PB[13]
VSS_HV o 14 62 [PD[13]
VDD_HV d 15 61 b PB[12]
VSS_HV d 16 60 [PD[12]
RESET O 17 59 [PB[11]
vSsS_Lv o 18 58 [1 PD[11]
VDD_LV O 19 57 [PD[10]
VDD_BV [20 56 [1 PD[9]
PC11]] 21 55 [PB[7]
PCl10]] 22 54 [PB[6]
PB[0]] 23 53 [PB[5]
PB[1]d 24 52 1 VDD_HV_ADC
PCl6]d 25 51 [1 VSS_HV_ADC
ONOVODOT-—ANNDTODONODDO-—ANNITOOLONODOODO
ANANNDOODDONNOOONITITTITIITTITITT IO
NPy YON322472 2009 " NOTbhoroY
O« | IEEToo-.o0o0000000m
CEgegs0DXpnXno0oPaoaonoaoao0oaoaonn
QN @R o
>> 3 35
Figure 4. LQFP100 pin configuration (top view)
4.2 Pad configuration during reset phases

All pads have a fixed configuration under reset.
During the power-up phase, all pads are forced to tristate.

After power-up phase, all pads are forced to tristate with the following exceptions:

® PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from
flash.

PA[8] (ABSI0]) is pull-up.

RESET pad is driven low. This is pull-up only after PHASEZ2 reset completion.

JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.

Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).
Main oscillator pads (EXTAL, XTAL) are tristate.

57/868 Doc ID 16886 Rev 6 KYI

RMO0045

Signal Description

4.3

4.4

4.5

Voltage supply pins

Voltage supply pins are used to provide power to the device. Two dedicated pins are used
for 1.2 V regulator stabilization.

Table 5. Voltage supply pin descriptions

Pin number
Port pin Function
LQFP64 LQFP100
VDD_HV Digital supply voltage 7,28, 34, 56 15, 37, 52, 70, 84
VSS_HV |Digital ground 6, 8, 26, 33, 55 14,16, %% 51,69,
1.2V decoupling pins. Decoupling
VDD_LV |capacitor must be connected between 11, 23, 57 19, 32, 85
these pins and the nearest Vgg |v pin.(!)
1.2V decoupling pins. Decoupling
VSS_LV capacitor must be connected between 10, 24, 58 18, 33, 86
these pins and the nearest Vpp |y pin.!
VDD_BV |Internal regulator supply voltage 12 20

A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to
ensure stable voltage (see the recommended operating conditions in the device datasheet for

In the device the following types of pads are available for system pins and functional port

details).
Pad types
pins:
S = Slow®

M = Medium® ()

F = Fast(@® ©

| = Input only with analog feature(®
J = Input/Output with analog feature
X = Oscillator

System pins

The system pins are listed in Table 6.

a. See the I/0O pad electrical characteristics in the device datasheet for details.

b. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium
(see the PCR[SRC] description in the device reference manual).

Doc ID 16886 Rev 6

58/868

Signal Description RMO0045
Table 6. System pin descriptions
Pin number
Port pin Function Vo Pad| RESET
P direction [type| config. | LQFP | LQFP
64 100
Input, weak
RESET Bldlrectlopa_l reset W|th Schmltt-Trlgger /o M pull-up only 9 17
characteristics and noise filter. after
PHASE2
Analog output of the oscillator amplifier circuit,
EXTAL when th.e oscillator is not in bypass mode. e X Tristate 27 36
Analog input for the clock generator when the
oscillator is in bypass mode. (1
Analog input of the oscillator amplifier circuit.
XTAL |Needs to be grounded if oscillator is used in | X Tristate 25 34
bypass mode. !
1. Refer to the relevant section of the device datasheet.
4.6 Functional ports
The functional port pins are listed in Table 7.
Table 7. Functional port pin descriptions
Pin number
Port PCR Alternate Function Peripheral /0 Pad | RESET
pin register | function(! P direction®| type | config. | LQFP | LQFP
64 100
Port A
AFO GPIO[0] SIUL I/0
AF1 EOUCIO] eMIOS_0 I/0
PA[O] PCRIO] AF2 CLKOUT CGL 0] M | Tristate 5 12
AF3 EOUC[13] eMIOS_0 IO
— WKUP[19]®) WKPU |
AFO GPIO[1] SIUL IO
AFA1 EOUC[1] eMIOS_0 I/O
AF2 — — — .
PA[1] | PCR[1] AF3 . . . S | Tristate 4 7
— NMI4) WKPU [
— WKUP[2]®) WKPU |
AFO GPIO[2] SIUL IO
AF1 EOUCI2] eMIOS_0 I/O
PA[2] PCR[2] AF2 — — — S | Tristate 3 5
AF3 MA[2] ADC 0]
— WKUP[3]®) WKPU |
59/868 Doc ID 16886 Rev 6 1S

RMO0045 Signal Description
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral I/0 Pad | RESET
pin | register | function(!) P direction(®| type | config. | LQFP | LQFP
64 100
AFO GPIO[3] SIUL 110
AF1 EOUC[3] eMIOS_0 110
PAI3] | PCR[3] AF2 - N - S | Tristate| 43 68
AF3 CS4.0 DSPI_0 110
— EIRQ[0] SIUL [
— ADC1_S[0] ADC [
AFO GPIO[4] SIUL 110
AF1 EOUC[4] eMIOS_0 110
PA[4] | PCR[4] AF2 — — — S | Tristate| 20 29
AF3 CS0._1 DSPI_1 110
— WKUP[9]®) WKPU |
AFO GPIO[5] SIUL /0
Pas] | PoRp) | AT EOUCIS] eMIOS_0 Vo M | Tristate | 51 79
AF2 — — —
AF3 — — —
AFO GPIO[6] SIUL /0
AF1 EOUCI6] eMIOS_0 110
PA[6] | PCR[6] AF2 — — — S | Tristate| 52 80
AF3 CS1_1 DSPI_1 110
— EIRQ[1] SIUL |
AFO GPIO[7] SIUL 110
AF1 EOUC[7] eMIOS_0 110
PA[7] | PCR[7] AF2 o _ o S | Tristate| 44 71
AF3 — — —
— EIRQ[2] SIUL [
— ADC1_S[1] ADC [
AFO GPIO[8] SIUL 110
AF1 EOUC[8] eMIOS_0 110 |
. nput,
PA[8] | PCR[8] AF2 EoUCT14] eMIOS_0 S | weak 45 72
AF3 — — - pull-up
— EIRQ[3] SIUL [
N/A®G) ABSI0] BAM |
AFO GPIO[9] SIUL 110
AF1 EOUCI9] eMIOS_0 o) ol
PA[9] | PCRI9] AF2 — — — S ui 46 73
down
AF3 CS2_1 DSPI_1 110
N/AG) FAB BAM [
KYI Doc ID 16886 Rev 6 60/868

Signal Description RMO0045
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[10] SIUL /O
AF1 EOUC[10] eMIOS_0 I/O
PA[10] | PCR[10]| AF2 — — — S |Tristate | 47 74
AF3 LIN2TX LINFlex_2 (0]
— ADC1_S[2] ADC |
AFO GPIO[11] SIUL I/0
AF1 EOUC[11] eMIOS_0 /O
AF2 — — —
PA[11] | PCR[11] AF3 — — — S | Tristate | 48 75
— EIRQ[16] SIUL |
— ADC1_SJ[3] ADC |
— LIN2RX LINFlex_2 |
AFO GPIO[12] SIUL I/O
AF1 — — —
AF2 — — — .
PA[12] | PCR12]| B B B S |Tristate | 22 31
— EIRQ[17] SIUL [
— SIN_O DSPI_O |
AFO GPIO[13] SIUL /O
PA[13] | PCR[13] 2:2; SOUT_0 DSPIO © M | Tristate 21 30
AF3 CS3_1 DSPI_1 I/O
AFO GPIO[14] SIUL I/O
AF1 SCK_0 DSPI_0 I/0
PA[14] | PCR[14]| AF2 CS0_0 DSPI_0 /O M |Tristate | 19 28
AF3 EOUCIO] eMIOS_0 /O
— EIRQ[4] SIUL [
AFO GPIO[15] SIUL /O
AF1 CS0_0 DSPI_0 I/O
PA[15] | PCRJ[15] AF2 SCK_0 DSPI_O I/O M | Tristate 18 27
AF3 EOUC[1] eMIOS_0 I/0
— WKUP[10]® WKPU |
Port B
AFO GPIO[16] SIUL /O
AF1 ANOTX Fl AN_O
PBIO] |PCR[16]| '\ CANO exCAN_ © M |Tristate | 14 23
AF3 LIN2TX LINFlex_2 (0]
61/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Signal Description
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[17] SIUL 110
AF1 — — —
AF2 — — — ,
PB[1] PCR[17] AF3 LINORX LINFlex_0 | S | Tristate 15 24
— WKUP[4]® WKPU |
— CANORX FlexCAN_O |
AFO GPIO[18] SIUL /0
AF1 LINOTX LINFlex_0 (0]
PBI[2] PCR[18] X M | Tristate 64 100
AF2 — — —
AF3 — — —
AFO GPIO[19] SIUL 110
AF1 — — —
AF2 — — — ,
PBI[3] PCR[19] AF3 . . . S | Tristate 1 1
— WKUP[11]® WKPU |
— LINORX LINFlex_0 |
AFO GPIO[20] SIUL |
AF1 — — —
PB[4] PCR[20] AF2 — — — | | Tristate 32 50
AF3 — — —
— ADC1_PJ0] ADC |
AFO GPIO[21] SIUL |
AF1 — — —
PBI[5] PCR[21] AF2 — — — | | Tristate 35 53
AF3 — — —
— ADC1_P[1] ADC |
AFO GPIO[22] SIUL |
AF1 — — —
PB[6] | PCR[22] AF2 — — — | |Tristate| 36 54
AF3 — — —
— ADC1_P[2] ADC |
AFO GPIO[23] SIUL |
AF1 — — —
PB[7] | PCR[23]| AF2 — — — | | Tristate | 37 55
AF3 — — —
— ADC1_P[3] ADC |
'] Doc ID 16886 Rev 6 62/868

Signal Description

RMO0045

Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[24] SIuL |
AF1 — - —
AF2 — — — .
PB[8] PCR[24] AF3 . . . | | Tristate 30 39
— ADC1_S[4] ADC [
— WKUP[25]®) WKPU |
AFO GPIO[25] SIUL |
AF1 — — —
AF2 — — — .
PB[9] |PCRI25]| . _ B _ | | Tristate | 29 38
— ADC1_SJ[5] ADC |
— WKUP[26]®) WKPU |
AFO GPIO[26] SIuL /o
AF1 — — —
AF2 — — —)
PB[10] | PCR[26] AF3 B B B J |Tristate | 31 40
— ADC1_S[6] ADC [
— WKUP[8]®) WKPU |
AFO GPI0[27] SIuL /O
AF1 EOQUCI[3] eMIOS_0 I/O
PB[11] | PCR[27] AF2 — — — J | Tristate 38 59
AF3 CS0_0 DSPI_0 I/0
— ADC1_S[12] ADC [
AFO0 GPIO[28] SIUL I/0
AF1 EOUC[4] eMIOS_0 /0
PB[12] | PCR[28] AF2 — — — J |Tristate | 39 61
AF3 CS1_0 DSPI_0 (0]
— ADC1_X]0] ADC |
AFO GPIO[29] SIuL I[e)
AF1 EOUCIS] eMIOS_0 /0
PB[13] | PCR[29] AF2 — — — J | Tristate 40 63
AF3 CS2_0 DSPI_0 (0]
— ADC1_X[1] ADC [
AFO GPIO[30] SIuL /0
AF1 EOUCI6] eMIOS_0 /O
PB[14] | PCR[30] AF2 — — — J | Tristate | 41 65
AF3 CS3_0 DSPI_0 (0]
— ADC1_X][2] ADC |
63/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Signal Description

Table 7. Functional port pin descriptions (continued)

Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100

AFO GPIO[31] SIUL /0
AF1 EOUC[7] eMIOS_0 I/O

PB[15] | PCR[31]| AF2 — — — J | Tistate | 42 67
AF3 CS4_0 DSPI_O (0]
— ADC1_X[3] ADC |

Port C
AFO GPIO[32] SIUL Vo
o AF1 _ _ _ Input,

PCI0] PCR[32] AF2 DI JTAGC | M pwuﬁfiukp 59 87
AF3 — — —
AFQ GPIO[33] SIuL Vo
AF1 — — —

6 .

PC[1] PCR[33] AF2 DO JTAGC 0 F | Tristate 54 82
AF3 —_ — _
AFO GPIO[34] siuL /0
AF1 SCK_1 DSPI_1 110

PC[2] | PCR[34]| AF2 — — — M |Tristate| 50 78
AF3 — — —
— EIRQ[5] sIuL |
AFO GPIO[35] SIUL I/O
AF1 CS0_1 DSPI_1 I/O

PCI[3] PCR[35] AF2 MA[O] ADC (0] S | Tristate 49 77
AF3 — — —
_ EIRQI6] siuL |
AFO0 GPIO[36] SIUL I/0
AF1 — — —
AF2 — — — .

PCl4] | PCRI3S]| B ~ B M |Tristate | 62 92
— SIN_1 DSPI_1 |
— EIRQ[18] siuL |
AFO0 GPIO[37] SIUL I/O
AF1 SOUT_1 DSPI_1 (0]

PC[5] | PCR[37]| AF2 — — — M |Tristate | 61 91
AF3 — — —
— EIRQ[7] siuL |
AFO GPIO[38] SIUL e
AF1 LINTTX LINFlex_1

PC[6] | PCR[38] - © S |Tistate| 16 25
AF2 — _ —
AF3 — — —

KYI Doc ID 16886 Rev 6 64/868

Signal Description RMO0045
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[39] SIuL /0
AF1 — - —
AF2 — — — .
PC[7] | PCR[39] AF3 . . . S | Tristate 17 26
— LINT1RX LINFlex_1 |
— WKUP[12]®) WKPU |
AFO GPIO[40] SIUL /0
AF1 LIN2TX LINFlex_2 (0] .
PCI8] |PCRM0] | o, EOUC(] oMIOS. 0 /o S | Tristate| 63 99
AF3 — — —
AFO GPIO[41] SIUL /O
AF1 — — —
AF2 E 7 Ml I
PCI9] | PCRI41] UGl [eMIOS.0 | VO | g | qigiate | 2 >
AF3 — — —
— LIN2RX LINFlex_2 |
— WKUP[13]®) WKPU |
AFO GPIO[42] SIUL /O
AF1 — — — .
PC[10] | PCR42]|) B B B M |Tristate | 13 22
AF3 MA[1] ADC o)
AFO GPI0[43] SIUL /O
AF1 — — —
PC[11] | PCR[43]| AF2 — — — S |Tristate| — 21
AF3 MA[2] ADC o)
— WKUP[5]® WKPU |
AFO0 GPIO[44] SIUL I/0
AF1 EOUCI[12] eMIOS_0 /0
PC[12] | PCR[44]| AF2 — — — M |Tristate | — 97
AF3 — — —
— EIRQ[19] SIUL |
AFO GPIO[45] SIUL I/O
AF1 EOUC[13 MIOS_0 I/O
PC[13] | PCR[45] [13] oIS S |Tristate| — 98
AF2 — — —
AF3 — — —
AFO GPIO[46] SIUL I/0
AF1 EOUCI[14] eMIOS_0 /0
PC[14] | PCR[46] | AF2 — — — S | Tistate| — 3
AF3 — — —
— EIRQ[S] SIUL |
65/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Signal Description
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(! P direction®| type | config. | LQFP | LQFP
64 100
AFO GPI0[47] SIUL /O
AF1 EOUCI15] eMIOS_0 I/O
PC[15] | PCR[47] AF2 — — — M | Tristate — 4
AF3 — — —
— EIRQ[20] SIUL [
Port D
AFO GPI0[48] SIUL [
AF1 — — —
AF2 — — — ,
PD0] | PCR[48] | . o . . . | | Tristate | — 41
— WKUP[27]® WKPU |
— ADC1_P[4] ADC [
AFO GPIO[49] SIUL |
AF1 — — —
AF2 — — — .
PD[1] | PCR[49] AF3 . . . | | Tristate| — 42
— WKUP[28]®) WKPU [
— ADC1_PJ[5] ADC |
AFO GPIO[50] SIUL |
AF1 — — —
PD[2] | PCR[50]| AF2 — — — | | Tristate | — 43
AF3 — — —
— ADC1_P[6] ADC [
AFO GPIO[51] SIUL [
AF1 — — —
PD[3] | PCR[51] AF2 — — — | | Tristate — 44
AF3 — — —
— ADC1_PJ[7] ADC |
AFO GPIO[52] SIUL |
AF1 — — —
PD[4] | PCR[52] | AF2 — — — | | Tristate | — 45
AF3 — — —
— ADC1_PJ[8] ADC |
AFO GPIO[53] SIUL [
AF1 — — —
PD[5] | PCR[53] AF2 — — — | | Tristate — 46
AF3 — — —
— ADC1_P[9] ADC [
'] Doc ID 16886 Rev 6 66/868

Signal Description RMO0045
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate . . /0 Pad | RESET
pin | register |function(Function Peripheral | ;o ction(® type | config. | LQFP | LQFP
64 100
AFO GPIO[54] SIUL |
AF1 — — —
PD[6] | PCRI[54] AF2 — — — | |Tristate| — 47
AF3 — — —
— ADC1_P[10] ADC |
AFO GPIO[55] SIUL |
AF1 — — —
PD[7] | PCRI55] AF2 — — — | |Tristate| — 48
AF3 — — —
— ADC1_P[11] ADC |
AFO GPIO[56] SIUL |
AF1 — — —
PD[8] | PCR[56] AF2 — — — | | Tristate — 49
AF3 — — —
— ADC1_P[12] ADC |
AFO GPIO[57] SIUL |
AF1 — — —
PD[9] | PCRI[57] AF2 — — — | |Tristate| — 56
AF3 — — _
— ADC1_P[13] ADC |
AFO GPIO[58] SIUL |
AF1 — — —
PD[10] | PCR[58] AF2 — — — | |Tristate| — 57
AF3 — — —
— ADC1_P[14] ADC |
AFO GPIO[59] SIUL |
AF1 — - —
PD[11] | PCR[59] AF2 — — — | |Tristate| — 58
AF3 — — _
— ADC1_P[15] ADC |
AFO GPIO[60] SIUL I/O
AF1 CS5_0 DSPI_0 o]
PD[12] | PCR[60] AF2 EOUC[24] eMIOS_0 I/0 J | Tristate — 60
AF3 — — —
— ADC1_S[8] ADC |
AFO GPIO[61] SIUL /0
AF1 CS0_1 DSPI_1 I/O
PD[13] | PCR[61] AF2 EOUC[25] eMIOS_0 /0 J | Tristate | — 62
AF3 — — —
— ADC1_SJ[9] ADC |
67/868 Doc ID 16886 Rev 6 Ky_l

RMO0045 Signal Description
Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[62] SIUL /0
AF1 CS1_1 DSPI_1 (0]
PD[14] | PCR[62] AF2 EOUCI[26] eMIOS_0 I/0 J | Tristate — 64
AF3 — — —
— ADC1_S[10] ADC [
AFO GPIO[63] SIUL I/0
AF1 Ccs2_1 DSPI_1 (0]
PD[15] | PCR[63] AF2 EOUC[27] eMIOS_0 /0 J | Tristate | — 66
AF3 — — —
— ADC1_S[11] ADC |
Port E
AFO GPIO[64] SIUL I/0
AF1 EOUC[16] eMIOS_0 /O
PE[0] | PCR[64]| AF2 — — — S |Tristate| — 6
AF3 — — —
— WKUP[6]®) WKPU |
AFO GPIO[65] SIUL /0
17 Ml I
PE[1] PCR[65] AF1 EoUCH7] eMIOS_0 /o M | Tristate — 8
AF2 — — —
AF3 — — —
AFO GPIO[66] SIUL I/0
AF1 EOUCI18] eMIOS_0 I/0
PE[2] | PCR[66] AF2 o o o M | Tristate | — 89
AF3 — — —
— EIRQ[21] SIUL |
— SIN_A1 DSPI_1 |
AFO GPIO[67] SIUL e}
AF1 EOUCI[19] eMIOS_0 I/O .
PE[3] | PCR[67] AFD SOUT 1 DSPL 1 o M | Tristate 920
AF3 — — —
AFO GPIO[68] SIUL I/0
AF1 EOUC[20] eMIOS_0 /O
PE[4] | PCR[68]| AF2 SCK_1 DSPI_1 /0 M | Tristate | — 93
AF3 — — —
— EIRQ[9] SIUL |
AFO GPIO[69] SIUL I/O
AF1 EOUC[21] eMIOS_0 I/O .
PE[5] | PCR[69] AF2 S0 1 DSPI_ 1 /O M | Tristate 94
AF3 MA[2] ADC (0]
'] Doc ID 16886 Rev 6 68/868

Signal Description

RMO0045

Table 7. Functional port pin descriptions (continued)
Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[70] SIUL /O
AF1 EOUC[22] eMIOS_0 I/O
PE[6] PCR[70] AF2 CS3_0 DSPI_O (0] M | Tristate — 95
AF3 MA[1] ADC o)
— EIRQ[22] SIUL [
AFO0 GPIO[71] SIUL I/O
AF1 EOUC[23] eMIOS_0 /0
PE[7] |PCR[71]| AF2 CS2.0 DSPI_0 0 M |Tristate | — 9
AF3 MA[O] ADC 0
— EIRQ[23] SIUL |
AFO GPIO[72] SIUL /O
PE[8] | PCR[72] APt R N - M | Tristate 9
AF2 EOUC[22] eMIOS_0 I/O
AF3 — — —
AFO0 GPIQ[73] SIUL I/0
AF1 — — —
PE[9] | PCR[73]| AF2 EOUC[23] eMIOS_0 /O S |Tristate| — 10
AF3 — — —
— WKUP[7]®) WKPU |
AFO GPIO[74] SIUL /0
AF1 — — —
PE[10] | PCR[74] AF2 CS3_1 DSPI_1 (0] S | Tristate — 11
AF3 — — —
— EIRQ[10] SIUL [
AFO0 GPIQ[75] SIUL I/0
AF1 EOUC[24] eMIOS_0 I/O
PE[11] | PCR[75]| AF2 CS4._1 DSPI_1 o) S |Tristate| — 13
AF3 — — —
— WKUP[14]®) WKPU |
AFO GPI0[76] SIUL /O
AF1 — — —
AF2 — — — .
PE[12] | PCR[76] AF3 . . . S | Tristate — 76
— ADC1_S[7] ADC [
— EIRQ[11] SIUL [
Port H
AFO GPIO[121] SIUL I/O
o AF1 _ _ _ Input,
PH[9] PCR[121] AF2 TCK JTAGC | S pwuﬁfaukp 60 88
AF3 — — —
69/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Signal Description

Table 7. Functional port pin descriptions (continued)

Pin number
Port PCR Alternate Function Perioheral /0 Pad | RESET
pin | register |function(! P direction®| type | config. | LQFP | LQFP
64 100
AFO GPIO[122] SIUL I/O
© AF1 . _ _ Input,
PH[10]®) |PCR[122 k 81
[OP™ \PORIZ2] - ppp ™S JTAGC | S pwuﬁf"up %3
AF3 — — _

1. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 — AFO;
PCR.PA =01 - AF1; PCR.PA =10 —» AF2; PCR.PA = 11 — AF3. This is intended to select the output functions; to use
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields.
For this reason, the value corresponding to an input only function is reported as “—”.

2. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the
values of the PSMIO.PADSELX bitfields inside the SIUL module.

All WKUP pins also support external interrupt capability. See “wakeup unit” chapter for further details.
NMI has higher priority than alternate function. When NMl is selected, the PCR.AF field is ignored.

“Not applicable” because these functions are available only while the device is booting. Refer to “BAM” chapter of the
device reference manual for details.

6. Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.

KYI Doc ID 16886 Rev 6 70/868

Microcontroller Boot RMO0045

5

5.1

71/868

Microcontroller Boot

This chapter explains the process of booting the microcontroller. The following entities are
involved in the boot process:

® Boot Assist Module (BAM)

® System Status and Configuration Module (SSCM)

® Flash memory boot sectors (see Chapter 27, Flash Memory)
® Memory Management Unit (MMU)

Boot mechanism

This section describes the configuration required by the user, and the steps performed by
the microcontroller, in order to achieve a successful boot from flash memory or serial
download modes.

There are 2 external pins on the microcontroller that are latched during reset and used to
determine whether the microcontroller will boot from flash memory or attempt a serial
download via FlexCAN or LINFlex (RS232):

® FAB (Force Alternate Boot mode) on pin PA[9]
® ABS (Alternate Boot Select) on pin PA[8]

Table 8 describes the configuration options.

Table 8. Boot mode selection

Mode FAB pin (PA[9]) ABS pin (PA[8])
Flash memory boot (default mode) 0 X
Serial boot (LINFlex) 1 0
Serial boot (FIexCAN) 1 1

The microcontroller has a weak pull-down on PA[9] and a weak pull-up on PA[8]. This means
that if nothing external is connected to these pins, the microcontroller will enter flash
memory boot mode by default. In order to change the boot behavior, you should use
external pullup or pulldown resistors on PA[9] and PA[8]. If there is any external circuitry
connected to either pin, you must ensure that this does not interfere with the expected value
applied to the pin at reset. Otherwise, the microcontroller may boot into an unexpected
mode after reset.

The SSCM preforms a lot of the automated boot activity including reading the latched value
of the FAB (PA[9]) pin to determine whether to boot from flash memory or serial boot mode.
This is illustrated in Figure 5.

Doc ID 16886 Rev 6 KYI

RMO0045

Microcontroller Boot

5.1.1

Boot from

flash memory

SSCM reads latched
values of PA[8] and
PA[9] pins

FAB (PA[9]) value?

ABS = 1
ABS (PA[8]) value?

Serial boot Serial boot
(LINFlex) (FlexCAN)

Figure 5. Boot mode selection

Flash memory boot
In order to sucessfully boot from flash memory, you must program two 32-bit fields into one
of 5 possible boot blocks as detailed below. The entities to program are:
® 16-bit Reset Configuration Half Word (RCHW), which contains:
— A BOOT_ID field that must be correctly set to Ox5A in order to "validate" the boot
sector
® 32-bit reset vector (this is the start address of the user code)

The location and structure of the boot sectors in flash memory are shown in Figure 6.

Doc ID 16886 Rev 6 72/868

Microcontroller Boot

RMO0045

0x0000_0000

0x0000_8000

0x0000_C000

0x0001_0000

0x0001_8000

Boot sector 0

32 KB

Boot sector 1

16 KB

Boot sector 2

16 KB

Boot sector 3

32 KB

Boot sector 4

32 KB

Code flash memory

0x0
(RCHW)

0x4

0x8

Bit 0 78

Boot sector structure

15 16

Bit 31

Reserved

BOOT_ID
(0x5A)

Reserved

32-bit reset vector (points to start address of application code)

Application code (from offset 0x8 and onward)

Figure 6. Boot sector structure
The RCHW fields are described in Table 9.

Table 9. RCHW field descriptions

Field

Description

BOOT_ID

Boot identifier.

If BOOT_ID = 0x5A, the boot sector is considered valid and bootable.

73/868

The SSCM performs a sequential search of each boot sector (starting at sector 0) for a valid
BOOQOT_ID within the RCHW. If a valid BOOT_ID is found, the SSCM reads the boot vector
address. If a valid BOOT_ID is not found, the SSCM starts the process of putting the
microcontroller into static mode.

Finally, the SSCM sets the e200z0h core instruction pointer to the reset vector address and

starts the core running.

Static mode

If no valid BOOT_ID within the RCHW was found, the SSCM sets the CPU core instruction
pointer to the BAM address and the core starts to execute the code to enter static mode as

follows:

® The core executes the "wait" instruction which halts the core.

Doc ID 16886 Rev 6

RMO0045

Microcontroller Boot

5.1.2

N J J

The sequence is illustrated in Figure 7.

SSCM searches flash
boot sectors for valid
BOOT_ID (0x5A)

Valid
BOOT_ID found?

Yes No

Y

SSCM reads reset
vector address

A

SSCM transfers
execution to e200z0h core
which runs BAM code

Y Y

€200z0h core starts
executing code at
vector address

BAM code executes
wait instruction

Y

System in static mode
(requires reset to recover)

Figure 7. Flash memory boot mode sequence

Alternate boot sectors

Some applications require an alternate boot sector so that the main boot code can be
erased and reprogrammed in the field. When an alternate boot is needed, you can create
two bootable sectors:

® The valid boot sector located at the lowest address is the main boot sector.

® The valid boot sector located at the next available address is the alternate boot sector.

This scheme ensures that there is always one active boot sector even if the main boot sector
is erased.

Serial boot mode

Serial boot provides a mechanism to download and then execute code into the
microcontroller SRAM. Code may be downloaded using either FlexCAN or LINFlex (RS232).
After the SSCM has detected that serial boot mode has been requested, execution is
transferred to the BAM which handles all of the serial boot mode tasks. See Section 5.2,
Boot Assist Module (BAM), for more details.

Doc ID 16886 Rev 6 74/868

Microcontroller Boot RMO0045

5.1.3

Caution:

Censorship

Censorship can be enabled to protect the contents of the flash memory from being read or

modified. In order to achieve this, the censorship mechanism controls access to the:

® JTAG / Nexus debug interface

® Serial boot mode (which could otherwise be used to download and execute code to
query or modify the flash memory)

To re-gain access to the flash memory via JTAG or serial boot, a 64-bit password must be
correctly entered.

When censorship has been enabled, the only way to regain access is with the password. If
this is forgotten or not correctly configured, then there is no way back into the device.

There are two 64-bit values stored in the shadow flash which control the censorship (see
Table 373 for a full description):

® Nonvolatile Private Censorship Password registers, NVPWDO0 and NVPWD1

® Nonvolatile System Censorship Control registers, NVSCCO and NVSCC1

Censorship password registers (NVPWDO0 and NVPWD1)

The two private password registers combine to form a 64-bit password that should be
programmed to a value known only by you. After factory test these registers are
programmed as shown below:

e NVPWDO = OxFEED_FACE
e NVPWD1 = OxCAFE_BEEF
This means that even if censorship was inadvertently enabled by writing to the censorship

control registers, there is an opportunity to get back into the microcontroller using the default
private password of OXFEED_FACE_CAFE_BEEF.

When configuring the private password, each half word (16-bit) must contain at least one "1"
and one "0". Some examples of legal and illegal passwords are shown in Table 10:

Table 10. Examples of legal and illegal passwords

Legal (valid) passwords lllegal (invalid) passwords
0x0001 0001 0001 0001 0x0000_ XXXX XXXX XXXX
OXFFFE_FFFE FFFE FFFE OXFFFF_XXXX XXXX_ XXXX
0x1XXX_ X2XX XX4X XXX8

75/868

In uncensored devices it is possible to download code via LINFlex or FlexCAN (Serial Boot
Mode) into internal SRAM even if the 64-bit private password stored in the flash and
provided during the boot sequence is a password that does not conform to the password
rules.

Nonvolatile System Censorship Control registers (NVSCCO0 and NVSCC1)

These registers are used together to define the censorship configuration. After factory test
these registers are programmed as shown below which disables censorship:
® NVSCCO = 0x55AA_55AA

® NVSCC1 = 0x55AA_55AA

Doc ID 16886 Rev 6 KYI

RMO0045

Microcontroller Boot

Caution:

Caution:

Each 32-bit register is split into an upper and lower 16-bit field. The upper 16 bits (the SC
field) are used to control serial boot mode censorship. The lower 16 bits (the CW field) are
used to control flash memory boot censorship.

If the contents of the shadow flash memory are erased and the NVSCCO,1 registers are not
re-programmed to a valid value, the microcontroller will be permanently censored with no

way for you to regain access. A microcontroller in this state cannot be debugged or re-

flashed.

Censorship configuration

The steps to configuring censorship are:
1. Define a valid 64-bit password that conforms to the password rules.

2. Using the table and flow charts below, decide what level of censorship you require and
configure the NVSCCO,1 values.
3. Re-program the shadow flash memory and NVPWDO0,1 and NVSCCO,1 registers with
your new values. A POR is required before these will take effect.

If

(NVSCCO and NVSCC1 do not match)

or

(Either NVSCCO or NVSCC1 is not set to 0x55AA)
then the microcontroller will be permanently censored with no way to get back in.

Table 11 shows all the possible modes of censorship. The red shaded areas are to be
avoided as these show the configuration for a device that is permanently locked out. If you
wish to enable censorship with a private password there is only one valid configuration — to
modify the CW field in both NVSCCO,1 registers so they match but do not equal Ox55AA.
This will allow you to enter the private password in both serial and flash boot modes.

Table 11. Censorship configuration and truth table

Boot configuration Serial Censorshi Internal
censorship P flash Nexus Serial JTAG
FAB pin Control obtions control word (ﬁsggcgn"{é’w}) memory state password | password
state P (NVSCCn[SC]) state
OXXXXX AND | 0x55AA AND
Uncensored NVSCCO == NVSCCO == Enabled | Enabled N/A
NVSCC1 NVSCC1
0 (flash Private flash 0x55AA AND | !0x55AA AND Enabled (SNg/CI;DI\\//IV rDe;’gs
memory memory password | NVSCCO == NVSCCO == Enabled with flash
boot) and censored NVSCC1 NVSCC1 password)
memory'"’)
CaraaEe il e I0x55AA I0X55AA
password access OR Enabled | Disabled N/A
(lockout) NVSCCO I= NVSCCH
17 Doc ID 16886 Rev 6 76/868

Microcontroller Boot

RM0045
Table 11. Censorship configuration and truth table (continued)
Boot configuration Serial Censorshi Internal
censorship P flash Nexus Serial JTAG
FAB pin Control options control word (ﬁsggcgn"{vg\ﬁl) memory state password | password
state (NVSCCn[SC]) state
Private flash NVPWDO,1
memory password OXS5AA AND Enabled | Enabled (BAM reads
yp NVSCCO == NVSCCH flash
and uncensored)
memory''/)
Private flash 0x55AA AND | !0x55AA AND (gggl\v/lv rDeL’C?S
memory password | NVSCCO == NVSCCO == Enabled | Disabled flash
and censored NVSCC1 NVSCC1 ™)
1 (serial memory* ")
boot) ;
Public password 10x55AA AND | 0XS5AA AND (OXIEEE"DC FA
and uniensored NVSCCO != NVSCCO != Enabled | Enabled CE CAFE B
NVSCC1 NVSCC1 i -
EEF)
. I0x55AA Public
Public password . . (OXFEED_FA
and censored Disabled | Disabled CE CAFE B

= Not applicable

= Microcontroller permanently locked out

1. When the SSCM reads the passwords from flash memory, the NVPWDO0 and NVPWD1 password order is swapped, so you
have to submit the 64-bit password as {NVPWD1, NVPWDO}.

77/868

The flow charts in Figure 8 and Figure 9 provide a way to quickly check what will happen
with different configurations of the NVSCCO,1 registers as well as detailing the correct way
to enter the serial password. In the password examples, assume the 64-bit password has
been programmed into the shadow flash memory in the order {NVPWDO, NWPWD1} and
has a value of 0x01234567_89ABCDEF.

Doc ID 16886 Rev 6

RMO0045 Microcontroller Boot
FAB =0
(Flash boot mode)
Censored with no
password access
(Locked out)
Both Censored with no
SC and CW != password access
O0x55AA (Locked out)
JTAG password details:
Censored with Enter password as
Note: CW != 0x55AA private password {NVPVF\,ID1, NVPWDO}
SC = 0x55AA ? over JTAG example —
.
0x89ABCDEF_01234567
> Uncensored

Figure 8. Censorship control in flash memory boot mode

Doc ID 16886 Rev 6

78/868

Microcontroller Boot RMO0045

FAB = 1
(Serial boot mode)

Censored with no
password access
(Locked out)

Both
SC and CW !=
Ox55AA

Censored with no
password access
(Locked out)

Serial password details:
Note: 1= Public password, Enter public password
CW = Ox55AA SC ngSAA Uncensored OxFEEDFACE_CAFEBEEF
Flash Enter password as
glgte: OGEAR CW I= Ox55AA (private) password, ggmlgt NVPWDO}
= ? .
X ' L Censored 0x89ABCDEF_01234567
Flash Enter password as
> (orvate) passwora, || (NVPWDO. NVPWIDY)
Uncensored 0x01234567_89ABCDEF

Figure 9. Censorship control in serial boot mode

5.2 Boot Assist Module (BAM)

The BAM consits of a block of ROM at address OxFFFF_CO000 containing VLE firmware.
The BAM provides 2 main functions:

® Manages the serial download (FIexCAN or LINFlex protocols supported) including
support for a serial password if censorship is enabled

® Places the microcontroller into static mode if flash memory boot mode is selected and a
valid BOOT_ID is not located in one of the boot sectors by the SSCM

5.2.1 BAM software flow
Figure 10 illustrates the BAM logic flow.

79/868 Doc ID 16886 Rev 6 KYI

RMO0045

Microcontroller Boot

BAM Entry
OxFFFF_CO000

Save default

configuration

SSCM_STATUS[BMODE]

Check boot
mode at

Boot mode valid? Restore default STATIC mode
configuration
Download new Restore default
code andsave in |/ > . . > Execute new
SRAM configuration code

Figure 10. BAM logic flow

The initial (reset) device configuration is saved including the mode and clock configuration.
This means that the serial download software running in the BAM can make changes to the
modes and clocking and then restore these to the default values before running the newly
downloaded application code from the SRAM.

The SSCM_STATUS[BMODE] field indicates which boot mode is to be executed (see
Table 12). This field is only updated during reset.

There are 2 conditions where the boot mode is not considered valid and the BAM pushes
the microcontroller into static mode after restoring the default configuration:

® BMODE =011 (flash memory boot mode). This means that the SSCM has been unable
to find a valid BOOT_ID in the boot sectors so has called the BAM

® BMODE =reserved
In static mode a wait instruction is executed to halt the core.

For the FlexCAN and LINFlex serial boot modes, the respective area of BAM code is
executed to download the code to SRAM.

Doc ID 16886 Rev 6 80/868

Microcontroller Boot RMO0045

Table 12. SSCM_STATUS[BMODE] values as used by BAM

BMODE value Corresponding boot mode
000 Reserved
001 FlexCAN_O serial boot loader
010 LINFlex_0 (RS232 /UART) serial boot loader
011 Flash memory boot mode
100-111 Reserved

After the code has been downloaded to SRAM, the BAM code restores the initial device
configuration and then transfers execution to the start address of the downloaded code.

BAM resources

The BAM uses/initializes the following MCU resources:

MC_ME and MC_CGM to initialize mode and clock sources

FlexCAN_O, LINFlex _0 and the respective I/0O pins when performing serial boot mode
SSCM during password check

SSCM to check the boot mode (see Table 12)

® 4-16 MHz fast external crystal oscillator

The system clock is selected directly from the 4—16 MHz fast external crystal oscillator.
Thus, the external oscillator frequency defines the baud rates used for serial download (see
Table 13).

Table 13. Serial boot mode — baud rates

FXOSC frequency LINFlex baud rate CAN bit rate
(MHz) (baud) (bit/s)
frxosc frxosc/833 frxosc/40

8 9600 200K
12 14400 300K
16 19200 400K

81/868

Download and execute the new code

From a high level perspective, the download protocol follows these steps:

1. Send the 64-bit password.

2. Send the start address, size of code to be downloaded (in bytes) and the VLE bit(©).
3. Download the code.

Each step must be completed before the next step starts. After the download is complete
(the specified number of bytes is downloaded), the code executes from the start address.

c. Since the device supports only VLE code and not Book E code, this flag is used only for backward
compatibility.

Doc ID 16886 Rev 6 KYI

RMO0045

Microcontroller Boot

The communication is done in half duplex manner, whereby the transmission from the host
is followed by the microcontroller transmission mirroring the transmission back to the host:

® Host sends data to the microcontroller and waits for a response.
® MCU echoes to host the data received.
® Host verifies if echo is correct:
— If data is correct, the host can continue to send data.
— If data is not correct, the host stops transmission and the microcontroller enters
static mode.
All multi-byte data structures are sent with MSB first.

A more detailed description of these steps follows.

Censorship mode detection and serial password validation

Before the serial download can commence, the BAM code must determine which
censorship mode the microcontroller is in and which password to use. It does this by reading
the PUB and SEC fields in the SSCM Status Register (see Section , System Status Register
(SSCM_STATUS)) as shown in Table 14.

Table 14. BAM censorship mode detection

SSCM_STATUS register fields
Mode Password comparison
PUB SEC
1 0 Uncensored, public password |0xFEED_FACE_CAFE_BEEF
0 0 Uncensored, private password |[NVPWDO0,1 from flash memory via BAM
0 1 Censored, private password NVPWD1,0 from flash memory via SSCM

When censorship is enabled, the flash memory cannot be read by application code running
in the BAM or in the SRAM. This means that the private password in the shadow flash
memory cannot be read by the BAM code. In this case the SSCM is used to obtain the
private password from the flash memory of the censored device. When the SSCM reads the
private password it inverts the order of {NVPWDO0, NWPWD1} so the password entered over
the serial download needs to be {(NVPWD1, NVPWDO0}.

Doc ID 16886 Rev 6 82/868

Microcontroller Boot RMO0045

BAM tasks Applicable password

~N

BAM code is being
executed
(serial boot mode)

Y

SSCM_STATUS register
PUB and SEC
bits are read

Public password
mode

(Public password,
PUB = 1 Yes o Uncensored,
P " BAM can directly

check password

Is censorship
enabled

Private password,
SEC = 1 Yes Censored,

SSCM needed to
check password

Y
Y

No

Private password,
Uncensored,
BAM can directly
check password

Y

Y

Start serial download W‘
with password J‘

Figure 11. BAM censorship mode detection

The first thing to be downloaded is the 64-bit password. If the password does not match the
stored password, then the BAM code pushes the microcontroller into static mode.

The way the password is compared with either the public or private password (depending on
mode) varies depending on whether censorship is enabled as described in the following
subsections.

Censorship disabled (private or public passwords):
1. If the public password is used, the BAM code does a direct comparison between the
serial password and OxFEED_FACE_CAFE_BEEF.

2. If the private password is used, the BAM code does a direct comparison between the
serial password and the private password in flash memory, {NVPWDO0, NVPWD1}.

3. If the password does not match, the BAM code immediately terminates the download
and pushes the microcontroller into static mode.

83/868 Doc ID 16886 Rev 6 KYI

RMO0045

Microcontroller Boot

Censorship enabled (private password)

1. Since the flash is secured, the SSCM is required to read the private password.

2. The BAM code writes the serial password to the SSCM_PWCMPH and
SSCM_PWCMPL registers.

3. The BAM code then continues with the serial download (start address, data size and
data) until all the data has been copied to the SRAM.

4. Inthe meantime the SSCM has compared the private password in flash with the serial
download password the BAM code wrote into SSCM_PWCMPH and
SSCM_PWCMPL.

5. If the SSCM obtains a match in the passwords, the censorship is temporarily disabled
(until the next reset).

6. The SSCM updates the status of the security (SEC) bit to reflect whether the
passwords matched (SEC = 0) or not (SEC = 1)

7. Finally, the BAM code reads SEC. If SEC = 0, execution is transferred to the code in the
SRAM. If SEC = 1, the BAM code forces the microcontroller into static mode.

Figure 12 shows this in more detail.

Doc ID 16886 Rev 6 84/868

Microcontroller Boot

RMO0045

BAM tasks

If any frame
is received
incorrectly,
BAM code

pushes
device into
static mode

Y

Censorship enabled,
private password,
BAM running
serial boot mode

Y

Serial password
received

A

BAM writes received
password to SSCM
registers

SSCM tasks

SSCM compares
registers to private
password in flash

Upper 32-bits to
SSCM_PWCMPH
Lower 32-bits to
SSCM_PWCMPL

Y

Start address
and data
length received

\

Data download
received
and copied to SRAM

J

BAM reads

SSCM_PWCMPH to NVPWD1
SSCM_PWCMPL to NVPWDO

Y

If passwords match,
un-censor device
until next POR

Y
Update SSCM_STATUS[SEC]
bit with
censorship state

<
<

SSCM_STATUS[SEC]

Is SEC bit
cleared
?

Y

BAM code pushes
microcontroller into

static mode

execution to user
code in SRAM

BAM code transfers

Figure 12. BAM serial boot mode flow for censorship enabled and private password

With LINFlex, any receive error will result in static mode. With FlexCAN, the host will re-
transmit data if there has been no acknowledgment from the microcontroller. However there

85/868

Doc ID 16886 Rev 6

574

RMO0045

Microcontroller Boot

Note:

could be a situation where the receiver configuration has an error which would result in
static mode entry.

In a censored device booting with serial boot mode, it is possible to read the content of the
four 32-bit flash memory locations that make up the boot sector. For example, if the RCHW
is stored at address 0x0000_0000, the reads at address 0x0000_0000, 0x0000_0004,
0x0000_0008 and 0x0000_000C will return a correct value. No other flash memory
locations can be read.

Download start address, VLE bit and code size

The next 8 bytes received by the microcontroller contain a 32-bit Start Address, the VLE
mode bit and a 31-bit code Length as shown in Figure 13.

Figure 13. Start address, VLE bit and download size in bytes

START_ADDRESS[31:16] ‘

START_ADDRESS[15:0] ‘

‘VLE‘

CODE_LENGTH[30:16] ‘

CODE_LENGTH[15:0] ‘

Note:

The VLE bit (Variable Length Instruction) is used to indicate whether the code to be
downloaded is Book VLE or Book IlI-E. This device family supports only VLE = 1; the bit is
used for backward compatibility.

The Start Address defines where the received data will be stored and where the MCU will
branch after the download is finished. The start address is 32-bit word aligned and the 2
least significant bits are ignored by the BAM code.

The start address is configurable, but most not lie within the 0x4000_0000 to 0x4000_00FF
address range.

The Length defines how many data bytes have to be loaded.

Download data

Each byte of data received is stored in the microcontroller's SRAM, starting from the
address specified in the previous protocol step.

The address increments until the number of bytes of data received matches the number of
bytes specified by the code length.

Since the SRAM is protected by 32-bit wide Error Correction Code (ECC), the BAM code
always writes bytes into SRAM grouped into 32-bit words. If the last byte received does not
fall onto a 32-bit boundary, the BAM code fills any additional bytes with 0x0.

Since the ECC on the SRAM has not been initialized (except for the bytes of data that have
just been downloaded), an additional dummy word of 0x0000_0000 is written at the end of
the downloaded data block to avoid any ECC errors during core prefetch.

Doc ID 16886 Rev 6 86/868

Microcontroller Boot RMO0045

Execute code

The BAM code waits for the last data byte to be received. If the operating mode is censored
with a private password, then the BAM reads the SSCM status register to determine
whether the serial password matched the private password. If there was a password match
then the BAM code restores the initial configuration and transfers execution to the
downloaded code start address in SRAM. If the passwords did not match, the BAM code
forces a static mode entry.

Note: The watchdog is disabled at the start of BAM code execution. In the case of an unexpected
issue during BAM code execution, the microcontroller may be stalled and an external reset
required to recover the microcontroller.

5.2.2 LINFlex (RS232) boot

Configuration

Boot according to the LINFlex boot mode download protocol (see Section , Protocol) is
performed by the LINFlex_0 module in UART (RS232) mode. Pins used are:

® LINOTX mapped on PB[2]

® LINORX mapped on PB[3]

Boot from LINFlex uses the system clock driven by the 4-16 MHz external crystal oscillator
(FXOSC).

The LINFlex controller is configured to operate at a baud rate = system clock frequency/833,
using an 8-bit data frame without parity bit and 1 stop bit.

Byte field

< >
< >

Stat [/ o\ b1 Y D2 Y D3 Y Da Y D5 Y D6 Y D7 Stop
bit bit

Figure 14. LINFlex bit timing in UART mode

Protocol

Table 15 summarizes the protocol and BAM action during this boot mode.

Table 15. UART boot mode download protocol

Protocol BAM response
Host sent message

Action
step message

64-bit password (MSB
first)

Password checked for validity and compared against

1 stored password.

64-bit password

2 32-bit store address |32-bit store address |Load address is stored for future use.

VLE bit + 31-bit VLE bit + 31-bit Size of download are stored for future use.
3 number of bytes (MSB |number of bytes (MSB |Verify if VLE bit is set to 1
first) first)

87/868 Doc ID 16886 Rev 6 KYI

RM0045 Microcontroller Boot
Table 15. UART boot mode download protocol
Protocol Host sent message BAM response Action
step message

8 bits of raw binary 8 bits of raw binary

8-bit data are packed into a 32-bit word. This word is
saved into SRAM starting from the “Load address”.
“Load address” increments until the number of data

data data received and stored matches the size as specified in the
previous step.
5 None None Branch to downloaded code

5.2.3 FlexCAN boot
Configuration
Boot according to the FlexCAN boot mode download protocol (see Section , Protocol) is
performed by the FlexCAN_O module. Pins used are:
® CANOTX mapped on PB[0]
® CANORX mapped on PB[1]

Note: When the serial download via FlexCAN is selected and the device is part of a CAN network,

the serial download may stop unexpectedly if there is any other traffic on the network. To
avoid this situation, ensure that no other CAN device on the network is active during the
serial download process.

Boot from FlexCAN uses the system clock driven by the 4-16 MHz fast external crystal
oscillator.

The FlexCAN controller is configured to operate at a baud rate = system clock frequency/40
(see Table 13 for examples of baud rate).

It uses the standard 11-bit identifier format detailed in FlexCAN 2.0A specification.

FlexCAN controller bit timing is programmed with 10 time quanta, and the sample point is 2
time quanta before the end, as shown in Figure 15.

Doc ID 16886 Rev 6 88/868

Microcontroller Boot

RMO0045

/N

NRZ signal ()
J

SYNC_SEG Time segment 1 Time segment 2
A
1 2
time quantum time quanta time quanta
1 bit time >
Transmit point Sample point

1 time quantum = 4 system clock periods

Protocol

Figure 15. FlexCAN bit timing

Table 16 summarizes the protocol and BAM action during this boot mode. All data are
transmitted byte wise.

Table 16. FlexCAN boot mode download protocol

Protocol
step

Host sent message

BAM response
message

Action

CAN ID 0x011 +
64-bit password

CAN ID 0x001 +
64-bit password

Password checked for validity and compared against stored
password

CAN ID 0x012 + 32-
bit store address +

CAN ID 0x002 + 32-
bit store address +

Load address is stored for future use.
Size of download are stored for future use.

2 VLE bit + 31-bit VLE bit + 31-bit Verify if VLE bit is set to 1
number of bytes number of bytes
8-bit data are packed into 32-bit words. These words are
CAN ID 0x013 + CAN ID 0x003 + saved into SRAM starting from the “Load address”.
3 8 to 64 bits of raw 8 to 64 bits of raw “Load address” increments until the number of data
binary data binary data received and stored matches the size as specified in the
previous step.
5 None None Branch to downloaded code
89/868 Doc ID 16886 Rev 6 IS7]

RMO0045

Microcontroller Boot

5.3

5.3.1

5.3.2

System Status and Configuration Module (SSCM)

Introduction

The primary purpose of the SSCM is to provide information about the current state and
configuration of the system that may be useful for configuring application software and for
debug of the system.

On microcontrollers with a separate STANDBY power domain, the System Status block is
part of that domain.

System Status and Configuration Module
ReviD
Hardmacro
Core i
Logic
< > -
Bus Peripheral
Interface <4—F—» Bus

i Interface
System i

Status

<4“—> Password
Comparator

Figure 16. SSCM block diagram

Features

The SSCM includes these features:
® System Configuration and Status

Memory sizes/status

Microcontroller Mode and Security Status (including censorship and serial boot
information)

Search Code Flash for bootable sector
Determine boot vector

® Device identification information (MCU ID Registers)

Debug Status Port enable and selection

® Bus and peripheral abort enable/disable

Doc ID 16886 Rev 6 90/868

Microcontroller Boot RMO0045

5.3.3 Modes of operation
The SSCM operates identically in all system modes.
5.3.4 Memory map and register description
Table 17 shows the memory map for the SSCM. Note that all addresses are offsets; the
absolute address may be calculated by adding the specified offset to the base address of
the SSCM.
Table 17. SSCM memory map
Address offset Register Location
0x00 System Status Register (SSCM_STATUS) on page 5-91
0x02 System Memory Configuration Register (SSCM_MEMCONFIG) on page 5-92
0x04 Reserved
0x06 Error Configuration (SSCM_ERROR) on page 5-93
0x08 Debug Status Port Register (SSCM_DEBUGPORT) on page 5-94
O0x0A Reserved
0x0C Password Comparison Register High Word (SSCM_PWCMPH) on page 5-96
0x10 Password Comparison Register Low Word (SSCM_PWCMPL) on page 5-96
All registers are accessible via 8-bit, 16-bit or 32-bit accesses. However, 16-bit accesses
must be aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit
boundaries. As an example, the SSCM_STATUS register is accessible by a 16-bit read/write
to address ‘Base + 0x0002’, but performing a 16-bit access to ‘Base + 0x0003’ is illegal.
System Status Register (SSCM_STATUS)
The System Status register is a read-only register that reflects the current state of the
system.
Figure 17. System Status Register (SSCM_STATUS)
Offset:0x00 Access: Read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
z
R{ O 0 0 0 % PUB|SEC| O BMODE 0 0 0 0 0
zZ
w
Reset 0 0 0 0 0 0 0 0 o1 01 0N 0 0 0 0 0
Table 18. SSCM_STATUS allowed register accesses
Access type 8-bit 16-bit 32-bit("
Read Allowed Allowed Allowed
Write Not allowed Not allowed Not allowed
1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).
91/868 Doc ID 16886 Rev 6 IS7]

RM0045 Microcontroller Boot
Table 19. SSCM_STATUS field descriptions
Field Description
NXEN Nexus enabled
Public Serial Access Status. This bit indicates whether serial boot mode with public password is
PUB allowed.
1 Serial boot mode with public password is allowed
0 Serial boot mode with private flash memory password is allowed
Security Status. This bit reflects the current security state of the flash memory.
SEC 1 The flash memory is secured.
0 The flash memory is not secured.
Device Boot Mode
000 Reserved
001 FlexCAN_O Serial Boot Loader
010 LINFlex_0 Serial Boot Loader
BMODE 011 Single Chip

100 Reserved
101 Reserved
110 Reserved
111 Reserved

This field is only updated during reset.

Offset: 0x02

System Memory Configuration Register (SSCM_MEMCONFIG)

The System Memory Configuration register is a read-only register that reflects the memory
configuration of the system.

Figure 18. System Memory Configuration Register (SSCM_MEMCONFIG)
Access: Read

0 1 2 3 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
Rl O 0 0 0 0 PRSZ PVLB DTSz DVLD
W || | |
Reset x X X X X X X X X X 1 X X X X 1
Table 20. SSCM_MEMCONFIG field descriptions
Field Description
Code Flash Size
PRSZ |10000 128 KB
10001 256 KB
Code Flash Available
This bit identifies whether or not the on-chip code Flash is available in the system memory map. The
PVLB Flash may not be accessible due to security limitations, or because there is no Flash in the system.

1 Code Flash is available
0 Code Flash is not available

Doc ID 16886 Rev 6 92/868

Microcontroller Boot

RMO0045

Table 20. SSCM_MEMCONFIG field descriptions (continued)

Field Description
Data Flash Size
DTSZ |0000 No Data Flash
0011 64 KB
Data Flash Valid
This bit identifies whether or not the on-chip Data Flash is visible in the system memory map. The
DVLD Flash may not be accessible due to security limitations, or because there is no Flash in the system.
1 Data Flash is visible
0 Data Flash is not visible
Table 21. SSCM_MEMCONFIG allowed register accesses
Access type 8-bit 16-bit 32-bit
Allowed
Read Allowed Allowed (also reads SSCM_STATUS
register)
Write Not allowed Not allowed Not allowed

Error Configuration (SSCM_ERROR)

The Error Configuration register is a read-write register that controls the error handling of

the system.
Figure 19. Error Configuration (SSCM_ERROR)
Offset: 0x06 Access: Read/write
0 1 2 3 4 6 7 8 10 11 12 13 14 15
Rl 0 0 0 0 0 0 0 0 0 0 0 0
PAE | RAE
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0
93/868 Doc ID 16886 Rev 6 IYI

RMO0045 Microcontroller Boot

Table 22. SSCM_ERROR field descriptions

Field Description

Peripheral Bus Abort Enable

This bit enables bus aborts on any access to a peripheral slot that is not used on the device. This
PAE feature is intended to aid in debugging when developing application code.

1 lllegal accesses to non-existing peripherals produce a Prefetch or Data Abort exception

0 lllegal accesses to non-existing peripherals do not produce a Prefetch or Data Abort exception

Register Bus Abort Enable

This bit enables bus aborts on illegal accesses to off-platform peripherals. lllegal accesses are defined
as reads or writes to reserved addresses within the address space for a particular peripheral. This
feature is intended to aid in debugging when developing application code.

1 lllegal accesses to peripherals produce a Prefetch or Data Abort exception

0 lllegal accesses to peripherals do not produce a Prefetch or Data Abort exception

Transfers to Peripheral Bus resources may be aborted even before they reach the Peripheral Bus (that
is, at the PBRIDGE level). In this case, bits PAE and RAE will have no effect on the abort.

RAE

Table 23. SSCM_ERROR allowed register accesses

Access type 8-bit 16-bit 32-bit

Read Allowed Allowed Allowed

Write Allowed Allowed Not allowed

Debug Status Port Register (SSCM_DEBUGPORT)

The Debug Status Port register is used to (optionally) provide debug data on a set of pins.

Figure 20. Debug Status Port Register (SSCM_DEBUGPORT)
Offset: 0x08 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R O 0 0 0 0 0 0 0 0 0 0 0 0
DEBUG_MODE

w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

KYI Doc ID 16886 Rev 6 94/868

Microcontroller Boot

RMO0045

Table 24. SSCM_DEBUGPORT field descriptions

Field Description
Debug Status Port Mode
This field selects the alternate debug functionality for the Debug Status Port.
000 No alternate functionality selected
001 Mode 1 selected
010 Mode 2 selected
DEBUG_MODE 011 Mode 3 selected
100 Mode 4 selected
101 Mode 5 selected
110 Mode 6 selected
111 Mode 7 selected
Table 25 describes the functionality of the Debug Status Port in each mode.
Table 25. Debug status port modes
'?1';' Mode 1 Mode 2 Mode 3 Mode 4 Mode5 | Mode 6 | Mode 7
SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI
0 Reserved | Reserved | Reserved
[0] 8l G[0] G[8]
SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI
1 Reserved | Reserved | Reserved
(1] 9] G[1] G[9]
o SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI Reserved | Reserved | Reserved
2] (10] G[2] G[10]
SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI
3 Reserved | Reserved | Reserved
(3] (11] G[3] G[11]
4 SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI Reserved | Reserved | Reserved
(4] [12] G[4] G[12]
5 SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI Reserved | Reserved | Reserved
(5] (13] G[5] G[13]
6 SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI Reserved | Reserved | Reserved
[6] [14] G[6] G[14]
7 SSCM_STATUS|SSCM_STATUS| SSCM_MEMCONFI | SSCM_MEMCONFI Reserved | Reserved | Reserved
[7] [15] G[7] G[15]
1. All signals are active high, unless otherwise noted
PIN[0..7] referred to in Table 25 equates to PC[2..9] (Pad 34..41).
Table 26. SSCM_DEBUGPORT allowed register accesses
Access type 8-bit 16-bit 32-bit("
Read Allowed Allowed Not allowed
Write Allowed Allowed Not allowed

1. All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

95/868

Doc ID 16886 Rev 6

RMO0045 Microcontroller Boot

Password comparison registers

These registers provide a means for the BAM code to unsecure the device via the SSCM if
the password has been provided via serial download.

Figure 21. Password Comparison Register High Word (SSCM_PWCMPH)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[31:16]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W PWD_HI[15:0]

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 22. Password Comparison Register Low Word (SSCM_PWCMPL)

Offset: 0x10 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w PWD_LO[31:16]
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w PWD_LOJ[15:0]
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 27. Password Comparison Register field descriptions

Field Description

PWD_HI Upper 32 bits of the password

PWD_LO Lower 32 bits of the password

KYI Doc ID 16886 Rev 6 96/868

Microcontroller Boot

RMO0045

Table 28. SSCM_PWCMPH/L allowed register accesses

Access type 8-bit 16-bit 32-bit("
Read Allowed Allowed Allowed
Write Not allowed Not allowed Allowed

1.

97/868

All 32-bit accesses must be aligned to 32-bit addresses (i.e., 0x0, 0x4, 0x8 or 0xC).

In order to unsecure the device, the password needs to be written as follows: first the upper
word to the SSCM_PWCMPH register, then the lower word to the SSCM_PWCMPL
register. The SSCM compares the 64-bit password entered into the SSCM_PWCMPH /
SSCM_PWCMPL registers with the NVPWM[1,0] private password stored in the shadow
flash. If the passwords match then the SSCM temporarily uncensors the microcontroller.

Doc ID 16886 Rev 6

RMO0045

Clock Description

6 Clock Description

This chapter describes the clock architectural implementation for SPC560D30/40.

6.1 Clock architecture
System clocks are generated from three sources:
® Fast external crystal oscillator 4-16 MHz (FXOSC)
® Fastinternal RC oscillator 16 MHz (FIRC)
® Frequency modulated phase locked loop (FMPLL)
Additionally, there is a slow internal RC oscillator 128 kHz (SIRC).
The clock architecture is shown in Figure 23.
r-—— — - - — — — — = m
FXOSC_clk i e]y FXOSC_clk_div
» /Mto/32 >
| Fxosc (4-16 MHz) PR g (e.g- 8 MHz) 4 sys_clk | Core
II::::::::::::fI | Platform
FIRC_clk e FIRC_clk_div R System
I| FirC (16 MHz) P o2 (e.g. 16 MHz) "] Clock o owa
1| - _ _ _ _ _ 1 Selector g
FvpLL | FMPLL ok
(e.g. 48 MHz) Peripheral
Set 1
y
Clock Monitor Reset Peripheral
Unit) Safe Set 2
Interrupt
Set 3
FIRC_clk
r-—--———— —- — — 9 rtc_clk
, . API/RTC ——»
s | SIRC_ck M osae | !smc,clk,d.v SIRC_clk_div R
(128 kHz) LT
Lo - - — — - - - — 4
SIRC_clk »| Watchdog
FXOSC_clk
FIRC_clk —> CLKOUT
;’
FMPLL ¢k _| oL kouT
(e.g. 48 MHz)
Selector
sys_clk
rtc_clk
Figure 23. SPC560D30/40 system clock generation
'] Doc ID 16886 Rev 6 98/868

Clock Description RM0045

6.2

Clock gating

The SPC560D30/40 provides the user with the possibility of gating the clock to the
peripherals. Table 29 describes for each peripheral the associated gating register address.
See the ME_PCTLn section in this reference manual.

Additionally, peripheral set (1, 2 or 3) frequency can be configured to be an integer (1 to 16)
divided version of the main system clock. See the CGM_SC_DCO section in this reference
manual for details.

Table 29. SPC560D30/40 — Peripheral clock sources

Peripheral Register gating address offset Peripheral set®
(base = 0xC3FDCOCO)(")

RPP_Z0H Platform none (managed through ME mode) —
DSPI_n 4+n (n=0..1) 2
FlexCAN 16 2
ADC 32 3
LINFLEX_n 48+n(n =0..2) 1
CTU 57 3
SIUL 68 —
WKUP 69 —
eMIOS 72 3
RTC/API 91 —
PIT 92 —
CMU 104 —
1. See the ME_PCTL section in this reference manual for details.
2. “—”means undivided system clock.
6.3 Fast external crystal oscillator (FXOSC) digital interface

6.3.1

6.3.2

99/868

The FXOSC digital interface controls the operation of the 4—16 MHz fast external crystal
oscillator (FXOSC). It holds control and status registers accessible for application.

Main features

® Oscillator powerdown control and status reporting through MC_ME block
® Oscillator clock available interrupt

® Oscillator bypass mode

® Output clock division factors ranging from 1, 2, 3....32

Functional description

The FXOSC circuit includes an internal oscillator driver and an external crystal circuitry. It
provides an output clock that can be provided to the FMPLL or used as a reference clock to
specific modules depending on system needs.

Doc ID 16886 Rev 6 KYI

RMO0045

Clock Description

The FXOSC can be controlled by the MC_ME module. The ME_xxx_MC[FXOSCON] bit
controls the powerdown of the oscillator based on the current device mode while
ME_GS[S_XOSC] register provides the oscillator clock available status.

After system reset, the oscillator is put into powerdown state and software has to switch on
when required. Whenever the crystal oscillator is switched on from the off state, the
OSCCNT counter starts and when it reaches the value EOCV[7:0]x512, the oscillator clock
is made available to the system. Also, an interrupt pending FXOSC_CTL[I_OSC] bit is set.
An interrupt is generated if the interrupt mask bit M_OSC is set.

The oscillator circuit can be bypassed by setting FXOSC_CTL[OSCBYP]. This bit can only
be set by software. A system reset is needed to reset this bit. In this bypass mode, the
output clock has the same polarity as the external clock applied on the EXTAL pin and the
oscillator status is forced to ‘1’. The bypass configuration is independent of the powerdown
mode of the oscillator.

Table 30 shows the truth table of different oscillator configurations.

Table 30. Truth table of crystal oscillator

ME_xxx_MC[FXOSCON] | FXOSC_CTL[OSCBYP] XTAL EXTAL FXOSC Oscillator mode
No crystal, | No crystal,
0 0 High Z High Z 0 Powerdown, IDDQ
X 1 X Extclock | EXTAL Bypass, OSC
disabled
Normal, OSC
1 . Crystal Crystal EXTAL enabled
Gnd Extclock | EXTAL Normal, OSC
enabled

The FXOSC clock can be further divided by a configurable factor in the range 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
FXOSC_CTL[OSCDIV] field.

Doc ID 16886 Rev 6 100/868

Clock Description

RMO0045

6.3.3

Address: 0xC3FE_0000

Register description

Figure 24. Fast External Crystal Oscillator Control Register (FXOSC_CTL)

Access: Special read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R T} olo|o]o|lo]| oo
o EOCV
W n
o)
RESET: 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RIQ | oo S lojloflo|ofo]|o]o
o) OSCDIV %
Wi = (
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. You can read this field, and you can write a value of “1” to it. Writing a “0” has no effect. A reset will also clear this bit.

2. You can write a value of "0" or "1" to this field. However, writing a "1" will clear this field, and writing "0" will have no effect
on the field value.

Table 31. FXOSC_CTL field descriptions

Field Description
Crystal Oscillator bypass.
OSCBYP This bit specifies whether the oscillator should be bypassed or not.
0 Oscillator output is used as root clock
1 EXTAL is used as root clock
End of Count Value.
These bits specify the end of count value to be used for comparison by the oscillator stabilization
counter OSCCNT after reset or whenever it is switched on from the off state (OSCCNT runs on
EOCV the FXOSC). This counting period ensures that external oscillator clock signal is stable before it
can be selected by the system. When oscillator counter reaches the value EOCV x 512, the
crystal oscillator clock interrupt (I_OSC) request is generated. The OSCCNT counter will be kept
under reset if oscillator bypass mode is selected.
Crystal oscillator clock interrupt mask.
M_OSC 0 Crystal oscillator clock interrupt is masked.
1 Crystal oscillator clock interrupt is enabled.
Crystal oscillator clock division factor.
OSCDIV This field specifies the crystal oscillator output clock division factor. The output clock is divided by
the factor OSCDIV+1.
Crystal oscillator clock interrupt.
| OSC This bit is set by hardware when OSCCNT counter reaches the count value EOCV x 512.
B 0 No oscillator clock interrupt occurred.
1 Oscillator clock interrupt pending.
101/868 Doc ID 16886 Rev 6 1S

RMO0045

Clock Description

6.4

6.4.1

6.4.2

Slow internal RC oscillator (SIRC) digital interface

Introduction

The SIRC digital interface controls the 128 kHz slow internal RC oscillator (SIRC). It holds
control and status registers accessible for application.

Functional description

The SIRC provides a low frequency (fgrc) clock of 128 kHz requiring very low current
consumption. This clock can be used as the reference clock when a fixed base time is
required for specific modules.

SIRC is always on in all device modes except STANDBY mode. In STANDBY mode, it is
controlled by SIRC_CTL[SIRCON_STDBY] bit. The clock source status is updated in
SIRC_CTL[S_SIRC] bit.

The SIRC clock can be further divided by a configurable division factor in the range from 1 to
32 to generate the divided clock to match system requirements. This division factor is
specified by SIRC_CTL[SIRCDIV] bits.

The SIRC output frequency can be trimmed using SIRC_CTL[SIRCTRIM]. After a power-on
reset, the SIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at SIRC_CTL[SIRCTRIM]
and this field shows a value of zero. Therefore, be aware that the SIRC_CTL[SIRCTRIM]
does not reflect the current trim value until you have written to this field. Pay particular
attention to this feature when you initiate a read-modify-write operation on SIRC_CTL,
because a SIRCTRIM value of zero may be unintentionally written back and this may alter
the SIRC frequency. In this case, you should calibrate the SIRC using the CMU or be sure
that you only write to the upper 16 bits of this SIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from —16 to 15. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.

Doc ID 16886 Rev 6 102/868

Clock Description RM0045

6.4.3 Register description

Figure 25. Low Power RC Control Register (SIRC_CTL)

Address: 0xC3FE_0080 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0 0

SIRCTRIM
w
RESET: © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
£ 0
Rl O 0 0 0 0 0 1) 0 0 0 E
» 2
SIRCDIV >
3
W o«
%)
RESET: © 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
Table 32. SIRC_CTL field descriptions
Field Description

SIRC trimming bits.
This field corresponds (via two’s complement) to a trim factor of —16 to +15.

A +1 change in SIRCTRIM decreases the current frequency by AgircTriv (S€€ the device
SIRCTRIM
data sheet).
A —1 change in SIRCTRIM increases the current frequency by AgircTrim (See the device data
sheet).

SIRC clock division factor.

SIRCDIV This field specifies the SIRC oscillator output clock division factor. The output clock is divided
by the factor SIRCDIV+1.

SIRC clock status.

S_SIRC 0 SIRC is not providing a stable clock.
1 SIRC is providing a stable clock.

SIRC control in STANDBY mode.

SIRCON_STDBY |0 SIRC is switched off in STANDBY mode.
1 SIRC is switched on in STANDBY mode.

6.5 Fast internal RC oscillator (FIRC) digital interface

6.5.1 Introduction

The FIRC digital interface controls the 16 MHz fast internal RC oscillator (FIRC). It holds
control and status registers accessible for application.

103/868 Doc ID 16886 Rev 6 KYI

RMO0045

Clock Description

6.5.2

Functional description

The FIRC provides a high frequency (fg|rc) clock of 16 MHz. This clock can be used to
accelerate the exit from reset and wakeup sequence from low power modes of the system. It
is controlled by the MC_ME module based on the current device mode. The clock source
status is updated in ME_GS[S_RC]. Please refer to the MC_ME chapter for further details.

The FIRC can be further divided by a configurable division factor in the range from 1 to 32 to
generate the divided clock to match system requirements. This division factor is specified by
RC_CTL[RCDIV] bits.

The FIRC output frequency can be trimmed using FIRC_CTL[FIRCTRIM]. After a power-on
reset, the FIRC is trimmed using a factory test value stored in test flash memory. However,
after a power-on reset the test flash memory value is not visible at FIRC_CTL[FIRCTRIM],
and this field will show a value of zero. Therefore, be aware that the FIRC_CTL[FIRCTRIM]
field does not reflect the current trim value until you have written to it. Pay particular
attention to this feature when you initiate a read-modify-write operation on FIRC_CTL,
because a FIRCTRIM value of zero may be unintentionally written back and this may alter
the FIRC frequency. In this case, you should calibrate the FIRC using the CMU or ensure
that you write only to the upper 16 bits of this FIRC_CTL.

In this oscillator, two's complement trimming method is implemented. So the trimming code
increases from —32 to 31. As the trimming code increases, the internal time constant
increases and frequency reduces. Please refer to device datasheet for average frequency
variation of the trimming step.

During STANDBY mode entry process, the FIRC is controlled based on
ME_STANDBY_MC[RCON] bit. This is the last step in the standby entry sequence. On any
system wake-up event, the device exits STANDBY mode and switches on the FIRC. The
actual powerdown status of the FIRC when the device is in standby is provided by
RC_CTL[FIRCON_STDBY] bit.

Doc ID 16886 Rev 6 104/868

Clock Description RM0045

6.5.3 Register description

Figure 26. FIRC Oscillator Control Register (FIRC_CTL)

Address: 0xC3FE_0060 Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0

FIRCTRIM
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl o| o] o o|lo|&m@|o|lo|]o]o]|oO
a)
|_
FIRCDIV w'
w)
o
o
T
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 33. FIRC_CTL field descriptions
Field Description

FIRC trimming bits.

This field corresponds (via two’s complement) to a trim factor of —16 to +15.

FIRCTRIM A +1 change in FIRCTRIM decreases the current frequency by ApjrcTriv (S€€ the device data
sheet).

A —1 change in SIRCTRIM increases the current frequency by ApjrcTriM (S€€ the device data
sheet).

FIRC clock division factor.

FIRCDIV This field specifies the FIRC oscillator output clock division factor. The output clock is divided by
the factor FIRCDIV+1.

FIRC control in STANDBY mode.

0 FIRC is switched off in STANDBY mode.
1 FIRC isin STANDBY mode.

FIRCON_STDB
Y

6.6 Frequency-modulated phase-locked loop (FMPLL)

6.6.1 Introduction

This section describes the features and functions of the FMPLL module implemented in the
device.

105/868 Doc ID 16886 Rev 6 KYI

RM0045 Clock Description
6.6.2 Overview
The FMPLL enables the generation of high speed system clocks from a common 4-16 MHz
input clock. Further, the FMPLL supports programmable frequency modulation of the
system clock. The FMPLL multiplication factor and output clock divider ratio are all software
configurable.
SPC560D30/40 has one FMPLL that can generate the system clock and takes advantage of
the FM mode.
Note: The user must take care not to program device with a frequency higher than allowed (no
hardware check).
The FMPLL block diagram is shown in Figure 27.
FXOSC |rumg. R > o
IDF BUFFER > ow Pass » VCO » ODF —»
Filter
A
NDIV
Loop &
Frequency
Divider
Figure 27. FMPLL block diagram
6.6.3 Features

The FMPLL has the following major features:

Input clock frequency 4 MHz — 16 MHz
Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz

Frequency divider (FD) for reduced frequency operation without forcing the FMPLL to

— Modulation enabled/disabled through software

- +0.25% to +4% deviation from center spread frequency(@
— —0.5% to +8% deviation from down spread frequency
— Programmable modulation frequency dependent on reference frequency

°
o
°
relock
® Frequency modulated FMPLL
— Triangle wave modulation
® Programmable modulation depth
® Self-clocked mode (SCM) operation
® 4 available modes
— Normal mode
— Progressive clock switching
— Normal mode with frequency modulation
— Powerdown mode
d.

Spread spectrum should be programmed in line with maximum datasheet frequency figures.

Doc ID 16886 Rev 6

106/868

Clock Description RM0045

6.6.4 Memory map(®
Table 34 shows the memory map of the FMPLL.

Table 34. FMPLL memory map
Base address: 0xC3FE_00AO

Address offset Register Location
0x0 Control Register (CR) on page 6-107
0x4 Modulation Register (MR) on page 6-109

6.6.5 Register description

The FMPLL operation is controlled by two registers. Those registers can be accessed and
written in supervisor mode only.

Control Register (CR)

Figure 28. Control Register (CR)

Offset: 0x0 Access: Supervisor read/write
0 1 2 3 ‘ 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0
IDF ODF NDIV
w

Reset 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
m o)
g 5 |
= o) 18 2|
wn |
R ol o|o|o|o]|o]o 'l o|x|o|oa|S|F]| 2] 1
= O 4 - 1 <
o) | | = L=
o “ — n <C |
| L —
=z P I _|
w =) j o
o
W wic wic

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Table 35. CR field descriptions
Field Description
IDF The value of this field sets the FMPLL input division factor as described in Table 36.
ODF The value of this field sets the FMPLL output division factor as described in Table 37.
NDIV The value of this field sets the FMPLL loop division factor as described in Table 38.

e. FMPLL_x are mapped through the ME_CGM register slot

107/868 Doc ID 16886 Rev 6 IYI

RMO0045

Clock Description

Table 35. CR field descriptions (continued)

Field Description
This bit is used to enable progressive clock switching. After the PLL locks, the PLL output
initially is divided by 8, and then progressively decreases until it reaches divide-by-1.
EN_PLL_SW 0 Progressive clock switching disabled.

1 Progressive clock switching enabled.
Note: Note: Progressive clock switching should not be used if a non-changing clock is needed,
such as for serial communications, until the division has finished.

UNLOCK_ONCE

This bit is a sticking indication of FMPLL loss of lock condition. UNLOCK_ONCE is set when
the FMPLL loses lock. Whenever the FMPLL reacquires lock, UNLOCK_ONCE remains set.
Only a power-on reset clears this bit.

I_LOCK This bit is set by hardware whenever there is a lock/unlock event.
This bit is an indication of whether the FMPLL has acquired lock.
s.LOCK 0: FMPLL unlocked

1: FMPLL locked
Note:

PLL_FAIL_MASK

This bit is used to mask the pll_fail output.

0 pli_fail not masked.
1 pll_fail masked.

PLL_FAIL_FLAG

This bit is asynchronously set by hardware whenever a loss of lock event occurs while FMPLL
is switched on. It is cleared by software writing ‘1°.

Table 36. Input divide ratios

IDF[3:0] Input divide ratios
0000 Divide by 1
0001 Divide by 2
0010 Divide by 3
0011 Divide by 4
0100 Divide by 5
0101 Divide by 6
0110 Divide by 7
0111 Divide by 8
1000 Divide by 9
1001 Divide by 10
1010 Divide by 11
1011 Divide by 12
1100 Divide by 13
1101 Divide by 14
1110 Divide by 15
1111 Clock Inhibit

Doc ID 16886 Rev 6 108/868

Clock Description

RMO0045

Table 37. Output divide ratios

ODF[1:0] Output divide ratios
00 Divide by 2
01 Divide by 4
10 Divide by 8
11 Divide by 16
Table 38. Loop divide ratios
NDIV[6:0] Loop divide ratios

0000000-0011111

0100000 Divide by 32
0100001 Divide by 33
0100010 Divide by 34
1011111 Divide by 95
1100000 Divide by 96

1100001-1111111

Modulation Register (MR)

Figure 29. Modulation Register (MR)

Offset: 0x4 Access: Supervisor read/write
0 1 2 3 ‘ 4 5 6 7 8 9 10 11 12 13 14 15
Rl @ | o |
E w
> cD|
o a MOD_PERIOD
W| m E
(C)
)]
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R pd
U INC_STEP
w| 2
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
109/868 Doc ID 16886 Rev 6 KYI

RMO0045

Clock Description

Table 39. MR field descriptions

Field

Description

STRB_BYPASS

Strobe bypass.

The STRB_BYPASS signal is used to bypass the strobe signal used inside FMPLL to latch the

correct values for control bits (INC_STEP, MOD_PERIOD and SPRD_SEL).

0 Strobe is used to latch FMPLL modulation control bits

1 Strobe is bypassed. In this case control bits need to be static. The control bits must be changed
only when FMPLL is in powerdown mode.

SPRD_SEL

Spread type selection.
The SPRD_SEL controls the spread type in Frequency Modulation mode.

0 Center SPREAD
1 Down SPREAD

MOD_PERIOD

Modulation period.

The MOD_PERIOD field is the binary equivalent of the value modperiod derived from following
formula:

fref

modperiod= I

mod

where:
frer: represents the frequency of the feedback divider
fmod: represents the modulation frequency

FM_EN

Frequency Modulation Enable. The FM_EN enables the frequency modulation.

0 Frequency modulation disabled
1 Frequency modulation enabled

INC_STEP

Increment step.
The INC_STERP field is the binary equivalent of the value incstep derived from following formula:

incstep = round(

(2"~ 1) x md x MDF)
100 x 5 x MODPERIOD
where:

md: represents the peak modulation depth in percentage (Center spread -- pk-pk=+/-md,
Downspread -- pk-pk=-2xmd)

MDF: represents the nominal value of loop divider (CR[NDIV])

6.6.6 Functional description

Normal mode

In Normal Mode the FMPLL inputs are driven by the CR. This means that, when the FMPLL
is in lock state, the FMPLL output clock (PHI) is derived by the reference clock () through this
relation:

Doc ID 16886 Rev 6 110/868

Clock Description

RMO0045

_ clkin - NDIV
Phi= S5F ODF

where the value of IDF, NDIV and ODF are set in the CR and can be derived from Table 36,

Table 37 and Table 38.

Table 40. FMPLL lookup table

Crystalrequency || FUPLL output el values VGO frequency (MHo)
IDF ODF NDIV
32 0 2 32 256
8 64 0 2 64 512
80 0 1 40 320
32 1 2 32 256
16 64 1 2 64 512
80 1 1 40 320
32 4 2 32 256
40 64 4 2 64 512
80 3 1 32 320

Progressive clock switching

Progressive clock switching allows to switch the system clock to FMPLL output clock
stepping through different division factors. This means that the current consumption
gradually increases and, in turn, voltage regulator response is improved.

This feature can be enabled by programming CR[EN_PLL_SW] bit. When enabled, the
system clock is switched to divided PHI. The FMPLL_clk divider is then progressively
decreased to the target divider as shown in Table 41.

Table 41. Progressive clock switching on pll_select rising edge

Number of FMPLL output clock cycles

FMPLL_clk frequency
(FMPLL output clock frequency)

8 (FMPLL output clock frequency)/8

16 (FMPLL output clock frequency)/4

32 (FMPLL output clock frequency)/2
onward FMPLL output clock frequency

FMPLL output clock ———

Division factors of 8, 4, 2 or 1

—» FMPLL_clk

Figure 30. FMPLL output clock division flow during progressive switching

111/868

Doc ID 16886 Rev 6

RMO0045

Clock Description

Note:

Normal mode with frequency modulation

The FMPLL default mode is without frequency modulation enabled. When frequency
modulation is enabled, however, two parameters must be set to generate the desired level of
modulation: the PERIOD, and the STEP. The modulation waveform is always a triangle wave
and its shape is not programmabile.

FM mode is activated in two steps:
1. Configure the FM mode characteristics: MOD_PERIOD, INC_STEP.

2. Enable the FM mode by programming bit FM_EN of the MR to “1’. FM mode can only
be enabled when FMPLL is in lock state.

There are two ways to latch these values inside the FMPLL, depending on the value of bit
STRB_BYPASS in the MR.

If STRB_BYPASS is low, the modulation parameters are latched in the FMPLL only when
the strobe signal goes high for at least two cycles of CLKIN clock. The strobe signal is
automatically generated in the FMPLL digital interface when the modulation is enabled
(FM_EN goes high) if the FMPLL is locked (S_LOCK = 1) or when the modulation has been
enabled (FM_EN = 1) and FMPLL enters lock state (S_LOCK goes high).

If STRB_BYPASS is high, the strobe signal is bypassed. In this case, control bits
(MOD_PERIOD[12:0], INC_STEP[14:0], SPREAD_CONTROL) need to be static or
hardwired to constant values. The control bits must be changed only when the FMPLL is in
powerdown mode.

The modulation depth in % is

100 x 5 x INCSTEPXMODPERIOD)
2" - 1) x MDF

The user must ensure that the product of INCTEP and MODPERIOD is less than (215- 1).

ModulationDepth = (

Frequency

A A",
o NN N

\

Down Spread

FO

Figure 31. Frequency modulation

Doc ID 16886 Rev 6 112/868

Clock Description RM0045

6.6.7

6.7

6.7.1

6.7.2

113/868

Powerdown mode

To reduce consumption, the FMPLL can be switched off when not required by programming
the registers ME_x_MC on the MC_ME module.

Recommendations

To avoid any unpredictable behavior of the FMPLL clock, it is recommended to follow these

guidelines:

® The FMPLL VCO frequency should reside in the range 256 MHz to 512 MHz. Care is
required when programming the multiplication and division factors to respect this
requirement.

® The user must change the multiplication, division factors only when the FMPLL output
clock is not selected as system clock. Use progressive clock switching if system clock
changes are required while the PLL is being used as the system clock source.
MOD_PERIOD, INC_STEP, SPREAD_SEL bits should be modified before activating
the FM mode. Then strobe has to be generated to enable the new settings. If
STRB_BYP is set to ‘1’ then MOD_PERIOD, INC_STEP and SPREAD_SEL can be
modified only when FMPLL is in powerdown mode.

® Use progressive clock switching (FMPLL output clock can be changed when it is the
system clock, but only when using progressive clock switching).

Clock monitor unit (CMU)

Introduction

The Clock Monitor Unit (CMU), also referred to as Clock Quality Checker or Clock Fault
Detector, serves two purposes. The main task is to permanently supervise the integrity of
the various clock sources, for example a crystal oscillator or FMPLL. In case the FMPLL
leaves an upper or lower frequency boundary or the crystal oscillator fails it can detect and
forward these kind of events towards the MC_ME and MC_CGM. The clock management
unit in turn can then switch to a SAFE mode where it uses the default safe clock source
(FIRC), reset the device or generate the interrupt according to the system needs.

It can also monitor the external crystal oscillator clock, which must be greater than the
internal RC clock divided by a division factor given by CMU_CSR[RCDIV], and generates a
system clock transition request or an interrupt when enabled.

The second task of the CMU is to provide a frequency meter, which allows to measure the
frequency of one clock source vs. a reference clock. This is useful to allow the calibration of
the on-chip RC oscillator(s), as well as being able to correct/calculate the time deviation of a
counter which is clocked by the RC oscillator.

Main features

® FIRC, SIRC, SXOSC oscillator frequency measurement using FXOSC as reference
clock

® External oscillator clock monitoring with respect to FIRC_clk/n clock

® FMPLL clock frequency monitoring for a high and low frequency range with FIRC as
reference clock

® Event generation for various failures detected inside monitoring unit

Doc ID 16886 Rev 6 KYI

RM0045 Clock Description

6.7.3 Block diagram

CKSEL1[1:0] CMU MDR
FIRC_clk
00
SIRC_clk
01
reserved
10 [
FIRC_clk :> .
" MU_FDR
MUXA Frequency Meter
FXOSC_clk
XOSC Supervisor } OLR_evt
FXOSC < FIRC /n
FXOSC ON/OFF
From MC_ME
CMU_HFREFR
FMPLL > hiref D—b FHH_FLL_OR_evt_a
OR
FMPLL < Ifref FMPLL ON/OFF
FMPLL From MC_ME

CMU_LFREFR

FMPLL Supervisor

OLR_evt : It is the event signalling XOSC failure when asserted. When this signal is asserted, RGM may generate reset, interrupt
or SAFE request based on the RGM configuration.

FHH_FLL_OR_evt_a: It is the event signalling FMPLL failure when asserted. Based on the CMU_HFREFR and CMU_LFREFR
configuration, if the FMPLL is greater than hign frequency range or less than the low frequency range configuration, this signal is
generated. When this signal is asserted, RGM may generate reset, interrupt or SAFE request based on the RGM configuration.

Figure 32. Clock Monitor Unit diagram

KYI Doc ID 16886 Rev 6 114/868

Clock Description RM0045

6.7.4

Note:

Note:

115/868

Functional description

The clock and frequency names referenced in this block are defined as follows:
FXOSC_clk: clock coming from the fast external crystal oscillator

SIRC_clk: clock coming from the slow (low frequency) internal RC oscillator
FIRC_clk: clock coming from the fast (high frequency) internal RC oscillator
FMPLL_clk: clock coming from the FMPLL

fexosc_clk: frequency of fast external crystal oscillator clock

fsirc_cik: frequency of slow (low frequency) internal RC oscillator

frirc_cik: frequency of fast (high frequency) internal RC oscillator
fempLL_cik: frequency of FMPLL clock

Crystal clock monitor

If fexosc_cik is less than frpg_ ¢ divided by 2RCPV pits of the CMU_CSR and the
FXOSC_clk is ‘ON’ as signalled by the MC_ME then:

® An event pending bit OLRI in CMU_ISR is set.

® A failure event OLR is signalled to the MC_RGM which in turn can automatically switch
to a safe fallback clock and generate an interrupt or reset.

FMPLL clock monitor

The frpmpLL_cik can be monitored by programming bit CME of the CMU_CSR register to ‘1°.

The FMPLL_clk monitor starts as soon as bit CME is set. This monitor can be disabled at

any time by writing bit CME to ‘0’.

If fempLL_cik IS greater than a reference value determined by bits HFREF[11:0] of the

CMU_HFREFR and the FMPLL_clk is ‘ON’, as signalled by the MC_ME, then:

® An event pending bit FHHI in CMU_ISR is set.

® A failure event is signalled to the MC_RGM which in turn can generate an interrupt or
safe mode request or functional reset depending on the programming model.

If fempLL_cik IS less than a reference value determined by bits LFREF[11:0] of the

CMU_LFREFR and the FMPLL_clk is ‘ON’, as signaled by the MC_ME, then:

® An event pending bit FLLI in CMU_ISR is set.

® Afailure event FLL is signalled to the MC_RGM which in turn can generate an interrupt
or safe mode request or functional reset depending on the programming model.

The internal RC oscillator is used as reliable reference clock for the clock supervision. In
order to avoid false events, proper programming of the dividers is required. These have to
take into account the accuracy and frequency deviation of the internal RC oscillator.

If PLL frequency goes out of range, the CMU shall generate FMPLL fll/fhh event. It takes
approximately 5 us to generate this event.

Frequency meter

The purpose of the frequency meter is twofold:
® to measure the frequency of the oscillators SIRC or FIRC
o to calibrate an internal RC oscillator (SIRC or FIRC) using a known frequency

Doc ID 16886 Rev 6 KYI

RMO0045

Clock Description

6.7.5

Hint: This value can then be stored into the flash so that application software can reuse it
later on.

The reference clock is always the FXOSC_clk. The frequency meter returns a precise value
of frequencies frre ik OF fsiRc ok @ccording to CKSEL1 bit value. The measure starts
when bit SFM (Start Frequency Measure) in the CMU_CSR is set to ‘1’. The measurement
duration is given by the CMU_MDR in numbers of clock cycles of the selected clock source
with a width of 20 bits. Bit SFM is reset to ‘0’ by hardware once the frequency measurement
is done and the count is loaded in the CMU_FDR. The frequency f,() can be derived from
the value loaded in the CMU_FDR as follows:

Equation 1 fX = (fFXOSC X MD) /n
where n is the value in the CMU_FDR and MD is the value in the CMU_MDR.

The frequency meter by default evaluates frgc ¢k, but software can swap to fggc ¢k Of
fsxosc_cik by programming the CKSEL bits in the CMU_CSR.

Memory map and register description
The memory map of the CMU is shown in Table 42.

Table 42. CMU memory map

Base address: 0xC3FE_0100

Register name Address offset Reset value Location
Control Status Register (CMU_CSR) 0x00 0x00000006 | " 2*31979 6-
Frequency Display Register (CMU_FDR) 0x04 0x00000000 | ©7 pf;%e 6-
. . on page 6-
High Frequency Reference Register FMPLL (CMU_HFREFR) 0x08 0x00000FFF 118
. on page 6-
Low Frequency Reference Register FMPLL (CMU_LFREFR) 0x0C 0x00000000 119
Interrupt Status Register (CMU_ISR) 0x10 0x00000000 | ©" 171‘5’1999 6-
Reserved 0x14 0x00000000 —
Measurement Duration Register (CMU_MDR) 0x18 0x00000000 | *"F78% 6-

f. x=FIRC or SIRC

Doc ID 16886 Rev 6 116/868

Clock Description RM0045

Offset: 0x00

Control Status Register (CMU_CSR)

Figure 33. Control Status Register (CMU_CSR)

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 % 0 0 0 0 0 0 0

w %
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 <
CKSELA1 RCDIV w
W =
o
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

1. You can read this field, and you can write a value of "1" to it. Writing a "0" has no effect. A reset will also clear this bit.

Table 43. CMU_CSR field descriptions

Field

Description

SFM

Start frequency measure.

The software can only set this bit to start a clock frequency measure. It is reset by hardware when
the measure is ready in the CMU_FDR register.

0 Frequency measurement completed or not yet started.

1 Frequency measurement not completed.

CKSEL1

Clock oscillator selection bit.

CKSEL1 selects the clock to be measured by the frequency meter.
00 FIRC_clk selected.

01 SIRC_clk selected.

10 reserved.

11 FIRC_clk selected.

RCDIV

RC clock division factor .

These bits specify the RC clock division factor. The output clock is FIRC_clk divided by the factor
2RCDIV_ This output clock is used to compare with FXOSC_clk for crystal clock monitor feature. The
clock division coding is as follows.

00 Clock divided by 1 (No division)

01 Clock divided by 2

10 Clock divided by 4

11 Clock divided by 8

CME_A

FMPLL_O clock monitor enable.
0 FMPLL_O monitor disabled.
1 FMPLL_O monitor enabled.

117/868

Doc ID 16886 Rev 6 KYI

RM0045 Clock Description

Frequency Display Register (CMU_FDR)

Figure 34. Frequency Display Register (CMU_FDR)

Offset: 0x04 Access: Read-only
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 FD[19:16]
w [[|
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 44. CMU_FDR field descriptions

Field Description

Measured frequency bits.
This register displays the measured frequency f, with respect to fpxogc. The measured value is

FD given by the following formula: f, = (frxosc X MD) / n, where n is the value in CMU_FDR register.
Note: x = FIRC or SIRC.
High Frequency Reference Register FMPLL (CMU_HFREFR)
Figure 35. High Frequency Reference Register FMPLL (CMU_HFREFR)
Offset: 0x08 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 ‘ 24 25 26 27 28 29 30 31

HFREF

Resst 0 0 ©0 o0 [1 1 1t 1[4 1 1t 1 1 1 1 1

Table 45. CMU_HFREFR field descriptions

Field Description

High Frequency reference value.

HFREF This field determines the high reference value for the FMPLL clock. The reference value is given
by: (HFREF -+ 16) X (fF|RC + 4)

KYI Doc ID 16886 Rev 6 118/868

Clock Description RM0045

Low Frequency Reference Register FMPLL (CMU_LFREFR)

Figure 36. Low Frequency Reference Register FMPLL (CMU_LFREFR)

Offset: 0x0C Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R| O 0 0 0

LFREF

Resetoooooooo\oooo\oooo

Table 46. CMU_LFREFR field descriptions

Field Description

Low Frequency reference value.
LFREF | This field determines the low reference value for the FMPLL. The reference value is given by:
(LFREF -+ 16) X (fF|RC + 4)

Interrupt Status Register (CMU_ISR)

Figure 37. Interrupt status register (CMU_ISR)

Offset: 0x10 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

o
o

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R{ O 0 0 0 0 0 0 0 0 0 0 0 0 % 3 5
T L @)

w wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 47. CMU_ISR field descriptions

Field Description

FMPLL clock frequency higher than high reference interrupt.
This bit is set by hardware when fryp ok becomes higher than HFREF value and FMPLL_clk is
FHHI ‘ON’ as signalled by the MC_ME. It can be cleared by software by writing 1’

0 No FHH event.
1 FHH event is pending.

119/868 Doc ID 16886 Rev 6 KYI

RM0045 Clock Description

Table 47. CMU_ISR field descriptions (continued)

FMPLL clock frequency lower than low reference event.
This bit is set by hardware when feyp | ok becomes lower than LFREF value and FMPLL_clk is ‘ON’
FLLI as signalled by the MC_ME. It can be cleared by software by writing ‘1’.

0 No FLL event.
1 FLL event is pending.

Oscillator frequency lower than RC frequency event.
This bit is set by hardware when fexogc ik is lower than FIRC_clk/2RCPV frequency and FXOSC_clk
OLRI is ‘ON’ as signalled by the MC_ME. It can be cleared by software by writing ‘1°.

0 No OLR event.
1 OLR event is pending.

Measurement Duration Register (CMU_MDR)

Figure 38. Measurement Duration Register (CMU_MDR)

Offset: 0x18 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0
MDI[19:16]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 28 29 30 31

MD[15:0]

Resetoooo\oooo\oooooooo

Table 48. CMU_MDR field descriptions

Field Description

Measurement duration bits.

MD This field displays the measurement duration in numbers of clock cycles of the selected clock
source. This value is loaded in the frequency meter downcounter. When CMU_CSR[SFM] = 1, the
downcounter starts counting.

KYI Doc ID 16886 Rev 6 120/868

Clock Generation Module (MC_CGM) RM0045

7

7.1

7.1.1

121/868

Clock Generation Module (MC_CGM)

Introduction

This document serves as the block guide for the Clock Generation Module (MC_CGM)
which includes, but is not limited to, the funtionality, pin description, and registers of the
MC_CGM module.

Overview

The clock generation module (MC_CGM) generates reference clocks for all the SoC blocks.
The MC_CGM selects one of the system clock sources to supply the system clock. The
MC_ME controls the system clock selection (see the MC_ME chapter for more details). A
set of MC_CGM registers controls the clock dividers which are used for divided system and
peripheral clock generation. The memory spaces of system and peripheral clock sources
which have addressable memory spaces are accessed through the MC_CGM memory
space. The MC_CGM also selects and generates an output clock.

Figure 39 depicts the MC_CGM block diagram.

Doc ID 16886 Rev 6 KYI

RM0045 Clock Generation Module (MC_CGM)
MC_CGM
FIRC -
¢—p| MC_ME
FXOSC .)
Registers
Platform Interface MC_RGM
FMPLL I
System Clock .
Multiplexer/Divider | Peripherals
<] PA[O]
<§—P core
Output Clock
Selector/Divider
< » mapped
peripherals

Mapped Modules Interface

Figure 39. MC_CGM block diagram

Doc ID 16886 Rev 6

122/868

Clock Generation Module (MC_CGM) RM0045
7.1.2 Features
The MC_CGM includes the following features:
® generates system and peripheral clocks
® selects and enables/disables the system clock supply from system clock sources
according to MC_ME control
® contains a set of registers to control clock dividers for divided clock generation
® supports multiple clock sources and maps their address spaces to its memory map
® generates an output clock
® guarantees glitch-less clock transitions when changing the system clock selection
® supports 8, 16 and 32-bit wide read/write accesses
7.2 External Signal Description
The MC_CGM delivers an output clock to the PA[0] pin for off-chip use and/or observation.
7.3 Memory Map and Register Definition
Table 49. MC_CGM Register Description
Access
Address Name Description Size Location
User | Supervisor Test
OXCSFE | 6am_oc_EN Output Clock Enable |word | read | readiwrite |readiwrite| °7P39¢7-
_0370 128
0xC3FE Output Clock Division . . on page 7-
0374 CGM_OCDS_SC Select byte | read read/write | read/write 128
0xC3FE System Clock Select on page 7-
0378 CGM_SC_SS Status byte | read read read 129
0xC3FE System Clock Divider . . on page 7-
037C CGM_SC_DCo0 Configuration 0 byte | read read/write | read/write 130
0xC3FE System Clock Divider . . on page 7-
037D CGM_SC_DC1 Configuration 1 byte | read read/write | read/write 130
O0xC3FE System Clock Divider . . on page 7-
" 037E CGM_SC_DC2 Configuration 2 byte | read read/write | read/write 130
Note: Any access to unused registers as well as write accesses to read-only registers will:
— not change register content
— cause a transfer error
123/868 Doc ID 16886 Rev 6 IS7]

RM0045 Clock Generation Module (MC_CGM)

Table 50. MC_CGM Memory Map

o| 1| 2|3)| 4|5]| 6| 7|89 |[10|11|12]|13]| 14| 15
Address Name

16 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

O0xC3FE
_0000
FXOSC registers
0xC3FE
_001C

0xC3FE
_0020
... reserved
0xC3FE
_003C
0xC3FE
0040

SXOSC registers
0xC3FE
_005C

0xC3FE
_0060

FIRC registers
0xC3FE
_007C

0xC3FE
_0080
SIRC registers
O0xC3FE
_009C
0xC3FE
_00AO0

e FMPLL registers
0xC3FE
_ooBC

0xC3FE
_00Co
.. reserved
O0xC3FE
_0ooDC

0xC3FE
_00EO
.. reserved
0xC3FE
_0OFC
0xC3FE
_0100

CMU registers
0xC3FE
_011C

KYI Doc ID 16886 Rev 6 124/868

Clock Generation Module (MC_CGM)

RMO0045

Table 50. MC_CGM Memory Map (continued)

Address

Name

0

1

2

3

4

5 6

7

8

9

10

1

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

0xC3FE
_0120

0xC3FE
_013C

reserved

0xC3FE
_0140

0xC3FE
_015C

reserved

O0xC3FE
_0160
0xC3FE
_017C

reserved

0xC3FE
_0180

0xC3FE
_019C

reserved

0xC3FE
_01A0

0xC3FE
_01BC

reserved

O0xC3FE
_01Co0
0xC3FE
_01DC

reserved

0xC3FE
_01EO

O0xC3FE
_01FC

reserved

0xC3FE
_0200

0xC3FE
_021C

reserved

O0xC3FE
_0220
0xC3FE
_023C

reserved

125/868

Doc ID 16886 Rev 6

RM0045 Clock Generation Module (MC_CGM)

Table 50. MC_CGM Memory Map (continued)

o| 1| 2|3)| 4|5 |6 | 7| 8|9 |10]|11|12]|13]| 14| 15
Address Name

16 17 | 18 19 | 20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31

0xC3FE
0240
.. reserved
0xC3FE
_025C

0xC3FE
_0260
.. reserved
O0xC3FD
_Ca7C

0xC3FE
_0280
.. reserved
0xC3FE
_029C
0xC3FE
_02A0

.. reserved
0xC3FE
_02BC

0xC3FE
_02Co0
... reserved
O0xC3FE
_02DC

0xC3FE
_02EO
.. reserved
0xC3FE
_02FC
0xC3FE
_0300

.. reserved
0xC3FE
_031C

0xC3FE
_0320
.. reserved
O0xC3FE
_033C

O0xC3FE
_0340

.. reserved
0xC3FE
_035C

KYI Doc ID 16886 Rev 6 126/868

Clock Generation Module (MC_CGM) RM0045
Table 50. MC_CGM Memory Map (continued)
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Address Name
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0xC3FE
_0360
reserved
0xC3FE
_036C
O0xC3FE |CGM_OC_EN|[R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_0370
W
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EN
W
O0xC3FE |CGM_OCDS_|R| 0 0 0 0 0 0 0 0 0 0
0374 |SC SELDIV SELCTL
- W
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
O0xC3FE |CGM_SC_SS [R| O 0 0 0 SELSTAT 0 0 0 0 0 0 0 0
_0378
W
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
O0xC3FE |CGM_SC_DC |R | o 0 0 0 - 0 0 0
037C |0..2 1w DIVO w DIV1
- w| e o
Rl « 0 0 0 0 0 0 0 0 0 0 0
— w DIv2
wl| e
0xC3FE
0380
reserved
0xC3FE
_3FFC
7.3.1 Register Descriptions
All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the CGM_OC_EN register may be
accessed as a word at address OxC3FE_0370, as a half-word at address OxC3FE_0372, or
as a byte at address OxC3FE_0373.
127/868 Doc ID 16886 Rev 6 IS7]

RM0045 Clock Generation Module (MC_CGM)

Output Clock Enable Register (CGM_OC_EN)

Address OxC3FE_0370 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EN

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 40. Output Clock Enable Register (CGM_OC_EN)

This register is used to enable and disable the output clock.

Table 51. Output Clock Enable Register (CGM_OC_EN) Field Descriptions

Field Description

Output Clock Enable control
EN 0 Output Clock is disabled
1 Output Clock is enabled

Output Clock Division Select Register (CGM_OCDS_SC)

Address OxC3FE_0374 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0
W SELDIV SELCTL

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 41. Output Clock Division Select Register (CGM_OCDS_SC)

This register is used to select the current output clock source and by which factor it is
divided before being delivered at the output clock.

KYI Doc ID 16886 Rev 6 128/868

Clock Generation Module (MC_CGM) RM0045

Table 52. Output Clock Division Select Register (CGM_OCDS_SC) Field Descriptions

Field Description

Output Clock Division Select

00 output selected Output Clock without division
SELDIV |01 output selected Output Clock divided by 2

10 output selected Output Clock divided by 4

11 output selected Output Clock divided by 8

Output Clock Source Selection Control — This value selects the current source for the output clock.

0000 4-16 MHz ext. xtal osc.
0001 16 MHz int. RC osc.
0010 freq. mod. PLL
0011 system clock

0100 RTC clock

0101 reserved

0110 reserved

SELCTL {0111 reserved

1000 reserved

1001 reserved

1010 reserved

1011 reserved

1100 reserved

1101 reserved

1110 reserved

1111 reserved

System Clock Select Status Register (CGM_SC_SS)

Address OxC3FE_0378 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 SELSTAT 0 0 0 0 0 0 0 0
w [[|

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 42. System Clock Select Status Register (CGM_SC_SS)

This register provides the current system clock source selection.

129/868 Doc ID 16886 Rev 6 KYI

RMO0045

Clock Generation Module (MC_CGM)

Table 53. System Clock Select Status Register (CGM_SC_SS) Field Descriptions

Field

Description

System Clock Source Selection Status — This value indicates the current source for the system
clock.

0000 16 MHz int. RC osc.

0001 div. 16 MHz int. RC osc.

0010 4-16 MHz ext. xtal osc.

0011 div. ext. xtal osc.

0100 freq. mod. PLL

0101 reserved

SELSTAT 0110 reserved

0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

System Clock Divider Configuration Registers (CGM_SC_DCO0...2)

Address OxC3FE_037C Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0
DEO DIVO DE1 DIV1
w
Reset 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 0 0 0 0 0 0 0
DE2 DIV2
w
Reset 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 43. System Clock Divider Configuration Registers (CGM_SC_DCO0...2)

These registers control the system clock dividers.

Table 54. System Clock Divider Configuration Registers (CGM_SC_DCO0...2) Field Descriptions

Field Description
Divider 0 Enable
DEO |0 Disable system clock divider 0
1 Enable system clock divider O
Divider 0 Division Value — The resultant peripheral set 1 clock will have a period DIVO + 1 times that of
DIVO |the system clock. If the DEOQ is set to ‘0’ (Divider 0 is disabled), any write access to the DIVO field is
ignored and the peripheral set 1 clock remains disabled.
Divider 1 Enable
DE1 |0 Disable system clock divider 1
1 Enable system clock divider 1
'] Doc ID 16886 Rev 6 130/868

Clock Generation Module (MC_CGM) RM0045

Table 54. System Clock Divider Configuration Registers (CGM_SC_DCO0...2) Field Descriptions

Field Description
Divider 1 Division Value — The resultant peripheral set 2 clock will have a period DIV1 + 1 times that of
DIV1 |the system clock. If the DE1 is set to ‘0’ (Divider 1 is disabled), any write access to the DIV1 field is
ignored and the peripheral set 2 clock remains disabled.
Divider 2 Enable
DE2 |0 Disable system clock divider 2
1 Enable system clock divider 2
Divider 2 Division Value — The resultant peripheral set 3 clock will have a period DIV2 + 1 times that of
DIV2 |the system clock. If the DE2 is set to ‘0’ (Divider 2 is disabled), any write access to the DIV2 field is
ignored and the peripheral set 3 clock remains disabled.
7.4 Functional Description
741 System Clock Generation

131/868

Figure 44 shows the block diagram of the system clock generation logic. The MC_ME
provides the system clock select and switch mask (see MC_ME chapter for more details),
and the MC_RGM provides the safe clock request (see MC_RGM chapter for more details).
The safe clock request forces the selector to select the 16 MHz int. RC osc. as the system
clock and to ignore the system clock select.

Doc ID 16886 Rev 6 KYI

RM0045 Clock Generation Module (MC_CGM)

. system clock is disabled if
16 MHzint. RCosc. — =10\ ME_<current mode>_MC.SYSCLK = “1111"
div. 16 MHz int. RC osc. — |1
4-16 MHz ext. xtalosc. ——_ |2
div. ext. xtal osc. — 3
freq. mod. PLL 4 o
— 7§ » system clock
CGM_SC_DCO Register
y
A
MC_RGM SAFE mode request 1 > clock divider —— peripheral set 1 clock
“0000” —»| 1
ME_<current mode> —p{ 0
_MC.SYSCLK CGM_SC_DC1 Register

CGM_SC_SS Register

——» peripheral set 2 clock

clock divider

CGM_SC_DC2 Register

——» peripheral set 3 clock

A

clock divider

Figure 44. MC_CGM System Clock Generation Overview

System Clock Source Selection

During normal operation, the system clock selection is controlled
® on a SAFE mode or reset event, by the MC_RGM
® otherwise, by the MC_ME

KYI Doc ID 16886 Rev 6 132/868

Clock Generation Module (MC_CGM) RM0045

System Clock Disable
During the STOPO and TEST modes, the system clock can be disabled by the MC_ME.

System Clock Dividers

The MC_CGM generates the following derived clocks from the system clock:
® peripheral set 1 clock - controlled by the CGM_SC_DCO register
® peripheral set 2 clock - controlled by the CGM_SC_DC1 register
® peripheral set 3 clock - controlled by the CGM_SC_DC2 register

7.4.2 Dividers Functional Description

Dividers are used for the generation of divided system and peripheral clocks. The MC_CGM
has the following control registers for built-in dividers:

® Section : System Clock Divider Configuration Registers (CGM_SC_DCO...2)

The reset value of all counters is ‘1°. If a divider has its DE bit in the respective configuration
register set to ‘0’ (the divider is disabled), any value in its DIVn field is ignored.

7.4.3 Output Clock Multiplexing

The MC_CGM contains a multiplexing function for a number of clock sources which can
then be used as output clock sources. The selection is done via the CGM_OCDS_SC
register.

7.4.4 Output Clock Division Selection

]] B B CGM_OC_EN Register

- |
3 l

4-16 MHz ext. xtal osc.
16 MHz int. RC osc.
freq. mod. PLL

system clock
RTCclock — o

APrWON—=O

o0
f — M PA[O]

0
LA

/k
CGM_OCDS_SC.SELDIV ||
Register

Figure 45. MC_CGM Output Clock Multiplexer and PA[0] Generation

The MC_CGM provides the following output signals for the output clock generation:

® PA[0] (see Figure 45). This signal is generated by using one of the 3-stage ripple
counter outputs or the selected signal without division. The non-divided signal is not
guaranteed to be 50% duty cycle by the MC_CGM.

133/868 Doc ID 16886 Rev 6 KYI

RMO0045

Clock Generation Module (MC_CGM)

The MC_CGM also has an output clock enable register (see Section : Output Clock Enable
Register (CGM_OC_EN)) which contains the output clock enable/disable control bit.

Doc ID 16886 Rev 6 134/868

Mode Entry Module (MC_ME) RM0045

8 Mode Entry Module (MC_ME)
8.1 Introduction
8.1.1 Overview

The MC_ME controls the SoC mode and mode transition sequences in all functional states.
It also contains configuration, control and status registers accessible for the application.

Figure 46 depicts the MC_ME block diagram.

135/868 Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

VREG

Flashes

FIRC

FXOSC

FMPLL

MC_ME

Registers

Platform Interface

Device
Mode
State

Machine

MC_PCU

MC_RGM

MC_CGM

core

peripherals

WKPU

Figure 46. MC_ME Block Diagram

Doc ID 16886 Rev 6

136/868

Mode Entry Module (MC_ME) RM0045
8.1.2 Features
The MC_ME includes the following features:
® control of the available modes by the ME_ME register
® definition of various device mode configurations by the ME_<mode>_MC registers
e control of the actual device mode by the ME_MCTL register
® capture of the current mode and various resource status within the contents of the
ME_GS register

® optional generation of various mode transition interrupts

@ status bits for each cause of invalid mode transitions

® peripheral clock gating control based on the ME_RUN_PCO...7, ME_LP_PCO0...7, and
ME_PCTLO...143 registers

® capture of current peripheral clock gated/enabled status

8.1.3 Modes of Operation
The MC_ME is based on several device modes corresponding to different usage models of
the device. Each mode is configurable and can define a policy for energy and processing
power management to fit particular system requirements. An application can easily switch
from one mode to another depending on the current needs of the system. The operating
modes controlled by the MC_ME are divided into system and user modes. The system
modes are modes such as RESET, DRUN, SAFE, and TEST. These modes aim to ease the
configuration and monitoring of the system. The user modes are modes such as RUNO...3,
HALT, STOP, and STANDBY which can be configured to meet the application requirements
in terms of energy management and available processing power. The modes DRUN, SAFE,
TEST, and RUNO...3 are the device software running modes.

Table 55 describes the MC_ME modes.
Table 55. MC_ME Mode Descriptions
Name Description Entry Exit

RESET This is a chip-wide virtual mode during which the application |system reset system reset
is not active. The system remains in this mode until all assertion from deassertion from
resources are available for the embedded software to take |[MC_RGM MC_RGM
control of the device. It manages hardware initialization of
chip configuration, voltage regulators, clock sources, and
flash modules.

DRUN This is the entry mode for the embedded software. It system reset system reset
provides full accessibility to the system and enables the deassertion from |assertion,
configuration of the system at startup. It provides the unique |MC_RGM, software |RUNO...3, TEST,
gate to enter user modes. BAM when present is executed in {request from SAFE, |[STANDBY via
DRUN mode. TEST and software, SAFE via

RUNO...3, wakeup |software or
request from hardware failure.
STANDBY

SAFE This is a chip-wide service mode which may be entered on |hardware failure, system reset
the detection of a recoverable error. It forces the system into |software request |assertion, DRUN
a pre-defined safe configuration from which the system may |from DRUN, TEST, |via software
try to recover. and RUNO...3

137/868 Doc ID 16886 Rev 6 IS7]

RMO0045

Mode Entry Module (MC_ME)

Table 55. MC_ME Mode Descriptions (continued)

Name Description Entry Exit
TEST This is a chip-wide service mode which is intended to software request system reset
provide a control environment for device software teting. from DRUN assertion, DRUN
via software
RUNO...3 |These are software running modes where most processing |software request |system reset
activity is done. These various run modes allow to enable |from DRUN or other |assertion, SAFE via
different clock & power configurations of the system with RUNO...3, interrupt |software or
respect to each other. event from HALT, hardware failure,
interrupt or wakeup [other RUNO...3
event from STOP |modes, HALT,
STOP, STANDBY
via software
HALT This is a reduced-activity low-power mode during which the |software request |system reset
clock to the core is disabled. It can be configured to switch |from RUNO...3 assertion, SAFE on
off analog peripherals like clock sources, flash, main hardware failure,
regulator, etc. for efficient power management at the cost of RUNO...3 on
higher wakeup latency. interrupt event
STOP This is an advanced low-power mode during which the clock |software request [system reset
to the core is disabled. It may be configured to switch off from RUNO...3 assertion, SAFE on
most of the peripherals including clock sources for efficient hardware failure,
power management at the cost of higher wakeup latency. RUNO...3 on
interrupt event or
wakeup event
STANDBY [This is a reduced-leakage low-power mode during which software request |system reset
power supply is cut off from most of the device. Wakeup from RUNO...3, assertion, DRUN on
from this mode takes a relatively long time, and contentis |DRUN modes wakeup event
lost or must be restored from backup.
8.2 External Signal Description
The MC_ME has no connections to any external pins.
8.3 Memory Map and Register Definition

The MC_ME contains registers for:
® mode selection and status reporting
mode configuration

o
® mode transition interrupts status and mask control
® scalable number of peripheral sub-mode selection and status reporting

Doc ID 16886 Rev 6

138/868

Mode Entry Module (MC_ME) RM0045
8.3.1 Memory Map
Table 56. MC_ME Register Description
Access
Address Name Description Size Location
User |Supervisor| Test
0xC3FD_CO000 |ME_GS Global Status word| read read read on ;315:1966 8-
0xC3FD_C004 |ME_MCTL Mode Control word| read | read/write |read/write| ©” gi%e &
0xC3FD_C008 |ME_ME Mode Enable word| read | read/write |read/write| " ”1‘2%9 &
0xC3FD_CO0C|ME_IS Interrupt Status word| read | read/write |read/write| ©” ’)135%6 8-
0xC3FD_CO010|ME_IM Interrupt Mask word| read | read/write |read/write| ©" p1a5%e &
0XC3FD_C014|ME_IMTS Invalid Mode Transition |word| read | read/write |read/write| on page 8-
Status 153
OXC3FD_CO018|ME_DMTS Debug Mode Transition {word| read read read on page 8-
Status 154
0xC3FD_C020 |ME_RESET_MC RESET Mc_)de word| read read read on page 8-
Configuration 157
0xC3FD_C024 |ME_TEST_MC TEST Mod_e word| read | read/write |read/write on page 8-
Configuration 158
0xC3FD_C028 |ME_SAFE_MC SAFI.E Modg word| read | read/write |read/write| © P29 8-
Configuration 158
0xC3FD_C02C|ME_DRUN_MC DRU.N Moc_ie word| read | read/write |read/write on page 8-
Configuration 159
0XC3FD_CO30|ME_RUNO_MC ~ |Ron0 Mode word| read | read/write |readwrite| ©P39¢ &
Configuration 159
0xC3FD_C034 |ME_RUN1_MC RUN.1 Mo@e word| read | read/write |read/write| © P29 8-
Configuration 159
0xC3FD_C038 |ME_RUN2_MC RUN? Moc'ie word| read | readwrite |read/write| " P29° &
Configuration 159
OXC3FD_CO3G|ME_RUN3 MC |Aono Mode word| read | readiwrite |readiwrite| O P39¢ &
Configuration 159
0xC3FD_C040 [ME_HALT_MC HALT Mode word| read | read/write |readiwrite| ©7P29€ &
Configuration 160
0xC3FD_C048 |ME_STOP_MC STO'.D Moc'ie word| read | readwrite |read/write| " P29° &
Configuration 160
0XC3FD_C054 |ME_STANDBY_MC |>TANDBY Mode word| read | readiwrite |read/write| ©P29¢ &
Configuration 161
0xC3FD_C060 |ME_PS0 Peripheral Status 0 word| read read read on "'71‘516%9 8-

139/868

Doc ID 16886 Rev 6

574

RM0045 Mode Entry Module (MC_ME)
Table 56. MC_ME Register Description (continued)
Access
Address Name Description Size Location
User |Supervisor| Test
0xC3FD_C064 [ME_PS1 Peripheral Status 1 word| read read read on p1a6%e &
0xC3FD_C068 |ME_PS2 Peripheral Status 2 word| read read read on ’31‘36%9 8-
0xC3FD_CO06C|ME_PS3 Peripheral Status 3 word| read read read on ’)%Ze 8-
Run Peripheral . . on page 8-
0xC3FD_C080 |ME_RUN_PCO . . word| read | read/write |read/write
Configuration 0 165
0xC3FD_C084 |ME_RUN_PCH1 Run Eerlpr_leral word| read | read/write |read/write| °"P39° &
Configuration 1 165
0xC3FD_CO09C|ME_RUN_PC7 Run Eenpheral word| read | read/write |read/write| ©"P39° &
Configuration 7 165
0xC3FD_COAOQ|ME_LP_PCO LOW'.P ower Peripheral word| read | read/write |read/write| ©"P39° &
Configuration 0 166
Low-Power Peripheral . . on page 8-
0xC3FD_COA4|ME_LP_PC1 . . word| read | read/write |read/write
Configuration 1 166
0XC3FD_COBC|ME_LP_PC7 Low-Power Peripheral |, | \ead | read/write |readiwrite| ©P29¢ &
Configuration 7 166
0xC3FD_COC4|ME_PCTL4 DSPI0 Control byte | read | read/write |read/write on ;3136979 8-
0xC3FD_COC5|ME_PCTL5 DSPI1 Control byte | read | read/write |read/write on p1a697e 8-
0xC3FD_CODO|ME_PCTL16 FlexCANO Control byte | read | read/write |read/write| ‘;‘297‘9 &
0xC3FD_COD7|ME_PCTL23 DMA_CH_MUX Control | byte | read | read/write |read/write on ;3136979 8-
0xC3FD_COE1|ME_PCTL33 ADC1 Control byte | read | read/write |read/write on p%g; 8-
0xC3FD_COF0 |ME_PCTL48 LINFlex0 Control byte | read | read/write |read/write| "1%97‘9 &
0xC3FD_COF1|ME_PCTL49 LINFlex1 Control byte | read | read/write |read/write| ”1‘2%9 &
0xC3FD_COF2 |ME_PCTL50 LINFlex2 Control byte | read | read/write |read/write on p%g7e 8-
O0xC3FD_COF9|ME_PCTL57 CTUL Control byte | read | read/write |read/write on p1a6g7e &
0xC3FD_C104 [ME_PCTL68 SIUL Control byte | read | read/write |read/write| ”1‘2%9 &
'] Doc ID 16886 Rev 6 140/868

Mode Entry Module (MC_ME)

RM0045

Table 56. MC_ME Register Description (continued)

Access
Address Name Description Size Location
User |Supervisor| Test
0xC3FD_C105|ME_PCTL69 WKPU Control byte | read | read/write |read/write| ‘;‘297‘9 &
0xC3FD_C108 |ME_PCTL72 eMIOSO0 Control byte | read | read/write |read/write on ;3136979 8-
0xC3FD_C11B|ME_PCTL91 RTC_API Control byte | read | read/write |read/write| °” pf6~q7€ 8
0xC3FD_C11C|ME_PCTL92 PIT_RTI Control byte | read | read/write |read/write| ‘;‘297‘9 &
0xC3FD_C128 |ME_PCTL104 CMU Control byte | read | read/write |read/write on ;3136979 8-
Note: Any access to unused registers as well as write accesses to read-only registers will:
— not change register content
— cause a transfer error
Table 57. MC_ME Memory Map
Address Name 0 1 2 3 |27|5 |6 |7 |89 |10 11| 12|13 | 14| 15
16 | 17 | 18 | 19 |20 |21 |22 |23 |24 |25 |26 | 27 | 28 | 20 | 30 | 31
OxC3FD_|ME_GS 2
<o Q T
C000 I a S
R | S_CURRENT_MODE | - O| oj0|a2|0]|]0]| = S_DFLA | S_CFLA
=@ o »
n
w
SE:
R|o|]O0O]|]O0O]|oO oooooEQE S_SYSCLK
L |
0| ol @
w
0xC3FD_|ME_MCTL R ojojofojo|o0]|oO 0 0 0 0 0
C004 TARGET_MODE
w
R1‘o’1’oo1o1oooo1111
w KEY
0xC3FD_|ME_ME R 0 0 0 o|0jO0O|jOjO|O|O]|O]| O 0 0 0 0
C008 W
% JERE i
Riojo|g|o|ojalos2diz|5 |2 2|6 |3
Z = <|I3|I32|12| |0 |9 W |x
= » T ||| ~
w »
141/868 Doc ID 16886 Rev 6 IS7]

Mode Entry Module (MC_ME)

RMO0045

y Map (continued)

Table 57. MC_ME Memor

15

31

OLN |

OLN N

v3s' s

HAS

L€ 0 HdHdd dad

14

30

34vS |

34VS N

VNN S

€9 ¢€ HdHd da0

13

29

JA0ONI 1

JAONWI N

YINA S

66 ¥9 Hddd dAd0

12

28

ANOQI' |

wic | wic |wlc|wic

ANOOI' N

[HN'S

Had 3I-HO2

L2} 96 HdHd dAa0

DFLAON | CFLAON

SYSCLK

Lk

27

ILN'S

wic |wic |wlic|wic|wic

D0Hd ONd

NOYAN

NOOHId

10

26

o

o

NOOSOXd

o

o

NOT1dINA

24 | 25

ASNg HdN

€1 0 Hddd dad

o

o

OS HSV140

o

22 | 23

o

OS HSV14d

21

0

MS MIISAS

reserved

20

0

0S 04S0S

19

18

17

16

PREVIOUS_MODE

OS OdlId

0SS O"SO 0HSO

0S OHSO D3IHA

o

Name

R
W

R

o

R

MC

Address

0xC3FD_|ME_IS
cooC

0xC3FD_|ME_IM
Cco10

0xC3FD_|ME_IMTS
Cco14

0xC3FD_|ME_DMTS

co18

0xC3FD
Cco1C

0xC3FD_|ME_RESET
co020 |_

142/868

Doc ID 16886 Rev 6

Mode Entry Module (MC_ME) RM0045

Table 57. MC_ME Memory Map (continued)

Address Name 0 1 2 3 27 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 | 21 | 22 (23 | 24 | 25 | 26 27 28 29 30 31
0xC3FD_|ME_TEST_ &
Cco024 |MC R0 |0 0| 0]|0/0|0[0|g|0|O0| & |DFLAON | CFLAON
:) | |
Z | Z
R|o|o|o|ol|o|lo|o|o]oO 8 z
S|l | O SYSCLK
w % ol x
TR v
0xC3FD_|ME_SAFE_ g
co28 |MC R|0|0]0|0]|0/0[0[0|g|O0|0|& |DFLAON | CFLAON
e =
w | |
=2
IR
R|o|0|o0o|0]o|0[O|O|O]|Z Q| Q SYSCLK
B[T
w | |
O0xC3FD_|ME_DRUN_ o g
Cco2C |MC R|o|o | o0o]|o0|0|0|0fO0|a|0]|0| & |DFLAON | CFLAON
S
w | |
=z
Zz | Z o)
R|o|o|lo|o|o|lo|lo|o|0o|Q|8]|OC
23| € SYSCLK
S|oH=
W |
0xC3FD_|ME_RUNO o g
C030 |...3_MC R|o|o | o0o]o0|0|0|0fO0|a|0]|0| & |DFLAON | CFLAON
S
0xC3FD_ W | |
C03C -
Z | Z Ie)
R|lo|o|o|o|o|lojo|o|0o|S|8]|C
Jlo| & SYSCLK
S (o=
W TR
OXC3FD_[ME_HALT_ | R | 0 | 0o | 0o | o |o|lo|o|o|8|o]|o|3 |DFLAON | CFLAON
C040 |MC a g
w s | | |
=z
R|o|o|o|o|o|o|o|0|0[3]|5 z
2130 SYSCLK
w % o| x
x| w
OXC3FD_ reserved
C044

143/868 Doc ID 16886 Rev 6 IYI

RMO0045

Mode Entry Module (MC_ME)

Table 57. MC_ME Memory Map (continued)

Address Name 0 1 2 3 27 5 6 7 8 9 10 1 12 13 14 15
16 17 18 19 20 | 21 | 22 (23 | 24 | 25 | 26 27 28 29 30 31
0xC3FD_|ME_STOP_ 0/0|0|0|0[0|0O|0|g|O|O|& |DFLAON | CFLAON
Cc048 |MC ol X
o >
S
Z |2
18| =z
o|lo|lo|ol|o|lo|o|o|o|2|a|d
0|0 SYSCLK
E X |
LT
0xC3FD_
co4c
reserved
0xC3FD_
C050
0xC3FD_|ME_STAND o 5
C054 |BY_MC 0ofojojojoflojojo|lalo|o|€& DFLAON | CFLAON
s
=2
53] .
olo|lo|ol|o|lo|o|o|o|Z|n|d SYSCLK
2 88
T T T
OxC3FD_
C058
reserved
0xC3FD_
CO05C
0XC3FD_|ME_PS0 5
o
C060 =) p
<
L %)
ojojoflojojofo|0o|Qjojo|O0 |0]| O0]|O0]T%
< i
s |
Dl wn
n
- e
&| &
ol o] o oooooooDIDI o|lo]| o] o
n n
KYI Doc ID 16886 Rev 6 144/868

Mode Entry Module (MC_ME) RM0045

Table 57. MC_ME Memory Map (continued)

Address Name 0 1 2 3 27 | 5 6 7 8 9 | 10 Lk 12 13 14 15
16 17 18 19 | 20 | 21 |22 | 23 | 24 | 25 | 26 27 28 29 30 31
QA — (=}
mgggf_ ME_PS1 = & 8|38
R|o|o|lo]o|ojo|[Klojojojo|lo|oOo |5 |5]|E
! S |3 |3
w | | |
«n «n «n
w
O
R|o|o|o|o|o|o|o|o|o|o|o|oO| O |oO|Q]oO
U)I
w
=
mgggg:)_ ME_PS2 %
R|o|o|o|K|olofojojofofolo|o|o]o0]oO
D.l o
n (Dl
W

o
o
S_WKPU

S_SIUL
o
o
o
o

S_eMIOSO

0xC3FD_|ME_PS3 R 0 0 0 00|00

o
o
o
o
o
o
o
o
o

Cco6C
)
R 0 0 0 oO|(0f0]|O E 0o|0|0]| O 0 0 0 0
co'
w
0xC3FD_
C070 reserved
0xC3FD_
C074
reserved
0xC3FD_
Cco7C
OxC3FD_|ME_RUN_P| R 0 0 0 o|(ofO0O|lO|O|O|O]|O]| O 0 0 0 0
coso |Co0...7
w
O0XC3FD_ m
C09C R|O0]O0OJ0)0j0)01010|2I9Z|2 |5 & |59
T = T = T o < w o
W c|ld|ad|x =) %) (=

145/868 Doc ID 16886 Rev 6 IYI

RMO0045

Mode Entry Module (MC_ME)

Table 57. MC_ME Memory Map (continued)

Address

Name

0

1

2 3 27

5 6 7

8

9

10 Lk 12

13 14 15

16

17

18 19 | 20

21 | 22 | 23

24

25

26 | 27 28

29 30 31

0xC3FD_
COAO0

OXC3FD_
COBC

ME_LP_PC

0

0

o

0|0

o

0|0

0

0

0| O 0

0...7

By

=

STANDBY

STOP
HALT

0xC3FD_
CocCo

0xC3FD_
C14C

ME_PCTLO

...143

LP_CFG

RUN_CFG

LP_CFG

RUN_CFG

S|m|=| D

DBG_F|DBG_F

LP_CFG

RUN_CFG

DBG_F|DBG_F

LP_CFG

RUN_CFG

0xC3FD_
C150

0XC3FD_
FFFC

reserved

8.3.2

Register Description

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or
8-bit bytes. The bytes are ordered according to big endian. For example, the ME_RUN_PCO
register may be accessed as a word at address 0xC3FD_CO080, as a half-word at address

0xC3FD_CO082, or as a byte at address 0xC3FD_C083.

Global Status Register (ME_GS)

Address 0xC3FD_C000

Figure 47. Global Status Register (ME_GS)

Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2
| o Q <
R| S_.CURRENT_MODE | £ | 9 | o 0 | o 0 0 | S | SDFLA | S CFLA
s %) (/)l (/)l
U)I
w
Reset 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2|3 ¢
Rl 0 0 0 0 0 0 0 0 0 = % T S_SYSCLK
U)l U)l [¢p]
w
Reset 0 O O o0 0 O O O,/ 0 o0 O 1,0 o0 0 O
KYI Doc ID 16886 Rev 6 146/868

Mode Entry Module (MC_ME) RM0045

This register contains global mode status.

Table 58. Global Status Register (ME_GS) Field Descriptions

Field Description

Current device mode status

0000 RESET
0001 TEST
0010 SAFE
0011 DRUN
0100 RUNO
0101 RUN1
S_CURRENT 2110 RUN2
MODE 0111 RUN3
- 1000 HALT
1001 reserved
1010 STOP
1011 reserved
1100 reserved
1101 STANDBY
1110 reserved
1111 reserved

Mode transition status

S_MTRANS |0 Mode transition process is not active
1 Mode transition is ongoing

Device current consumption status

S DC 0 Device consumption is low enough to allow powering down of main voltage regulator

- 1 Device consumption requires main voltage regulator to remain powered regardless of mode
configuration

Output power-down status — This bit specifies output power-down status of I/Os. This bit is
asserted whenever outputs of pads are forced to high impedance state or the pads power sequence
driver is switched off.

0 No automatic safe gating of I/Os used and pads power sequence driver is enabled

S_PDO |1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and the pads power
sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode, the
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup lines configuration remains unchanged

Main voltage regulator status

S_MVR |0 Main voltage regulator is not ready
1 Main voltage regulator is ready for use

Data flash availability status

00 Data flash is not available

S_DFLA |01 Data flash is in power-down mode

10 Data flash is not available

11 Data flash is in normal mode and available for use

Code flash availability status

00 Code flash is not available

S_CFLA |01 Code flash is in power-down mode

10 Code flash is in low-power mode

11 Code flash is in normal mode and available for use

147/868 Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)

Table 58. Global Status Register (ME_GS) Field Descriptions (continued)

Field Description
frequency modulated phase locked loop status
S_FMPLL |0 frequency modulated phase locked loop is not stable

1 frequency modulated phase locked loop is providing a stable clock
fast external crystal oscillator (4-16 MHz) status

S_FXOSC |0 fast external crystal oscillator (4-16 MHz) is not stable
1 fast external crystal oscillator (4-16 MHz) is providing a stable clock
fast internal RC oscillator (16 MHz) status

S_FIRC |0 fastinternal RC oscillator (16 MHz) is not stable

1 fast internal RC oscillator (16 MHz) is providing a stable clock
System clock switch status — These bits specify the system clock currently used by the system.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved

S_SYSCLK [0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled

Mode Control Register (ME_MCTL)

Figure 48. Mode Control Register (ME_MCTL)

Address 0xC3FD_C004

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0
TARGET_MODE
w
Reset 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
w KEY
Reset 1 0 1 0 0 1 0 1 0 0 0 0 1 1 1 1
This register is used to trigger software-controlled mode changes. Depending on the modes
as enabled by ME_ME register bits, configurations corresponding to unavailable modes are
1S7 Doc ID 16886 Rev 6 148/868

Mode Entry Module (MC_ME) RM0045

reserved and access to ME_<mode>_MC registers must respect this for successful mode
requests.

Note: Byte and half-word write accesses are not allowed for this register as a predefined key is
required to change its value.

Table 59. Mode Control Register (ME_MCTL) Field Descriptions

Field

Description

TARGET_MODE

Target device mode — These bits provide the target device mode to be entered by software
programming. The mechanism to enter into any mode by software requires the write operation
twice: first time with key, and second time with inverted key. These bits are automatically updated
by hardware while entering SAFE on hardware request. Also, while exiting from the HALT and
STOP modes on hardware exit events, these are updated with the appropriate RUNO...3 mode
value.

0000 RESET

0001 TEST

0010 SAFE

0011 DRUN

0100 RUNO

0101 RUN1

0110 RUN2

0111 RUN3

1000 HALT

1001 reserved

1010 STOP

1011 reserved

1100 reserved

1101 STANDBY

1110 reserved

1111 reserved

Control key — These bits enable write access to this register. Any write access to the register
with a value different from the keys is ignored. Read access will always return inverted key.

KEY
KEY:0101101011110000 (OX5AFO0)
INVERTED KEY:1010010100001111 (OXA50F)
149/868 Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)

Mode Enable Register (ME_ME)

Figure 49. Mode Enable Register (ME_ME)

Address 0xC3FD_CO008 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
5 2|3 | Ly
(a2} [aV} - (9]
Rlojo g |ojojaglols |2 |g |z |52 2|53
Z [< > > > o L [is

= (&) T || x| ~

w (]

Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

This register allows a way to disable the device modes which are not required for a given
device. RESET, SAFE, DRUN, and RUNO modes are always enabled.

Table 60. Mode Enable Register (ME_ME) Field Descriptions

Field Description

STANDBY mode enable

STANDBY |0 STANDBY mode is disabled
1 STANDBY mode is enabled

STOP mode enable

STOP 0 STOP mode is disabled
1 STOP mode is enabled

HALT mode enable

HALT 0 HALT mode is disabled
1 HALT mode is enabled

RUN3 mode enable

RUN3 0 RUNS mode is disabled
1 RUNS3 mode is enabled

RUN2 mode enable

RUN2 0 RUN2 mode is disabled
1 RUN2 mode is enabled

RUN1 mode enable

RUNT1 0 RUN1 mode is disabled
1 RUN1 mode is enabled

RUNO mode enable

RUNO 0 RUNO mode is disabled
1 RUNO mode is enabled

KYI Doc ID 16886 Rev 6 150/868

Mode Entry Module (MC_ME) RM0045

Table 60. Mode Enable Register (ME_ME) Field Descriptions (continued)

Field Description
DRUN mode enable
DRUN 0 DRUN mode is disabled
1 DRUN mode is enabled
SAFE mode enable
SAFE 0 SAFE mode is disabled
1 SAFE mode is enabled
TEST mode enable
TEST 0 TEST mode is disabled
1 TEST mode is enabled
RESET mode enable
RESET |0 RESET mode is disabled
1 RESET mode is enabled
Interrupt Status Register (ME_IS)
Figure 50. Interrupt Status Register (ME_IS)
Address 0xC3FD_C00C Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S8t
Rl O 0 0 0 0 0 0 0 0 0 0 0 8) s 3’1)' §|
— — — -
w wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

151/868

This register provides the current interrupt status.

Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)

Table 61. Interrupt Status Register (ME_IS) Field Descriptions

Field Description

Invalid mode configuration interrupt — This bit is set whenever a write operation to
ME_<mode>_MC registers with invalid mode configuration is attempted. It is cleared by writing a ‘1’
|_ICONF [to this bit.

0 No invalid mode configuration interrupt occurred

1 Invalid mode configuration interrupt is pending

Invalid mode interrupt — This bit is set whenever an invalid mode transition is requested. It is
cleared by writing a ‘1’ to this bit.

0 No invalid mode interrupt occurred

1 Invalid mode interrupt is pending

I_IMODE

SAFE mode interrupt — This bit is set whenever the device enters SAFE mode on hardware
requests generated in the system. It is cleared by writing a ‘1’ to this bit.

0 No SAFE mode interrupt occurred

1 SAFE mode interrupt is pending

I_SAFE

Mode transition complete interrupt — This bit is set whenever the mode transition process
completes (S_MTRANS transits from 1 to 0). It is cleared by writing a ‘1’ to this bit. This mode
|_MTC transition interrupt bit will not be set while entering low-power modes HALT, STOP, or STANDBY.

0 No mode transition complete interrupt occurred
1 Mode transition complete interrupt is pending

Interrupt Mask Register (ME_IM)

Figure 51. Interrupt Mask Register (ME_IM)

Address 0xC3FD_C010 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl 0 0 0 0 0 0 0 0 0 0 0 o5 | B8 |w|o

(@) e} < E

W S| 2| @ |3
s | S| ==

Reset O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register controls whether an event generates an interrupt or not.

KYI Doc ID 16886 Rev 6 152/868

Mode Entry Module (MC_ME)

Table 62. Interrupt Mask Register (ME_IM) Field Descriptions

Field Description

Invalid mode configuration interrupt mask

M_ICONF |0 Invalid mode interrupt is masked

1 Invalid mode interrupt is enabled

Invalid mode interrupt mask

M_IMODE |0 Invalid mode interrupt is masked

1 Invalid mode interrupt is enabled

SAFE mode interrupt mask

M_SAFE |0 SAFE mode interrupt is masked

1 SAFE mode interrupt is enabled

Mode transition complete interrupt mask

M_MTC |0 Mode transition complete interrupt is masked

1 Mode transition complete interrupt is enabled

Address OxC3FD_C014

Invalid Mode Transition Status Register (ME_IMTS)

Figure 52. Invalid Mode Transition Status Register (ME_IMTS)

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
= = < < <
E o
Rooooooooooo%%%%%l
o | o | ¢ '
w wic | wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register provides the status bits for the possible causes of an invalid mode interrupt.
Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions
Field Description
Mode Transition lllegal status — This bit is set whenever a new mode is requested while some
other mode transition process is active (S_MTRANS is ‘1’). Please refer to Section 8.4.5 Mode
S_MTI Transition Interrupts for the exceptions to this behavior. It is cleared by writing a ‘1’ to this bit.
0 Mode transition requested is not illegal
1 Mode transition requested is illegal
Mode Request lllegal status — This bit is set whenever the target mode requested is not a valid
S MRI mode with respect to current mode. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is not illegal with respect to current mode
1 Target mode requested is illegal with respect to current mode
153/868 Doc ID 16886 Rev 6 1S

RM0045

Access: User read, Supervisor read/write, Test read/write

RMO0045

Mode Entry Module (MC_ME)

Table 63. Invalid Mode Transition Status Register (ME_IMTS) Field Descriptions (continued)

Field Description
Disabled Mode Access status — This bit is set whenever the target mode requested is one of those
S DMA disabled modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is not a disabled mode
1 Target mode requested is a disabled mode
Non-existing Mode Access status — This bit is set whenever the target mode requested is one of
S NMA those non existing modes determined by ME_ME register. It is cleared by writing a ‘1’ to this bit.
- 0 Target mode requested is an existing mode
1 Target mode requested is a non-existing mode
SAFE Event Active status — This bit is set whenever the device is in SAFE mode, SAFE event bit is
pending and a new mode requested other than RESET/SAFE modes. It is cleared by writing a ‘1’ to
S_SEA |this bit.
0 No new mode requested other than RESET/SAFE while SAFE event is pending
1 New mode requested other than RESET/SAFE while SAFE event is pending
Debug Mode Transition Status Register (ME_DMTS)
Figure 53. Debug Mode Transition Status Register (ME_DMTS)
Address OxC3FD_C018 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
> O Q)
%) o) @
2 [0y [m) o
R| PREVIOUS_MODE 0 0 0 0 @, 0 0 a w 0 0 =
T &) o »
o = o]
= o &)
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
™ N ITo) ™ -
8| 8| 3) = O] O i| o ::' 2' pi(
éc) %c) 8 % ¥ % % 9 8| i “ ;'
RRo|[8 18|48 |5 |a|a|a|oflololZE|lz|&|R
| || & w | Q| 35| S e x| | | g
ol || o|Q ||| o | & T
| @ - o | 5| 5|3
> (@) O 8 S O (@]
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register provides the status of different factors which influence mode transitions. It is
used to give an indication of why a mode transition indicated by ME_GS.S_MTRANS may
be taking longer than expected.
Note: The ME_DMTS register does not indicate whether a mode transition is ongoing. Therefore,

some ME_DMTS bits may still be asserted after the mode transition has completed.

Doc ID 16886 Rev 6 154/868

Mode Entry Module (MC_ME) RM0045

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions

Field

Description

PREVIOUS_MODE

Previous device mode — These bits show the mode in which the device was prior to the
latest change to the current mode.
0000 RESET

0001 TEST

0010 SAFE

0011 DRUN

0100 RUNO

0101 RUN1

0110 RUN2

0111 RUN3

1000 HALT

1001 reserved

1010 STOP

1011 reserved

1100 reserved

1101 STANDBY

1110 reserved

1111 reserved

MC_ME/MC_PCU Handshake Busy indicator — This bit is set if the MC_ME has requested
a mode change from the MC_PCU and the MC_PCU has not yet responded. It is cleared

MPH_BUSY when the MC_PCU has responded.
0 Handshake is not busy
1 Handshake is busy
MC_PCU Mode Change in Progress indicator — This bit is set if the MC_PCU is in the
process of powering up or down power domains. It is cleared when all power-up/down
PMC_PROG processes have completed.
0 Power-up/down transition is not in progress
1 Power-up/down transition is in progress
Processor is in Debug mode indicator — This bit is set while the processor is in debug
mode.
CORE_DBG
- 0 The processor is not in debug mode
1 The processor is in debug mode
SAFE mode request from MC_RGM is active indicator — This bit is set if a hardware SAFE
mode request has been triggered. It is cleared when the hardware SAFE mode request has
SMR been cleared.

0 A SAFE mode request is not active
1 A SAFE mode request is active

VREG_CSRC_SC

Main VREG dependent Clock Source State Change during mode transition indicator — This
bit is set when a clock source which depends on the main voltage regulator to be powered-
up is requested to change its power up/down state. It is cleared when the clock source has
completed its state change.

0 No state change is taking place
1 A state change is taking place

CSRC_CSRC_SC

(Other) Clock Source dependent Clock Source State Change during mode transition
indicator — This bit is set when a clock source which depends on another clock source to
be powered-up is requested to change its power up/down state. It is cleared when the clock
source has completed its state change.

0 No state change is taking place

1 A state change is taking place

155/868

Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

Table 64. Debug Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field Description
FIRC State Change during mode transition indicator — This bit is set when the fast internal
RC oscillator (16 MHz) is requested to change its power up/down state. It is cleared when
FIRC_SC the fast internal RC oscillator (16 MHz) has completed its state change.
0 No state change is taking place
1 A state change is taking place
System Clock Switching pending status —
SYSCLK_SW 0 No system clock source switching is pending
1 A system clock source switching is pending
DFLASH State Change during mode transition indicator — This bit is set when the DFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
DFLASH_SC completed its state change.
0 No state change is taking place
1 A state change is taking place
CFLASH State Change during mode transition indicator — This bit is set when the CFLASH
is requested to change its power up/down state. It is cleared when the DFLASH has
CFLASH_SC completed its state change.

0 No state change is taking place
1 A state change is taking place

CDP_PRPH_0_143

Clock Disable Process Pending status for Peripherals 0...143 — This bit is set when any
peripheral has been requested to have its clock disabled. It is cleared when all the
peripherals which have been requested to have their clocks disabled have entered the state
in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1 Clock disabling is pending for at least one peripheral

CDP_PRPH_96_127

Clock Disable Process Pending status for Peripherals 96...127 — This bit is set when any
peripheral appearing in ME_PS3 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

CDP_PRPH_64_95

Clock Disable Process Pending status for Peripherals 64...95 — This bit is set when any
peripheral appearing in ME_PS2 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1 Clock disabling is pending for at least one peripheral

Doc ID 16886 Rev 6 156/868

Mode Entry Module (MC_ME)

RM0045

Table 64. Debug

Mode Transition Status Register (ME_DMTS) Field Descriptions (continued)

Field

Description

CDP_PRPH_32_63

Clock Disable Process Pending status for Peripherals 32...63 — This bit is set when any
peripheral appearing in ME_PS1 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending

1 Clock disabling is pending for at least one peripheral

CDP_PRPH_0_31

Clock Disable Process Pending status for Peripherals 0...31 — This bit is set when any
peripheral appearing in ME_PS0 has been requested to have its clock disabled. It is cleared
when all these peripherals which have been requested to have their clocks disabled have
entered the state in which their clocks may be disabled.

0 No peripheral clock disabling is pending
1 Clock disabling is pending for at least one peripheral

RESET Mode Configuration Register (ME_RESET_MC)

Figure 54. RESET Mode Configuration Register (ME_RESET_MC)

Address 0xC3FD_C020

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
Rl O 0 0 0 0 0 0 0 |[PDO| O 0 E DFLAON CFLAON
=
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
= zZ
S 18|58
Rl O 0 0 0 0 0 0 0 0 T 8 &) SYSCLK
Z & "
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
This register configures system behavior during RESET mode. Please refer to Table 65 for
details.
157/868 Doc ID 16886 Rev 6 1S

RMO0045

Mode Entry Module (MC_ME)

TEST Mode Configuration Register (ME_TEST_MC)

Figure 55. TEST Mode Configuration Register (ME_TEST_MC)

Address 0xC3FD_C024

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
5
Rl 0 0 0 0 0 0 0 0 0 0 T DFLAON | CFLAON
>
PDO 2
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
zZ =z
Rl 0 0 0 0 0 0 0 0 0 5 8 %
=) O SYSCLK
% @] s
T & "
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

This register configures system behavior during TEST mode. Please see Table 65 for

details.
Note:

SAFE Mode Configuration Register (ME_SAFE_MC)

Byte write accesses are not allowed to this register.

Figure 56. SAFE Mode Configuration Register (ME_SAFE_MC)

Address OxC3FD_C028

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
CZ)
Rl 0 0 0 0 0 0 0 0 0 0 & | DFLAON | CFLAON
PDO 2
Reset 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
zZ =z
S|1818
Rl 0 0 0 0 0 0 0 0 0 z | 3 Q SYSCLK
£ & | ©
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

This register configures system behavior during SAFE mode. Please see Table 65 for

details.

Note:

Byte write accesses are not allowed to this register.

Doc ID 16886 Rev 6

158/868

Mode Entry Module (MC_ME)

RM0045

DRUN Mode Configuration Register (ME_DRUN_MC)

Figure 57. DRUN Mode Configuration Register (ME_DRUN_MC)

Address 0xC3FD_C02C Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pd
Rl O 0 0 0 0 0 0 0 |PDO| O 0 8>:) DFLAON CFLAON
=
W

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
z |z |8
RRro|o|o|lo|o|o|o]o|O0oO|9]|8]|O
4|l o | E SYSCLK
T |8 =
w T |
Reset 0 0 ©0 O 0 O O OO0 O O 1,0 0 0 ©

This register configures system behavior during DRUN mode. Please see Table 65 for

details.
Note: Byte write accesses are not allowed to this register.
Note: The clock source and flash configuration values are retained through STANDBY mode.

RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

Figure 58. RUNO...3 Mode Configuration Registers (ME_RUNO...3_MC)

Address 0xC3FD_C030 - 0xC3FD_CO03C Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
zZ
R| O 0 0 0 0 0 0 0 |PDO| O 0 g: DFLAON CFLAON
=
w

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
z |z |8
RRro|lo|o]o|o|o|o|O0o|O]|S]|8]Q9
J g | K SYSCLK
S| Q
w T |
Reset 0 0 O o0 0 O O O 0 O O 1,0 0 0 O

This register configures system behavior during RUNO...3 modes
details.

159/868 Doc ID 16886 Rev 6

. Please see Table 65 for

574

RM0045 Mode Entry Module (MC_ME)

Note: Byte write accesses are not allowed to this register.

HALT Mode Configuration Register (ME_HALT_MC)

Figure 59. HALT Mode Configuration Register (ME_HALT_MC)

Address O0xC3FD_C040 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 |PDO| O 0 (ZD DFLAON CFLAON
w
Reset 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SYSCLK

© | FMPLLON
© |FXOSCON
FIRCON

Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0

This register configures system behavior during HALT mode. Please refer to Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

STOP Mode Configuration Register (ME_STOP_MC)

Figure 60. STOP Mode Configuration Register (ME_STOP_MC)

Address OxC3FD_C048 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 CZ) DFLAON CFLAON
PDO D>:
W s
Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
prd =z
S 18|58
Rl O 0 0 0 0 0 0 0 0 T 8 &) SYSCLK
E | X | =
w

o
-

0 0 0 0

Reset O 0 0 0 0 0 0 0 0 0

This register configures system behavior during STOP mode. Please refer to Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

KYI Doc ID 16886 Rev 6 160/868

Mode Entry Module (MC_ME) RM0045

STANDBY Mode Configuration Register (ME_STANDBY_MC)

Figure 61. STANDBY Mode Configuration Register (ME_STANDBY_MC)

Address 0xC3FD_C054 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5
R| O 0 0 0 0 0 0 0 |[PDO| O 0 a>: DFLAON CFLAON
=
w
Reset 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
=z P4
S 181z
R| O 0 0 0 0 0 0 0 0 T 8 o SYSCLK
AR
T
w

Reset O 0 0 0 0 0 0 0 0 0

o
-
—_
—_
-
-

This register configures system behavior during STANDBY mode. Please see Table 65 for
details.

Note: Byte write accesses are not allowed to this register.

Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions

Field Description

1/0 output power-down control — This bit controls the output power-down of 1/Os.

0 No automatic safe gating of I/Os used and pads power sequence driver is enabled

1 In SAFE/TEST modes, outputs of pads are forced to high impedance state and pads power
PDO sequence driver is disabled. The inputs are level unchanged. In STOP mode, only the pad power
sequence driver is disabled, but the state of the output remains functional. In STANDBY mode,
power sequence driver and all pads except those mapped on wakeup lines are not powered and
therefore high impedance. Wakeup line configuration remains unchanged

Main voltage regulator control — This bit specifies whether main voltage regulator is switched off
or not while entering this mode.

0 Main voltage regulator is switched off

1 Main voltage regulator is switched on

MVRON

DFLAON |Data flash power-down control — This bit specifies the operating mode of the data flash after
entering this mode.

00 reserved

01 Data flash is in power-down mode

10 reserved

11 Data flash is in normal mode

Note: If the flash memory is to be powered down in any mode, then your software must ensure that
reset sources are configured as long resets in the RGM_FESS register (see Section 9.3.1.6,
Functional Event Short Sequence Register (RGM_FESS)).

161/868 Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

Table 65. Mode Configuration Registers (ME_<mode>_MC) Field Descriptions (continued)

Field Description
CFLAON |Code flash power-down control — This bit specifies the operating mode of the code flash after
entering this mode.
00 reserved
01 Code flash is in power-down mode
10 Code flash is in low-power mode
11 Code flash is in normal mode
frequency modulated phase locked loop control
FMPLLON |0 frequency modulated phase locked loop is switched off
1 frequency modulated phase locked loop is switched on
fast external crystal oscillator (4-16 MHz) control
FXOSCON |0 fast external crystal oscillator (4-16 MHz) is switched off
1 fast external crystal oscillator (4-16 MHz) is switched on
fast internal RC oscillator (16 MHz) control
FIRCON |0 fast internal RC oscillator (16 MHz) is switched off
1 fast internal RC oscillator (16 MHz) is switched on
System clock switch control — These bits specify the system clock to be used by the system.
0000 16 MHz int. RC osc.
0001 div. 16 MHz int. RC osc.
0010 4-16 MHz ext. xtal osc.
0011 div. ext. xtal osc.
0100 freq. mod. PLL
0101 reserved
0110 reserved
SYSCLK [0111 reserved
1000 reserved
1001 reserved
1010 reserved
1011 reserved
1100 reserved
1101 reserved
1110 reserved
1111 system clock is disabled in STOP and TEST modes, reserved in all other modes

Doc ID 16886 Rev 6

162/868

Mode Entry Module (MC_ME)

RM0045

Peripheral Status Register 0 (ME_PS0)

Address 0OxC3FD_C060

Figure 62. Peripheral Status Register 0 (ME_PS0)

Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
o)
§| e
z)
Rl O 0 0 0 0 0 0 0 O 0 0 0 0 0 0 %
Z i
= |
DI [9p]
)]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
= (=}
& | &
Rl O 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0
wn n
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 1 (ME_PS1)

Address 0xC3FD_C064

Figure 63. Peripheral Status Register 1 (ME_PS1)

Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Al — o
5 3| 3|38
RRro|lo|o|]o|o|o|EKE|lo|lo|]o|]o]|o]|o|5|E]|EL
| 3 3 -
n | | |
[92] [%2) (92}
Resst 0 0 0 ©O0 /0 O O 0,0 O O O 0 0 ©0 O
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
%)
RRro|lo|o|lo|o|o|]o|o]o|o|]oOo|]o|O]|oOo|ZQ]o
(Dl
Resst 0 0 0 0, 0 O O 0,0 O O O 0 0 ©0 O

This register provides the status of the peripherals. Please see Table 66 for details.

163/868

Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Peripheral Status Register 2 (ME_PS2)

Figure 64. Peripheral Status Register 2 (ME_PS2)

Address 0xC3FD_C068 Access: User read, Supervisor read, Test read

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
F | &
Rl O 0 0 |:| (|-_> 0 0 0 0 0 0 0 0 0 0 0
D.l o
N U)I
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o
%) -]
O g |2
Rl O 0 0 0 0 0 0 s 0 0 = cl)l 0 0 0 0
O
% o |
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please see Table 66 for details.

Peripheral Status Register 3 (ME_PS3)

Figure 65. Peripheral Status Register 3 (ME_PS3)

Address OxC3FD_C06C Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o)
Rl O 0 0 0 0 0 0 %l 0 0 0 0 0 0 0 0
)
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides the status of the peripherals. Please see Table 66 for details.

Doc ID 16886 Rev 6 164/868

Mode Entry

Module (MC_ME)

RM0045

Table 66. Peripheral Status Registers 0...4 (ME_PS0...4) Field Descriptions

Field Description
Peripheral status — These bits specify the current status of the peripherals in the system. If no
peripheral is mapped on a particular position (i.e., the corresponding MODS bit is ‘0’), the
S_<periph> |corresponding bit is always read as ‘0’.

0 Peripheral is frozen
1 Peripheral is active

Run Peripheral Configuration Registers (ME_RUN_PCO...7)

Figure 66. Run Peripheral Configuration Registers (ME_RUN_PCO0...7)

Address 0xC3FD_C080 - 0xC3FD_C09C

Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Ly
Rl O 0 0 0 0 0 0 0 2 g = S % w 5 @
2 2 2) o < L o
o o o s a) =
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 67. Run Peripheral Configuration Registers (ME_RUN_PCO0...7) Field Descriptions

These registers configure eight different types of peripheral behavior during run modes.

Field

Description

RUN3

Peripheral control during RUN3

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN2

Peripheral control during RUN2

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUN1

Peripheral control during RUN1

0 Peripheral is frozen with clock gated
1 Peripheral is active

RUNO

Peripheral control during RUNO

0 Peripheral is frozen with clock gated
1 Peripheral is active

DRUN

Peripheral control during DRUN

0 Peripheral is frozen with clock gated
1 Peripheral is active

165/868

Doc ID 16886 Rev 6

RM0045 Mode Entry Module (MC_ME)

Table 67. Run Peripheral Configuration Registers (ME_RUN_PCO...7) Field Descriptions

Field Description

Peripheral control during SAFE

SAFE 0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral control during TEST

TEST |0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral control during RESET

RESET |0 Peripheral is frozen with clock gated
1 Peripheral is active

Low-Power Peripheral Configuration Registers (ME_LP_PCO...7)

Figure 67. Low-Power Peripheral Configuration Registers (ME_LP_PCO0...7)

Address 0xC3FD_CO0AOQ - 0xC3FD_CO0BC Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
>_
Rl 0 0 gog 0 0 o 0 — 0 0 0 0 0 0 0 0
O -
b4 = <
w = » T
%)
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

These registers configure eight different types of peripheral behavior during non-run modes.

Table 68. Low-Power Peripheral Configuration Registers (ME_LP_PCO...7) Field Descriptions

Field Description

Peripheral control during STANDBY

STANDBY |0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral control during STOP

STOP |0 Peripheral is frozen with clock gated
1 Peripheral is active

Peripheral control during HALT

HALT 0 Peripheral is frozen with clock gated
1 Peripheral is active

K‘YI Doc ID 16886 Rev 6 166/868

Mode Entry Module (MC_ME) RM0045

Peripheral Control Registers (ME_PCTLO...143)

Figure 68. Peripheral Control Registers (ME_PCTLO...143)

Address 0xC3FD_CO0CO0 - 0xC3FD_C14F Access: User read, Supervisor read/write, Test read/write
0 1 2 3 ‘ 4 5 6 7
R 0
DBG_F LP_CFG RUN_CFG
W
Reset 0 0 0 0 ‘ 0 0 0 0

These registers select the configurations during run and non-run modes for each peripheral.

Table 69. Peripheral Control Registers (ME_PCTLO...143) Field Descriptions

Field Description

Peripheral control in debug mode — This bit controls the state of the peripheral in debug mode

0 Peripheral state depends on RUN_CFG/LP_CFG bits and the device mode

DBG_F |1 Peripheral is frozen if not already frozen in device modes.

Note: This feature is useful to freeze the peripheral state while entering debug. For example, this
may be used to prevent a reference timer from running while making a debug accesses.

Peripheral configuration select for non-run modes — These bits associate a configuration as
defined in the ME_LP_PCO...7 registers to the peripheral.

000 Selects ME_LP_PCO configuration

001 Selects ME_LP_PC1 configuration

LPp CFGg [010 Selects ME_LP_PC2 configuration

- 011 Selects ME_LP_PCS3 configuration

100 Selects ME_LP_PC4 configuration

101 Selects ME_LP_PC5 configuration

110 Selects ME_LP_PCB6 configuration

111 Selects ME_LP_PC?7 configuration

Peripheral configuration select for run modes — These bits associate a configuration as defined
in the ME_RUN_PCO...7 registers to the peripheral.
000 Selects ME_RUN_PCO configuration
001 Selects ME_RUN_PC1 configuration
010 Selects ME_RUN_PC2 configuration
RUN_CFG - -
- 011 Selects ME_RUN_PCS3 configuration
100 Selects ME_RUN_PC4 configuration
101 Selects ME_RUN_PC5 configuration
110 Selects ME_RUN_PC6 configuration
111 Selects ME_RUN_PC?7 configuration

Table 70. Peripheral control registers by peripheral

Peripheral ME_PCTLn
DSPI_0 4
DSPI_1 5

FlexCAN_O 16

DMA_MUX 23

167/868 Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

Table 70. Peripheral control registers by peripheral (continued)

Peripheral ME_PCTLn

ADC_1 33

12c 44

LINFlex_0 48

LINFlex_1 49

LINFlex_2 50

CTU 57

CAN sampler 60

SIUL 68

WKPU 69

eMIOS_0 72

RTC/API 91

PIT 92

CMU 104

8.4

8.4.1

Note:

Functional Description

Mode Transition Request

The transition from one mode to another mode is normally handled by software by
accessing the mode control register ME_MCTL. But the in case of special events, the mode
transition can be automatically managed by hardware. In order to switch from one mode to
another, the application should access the ME_MCTL register twice by writing

o the first time with the value of the key (OX5AFO0) into the KEY bit field and the required
target mode into the TARGET_MODE bit field,

® and the second time with the inverted value of the key (0OxA50F) into the KEY bit field
and the required target mode into the TARGET_MODE bit field.

Once a valid mode transition request is detected, the target mode configuration information
is loaded from the corresponding ME_<mode>_MC register. The mode transition request
may require a number of cycles depending on the programmed configuration, and software
should check the S_CURRENT_MODE bit field and the S_MTRANS bit of the global status
register ME_GS to verify when the mode has been correctly entered and the transition
process has completed. For a description of valid mode requests, please refer to

Section 8.4.5 Mode Transition Interrupts.

Any modification of the mode configuration register of the currently selected mode will not
be taken into account immediately but on the next request to enter this mode. This means
that transition requests such as RUNO...3 —» RUNO...3, DRUN — DRUN, SAFE — SAFE,
and TEST — TEST are considered valid mode transition requests. As soon as the mode
request is accepted as valid, the S_MTRANS bit is set till the status in the ME_GS register
matches the configuration programmed in the respective ME_<mode>_MC register.

It is recommended that software poll the S_MTRANS bit in the ME_GS register after
requesting a transition to HALT, STOP, or STANDBY modes.

Doc ID 16886 Rev 6 168/868

Mode Entry Module (MC_ME) RM0045

SYSTEM MODES _ ecoverable USER MODES
hardware failure | _ _ _ _ _ _

software
request

non-recoverable
failure

STANDBY

Figure 69. MC_ME Mode Diagram

8.4.2 Modes Details
RESET Mode

The device enters this mode on the following events:
e from SAFE, DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0000”

® from any mode due to a system reset by the MC_RGM because of some non-
recoverable hardware failure in the system (see the MC_RGM chapter for details)

Transition to this mode is instantaneous, and the system remains in this mode until the reset
sequence is finished. The mode configuration information for this mode is provided by the
ME_RESET_MC register. This mode has a pre-defined configuration, and the 16 MHz int.
RC osc. is selected as the system clock. All power domains are made active in this mode.

169/868 Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)

DRUN Mode

The device enters this mode on the following events:
® automatically from RESET mode after completion of the reset sequence

® from RUNO...3, SAFE, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0011”

o from the STANDBY mode after an external wakeup event or internal wakeup alarm
(e.g., RTC/API event)

As soon as any of the above events has occurred, a DRUN mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_DRUN_MC register. In this mode, the flashes, all clock sources, and the system clock
configuration can be controlled by software as required. After system reset, the software
execution starts with the default configuration selecting the 16 MHz int. RC osc. as the
system clock.

This mode is intended to be used by software
® toinitialize all registers as per the system needs
® to execute small routines in a ‘ping-pong’ with the STANDBY mode

When this mode is entered from STANDBY after a wakeup event, the ME_DRUN_MC
register content is restored to its pre-STANDBY values, and the mode starts in that
configuration.

All power domains are active when this mode is entered due to a system reset sequence
initiated by a destructive reset event. the exit from STANDBY after a wakeup event,

Note: Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

SAFE Mode

The device enters this mode on the following events:

e from DRUN, RUNO...3, or TEST mode when the TARGET_MODE bit field of the
ME_MCTL register is written with “0010”

e from any mode except RESET due to a SAFE mode request generated by the
MC_RGM because of some potentially recoverable hardware failure in the system (see
the MC_RGM chapter for details)

As soon as any of the above events has occurred, a SAFE mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_SAFE_MC register. This mode has a pre-defined configuration, and the 16 MHz int. RC
osc. is selected as the system clock. All power domains are made active in this mode.

If the SAFE mode is requested by software while some other mode transition process is
ongoing, the new target mode becomes the SAFE mode regardless of other pending
requests or new requests during the mode transition. No new mode request made during a
transition to the SAFE mode will cause an invalid mode interrupt.

Note: If software requests to change to the SAFE mode and then requests to change back to the
parent mode before the mode transition is completed, the device’s final mode after mode
transition will be the SAFE mode.

As long as a SAFE event is active, the system remains in the SAFE mode, and any software
mode request during this time is ignored and lost.

K‘YI Doc ID 16886 Rev 6 170/868

Mode Entry Module (MC_ME) RM0045

Note:

Note:

171/868

This mode is intended to be used by software
® to assess the severity of the cause of failure and then to either
— re-initialize the device via the DRUN mode, or
— completely reset the device via the RESET mode.
If the outputs of the system 1/Os need to be forced to a high impedance state upon entering

this mode, the PDO bit of the ME_SAFE_MC register should be set. In this case, the pads’
power sequence driver cell is also disabled. The input levels remain unchanged.

TEST Mode

The device enters this mode on the following events:
o from the DRUN mode when the TARGET_MODE bit field of the ME_MCTL register is
written with “0001”

As soon as any of the above events has occurred, a TEST mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_TEST_MC register. Except for the main voltage regulator, all resources of the system
are configurable in this mode. The system clock to the whole system can be stopped by
programming the SYSCLK bit field to “1111”, and in this case, the only way to exit this mode
is via a device reset.

This mode is intended to be used by software

® to execute software test routines

Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

RUNO...3 Modes

The device enters one of these modes on the following events:

e from the DRUN, SAFE, or another RUNO...3 mode when the TARGET_MODE bit field
of the ME_MCTL register is written with “0100...0111”

® from the HALT mode due to an interrupt event

o from the STOP mode due to an interrupt or wakeup event

As soon as any of the above events has occurred, a RUNO...3 mode transition request is
generated. The mode configuration information for these modes is provided by the
ME_RUNO...3_MC registers. In these modes, the flashes, all clock sources, and the system
clock configuration can be controlled by software as required.

These modes are intended to be used by software

® to execute application routines

Software must ensure that the code executes from RAM before changing to this mode if the
flashes are configured to be in the low-power or power-down state in this mode.

HALT Mode

The device enters this mode on the following events:

® from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1000”.

As soon as any of the above events has occurred, a HALT mode transition request is
generated. The mode configuration information for this mode is provided by ME_HALT_MC

Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

register. This mode is quite configurable, and the ME_HALT_MC register should be
programmed according to the system needs. The main voltage regulator and the flashes
can be put in low-power or power-down mode as needed. If there is a HALT mode request
while an interrupt request is active, the transition to HALT is aborted with the resultant mode
being the current mode, SAFE (on SAFE mode request), or DRUN (on reset), and an invalid
mode interrupt is not generated.

This mode is intended as a first-level low-power mode with

® the core clock frozen

® only a few peripherals running

and to be used by software

o to wait until it is required to do something and then to react quickly (i.e., within a few
system clock cycles of an interrupt event)

STOP Mode

The device enters this mode on the following events:
e from one of the RUNO...3 modes when the TARGET_MODE bit field of the ME_MCTL
register is written with “1010”.

As soon as any of the above events has occurred, a STOP mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_STOP_MC register. This mode is fully configurable, and the ME_STOP_MC register
should be programmed according to the system needs.

The main voltage regulator and the flashes can be put in power-down mode as needed. If
there is a STOP mode request while any interrupt or wakeup event is active, the transition to
STOP is aborted with the resultant mode being the current mode, SAFE (on SAFE mode
request), or DRUN (on reset), and an invalid mode interrupt is not generated.

This can be used as an advanced low-power mode with the core clock frozen and almost all
peripherals stopped.

This mode is intended as an advanced low-power mode with

® the system clock frozen

® almost all peripherals stopped

and to be used by software
o to wait until it is required to do something with no need to react quickly (e.g., allow for
system clock source to be re-started)

If the pads’ power sequence driver cell needs to be disabled while entering this mode, the
PDO bit of the ME_STOP_MC register should be set. The state of the outputs is kept.

This mode can be used to stop all clock sources and thus preserve the device status. When
exiting the STOP mode, the fast internal RC oscillator (16 MHz) clock is selected as the
system clock until the target clock is available.

STANDBY Mode

The device enters this mode on the following events:

® from the DRUN or one of the RUNO...3 modes when the TARGET_MODE bit field of
the ME_MCTL register is written with “1101”.

Doc ID 16886 Rev 6 172/868

Mode Entry Module (MC_ME) RM0045

8.4.3

173/868

As soon as any of the above events occur, a STANDBY mode transition request is
generated. The mode configuration information for this mode is provided by the
ME_STANDBY_MC register. In this mode, the power supply is turned off for most of the
device. The only parts of the device that are still powered during this mode are pads
mapped on wakeup lines and power domain #0 which contains the MC_RGM, MC_PCU,
WKPU, 8K RAM, RTC_API, SIRC, FIRC, and device and user option bits. The FIRC can be
optionally switched off. This is the lowest power consumption mode possible on the device.

This mode is intended as an extreme low-power mode with
® the core, the flashes, and almost all peripherals and memories powered down

and to be used by software

o to wait until it is required to do something with no need to react quickly (i.e., allow for
system power-up and system clock source to be re-started)

The exit sequence of this mode is similar to the reset sequence. However, in addition to
booting from the default location, the device can also be configured to boot from the backup
RAM (see the RGM_STDBY register description in the MC_RGM chapter for details). In the
case of booting from backup RAM, it is also possible to keep the flashes disabled by writing
“01” to the CFLAON and DFLAON fileds in the ME_DRUN_MC register prior to STANDBY
entry.

If there is a STANDBY mode request while any wakeup event is active, the device mode
does not change.

All power domains except power domain #0 are configurable in this mode in order to reduce
leakage consumption.

Mode Transition Process

The process of mode transition follows the following steps in a pre-defined manner
depending on the current device mode and the requested target mode. In many cases of
mode transition, not all steps need to be executed based on the mode control information,
and some steps may not be applicable according to the mode definition itself.

Target Mode Request

The target mode is requested by accessing the ME_MCTL register with the required keys.
This mode transition request by software must be a valid request satisfying a set of pre-
defined rules to initiate the process. If the request fails to satisfy these rules, it is ignored,
and the TARGET_MODE bit field is not updated. An optional interrupt can be generated for
invalid mode requests. Refer to Section 8.4.5 Mode Transition Interrupts for details.

In the case of mode transitions occurring because of hardware events such as a reset, a
SAFE mode request, or interrupt requests and wakeup events to exit from low-power
modes, the TARGET_MODE bit field of the ME_MCTL register is automatically updated with
the appropriate target mode. The mode change process start is indicated by the setting of
the mode transition status bit S_MTRANS of the ME_GS register.

A RESET mode requested via the ME_MCTL register is passed to the MC_RGM, which
generates a global system reset and initiates the reset sequence. The RESET mode
request has the highest priority, and the MC_ME is kept in the RESET mode during the
entire reset sequence.

The SAFE mode request has the next highest priority after reset. It can be generated either
by software via the ME_MCTL register from all software running modes including DRUN,

Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)
RUNO...3, and TEST or by the MC_RGM after the detection of system hardware failures,
which may occur in any mode.

Target Mode Configuration Loading
On completion of the Target Mode Request step, the target mode configuration from the
ME_<target mode>_MC register is loaded to start the resources (voltage sources, clock
sources, flashes, pads, etc.) control process.
An overview of resource control possibilities for each mode is shown in Table 71. A V'
indicates that a given resource is configurable for a given mode.
Table 71. MC_ME Resource Control Overview
Mode
Resource
RESET TEST SAFE DRUN RUNO...3 HALT STOP STANDBY
N v v N
FIRC
on on on on on on on on
v v v v v
FXOSC
off off off off off off off off
N v v v
FMPLL
off off off off off off off off
\ y y y y
CFLASH power- power-
normal normal normal normal normal low-power
down down
N v v v v
DFLASH power- power-
normal normal normal normal normal low-power
down down
y y
MVREG
on on on on on on on off
v v v
PDO
off off on off off off off on
Peripheral Clocks Disable
On completion of the Target Mode Request step, the MC_ME requests each peripheral to
enter its stop mode when:
® the peripheral is configured to be disabled via the target mode, the peripheral
configuration registers ME_RUN_PCQO...7 and ME_LP_PCO...7, and the peripheral
control registers ME_PCTLO...143
Caution: The MC_ME does not automatically request peripherals to enter their stop modes if the

power domains in which they are residing are to be turned off due to a mode change.
Therefore, it is software’s responsibility to ensure that those peripherals that are to be
powered down are configured in the MC_ME to be frozen.

Each peripheral acknowledges its stop mode request after closing its internal activity. The
MC_ME then disables the corresponding clock(s) to this peripheral.

Doc ID 16886 Rev 6 174/868

Mode Entry Module (MC_ME) RM0045

Caution:

Note:

175/868

In the case of a SAFE mode transition request, the MC_ME does not wait for the peripherals
to acknowledge the stop requests. The SAFE mode clock gating configuration is applied
immediately regardless of the status of the peripherals’ stop acknowledges.

Please refer to Section 8.4.6 Peripheral Clock Gating for more details.

Each peripheral that may block or disrupt a communication bus to which it is connected
ensures that these outputs are forced to a safe or recessive state when the device enters
the SAFE mode.

Processor Low-Power Mode Entry

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the HALT
mode, the MC_ME requests the processor to enter its halted state. The processor
acknowledges its halt state request after completing all outstanding bus transactions.

If, on completion of the Peripheral Clocks Disable step, the mode transition is to the STOP or
STANDBY mode, the MC_ME requests the processor to enter its stopped state. The
processor acknowledges its stop state request after completing all outstanding bus
transactions.

Processor and System Memory Clock Disable

If, on completion of the Processor Low-Power Mode Entry step, the mode transition is to the
HALT, STOP, or STANDBY mode and the processor is in its appropriate halted or stopped
state, the MC_ME disables the processor and system memory clocks to achieve further
power saving.

The clocks to the processor and system memory are unaffected while transitioning between
software running modes such as DRUN, RUNO...3, and SAFE.

Clocks to the whole device including the processor and system memory can be disabled in
TEST mode.

Clock Sources (Main Voltage Regulator Independent) Switch-On

On completion of the Processor Low-Power Mode Entry step, the MC_ME switches on all
clock sources, which do not need the main voltage regulator to be on, based on the
<clock source>ON bits of the ME_<current mode>_MC and ME_<target mode>_MC
registers. The following clock sources are switched on at this step:

Clock sources which need the main voltage regulator to be stable are not controlled by this
step.

The clock sources that are required by the target mode are switched on. The duration
required for the output clocks to be stable depends on the type of source, and all further
steps of mode transition depending on one or more of these clocks waits for the stable
status of the respective clocks. The availability status of these clocks is updated in the
S_<clock source> bits of ME_GS register.

The clock sources which need to be switched off are unaffected during this process in order
to not disturb the system clock which might require one of these clocks before switching to a
different target clock.

Main Voltage Regulator Switch-On

On completion of the Target Mode Request step, if the main voltage regulator needs to be
switched on from its off state based on the MVRON bit of the ME_<current mode>_MC and

Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

Caution:

ME_<target mode>_MC registers, the MC_ME requests the MC_PCU to power-up the
regulator and waits for the output voltage stable status in order to update the S_MVR bit of
the ME_GS register.

This step is required only during the exit of the low-power modes HALT and STOP. In this
step, the fast internal RC oscillator (16 MHz) is switched on regardless of the target mode
configuration, as the main voltage regulator requires the 16 MHz int. RC osc. during power-
up in order to generate the voltage status.

During the STANDBY exit sequence, the MC_PCU alone manages the power-up of the
main voltage regulator, and the MC_ME is kept in RESET or shut off (depending on the
power domain #1 status).

Flash Modules Switch-On

On completion of the Main Voltage Regulator Switch-On step, if one or more of the flashes
needs to be switched to normal mode from its low-power or power-down mode based on the
CFLAON and DFLAON bit fields of the ME_<current mode>_MC and

ME_<target mode>_MC registers, the MC_ME requests the flash to exit from its low-
power/power-down mode. When the flashes are available for access, the S_CFLA and
S_DFLA bit fields of the ME_GS register are updated to “11” by hardware.

If the main regulator is also off in device low-power modes, then during the exit sequence,
the flash is kept in its low-power state and is switched on only when the Main Voltage
Regulator Switch-On process has completed.

It is illegal to switch the flashes from low-power mode to power-down mode and from power-
down mode to low-power mode. The MC_ME, however, does not prevent this nor does it flag
it.

Clock Sources (Main Voltage Regulator Dependent) Switch-On

On completion of the Clock Sources (Main Voltage Regulator Independent) Switch-On and
Main Voltage Regulator Switch-On, the MC_ME controls all clock sources, which need the
main voltage regulator to be on, based on the <clock source>ON bits of the

ME_<current mode>_MC and ME_<target mode>_MC registers. The following clock
sources are switched on at this step:

Pad Outputs-On

On completion of the Main Voltage Regulator Switch-On step, if the PDO bit of the
ME_<target mode>_MC register is cleared, then

® all pad outputs are enabled to return to their previous state

o the I/O pads power sequence driver is switched on

Peripheral Clocks Enable

Based on the current and target device modes, the peripheral configuration registers
ME_RUN_PCO...7, ME_LP_PCO...7, and the peripheral control registers ME_PCTLO...143,
the MC_ME enables the clocks for selected modules as required. This step is executed only
after the Main Voltage Regulator Switch-On process is completed.

Also, if a mode change translates to a power up of one or more power domains, the
MC_PCU indicates the MC_ME after completing the power-up sequence upon which the
MC_ME may assert the peripheral clock enables of the peripherals residing in those power
domains.

Doc ID 16886 Rev 6 176/868

Mode Entry Module (MC_ME) RM0045

Processor and Memory Clock Enable

If the mode transition is from any of the low-power modes HALT or STOP to RUNO...3, the
clocks to the processor and system memory are enabled. The process of enabling these
clocks is executed only after the Flash Modules Switch-On process is completed.

Processor Low-Power Mode Exit

If the mode transition is from any of the low-power modes HALT, STOP, or STANDBY to
RUNO...3, the MC_ME requests the processor to exit from its halted or stopped state. This
step is executed only after the Processor and Memory Clock Enable process is completed.

System Clock Switching

Based on the SYSCLK bit field of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if the target and current system clock configurations
differ, the following method is implemented for clock switching:

® The target clock configuration for the 16 MHz int. RC osc. takes effect only after the
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator
(16 MHz) has stabilized).

® The target clock configuration for the div. 16 MHz int. RC osc. takes effect only after the
S_FIRC bit of the ME_GS register is set by hardware (i.e., the fast internal RC oscillator
(16 MHz) has stabilized).

® The target clock configuration for the 4-16 MHz ext. xtal osc. takes effect only after the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

® The target clock configuration for the div. ext. xtal osc. takes effect only after the
S_FXOSC bit of the ME_GS register is set by hardware (i.e the fast external crystal
oscillator (4-16 MHz) has stabilized).

® The target clock configuration for the freq. mod. PLL takes effect only after the
S_FMPLL bit of the ME_GS register is set by hardware (i.e., the frequency modulated
phase locked loop has stabilized).

® If the clock is to be disabled, the SYSCLK bit field should be programmed with “1111”.
This is possible only in the STOP and TEST modes. In the STANDBY mode, the clock
configuration is fixed, and the system clock is automatically forced to ‘0’.

The current system clock configuration can be observed by reading the S_SYSCLK bit field

of the ME_GS register, which is updated after every system clock switching. Until the target

clock is available, the system uses the previous clock configuration.

System clock switching starts only after

® the Peripheral Clocks Disable process has completed in order not to change the
system clock frequency before peripherals close their internal activities

An overview of system clock source selection possibilities for each mode is shown in
Table 72. A <Y indicates that a given clock source is selectable for a given mode.

177/868 Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)
Table 72. MC_ME System Clock Selection Overview

System Mode

Clock

Source RESET TEST SAFE DRUN RUNO...3 HALT STOP STANDBY
16 MHzint. v v v v v v v

RC osc. (default) (default) (default) (default) (default) (default) (default)

div. 16

MHz int. J V V V v

RC osc.
4-16 MHz

ext. xtal v \ \ \ \

osc.

div. ext. N N N N N

xtal osc.
freq. mod.

L Y y y y

system N

clock is VD N (default

disabled

1. disabling the system clock during TEST mode will require a reset in order to exit TEST mode

Pad Switch-Off

If the PDO bit of the ME_<target mode>_MC register is ‘1’ then
® the outputs of the pads are forced to the high impedance state if the target mode is
SAFE or TEST

® |/O pads power sequence driver is switched off if the target mode is one of SAFE,
TEST, or STOP modes

In STANDBY mode, the power sequence driver and all pads except the external reset and
those mapped on wakeup lines are not powered and therefore high impedance. The wakeup
line configuration remains unchanged.

This step is executed only after the Peripheral Clocks Disable process has completed.

Clock Sources Switch-Off

Based on the device mode and the <clock source>ON bits of the ME_<mode>_MC
registers, if a given clock source is to be switched off, the MC_ME requests the clock source
to power down and updates its availability status bit S_<clock source> of the ME_GS
register to ‘0’. The following clock sources switched off at this step:

This step is executed only after the System Clock Switching process has completed.

Flash Switch-Off

Based on the CFLAON and DFLAON bit fields of the ME_<current mode>_MC and
ME_<target mode>_MC registers, if any of the flashes is to be put in its low-power or power-
down mode, the MC_ME requests the flash to enter the corresponding power mode and
waits for the flash to acknowledge. The exact power mode status of the flashes is updated in

Doc ID 16886 Rev 6 178/868

Mode Entry Module (MC_ME) RM0045

the S_CFLA and S_DFLA bit fields of the ME_GS register. This step is executed only when
the Processor and System Memory Clock Disable process has completed.

Main Voltage Regulator Switch-Off

Based on the MVRON bit of the ME_<current mode>_MC and ME_<target mode>_MC
registers, if the main voltage regulator is to be switched off, the MC_ME requests it to power
down and clears the availability status bit S_MVR of the ME_GS register.

This step is required only during the entry of low-power modes like HALT and STOP. This

step is executed only after completing the following processes:

® Clock Sources Switch-Off

® Flash Switch-Off

® the device consumption is less than the pre-defined threshold value (i.e., the S_DC bit
of the ME_GS register is ‘0’).

If the target mode is STANDBY, the main voltage regulator is not switched off by the MC_ME
and the STANDBY request is asserted after the above processes have completed upon
which the MC_PCU takes control of the main regulator. As the MC_PCU needs the 16 MHz
int. RC osc., the fast internal RC oscillator (16 MHz) remains active until all the STANDBY
steps are executed by the MC_PCU after which it may be switched off depending on the
FIRCON bit of the ME_STANDBY_MC register.

Current Mode Update
The current mode status bit field S_CURRENT_MODE of the ME_GS register is updated
with the target mode bit field TARGET_MODE of the ME_MCTL register when:

@ all the updated status bits in the ME_GS register match the configuration specified in
the ME_<target mode>_MC register

® power sequences are done

® clock disable/enable process is finished

® processor low-power mode (halt/stop) entry and exit processes are finished
Software can monitor the mode transition status by reading the S_MTRANS bit of the
ME_GS register. The mode transition latency can differ from one mode to another

depending on the resources’ availability before the new mode request and the target mode’s
requirements.

If a mode transition is taking longer to complete than is expected, the ME_DMTS register
can indicate which process is still in progress.

179/868 Doc ID 16886 Rev 6 KYI

RM0045 Mode Entry Module (MC_ME)
l«—— Write ME_MCTL register
Target Mode Request |«—— SAFE mode request
l«—— interrupt/wakeup event
r——— - - - - - - - - " " " ") "0 0 0 0 0 0 0 0 0 Y0 00— 0 = =/ = A
|7 JL \ |
| 17 |
| % Clock Sources =|
| é Switch-On o |
= (O]
| E| >9 |
| <Zf~ |
| v \.V V:;EG Y Y Y <
| Dzlpr;en dent FLASH Power Domain Pad |
| | Clock Sourced | Switch-On Switch-On Outputs On j |
Switch-On
| |
| Peripheral Clocks |
Disable Y
| Processor & |
| v Memory v |
| Processor Clock Enable |
Low-Power * Peripheral Clocks
| Entry Yy Enable |
| v System Clock Processor |
| Switching Low-Power |
Processor & Exit
| Memory | |
| Clock Disable J |
| Y |
| Clock Sources Without \ |
Dependencies Switch-Off
|—Y v v |
|| FLASH PAD * |
- Power Domain Clock Sources With LL
||Switch-Off| | gyitch-Off Outputs Off Dependencigs Switch-Off 8 |
]
o | ! S
| <Zt |
| Main VREG |_N Y <
| Switch-Off Request |
| j |
| |
Lo - - I ___________________ -
Current Mode Update |—» S_MTRANS =0’
Y
End
Figure 70. MC_ME Transition Diagram
'] Doc ID 16886 Rev 6 180/868

Mode Entry Module (MC_ME) RM0045

8.4.4 Protection of Mode Configuration Registers

While programming the mode configuration registers ME_<mode>_MC, the following rules
must be respected. Otherwise, the write operation is ignored and an invalid mode
configuration interrupt may be generated.

If the 16 MHz int. RC osc. is selected as the system clock, FIRC must be on.

If the div. 16 MHz int. RC osc. clock is selected as the system clock, RC must be on.
If the 4-16 MHz ext. xtal osc. clock is selected as the system clock, OSC must be on.
If the div. ext. xtal osc. clock is selected as the system clock, OSC must be on.

If the freq. mod. PLL clock is selected as the system clock, PLL must be on.

Note: Software must ensure that clock sources with dependencies other than those mentioned
above are swithced on as needed. There is no automatic protection mechanism to check
this in the MC_ME.

® Configuration “00” for the CFLAON and DFLAON bit fields is reserved.

® Configuration “10” for the DFLAON bit field is reserved.

® Ifthe DFLAON bit field is set to “11”, the CFLAON field must also be set to “11”.

® MVREG must be on if any of the following is active:
— CFLASH
— DFLASH

® System clock configurations marked as ‘reserved’ may not be selected.

® Configuration “1111” for the SYSCLK bit field is allowed only for the STOP and TEST
modes, and only in this case may all system clock sources be turned off.

Caution: If the system clock is stopped during TEST mode, the device can exit only via a system
reset.

8.4.5 Mode Transition Interrupts

The MC_ME provides interrupts for incorrectly configuring a mode, requesting an invalid
mode transition, indicating a SAFE mode transition not due to a software request, and
indicating when a mode transition has completed.

Invalid Mode Configuration Interrupt

Whenever a write operation is attempted to the ME_<mode>_MC registers violating the
protection rules mentioned in the Section 8.4.4 Protection of Mode Configuration Registers,
the interrupt pending bit I_ICONF of the ME_IS register is set and an interrupt request is
generated if the mask bit M_ICONF of ME_IM register is ‘1’.

Invalid Mode Transition Interrupt

The mode transition request is considered invalid under the following conditions:

® If the system is in the SAFE mode and the SAFE mode request from MC_RGM is
active, and if the target mode requested is other than RESET or SAFE, then this new
mode request is considered to be invalid, and the S_SEA bit of the ME_IMTS register is
set.

o Ifthe TARGET_MODE bit field of the ME_MCTL register is written with a value different
from the specified mode values (i.e., a non-existing mode), an invalid mode transition
event is generated. When such a non existing mode is requested, the S_NMA bit of the

181/868 Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

Note:

ME_IMTS register is set. This condition is detected regardless of whether the proper
key mechanism is followed while writing the ME_MCTL register.

o If some of the device modes are disabled as programmed in the ME_ME register, their
respective configurations are considered reserved, and any access to the ME_MCTL
register with those values results in an invalid mode transition request. When such a
disabled mode is requested, the S_DMA bit of the ME_IMTS register is set. This
condition is detected regardless of whether the proper key mechanism is followed while
writing the ME_MCTL register.

o If the target mode is not a valid mode with respect to the current mode, the mode
request illegal status bit S_MRI of the ME_IMTS register is set. This condition is
detected only when the proper key mechanism is followed while writing the ME_MCTL
register. Otherwise, the write operation is ignored.

o If further new mode requests occur while a mode transition is in progress (the
S_MTRANS bit of the ME_GS register is ‘1’), the mode transition illegal status bit
S_MTI of the ME_IMTS register is set. This condition is detected only when the proper
key mechanism is followed while writing the ME_MCTL register. Otherwise, the write
operation is ignored.

As the causes of invalid mode transitions may overlap at the same time, the priority
implemented for invalid mode transition status bits of the ME_IMTS register in the order
from highest to lowest is S_SEA, S_NMA, S_DMA, S_MRI, and S_MT].

As an exception, the mode transition request is not considered as invalid under the following
conditions:

® A new request is allowed to enter the RESET or SAFE mode irrespective of the mode
transition status.

® As the exit of HALT and STOP modes depends on the interrupts of the system which
can occur at any instant, these requests to return to RUNO...3 modes are always valid.

® Inorder to avoid any unwanted lockup of the device modes, software can abort a mode
transition by requesting the parent mode if, for example, the mode transition has not
completed after a software determined ‘reasonable’ amount of time for whatever
reason. The parent mode is the device mode before a valid mode request was made.

® Self-transition requests (e.g., RUNO — RUNO) are not considered as invalid even when
the mode transition process is active (i.e., S_MTRANS is ‘1’). During the low-power
mode exit process, if the system is not able to enter the respective RUNO...3 mode
properly (i.e., all status bits of the ME_GS register match with configuration bits in the
ME_<mode>_MC register), then software can only request the SAFE or RESET mode.
It is not possible to request any other mode or to go back to the low-power mode again.

Whenever an invalid mode request is detected, the interrupt pending bit I_IMODE of the
ME_IS register is set, and an interrupt request is generated if the mask bit M_IMODE of the
ME_IM register is ‘1°.

SAFE Mode Transition Interrupt

Whenever the system enters the SAFE mode as a result of a SAFE mode request from the
MC_RGM due to a hardware failure, the interrupt pending bit I_SAFE of the ME_IS register
is set, and an interrupt is generated if the mask bit M_SAFE of ME_IM register is ‘1’.

The SAFE mode interrupt pending bit can be cleared only when the SAFE mode request is
deasserted by the MC_RGM (see the MC_RGM chapter for details on how to clear a SAFE
mode request). If the system is already in SAFE mode, any new SAFE mode request by the
MC_RGM also sets the interrupt pending bit I_SAFE. However, the SAFE mode interrupt

Doc ID 16886 Rev 6 182/868

Mode Entry Module (MC_ME) RM0045

8.4.6

8.4.7

183/868

pending bit is not set when the SAFE mode is entered by a software request (i.e.,
programming of ME_MCTL register).

Mode Transition Complete interrupt

Whenever the system fully completes a mode transition (i.e., the S_MTRANS bit of ME_GS
register transits from ‘1’ to ‘0’), the interrupt pending bit _MTC of the ME_IS register is set,
and an interrupt request is generated if the mask bit M_MTC of the ME_IM register is ‘1°.
The interrupt bit _MTC is not set when entering low-power modes HALT and STOP in order
to avoid the same event requesting the immediate exit of these low-power modes.

Peripheral Clock Gating

During all device modes, each peripheral can be associated with a particular clock gating
policy determined by two groups of peripheral configuration registers.

The run peripheral configuration registers ME_RUN_PCO...7 are chosen only during the
software running modes DRUN, TEST, SAFE, and RUNO...3. All configurations are
programmable by software according to the needs of the application. Each configuration
register contains a mode bit which determines whether or not a peripheral clock is to be
gated. Run configuration selection for each peripheral is done by the RUN_CFG bit field of
the ME_PCTLO...143 registers.

The low-power peripheral configuration registers ME_LP_PCO...7 are chosen only during
the low-power modes HALT, STOP, and STANDBY. All configurations are programmable by
software according to the needs of the application. Each configuration register contains a
mode bit which determines whether or not a peripheral clock is to be gated. Low-power
configuration selection for each peripheral is done by the LP_CFG bit field of the
ME_PCTLO...143 registers.

Any modifications to the ME_RUN_PCO0...7, ME_LP_PCO...7, and ME_PCTLO...143
registers do not affect the clock gating behavior until a new mode transition request is
generated.

Whenever the processor enters a debug session during any mode, the following occurs for
each peripheral:

® The clock is gated if the DBG_F bit of the associated ME_PCTLO...143 register is set.
Otherwise, the peripheral clock gating status depends on the RUN_CFG and LP_CFG
bits. Any further modifications of the ME_RUN_PCO0...7, ME_LP_PCO0...7, and
ME_PCTLO...143 registers during a debug session will take affect immediately without
requiring any new mode request.

Application Example

Figure 71 shows an example application flow for requesting a mode change and then
waiting until the mode transition has completed.

Doc ID 16886 Rev 6 KYI

RMO0045

Mode Entry Module (MC_ME)

(START of mode change >

config
for target mode
okay?

ME_RUN_PCO...7,
and ME_PCTLO.

write ME_<target mode>_MC,

ME_LP_PCO...7,
..143 registers

write ME_MCTL with target mode
and key

v

write ME_MCTL with target mode
and inverted key

¢<

start timer

S_MTRANS

cleared?

stop timer

Y

timer
expired?

(mode change DONE)

write ME_MCTL with current or
SAFE mode and key

v

write ME_MCTL with current or
SAFE mode and inverted key

Figure 71. MC_ME Application Example Flow Diagram

Doc ID 16886 Rev 6

184/868

Reset Generation Module (MC_RGM) RM0045

9

9.1

9.1.1

185/868

Reset Generation Module (MC_RGM)

Introduction

Overview

The reset generation module (MC_RGM) centralizes the different reset sources and
manages the reset sequence of the device. It provides a register interface and the reset
sequencer. Various registers are available to monitor and control the device reset sequence.
The reset sequencer is a state machine which controls the different phases (PHASEO,
PHASE1, PHASE2, PHASES, and IDLE) of the reset sequence and controls the reset
signals generated in the system.

Figure 72 depicts the MC_RGM block diagram.

Doc ID 16886 Rev 6 KYI

RM0045 Reset Generation Module (MC_RGM)

MC_RGM
power-on — g
1.2V low-voltage detected < > MC_ME
(power domain #0)
1.2V low-voltage detected Registers
(power domain #1)
software watchdog timer Platform Interface
2.7V low-voltage detected > MC_CGM
2.7V low-voltage detected
(VREG)
gg | Peripherals
oir
—» | =3
00
OO
Qo
RESET [@?:tit
Machine
JTAG initiated reset §—P core
debug control core reset
software reset © E
checkstop reset 5 i
FMPLL fail - e §
FXOSC frequency lower than e
reference
CMU clock frequency
higher/lower than reference
4.5V low-voltage detected
code or data flash fatal error
PA[9:8] [X—— Boot Mode -
Capture SSCM

Figure 72. MC_RGM block diagram

K‘YI Doc ID 16886 Rev 6 186/868

Reset Generation Module (MC_RGM) RM0045

9.1.2

9.1.3

187/868

Features

The MC_RGM contains the functionality for the following features:

‘destructive’ resets management

‘functional’ resets management

signalling of reset events after each reset sequence (reset status flags)
conversion of reset events to SAFE mode or interrupt request events
short reset sequence configuration

bidirectional reset behavior configuration

selection of alternate boot via the backup RAM on STANDBY mode exit
boot mode capture on RESET deassertion

Reset sources

The different reset sources are organized into two families: ‘destructive’ and ‘functional’.

A ‘destructive’ reset source is associated with an event related to a critical - usually
hardware - error or dysfunction. When a ‘destructive’ reset event occurs, the full reset
sequence is applied to the device starting from PHASEDO. This resets the full device
ensuring a safe start-up state for both digital and analog modules. ‘Destructive’ resets
are

— power-on reset

— 1.2V low-voltage detected (power domain #0)
— 1.2V low-voltage detected (power domain #1)
— software watchdog timer

— 2.7V low-voltage detected

— 2.7V low-voltage detected (VREG)

A ‘functional’ reset source is associated with an event related to a less-critical - usually
non-hardware - error or dysfunction. When a ‘functional’ reset event occurs, a partial
reset sequence is applied to the device starting from PHASE1. In this case, most digital
modules are reset normally, while analog modules or specific digital modules’ (e.g.,
debug modules, flash modules) state is preserved. ‘Functional’ resets are

— external reset

— JTAG initiated reset

— debug control core reset

— software reset

— checkstop reset

— FMPLL fail

— FXOSC frequency lower than reference

— CMU clock frequency higher/lower than reference
— 4.5V low-voltage detected

— code or data flash fatal error

When a reset is triggered, the MC_RGM state machine is activated and proceeds through
the different phases (i.e., PHASEN states). Each phase is associated with a particular
device reset being provided to the system. A phase is completed when all corresponding
phase completion gates from either the system or internal to the MC_RGM are
acknowledged. The device reset associated with the phase is then released, and the state

Doc ID 16886 Rev 6 KYI

RM0045 Reset Generation Module (MC_RGM)
machine proceeds to the next phase up to entering the IDLE phase. During this entire
process, the MC_ME state machine is held in RESET mode. Only at the end of the reset
sequence, when the IDLE phase is reached, does the MC_ME enter the DRUN mode.
Alternatively, it is possible for software to configure some reset source events to be
converted from a reset to either a SAFE mode request issued to the MC_ME or to an
interrupt issued to the core (see Section Functional Event Reset Disable Register
(RGM_FERD) and Section Functional Event Alternate Request Register (RGM_FEAR) for
‘functional’ resets).

9.2 External signal description
The MC_RGM interfaces to the bidirectional reset pin RESET and the boot mode pins
PA[9:8].

9.3 Memory map and register definition

Table 73. MC_RGM register description
Access
Address Name Description Size Location
User | Supervisor Test
OXESOFOE— RGM_FES |Functional Event Status | half-word | read |read/write") |read/write(| ©" p1agg16 a
OxCSFE_ RGM_DES Destructive Event Status half-word | read |read/write(")|read/write(") on page 9-
4002 192
O0xC3FE_ Functional Event Reset g £ (2) L (2)| onpage 9-
4004 RGM_FERD Disable half-word | read |read/write'“’ |read/write 193
OxC3FE_ Destructive Event Reset 3 on page 9-
4006 RGM_DERD Disable half-word | read read read 195
OxCSFE_ RGM_FESS Functional Event Short half-word | read read/write | read/write on page 9-
4018 Sequence 196
OxfoiI;E_ RGM_STDBY [STANDBY Reset Sequence| half-word | read read/write | read/write on ;;.zgge 9-
OxC3FE_ Functional Bidirectional . . on page 9-
401C RGM_FBRE Reset Enable half-word | read read/write | read/write 198

1. individual bits cleared on writing ‘1’

2. write once: ‘0’ = enable, ‘1’ = disable.

Note:

Any access to unused registers as well as write accesses to read-only registers will:

— not change register content
— cause a transfer error

Doc ID 16886 Rev 6

188/868

RMO0045

Reset Generation Module (MC_RGM)

y map

Table 74. MC_RGM memor

_ &) _ _ 5 _ _ _ _
2| & OVIr 4 IS 0dd <ctant 4 S ovir a 0dd <¢tdAn1 a OVLIr HvY
_ &) _ _ 3 _ _ _ _
218 3400 4 = dd 2¢LAAT 4 = 3400 d tdd 2¢LAAT d 3400 dv
_ &) _ [$) _ _
21 140S 4 = IMS 4 = 140S A IMS d ©
_ | o _ 3 _ _
& | & |[dOLSHHO 4 S LedNT 4 = dOLSHHO a /cdN1 d ©
_ &) _ _ | o _ _ _ _
=|&] TdnNdT4 = O3HA LcdAT 4 = T1dNd d 93HA LcdAAT d T1dINd dV
_ _|o _ _ _ _
2| & 410 NNO 4 = © d70 NNO ad © d70 NIND "V
_ _ | o _ _ _ _
o | &|THd NND 4 = © TH4 NIND a o TH4 NIND "V
_ &) _ _
o | SYAnl 4 S © SYAN1 d © SYANT HY
_ &) _
~|&| HSvV1d 4 IS © HSV1d A © 3 © 3
> >
@ @
o | &) o o o o () a2
w5 o () o () ()
8| R o o o o o
o 2 o o o o o
o |2 o o o o o
-~ () o o o o
_ &) _ S _
o |8 dx3 4 S d0d 4 = dX3 d © ©
e = e = o = e e
nm. F_ D_ F_ D_ F_
3 S-S SnSno S
Sn Gw S O O <
oCw ocw oCw ocw ocow
7] | | | | | |
8 =) s be L9 o o
s | 8¢ 38 3% 188| g8 38
M < ¥ < ¥ < ¥ = ¥ < ¥ < ¥
S S S S S S

Doc ID 16886 Rev 6

189/868

RM0045 Reset Generation Module (MC_RGM)
Table 74. MC_RGM memory map (continued)
0 1 2 3 27 5 6 7 8 9 10 1 12 13 14 15
Address Name
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
S
T — ey -
o =
RGM_F| | % %’L@Ela'jgégw
OxC3FE_[ESS/ (R| = | 0| 010101010 g 2| J|%|X|D|qg|&
- (9] | 5 2 = O ' O]
4018 |RGM_S %) o S I T P = B I I B T O
%) %) O (@)) %) 2 %) 9]
TDBY D ||| DD » | D
w @ o
=
<
II
o
X
m|
R| O 0 0 0 0 0 0 0 (E) 0 0 0 0 0 0 0
T
I-LI
|_
0
o
m
w
& |5 (5|58
T
RIW|ojojojololo|a |2 |5|9|F | |L|&|g
0xC3FE_|RGM_F w 5 S o)) s v (@) @) |__)
401C BRE || @ L322 (992
|.|J| L (@] (@] LL|| (@) [NN] L L
W mmm'm'mm'mmm
0 | m oM
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
OxC3FE_
4020
reserved
OxC3FE_
7FFC
9.3.1 Register descriptions

Unless otherwise noted, all registers may be accessed as 32-bit words, 16-bit half-words, or

8-bit bytes. The bytes are ordered according to big endian. For example, the

RGM_DESJ[8:15] register bits may be accessed as a word at address OxC3FE_4000, as a

half-word at address OxC3FE_4002, or as a byte at address OxC3FE_4004.

Doc ID 16886 Rev 6

190/868

Reset Generation Module (MC_RGM) RM0045

Functional Event Status Register (RGM_FES)

Figure 73. Functional Event Status Register (RGM_FES)

Address 0xC3FE_4000 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T |5 L8
T 5 | 2| |o |3 | B | C|l¥|o
RI&|ololololo|lol|S|8 |22 S5 |2|9|g]E&
! T 3| = | =S ||| 997>
L L (1R
W| wic wic | wic | wic | wic | wic | wic | wic | wic | wic
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
This register contains the status of the last asserted functional reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘17,
Table 75. Functional Event Status Register (RGM_FES) Field Descriptions
Field Description
Flag for External Reset
F EXR 0 No external reset event has occurred since either the last clear or the last destructive reset
- assertion
1 An external reset event has occurred
Flag for code or data flash fatal error
F FLASH 0 No code or data flash fatal error event has occurred since either the last clear or the last
- destructive reset assertion
1 A code or data flash fatal error event has occurred
Flag for 4.5V low-voltage detected
F LVD45 0 No 4.5V low-voltage detected event has occurred since either the last clear or the last
- destructive reset assertion
1 A 4.5V low-voltage detected event has occurred
Flag for CMU clock frequency higher/lower than reference
F CMU FHL 0 No CMU clock frequency higher/lower than reference event has occurred since either the last
- - clear or the last destructive reset assertion
1 A CMU clock frequency higher/lower than reference event has occurred
Flag for FXOSC frequency lower than reference
F CMU OLR 0 No FXOSC frequency lower than reference event has occurred since either the last clear or the
- - last destructive reset assertion
1 A FXOSC frequency lower than reference event has occurred
Flag for FMPLL fail
F FMPLL 0 No FMPLL fail event has occurred since either the last clear or the last destructive reset
- assertion
1 A FMPLL fail event has occurred

191/868

Doc ID 16886 Rev 6 KYI

RM0045 Reset Generation Module (MC_RGM)

Table 75. Functional Event Status Register (RGM_FES) Field Descriptions (continued)

Field Description

Flag for checkstop reset
0 No checkstop reset event has occurred since either the last clear or the last destructive reset

F_CHKSTOP)
assertion
1 A checkstop reset event has occurred
Flag for software reset
F SOFT 0 No software reset event has occurred since either the last clear or the last destructive reset

assertion
1 A software reset event has occurred

Flag for debug control core reset

0 No debug control core reset event has occurred since either the last clear or the last destructive

F CORE reset assertion

- 1 A debug control core reset event has occurred; this event can only be asserted when the
DBCRO[RST] field is set by an external debugger. See the "Debug Support" chapter of the core
reference manual for more details.

Flag for JTAG initiated reset

0 No JTAG initiated reset event has occurred since either the last clear or the last destructive
reset assertion

1 A JTAG initiated reset event has occurred

F_JTAG

Destructive Event Status Register (RGM_DES)

Figure 74. Destructive Event Status Register (RGM_DES)

Address OxC3FE_4002 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O} —
HIJ o) 8
z > 1 85| oo
I~ — —
R °'| 0 0 0 0 0 0 0 0 0 0 8 3| col 5 5
w S |w |- 3|3
_II L|_I L|_I

L

W| wic wic | wic | wic | wic | wic
POR 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register contains the status of the last asserted destructive reset sources. It can be
accessed in read/write on either supervisor mode or test mode. Register bits are cleared on
write ‘1’

KYI Doc ID 16886 Rev 6 192/868

Reset Generation Module (MC_RGM) RM0045

Table 76. Destructive Event Status Register (RGM_DES) Field Descriptions

Field Description

Flag for Power-On reset
F_POR 0 No power-on event has occurred since the last clear
1 A power-on event has occurred

Flag for 2.7V low-voltage detected (VREG)

0 No 2.7V low-voltage detected (VREG) event has occurred since either the last clear or the
last power-on reset assertion

1 A 2.7V low-voltage detected (VREG) event has occurred

F_LVD27_VREG

Flag for 2.7V low-voltage detected
0 No 2.7V low-voltage detected event has occurred since either the last clear or the last power-

on reset assertion
1 A 2.7V low-voltage detected event has occurred

F_LvD27

Flag for software watchdog timer
0 No software watchdog timer event has occurred since either the last clear or the last power-

on reset assertion
1 A software watchdog timer event has occurred

F_SWT

Flag for 1.2V low-voltage detected (power domain #1)

0 No 1.2V low-voltage detected (power domain #1) event has occurred since either the last
clear or the last power-on reset assertion

1 A 1.2V low-voltage detected (power domain #1) event has occurred

F_LVD12_PD1

Flag for 1.2V low-voltage detected (power domain #0)

0 No 1.2V low-voltage detected (power domain #0) event has occurred since either the last
clear or the last power-on reset assertion

1 A 1.2V low-voltage detected (power domain #0) event has occurred

F_LvD12_PDO

Note: The F_POR flag is automatically cleared on a 1.2V low-voltage detected (power domain #0
or #1) or a 2.7V low-voltage detected. This means that if the power-up sequence is not
monotonic (i.e., the voltage rises and then drops enough to trigger a low-voltage detection),
the F_POR flag may not be set but instead the <register>F_LVD12_PD0,
<register>F_LVD12_PD1, or <register>F_LVDZ27 flag is set on exiting the reset sequence.
Therefore, if the F_POR, <register>F_LVD12_PDO, <register>F_LVD12_PD1, or
<register>F_LVD27 flags are set on reset exit, software should interpret the reset cause as
power-on.

Functional Event Reset Disable Register (RGM_FERD)

Figure 75. Functional Event Reset Disable Register (RGM_FERD)

Address OxC3FE_4004 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
. S
T - -
7)) 0 T — - = L w
%)
RRE|oflo|ofolo|o|[I|Z 5|92 |23 |z|8
0 [S -) s T | @) E
a a - = = = OI o O' !
a) 519 | o @) a =
W =) =)
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

193/868 Doc ID 16886 Rev 6 KYI

RMO0045

Reset Generation Module (MC_RGM)

This register provides dedicated bits to disable functional reset sources.When a functional
reset source is disabled, the associated functional event will trigger either a SAFE mode
request or an interrupt request (see Section Functional Event Alternate Request Register
(RGM_FEAR)). It can be accessed in read/write in either supervisor mode or test mode. It
can be accessed in read only in user mode. Each byte can be written only once after power-
on reset.

Table 77. Functional Event Reset Disable Register (RGM_FERD) Field Descriptions

Field Description
D_EXR Disable External Reset .
0 An external reset event triggers a reset sequence
D FLASH Disable code or data flash fatal error
- 0 A code or data flash fatal error event triggers a reset sequence
Disable 4.5V low-voltage detected
D LVD45 0 A 4.5V low-voltage detected event triggers a reset sequence
- 1 A 4.5V low-voltage detected event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_LVD45
Disable CMU clock frequency higher/lower than reference
D CMU FHL 0 A CMU clock frequency higher/lower than reference event triggers a reset sequence
- - 1 A CMU clock frequency higher/lower than reference event generates either a SAFE mode or
an interrupt request depending on the value of RGM_FEAR.AR_CMU_FHL
Disable FXOSC frequency lower than reference
D CMU OLR 0 A FXOSC frequency lower than reference event triggers a reset sequence
- - 1 A FXOSC frequency lower than reference event generates either a SAFE mode or an
interrupt request depending on the value of RGM_FEAR.AR_CMU_OLR
Disable FMPLL fail
D FMPLL 0 A FMPLL fail event triggers a reset sequence
- 1 A FMPLL fail event generates either a SAFE mode or an interrupt request depending on the
value of RGM_FEAR.AR_FMPLL
D_CHKSTOP Disable checkstop reset .
0 A checkstop reset event triggers a reset sequence
D_SOFT Disable software reset .
0 A software reset event triggers a reset sequence
Disable debug control core reset
0 A debug control core reset event triggers a reset sequence
D_CORE ; .
1 A debug control core reset event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_CORE
Disable JTAG initiated reset
D JTAG 0 A JTAG initiated reset event triggers a reset sequence

1 A JTAG initiated reset event generates either a SAFE mode or an interrupt request
depending on the value of RGM_FEAR.AR_JTAG

Doc ID 16886 Rev 6 194/868

Reset Generation Module (MC_RGM) RM0045

Destructive Event Reset Disable Register (RGM_DERD)

Figure 76. Destructive Event Reset Disable Register (RGM_DERD)

Address OxC3FE_4006 Access: Read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

o —
g - o) a
8|8 d|a
R| O 0 0 0 0 0 0 0 0 0 0 Q > U)l 5 A
S P = T
= | |
A =) (=)

W

POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register provides dedicated bits to disable particular destructive reset sources.

Table 78. Destructive Event Reset Disable Register (RGM_DERD) Field Descriptions

Field

Description

D_LvD27_VREG

Disable 2.7V low-voltage detected (VREG)
0 A 2.7V low-voltage detected (VREG) event triggers a reset sequence

Disable 2.7V low-voltage detected

D_LvD27 .
0 A 2.7V low-voltage detected event triggers a reset sequence
D SWT Disable software watchdog timer
- 0 A software watchdog timer event triggers a reset sequence
D LVD12 PD1 Disable 1.2V low-voltage detected (power domain #1)
- - 0 A 1.2V low-voltage detected (power domain #1) event triggers a reset sequence
D_LVD12_PDO Disable 1.2V low-voltage detected (power domain #0)

0 A 1.2V low-voltage detected (power domain #0) event triggers a reset sequence

Functional Event Alternate Request Register (RGM_FEAR)

Figure 77. Functional Event Alternate Request Register (RGM_FEAR)

Address OxC3FE_4010 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T |5
To) - w
s |59|¢e 5|8
RIojojojojojojolo |3 |2 |3 |&|0]|0| |5
o (&) ! o
c o
< ||| < | <
< <
w
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

195/868

Doc ID 16886 Rev 6 KYI

RMO0045

Reset Generation Module (MC_RGM)

This register defines an alternate request to be generated when a reset on a functional
event has been disabled. The alternate request can be either a SAFE mode request to
MC_ME or an interrupt request to the system. It can be accessed in read/write in either
supervisor mode or test mode. It can be accessed in read only in user mode.

Table 79. Functional Event Alternate Request Register (RGM_FEAR) Field Descriptions

Field Description
Alternate Request for 4.5V low-voltage detected
AR_LVD45 0 Generate a SAFE mode request on a 4.5V low-voltage detected event if the reset is disabled
1 Generate an interrupt request on a 4.5V low-voltage detected event if the reset is disabled
Alternate Request for CMU clock frequency higher/lower than reference
0 Generate a SAFE mode request on a CMU clock frequency higher/lower than reference
AR_CMU_FHL event if the reset is disabled
1 Generate an interrupt request on a CMU clock frequency higher/lower than reference event
if the reset is disabled
Alternate Request for FXOSC frequency lower than reference
0 Generate a SAFE mode request on a FXOSC frequency lower than reference event if the
reset is disabled
1 Generate an interrupt request on a FXOSC frequency lower than reference event if the reset
AR CMU OLR is disabled
- - For the case when RGM_FERD[D_CMU_OLR] = 1 & RGM_FEAR[AR_CMU_OLR] =1, an
RGM interrupt will not be generated for an FXOSC failure when the system clock = FXOSC
as there will be no system clock to execute the interrupt service routine. However, the
interrupt service routine will be executed if the FXOSC recovers at some point. The
recommended use case for this feature is when the system clock = FIRC or FMPLL.
Alternate Request for FMPLL fail
AR_FMPLL 0 Generate a SAFE mode request on a FMPLL fail event if the reset is disabled
1 Generate an interrupt request on a FMPLL fail event if the reset is disabled
Alternate Request for debug control core reset
AR_CORE 0 Generate a SAFE mode request on a debug control core reset event if the reset is disabled
1 Generate an interrupt request on a debug control core reset event if the reset is disabled
Alternate Request for JTAG initiated reset
AR_JTAG 0 Generate a SAFE mode request on a JTAG initiated reset event if the reset is disabled

1 Generate an interrupt request on a JTAG initiated reset event if the reset is disabled

Functional Event Short Sequence Register (RGM_FESS)

Figure 78. Functional Event Short Sequence Register (RGM_FESS)

Address OxC3FE_4018 Access: User read, Supervisor read/write, Test read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S
T | o [
o =
3 259 |F 2|s|k|¢
R | 0 0 0 0 0 0 T g S 5 = I col o s
o) a2 | S| 2|0 |w | S |7
%) \ | O O | | »] »
» | @ | Ll o | @ Bl o
2 %)) 7)) %) %)
W » 7}
POR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Doc ID 16886 Rev 6 196/868

Reset Generation Module (MC_RGM)

RMO0045

This register defines which reset sequence will be done when a functional reset sequence is
triggered. The functional reset sequence can either start from PHASE1 or from PHASES,
skipping PHASE1 and PHASE2.

Note:

This could be useful for fast reset sequence, for example to skip flash reset.

It can be accessed in read/write in either supervisor mode or test mode. It can be accessed
in read in user mode.

Table 80. Functional Event Short Sequence Register (RGM_FESS) Field Descriptions

Field Description
SS EXR Short Sequence for External Reset
- 0 The reset sequence triggered by an external reset event will start from PHASE1
SS FLASH Short Sequence for code or data flash fatal error
- 0 The reset sequence triggered by a code or data flash fatal error event will start from PHASE1
Short Sequence for 4.5V low-voltage detected
SS LVD45 0 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASE1
- 1 The reset sequence triggered by a 4.5V low-voltage detected event will start from PHASES,
skipping PHASE1 and PHASE2
Short Sequence for CMU clock frequency higher/lower than reference
0 The reset sequence triggered by a CMU clock frequency higher/lower than reference event
SS_CMU_FHL will start from PHASE1
1 The reset sequence triggered by a CMU clock frequency higher/lower than reference event
will start from PHASES3, skipping PHASE1 and PHASE2
Short Sequence for FXOSC frequency lower than reference
0 The reset sequence triggered by a FXOSC frequency lower than reference event will start
SS_CMU_OLR from PHASE1
1 The reset sequence triggered by a FXOSC frequency lower than reference event will start
from PHASES, skipping PHASE1 and PHASE2
Short Sequence for FMPLL fail
SS FMPLL 0 The reset sequence triggered by a FMPLL fail event will start from PHASE1
- 1 The reset sequence triggered by a FMPLL fail event will start from PHASES, skipping
PHASE1 and PHASE2
Short Sequence for checkstop reset
SS_CHKSTOP q okstop .
0 The reset sequence triggered by a checkstop reset event will start from PHASE1
SS SOFT Short Sequence for software reset
- 0 The reset sequence triggered by a software reset event will start from PHASE1
Short Sequence for debug control core reset
SS CORE 0 The reset sequence triggered by a debug control core reset event will start from PHASE1
- 1 The reset sequence triggered by a debug control core reset event will start from PHASES3,
skipping PHASE1 and PHASE2
Short Sequence for JTAG initiated reset
SS JTAG 0 The reset sequence triggered by a JTAG initiated reset event will start from PHASE1
- 1 The reset sequence triggered by a JTAG initiated reset event will start from PHASES,
skipping PHASE1 and PHASE2
197/868 Doc ID 16886 Rev 6 1S

RM0045 Reset Generation Module (MC_RGM)

STANDBY Reset Sequence Register (RGM_STDBY)

Figure 79. STANDBY Reset Sequence Register (RGM_STDBY)

Address OxC3FE_401A Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

=

<

=

o

X

%
Rl O 0 0 0 0 0 0 0 (2) 0 0 0 0 0 0 0

i

t

S

Q

i}

w

reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register defines reset sequence to be applied on STANDBY mode exit. It can be
accessed in read/write in either supervisor mode or test mode. It can be accessed in read
only in user mode.

Table 81. STANDBY Reset Sequence Register (RGM_STDBY) Field Descriptions

Field Description
BOOT Boot from Backup RAM indicator — This bit indicates whether the system will boot from backup
FROM RAM or flash out of STANDBY exit.
BKP RAM 0 Boot from flash on STANDBY exit
- 1 Boot from backup RAM on STANDBY exit
Note: This register is reset on any enabled ‘destructive’ or ‘functional’ reset event.

Functional Bidirectional Reset Enable Register (RGM_FBRE)

Figure 80. Functional Bidirectional Reset Enable Register (RGM_FBRE)

Address OxC3FE_401C Access: User read, Supervisor read/write, Test read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Z[E .5

—
« e |t|o |2 |2 |F|¥|o
n <12 |2 |35 |2 |0 |g|&
RIW o flolo)olololg]|3 2|2z |2 |2|8]|5
L L L

« D |0 |y |y |8 | |® o

@ | m @

w

POR O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This register enables the generation of an external reset on functional reset. It can be

accessed in read/write in either supervisor mode or test mode. It can be accessed in read in
user mode.

Doc ID 16886 Rev 6 198/868

Reset Generation Module (MC_RGM)

RMO0045

Table 82. Functional Bidirectional Reset Enable Register (RGM_FBRE) Field Descriptions

Field

Description

BE_EXR

Bidirectional Reset Enable for External Reset

0 RESET is asserted on an external reset event if the reset is enabled
1 RESET is not asserted on an external reset event

BE_FLASH

Bidirectional Reset Enable for code or data flash fatal error

0 RESET is asserted on a code or data flash fatal error event if the reset is enabled
1 RESET is not asserted on a code or data flash fatal error event

BE_LVD45

Bidirectional Reset Enable for 4.5V low-voltage detected

0 RESET is asserted on a 4.5V low-voltage detected event if the reset is enabled
1 RESET is not asserted on a 4.5V low-voltage detected event

BE_CMU_FHL

Bidirectional Reset Enable for CMU clock frequency higher/lower than reference

0 RESET is asserted on a CMU clock frequency higher/lower than reference event if the reset
is enabled

1 RESET is not asserted on a CMU clock frequency higher/lower than reference event

BE_CMU_OLR

Bidirectional Reset Enable for FXOSC frequency lower than reference

0 RESET is asserted on a FXOSC frequency lower than reference event if the reset is enabled
1 RESET is not asserted on a FXOSC frequency lower than reference event

BE_FMPLL

Bidirectional Reset Enable for FMPLL fail

0 RESET is asserted on a FMPLL fail event if the reset is enabled
1 RESET is not asserted on a FMPLL fail event

BE_CHKSTOP

Bidirectional Reset Enable for checkstop reset

0 RESET is asserted on a checkstop reset event if the reset is enabled
1 RESET is not asserted on a checkstop reset event

BE_SOFT

Bidirectional Reset Enable for software reset
0 RESET is asserted on a software reset event if the reset is enabled
1 RESET is not asserted on a software reset event

BE_CORE

Bidirectional Reset Enable for debug control core reset

0 RESET is asserted on a debug control core reset event if the reset is enabled
1 RESET is not asserted on a debug control core reset event

BE_JTAG

Bidirectional Reset Enable for JTAG initiated reset

0 RESET is asserted on a JTAG initiated reset event if the reset is enabled
1 RESET is not asserted on a JTAG initiated reset event

9.4

9.4.1

Functional description

Reset State Machine

The main role of MC_RGM is the generation of the reset sequence which ensures that the
correct parts of the device are reset based on the reset source event. This is summarized in
Table 83.

199/868

Doc ID 16886 Rev 6

RMO0045

Reset Generation Module (MC_RGM)

Table 83. MC_RGM Reset Implications

Source What Gets Reset External_ Re(?)e t Boot Mode
Assertion Capture
power-on reset all yes yes
‘destructive’ resets all except some clock/reset management yes yes
all except some clock/reset management and @
external reset programmable yes

debug

‘functional’ resets

all except some clock/reset management and

debug

programmable(@

)

programmable(®

shortened ‘functional’ resets®

flip-flops except some clock/reset

management

programmable(@

)

programmable(®

P w N~

Note:

the assertion of the external reset is controlled via the RGM_FBRE register
the boot mode is captured if the external reset is asserted
the short sequence is enabled via the RGM_FESS register

‘external reset assertion’ means that the RESET pin is asserted by the MC_RGM until the end of reset PHASES3

JTAG logic has its own independent reset control and is not controlled by the MC_RGM in
any way.

The reset sequence is comprised of five phases managed by a state machine, which
ensures that all phases are correctly processed through waiting for a minimum duration and
until all processes that need to occur during that phase have been completed before
proceeding to the next phase.

The state machine used to produce the reset sequence is shown in Figure 81.

Doc ID 16886 Rev 6

200/868

Reset Generation Module (MC_RGM) RM0045

power-on
or enabled
‘destructive’
reset
duration > 3 fast internal RC oscillator (16 MHz) clock cycles
FIRC stable, VREG voltage okay done
enabled non-

shortened

external or

‘functional’
reset’

duration > 10 fast internal RC oscillator (16 MHz) clock cycles

enabled
shortened
external or
‘functional’
reset

duration > 8 fast internal RC oscillator (16 MHz) clock cycles
code and data flash initialization done

duration > 40 fast internal RC oscillator (16 MHz) clock cycles
RESET released
code and data flash initialization done

Figure 81. MC_RGM State Machine

201/868 Doc ID 16886 Rev 6 IYI

RMO0045

Reset Generation Module (MC_RGM)

9.4.2

PHASEO Phase

This phase is entered immediately from any phase on a power-on or enabled ‘destructive’
reset event. The reset state machine exits PHASEO and enters PHASE1 on verification of
the following:

® all enabled ‘destructive’ resets have been processed
® all processes that need to be done in PHASEO are completed
— FIRC stable, VREG voltage okay

® a minimum of 3 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
power-up completion and the last enabled ‘destructive’ reset event

PHASE1 Phase

This phase is entered either on exit from PHASEO or immediately from PHASE2, PHASES,
or IDLE on a non-masked external or ‘functional’ reset event if it has not been configured to
trigger a ‘short’ sequence. The reset state machine exits PHASE1 and enters PHASE?2 on
verification of the following:

® all enabled, non-shortened ‘functional’ resets have been processed

® a minimum of 10 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
the last enabled external or non-shortened ‘functional’ reset event

PHASE2 Phase

This phase is entered on exit from PHASE1. The reset state machine exits PHASE2 and
enters PHASES on verification of the following:

® all processes that need to be done in PHASE2 are completed
— code and data flash initialization

® a minimum of 8 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
entering PHASE2

PHASE3 Phase

This phase is a entered either on exit from PHASE2 or immediately from IDLE on an
enabled, shortened ‘functional’ reset event. The reset state machine exits PHASE3 and
enters IDLE on verification of the following:

® all processes that need to be done in PHASE3 are completed
— code and data flash initialization

® a minimum of 40 fast internal RC oscillator (16 MHz) clock cycles have elapsed since
the last enabled, shortened ‘functional’ reset event

IDLE Phase

This is the final phase and is entered on exit from PHASES3. When this phase is reached, the
MC_RGM releases control of the system to the platform and waits for new reset events that
can trigger a reset sequence.

Destructive Resets

A ‘destructive’ reset indicates that an event has occurred after which critical register or
memory content can no longer be guaranteed.

Doc ID 16886 Rev 6 202/868

Reset Generation Module (MC_RGM) RM0045

9.4.3

Note:

9.4.4

203/868

The status flag associated with a given ‘destructive’ reset event
(RGM_DES.F_<destructive reset> bit) is set when the ‘destructive’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

The device’s low-voltage detector threshold ensures that, when 1.2V low-voltage detected
(power domain #0) is enabled, the supply is sufficient to have the destructive event correctly
propagated through the digital logic. Therefore, if a given ‘destructive’ reset is enabled, the
MC_RGM ensures that the associated reset event will be correctly triggered to the full
system. However, if the given ‘destructive’ reset is disabled and the voltage goes below the
digital functional threshold, functionality can no longer be ensured, and the reset may or
may not be asserted.

An enabled destructive reset will trigger a reset sequence starting from the beginning of
PHASEO.

External Reset

The MC_RGM manages the external reset coming from RESET. The detection of a falling
edge on RESET will start the reset sequence from the beginning of PHASE1.

The status flag associated with the external reset falling edge event (RGM_FES.F_EXR bit)
is set when the external reset is asserted and the power-on reset is not asserted.

The external reset can optionally be disabled by writing bit RGM_FERD.D_EXR.
The RGM_FERD register can be written only once between two power-on reset events.

An enabled external reset will normally trigger a reset sequence starting from the beginning
of PHASE1. Nevertheless, the RGM_FESS register enables the further configuring of the
reset sequence triggered by the external reset. When RGM_FESS.SS_EXR is set, the
external reset will trigger a reset sequence starting directly from the beginning of PHASES,
skipping PHASE1 and PHASE2. This can be useful especially when an external reset
should not reset the flash.

The MC_RGM may also assert the external reset if the reset sequence was triggered by

one of the following:

® a power-on reset

® a ‘destructive’ reset event

® an external reset event

® a ‘functional’ reset event configured via the RGM_FBRE register to assert the external
reset

In this case, the external reset is asserted until the end of PHASES.

Functional Resets

A ‘functional’ reset indicates that an event has occurred after which it can be guaranteed
that critical register and memory content is still intact.

The status flag associated with a given ‘functional’ reset event

(RGM_FES.F_<functional reset> bit) is set when the ‘functional’ reset is asserted and the
power-on reset is not asserted. It is possible for multiple status bits to be set simultaneously,
and it is software’s responsibility to determine which reset source is the most critical for the
application.

Doc ID 16886 Rev 6 KYI

RMO0045

Reset Generation Module (MC_RGM)

Note:

9.4.5

9.4.6

The “functional’ reset can be optionally disabled by software writing bit
RGM_FERD.D_<functional reset>.

The RGM_FERD register can be written only once between two power-on reset events.

An enabled functional reset will normally trigger a reset sequence starting from the
beginning of PHASE1. Nevertheless, the RGM_FESS register enables the further
configuring of the reset sequence triggered by a functional reset. When
RGM_FESS.SS_<functional reset> is set, the associated ‘functional’ reset will trigger a
reset sequence starting directly from the beginning of PHASES, skipping PHASE1 and
PHASE2. This can be useful especially in case a functional reset should not reset the flash
module.

STANDBY Entry Sequence

STANDBY mode can be entered only when the MC_RGM is in IDLE. On STANDBY entry,
the MC_RGM moves to PHASE1. The minimum duration counter in PHASE1 does not start
until STANDBY mode is exited. On entry to PHASE1 due to STANDBY mode entry, the
resets for all power domains except power domain #0 are asserted. During this time,
RESET is not asserted as the external reset can act as a wakeup for the device.

There is an option to keep the flash inaccessible and in low-power mode on STANDBY exit
by configuring the DRUN mode before STANDBY entry so that the flash is in power-down or
low-power mode. If the flash is to be inaccessible, the PHASE2 and PHASES states do not
wait for the flash to complete initialization before exiting, and the reset to the flash remains

asserted.

See the MC_ME chapter for details on the STANDBY and DRUN modes.

Alternate Event Generation

The MC_RGM provides alternative events to be generated on reset source assertion. When
a reset source is asserted, the MC_RGM normally enters the reset sequence. Alternatively,
it is possible for some reset source events to be converted from a reset to either a SAFE
mode request issued to the MC_ME or to an interrupt request issued to the core.

Alternate event selection for a given reset source is made via the RGM_FERD and
RGM_FEAR registers as shown in Table 84.

Table 84. MC_RGM Alternate Event Selection

RGM_FERD RGM_FEAR

Bit Value Bit Value Generated Event

0 X reset

1 0 SAFE mode request

1 1 interrupt request

Note:

The alternate event is cleared by deasserting the source of the request (i.e., at the reset
source that caused the alternate request) and also clearing the appropriate RGM_FES
status bit.

Alternate requests (SAFE mode as well as interrupt requests) are generated regardless of
whether the system clock is running.

Doc ID 16886 Rev 6 204/868

Reset Generation Module (MC_RGM) RM0045

Note:

9.4.7

Note:

Note:

205/868

If a masked ‘functional’ reset event which is configured to generate a SAFE mode/interrupt
request occurs during PHASET1, it is ignored, and the MC_RGM will not send any safe
mode/interrupt request to the MC_ME.

Boot Mode Capturing

The MC_RGM provides sampling of the boot mode PA[9:8] for use by the system. This
sampling is done five fast internal RC oscillator (16 MHz) clock cycles before the rising edge
of RESET. The result of the sampling is then provided to the system. For each bit, a value of
‘1’ is produced only if each of the oldest three of the five samples have the value ‘1’,
otherwise a value of ‘0’ is produced.

In order to ensure that the boot mode is correctly captured, the application needs to apply
the valid boot mode value to the device at least five fast internal RC oscillator (16 MHz) clock
periods before the external reset deassertion crosses the V, threshold.

RESET can be low as a consequence of the internal reset generation. This will force re-
sampling of the boot mode pins. (See Table 83 for details.)

Doc ID 16886 Rev 6 KYI

RMO0045

Power Control Unit (MC_PCU)

10

10.1

10.1.1

Power Control Unit (MC_PCU)

Introduction

Overview

The power control unit (MC_PCU) is used to reduce the overall SoC power consumption.
Power can be saved by disconnecting parts of the SoC from the power supply via a power
switching device. The SoC is grouped into multiple parts having this capability which are
called “power domains”.

When a power domain is disconnected from the supply, the power consumption is reduced
to zero in that domain. Any status information of such a power domain is lost. When re-
connecting a power domain to the supply voltage, the domain draws an increased current
until the power domain reaches its operational voltage.

Power domains are controlled on a device mode basis. For each mode, software can
configure whether a power domain is connected to the supply voltage (power-up state) or
disconnected (power-down state). Maximum power saving is reached by entering the
STANDBY mode.

On each mode change request, the MC_PCU evaluates the power domain settings in the
power domain configuration registers and initiates a power-down or a power-up sequence
for each individual power domain. The power-up/down sequences are handled by finite state
machines to ensure a smooth and safe transition from one power state to the other.

Exiting the STANDBY mode can only be done via a system wakeup event as all power
domains other than power domain #0 are in the power-down state.

In addition, the MC_PCU acts as a bridge for mapping the VREG peripheral to the MC_PCU
address space.

Figure 82 depicts the MC_PCU block diagram.

Doc ID 16886 Rev 6 206/868

Power Control Unit (MC_PCU) RM0045

MC_PCU
<q—Pp MC_ME
FIRC l—— |
Registers
Platform Interface
VREG <@—P core

10.1.2

10.2

207/868

Power Domain
State Machines

power " >
domains < WKPU

< > mapped

peripheral

Mapped Module Interface

Figure 82. MC_PCU Block Diagram

Features

The MC_PCU includes the following features:

support for 2 power domains

support for device modes RESET, DRUN, SAFE, TEST, RUNO...3, HALT, HALT, and
STANDBY (for further mode details, please see the MC_ME chapter)

power states updating on each mode change and on system wakeup
a handshake mechanism for power state changes thus guaranteeing operable voltage
maps the VREG registers to the MC_PCU address space

External Signal Description

The MC_PCU has no connections to any external pins.

Doc ID 16886 Rev 6 KYI

RM0045 Power Control Unit (MC_PCU)
10.3 Memory Map and Register Definition
10.3.1 Memory Map
Table 85. MC_PCU Register Description
Access
Address Name Description Size Location
User | Supervisor Test
OxC3FE_ Power Domain #0 on page 10-
8000 PCU_PCONFO Configuration word | read read read 209
O0xC3FE_ Power Domain #1 on page 10-
8004 PCU_PCONF1 Configuration word | read read read 11
O0xC3FE_ Power Domain Status on page 10-
8040 PCU_PSTAT Register word | read read read 211
Note: Any access to unused registers as well as write accesses to read-only registers will:
— not change register content
— cause a transfer error
Table 86. MC_PCU Memory Map
0 1 2 3 27 5 6 7 8 9 10 1 12 13 14 15
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
rRI0O|jO0O|O|O|lO|lO|lO]O|]O|]O0O|]O0O]|]O]J]O]|JO|O0]|O
0xC3FE =
_ — =z
gooo || CU-PCONFO Rlolola|ololZ|0lZ2|2|2]2|2|53|L 0|5
B T I 2| 2|2|2|&|5|F|C
% a|v|F
rRI0O)jO|O|O|lO|lO|lO]O|]O|]O0O|]O0O]|]O]O]JO|O0]|O
0xC3FE =
_ - -
o4 ~|PCU_PCONF1 Rlololmlolo|S|ol5|2]2|2|2|3 8|05
B T I 2| 2| 2|2|&|5|F|C
n a|v|F
w
OxC3FE_
8008
reserved
O0xC3FE_
803C
RI0O|jO|O|O|O|O|lO]O|]O|]O0O|]O0O|O]O]|JO|O0]|O
W
OXCSFE_|poy psTaT s
8040 Rlolo|o|o|lo|o|lo|OoO|O|O|O|O|O|O|O|O
o o
w
'] Doc ID 16886 Rev 6 208/868

Power Control Unit (MC_PCU) RM0045

Table 86. MC_PCU Memory Map (continued)

0| 1| 2|3 |27|5 |6 |7 | 8|9 |10|11]|12]|13 |14]| 15
Address Name
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
0x044
reserved
0x07C
O0xC3FE_
8080
VREG registers
O0xC3FE_
80FC
O0xC3FE_
8100
reserved
O0xC3FE_
BFFC

10.3.2 Register Descriptions

All registers may be accessed as 32-bit words, 16-bit half-words, or 8-bit bytes. The bytes
are ordered according to big endian. For example, the PDO field of the PCU_PSTAT register
may be accessed as a word at address OxC3FE_8040, as a half-word at address
OxC3FE_8042, or as a byte at address 0xC3FE_8043.

Power Domain #0 Configuration Register (PCU_PCONFO0)

Figure 83. Power Domain #0 Configuration Register (PCU_PCONFO0)

Address 0xC3FE_8000 Access: User read, Supervisor read, Test read
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

o
o
o
o
o
o
o
o
o
o
o
o

Reset 0 0 0 0

20 21 22 23 24 25 26 27 28 29 30 31

16 17 18 19
Q ® |l o | = | 2 | Z | w
Rlolo|m|o|o|Z 0|2 |2]|2|2|2|2|L 8|5
m < < |3 |3 |3|3|E | < |w|k§@
) I I o o o o [a) w o
w

Reset 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1

This register defines for power domain #0 whether it is on or off in each device mode. As
power domain #0 is the always-on power domain (and includes the MC_PCU), none of its
bits are programmable. This register is available for completeness reasons.

209/868 Doc ID 16886 Rev 6 KYI

RMO0045

Power Control Unit (MC_PCU)

Table 87. Power Domain Configuration Register Field Descriptions

Field

Description

RST

Power domain control during RESET mode

0 Power domain off
1 Power domain on

TEST

Power domain control during TEST mode

0 Power domain off
1 Power domain on

SAFE

Power domain control during SAFE mode

0 Power domain off
1 Power domain on

DRUN

Power domain control during DRUN mode

0 Power domain off
1 Power domain on

RUNO

Power domain control during RUNO mode

0 Power domain off
1 Power domain on

RUN1

Power domain control during RUN1 mode

0 Power domain off
1 Power domain on

RUN2

Power domain control during RUN2 mode

0 Power domain off
1 Power domain on

RUN3

Power domain control during RUN3 mode

0 Power domain off
1 Power domain on

HALT

Power domain control during HALT mode

0 Power domain off
1 Power domain on

HALT

Power domain control during HALT mode

0 Power domain off
1 Power domain on

STBYO

Power domain control during STANDBY mode

0 Power domain off
1 Power domain on

Doc ID 16886 Rev 6

210/868

Power Control Unit (MC_PCU) RM0045

Power Domain #1 Configuration Register (PCU_PCONF1)

Figure 84. Power Domain #1 Configuration Register (PCU_PCONF1)

Address OxC3FE_8004 Access: User read, Supervisor read, Test read

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
o
S 5 slglelzlel3]e]g]s
Rl o|o|m|o|o|ZF]| o] Z = TR
5 : 2|2 (2|2 |8 |5 |8 @
W
Reset 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1

This register defines for power domain #1 whether it is on or off in each device mode. The
bit field description is the same as in Table 87. As the platform, clock generation, and mode
control reside in power domain #1, this power domain is only powered down during the
STANDBY mode. Therefore, none of the bits is programmable. This register is available for
completeness reasons.

The difference between PCU_PCONF0 and PCU_PCONF1 is the reset value of the STBYO0
bit: During the STANDBY mode, power domain #1 is disconnected from the power supply,
and therefore PCU_PCONF1.STBYO is always ‘0’. Power domain #0 is always on, and
therefore PCU_PCONFO0.STBYO is ‘1°.

For further details about STANDBY mode, please refer to Section STANDBY Mode
Transition.

Power Domain Status Register (PCU_PSTAT)

Figure 85. Power Domain Status Register (PCU_PSTAT)

Address OxC3FE_8040 Access: User read, Supervisor read, Test read

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 o 8
o o
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
This register reflects the power status of all available power domains.
211/868 Doc ID 16886 Rev 6 1S

RM0045 Power Control Unit (MC_PCU)

Table 88. Power Domain Status Register (PCU_PSTAT) Field Descriptions

Field Description

Power status for power domain #n

PDn |0 Power domain is inoperable
1 Power domain is operable

10.4 Functional Description

10.4.1 General

The MC_PCU controls all available power domains on a device mode basis. The
PCU_PCONFn registers specify during which system/user modes a power domain is
powered up. The power state for each individual power domain is reflected by the bits in the
PCU_PSTAT register.

On a mode change, the MC_PCU evaluates which power domain(s) must change power
state. The power state is controlled by a state machine (FSM) for each individual power
domain which ensures a clean and safe state transition.

10.4.2 Reset / Power-On Reset

After any reset, the SoC will transition to the RESET mode during which all power domains
are powered up (see the MC_ME chapter). Once the reset sequence has been completed,
the DRUN mode is entered and software can begin the MC_PCU configuration.

10.4.3 MC_PCU Configuration

Per default, all power domains are powered in all modes other than STANDBY. Software can
change the configuration for each power domain on a mode basis by programming the
PCU_PCONFnN registers.

Each power domain which is powered down is held in a reset state. Read/write accesses to
peripherals in those power domains will result in a transfer error.

10.4.4 Mode Transitions

On a mode change requested by the MC_ME, the MC_PCU evaluates the power
configurations for all power domains. It compares the settings in the PCU_PCONFn
registers for the new mode with the settings for the current mode. If the configuration for a
power domain differs between the modes, a power state change request is generated.
These requests are handled by a finite state machine to ensure a smooth and safe transition
from one power state to another.

STANDBY Mode Transition

STANDBY offers the maximum power saving. The level of power saving is software-
controllable via the settings in the PCU_PCONFn registers for power domain #2 onwards.
Power domain #0 stays connected to the power supply while power domain #1 is
disconnected from the power supply. Amongst others power domain #1 contains the
platform and the MC_ME. Therefore this mode differs from all other user/system modes.

K‘YI Doc ID 16886 Rev 6 212/868

Power Control Unit (MC_PCU) RM0045

Note:

213/868

Once STANDBY is entered it can only be left via a system wakeup. On exiting the STANDBY
mode, all power domains are powered up according to the settings in the PCU_PCONFn
registers, and the DRUN mode is entered. In DRUN mode, at least power domains #0 and
#1 are powered.

Figure 86 shows an example for a mode transition from RUNO to STANDBY to DRUN. All
power domains which have PCU_PCONFn.STBYO cleared will enter power-down phase. In
this example only power domain #1 will be disabled during STANDBY mode.

When the MC_PCU receives the mode change request to STANDBY mode it starts the
power down phase for power domain #1. During the power down phase, clocks are disabled
and reset is asserted resulting in a loss of all information for this power domain. Then the
power domain is disconnected from the power supply (power-down state).

new mode

requested by ME RUNO >< STANDBY >< Mode set due to reset being asserted to power domain #1
PSTAT.PD1 \ /
voltage in
power domain #1

wakeup request / \

current mode RUNO >< STANDBY >< DRUN
-
power-down power-down state
phase

Notes:

Not drawn to scale; PCONF1.RUNO = 1; PCONF1.STBY0 = 0

Figure 86. MC_PCU Events During Power Sequences (STANDBY mode)

When the MC_PCU receives a system wakeup request, it starts the power-up phase. The
power domain is re-connected to the power supply and the voltage in power domain #1 will
increase slowly. Once the voltage is in an operable range, clocks are enabled and the reset
is be deasserted (power-up state).

It is possible that due to a wakeup request, power-up is requested before a power domain
completed its power-down sequence. In this case, the information in that power domain is
lost.

Power Saving for Memories During STANDBY Mode

All memories which are not powered down during STANDBY mode automatically enter a
power saving state. No software configuration is required to enable this power saving state.
While a memory is residing in this state an increased power saving is achieved. Data in the
memories is retained.

Doc ID 16886 Rev 6 KYI

RM0045 Power Control Unit (MC_PCU)

10.5 Initialization Information

To initialize the MC_PCU, the registers PCU_PCONF2 should be programmed. After
programming is done, those registers should no longer be changed.

10.6 Application Information

10.6.1 STANDBY Mode Considerations

STANDBY offers maximum power saving possibility. But power is only saved during the time
a power domain is disconnected from the supply. Increased power is required when a power
domain is re-connected to the power supply. Additional power is required during restoring
the information (e.g., in the platform). Care should be taken that the time during which the
SoC is operating in STANDBY mode is significantly longer than the required time for
restoring the information.

K‘YI Doc ID 16886 Rev 6 214/868

Voltage Regulators and Power Supplies RMO0045

11

11.1

11.1.1

11.1.2

11.1.3

215/868

Voltage Regulators and Power Supplies

Voltage regulators

The power blocks provide a 1.2 V digital supply to the internal logic of the device. The main
supply is (3.3 V-5 V + 10%) and digital/regulated output supply is (1.2 V £ 10%). The
voltage regulator used in SPC560D30/40 comprises three regulators.

® High power regulator (HPREG)
® Low power regulator (LPREG)
® Ultra low power regulator (ULPREG)

The HPREG and LPREG regulators are switched off during STANDBY mode to save
consumption from the regulator itself. In STANDBY mode, the supply is provided by the
ULPREG regulator.

In STOP mode, the user can configure the HPREG regulator to switch-off (Refer to MC_ME
chapter). In this case, when current is low enough to be handled by LPREG alone, the
HPREG regulator is switch-off and the supply is provided by the LPREG regulator.

The internal voltage regulator requires an external capacitance (CREG) to be connected to
the device in order to provide a stable low voltage digital supply to the device. Capacitances
should be placed on the board as near as possible to the associated pins.

The regulator has two digital domains, one for the high power regulator (HPREG) and the
low power regulator (LPREG) called “High Power domain” and another one for the ultra low
power regulator (ULPREG) called “Standby domain.” For each domain there is a low voltage
detector for the 1.2 V output voltage. Additionally there are two low voltage detectors for the
main/input supply with different thresholds, one at the 3.3 V level and the other one at the
5V level.

High power regulator (HPREG)

The HPREG converts the 3.3 V-5 V input supply to a 1.2 V digital supply. For more
information, see the voltage regulator electrical characteristics section of the datasheet.

The regulator can be switched off by software. Refer to the main voltage regulator control bit
(MVRON) of the mode configuration registers in the mode entry module chapter of the
reference manuals.

Low power regulator (LPREG)

The LPREG generates power for the device in the STOP mode, providing the output supply
of 1.2 V. It always sees the minimum external capacitance. The control part of the regulator
can be used to disable the low power regulator. It is managed by MC_ME.

Ultra low power regulator (ULPREG)

The ULPREG generates power for the standby domain as well as a part of the main domain
and might or might not see the external capacitance. The control circuit of ULPREG can be
used to disable the ultra low power regulator by software: This action is managed by
MC_ME.

Doc ID 16886 Rev 6 KYI

RMO0045

Voltage Regulators and Power Supplies

11.1.4

11.1.5

11.1.6

LVDs and POR

There are three kinds of LVD available:

1. LVD_MAIN for the 3.3 V=5 V input supply with thresholds at approximately 3 V level@
2. LVD_MAINS for the 3.3 V-5 V input supply with threshold at approximately 4.5 V level9
3. LVD_DIG for the 1.2 V output voltage

The LVD_MAIN and LVD_MAINS5 sense the 3.3 V-5 V power supply for CORE, shared with
IO ring supply and indicate when the 3.3 V=5 V supply is stabilized.

Two LVD_DIGs are provided in the design. One LVD_DIG is placed in the high power
domain and senses the HPREG/LPREG output notifying that the 1.2 V output is stable. The
other LVD_DIG is placed in the standby domain and senses the standby 1.2 V supply level
notifying that the 1.2 V output is stable. The reference voltage used for all LVDs is generated
by the low power reference generator and is trimmed for LVD_DIG, using the bits LP[4:7].
Therefore, during the pre-trimming period, LVD_DIG exhibits higher thresholds, whereas
during post trimming, the thresholds come in the desired range. Power-down pins are
provided for LVDs. When LVDs are power-down, their outputs are pulled high.

POR is required to initialize the device during supply rise. POR works only on the rising
edge of the main supply. To ensure its functioning during the following rising edge of the
supply, it is reset by the output of the LVD_MAIN block when main supply reaches below the
lower voltage threshold of the LVD_MAIN.

POR is asserted on power-up when Vdd supply is above Vporyp min (refer to datasheet for
details). It will be released only after Vdd supply is above Vppry (refer to datasheet for
details). Vdd above Vpory ensures power management module including internal LVDs
modules are fully functional.

VREG digital interface

The voltage regulator digital interface provides the temporization delay at initial power-up
and at exit from low-power modes. A signal, indicating that Ultra Low Power domain is
powered, is used at power-up to release reset to temporization counter. At exit from low-
power modes, the power-down for high power regulator request signal is monitored by the
digital interface and used to release reset to the temporization counter. In both cases, on
completion of the delay counter, a end-of-count signal is released, it is gated with an other
signal indicating main domain voltage fine in order to release the VREGOK signal. This is
used by MC_RGM to release the reset to the device. It manages other specific
requirements, like the transition between high power/low power mode to ultra low power
mode avoiding a voltage drop below the permissible threshold limit of 1.08 V.

The VREG digital interface also holds control register to mask 5 V LVD status coming from
the voltage regulator at the power-up.
Register description

The VREG_CTL register is mapped to the MC_PCU address space as described in 10,
Power Control Unit (MC_PCU).

g. See section “Voltage monitor electrical characteristics” of the datasheet for detailed information about this
voltage value.

Doc ID 16886 Rev 6 216/868

Voltage Regulators and Power Supplies RMO0045

Figure 87. Voltage Regulator Control Register (VREG_CTL)

Address: 0xC3FE_8080 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 é
E|
o
W =
S
o]
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Table 89. VREG_CTL field descriptions
Field Description
Mask bit for 5 V LVD from regulator
This is a read/write bit and must be unmasked by writing a ‘1’ by software to generate LVD
5V_LVD_MASK (functional reset request to MC_RGM for 5 V trip.
1: 5V LVD is masked
0: 5V LVD is not masked.
11.2 Power supply strategy

217/868

From a power-routing perspective, the device is organized as follows.

The device provides four dedicated supply domains at package level:

1.

HV (high voltage external power supply for I/Os and most analog module) — This must
be provided externally through VDD_HV/VSS_HV power pins. Voltage values should
be aligned with Vpp/Vgs. Refer to datasheet for details.

ADC (high voltage external power supply for ADC module) — This must be provided
externally through VDD_HV_ADC/VSS_HV_ADC power pins. Voltage values should
be aligned with Vpp ny apc/Vss Hv apc- Refer to datasheet for details.

BV (high voltage external power supply for voltage regulator module) — This must be
provided externally through VDD_BV_/VSS_BYV power pins. Voltage values should be
aligned with Vpp/Vgg. Refer to datasheet for details.

LV (low voltage internal power supply for core, FMPLL and Flash digital logic) — This is
generated internally by embedded voltage regulator and provided to the core, FMPLL
and Flash. Three VDD_LV/VSS_LV pins pairs are provided to connect the three
decoupling capacitances. This is generated internally by internal voltage regulator but
provided outside to connect stability capacitor. Refer to datasheet for details.

Doc ID 16886 Rev 6 KYI

RMO0045 Voltage Regulators and Power Supplies
The four dedicated supply domains are further divided within the package in order to reduce
as much as possible EMC and noise issues.

e HV_IO: High voltage pad supply

® HV_FLAnN: High voltage Flash supply

e HV_OSCOREGM: High voltage external oscillator and regulator supply

e HV_ADR: High voltage reference for ADC module. Supplies are further star routed to
reduce impact of ADC resistive reference on ADC capacitive reference accuracy.

e HV_ADV: High voltage supply for ADC module

® BV: High voltage supply for voltage regulator ballast. These two ballast pads are used
to supply core and Flash. Each pad contains two ballasts to supply 80 mA and 20 mA
respectively. Core is hence supplied through two ballasts of 80 mA capability and
CFlash and DFlash through two 20 mA ballasts. The HV supply for both ballasts is
shorted through double bonding.

® LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL
through double bonding.

® LV_FLAN: Low voltage supply for Flash module n. It is supplied with dedicated ballast
and shorted to LV_COR through double bonding.

o LV PLLO: Low voltage supply for FMPLL

11.3 Power domain organization

Based on stringent requirements for current consumption in different operational modes, the
device is partitioned into different power domains. Organization into these power domains
primarily means separate power supplies which are separated from each other by use of
power switches (switch SW1 for power domain No. 1 and switch SW2 for power domain No.
2). These different separated power supplies are hence enabling to switch off power to
certain regions of the device to avoid even leakage current consumption in logic supplied by
the corresponding power supply.

This device employs three primary power domains, namely PDO, PD1 and PD2.As PCU
supports dynamic power down of domains based on different device mode, such a possible
domain is depicted below in dotted periphery.

h. Regulator ground is separated from oscillator ground and shorted to the LV ground through star routing

i. During production test, it is also possible to provide the VDD_LV externally through pins by configuring
regulator in bypass mode.

Doc ID 16886 Rev 6 218/868

Wakeup Unit (WKPU)

RMO0045

12 Wakeup Unit (WKPU)
12.1 Overview
The Wakeup Unit supports 2 internal sources and up to 184) external sources that can
generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt
requests or wakeup events. Figure 88 is the block diagram of the Wakeup Unit and its
interfaces to other system components.
The wakeup vector mapping is shown in Table 90. All unused WKPU pins must use a pull
resistor — either pullup (internal or external) or pulldown (external) — to ensure no leakage
from floating inputs.
Table 90. Wakeup vector mapping
Port input Package
function(! (can ol & .
Wakeup SIU be used in WKPU IRQ to Register [L
number Port PCR# conjunction INTC IRQ# | WISR bit position c:, C=:l
with WKPU 32| e
function) 3 8
WKPUO | APl | n/a® — EIFO 31 ve | v
WKPU1 | RTC | n/a® — EIF1 30 ve® | v
WKPU2 PA1 PCR1 NMI EIF2 29 v v
WKPU3 PA2 PCR2 — EIF3 28 v v
) | WakeUp_IRQ_0 | 46
WKPU4 PB1 PCR17 LINO R;()'(CANO EIF4 27 v 4
WKPU5 | PC11 | PCR43 — EIF5 26 x4 | v
WKPU6 PEO | PCR64 — EIF6 25 x4 v
WKPU7 PE9 | PCR73 — EIF7 24 x4 v
WKPU8 PB10 | PCR26 — EIF8 23 v v
WKPU9 PA4 PCR4 — EIF9 22 v 4
WKPU10 | PA15 | PCR15 — EIF10 21 v 4
WKPU11 PB3 | PCR19 LINO-RX WakeUp_IRQ_1 47 EIF11 20 v v
WKPU12 PC7 | PCR39 LIN1-RX EIF12 19 v v
WKPU13 PC9 | PCR41 LIN2-RX EIF13 18 v v
WKPU14 | PE11 | PCR75 — EIF14 17 x| v

219/868

j- Up to 18 external sources in 100-pin LQFP; up to 12 external sources in 64-pin LQFP

Doc ID 16886 Rev 6

4

RM0045 Wakeup Unit (WKPU)

Table 90. Wakeup vector mapping (continued)

Port input Package

function(") (can = o

Wakeup SIU be used in WKPU IRQ to Register® | i L
number Port PCR# conjunction INTC IRQ# | WISR bit position g g
with WKPU a a

function) 3 §

WKPU19 PAO PCRO — WakeUp_IRQ_2 48 EIF19 12 v v

WKPU25 | PB8 | PCR24 — EIF25 6 v v
WKPU26 | PB9 | PCR25 — EIF26 5 v v
WakeUp_IRQ_3 | 49 "
WKPU27 | PDO | PCR48 — EIF27 4 x4 | v
WKPU28 | PD1 | PCR49 — EIF28 3 x4 | v

1. This column does not contain an exhaustive list of functions on that pin. Rather, it includes peripheral communication
functions (such as CAN and LINFlex Rx) that could be used to wake up the microcontroller. DSPI pins are not included
because DSPI would typically be used in master mode.

2. WISR, IRER, WRER, WIFEER, WIFEEF, WIFER, WIPUER
Port not required to use timer functions.

Unavailable WKPU pins must use internal pullup enabled using WIPUER.

IYI Doc ID 16886 Rev 6 220/868

Wakeup Unit (WKPU) RM0045

NMI / Wakeup
- Configuration PLATFORM

NMI enable
filter bypass
AIPS ve
wakeup v
filter
PADS
IOMUX
IRQ / Wakeup
- Configuration
filter bypass
sys wakeup Mode /
Power Ctl
Interrupt
Controller
RTC, etc.
Figure 88. WKPU block diagram
221/868 Doc ID 16886 Rev 6 IS7]

RMO0045 Wakeup Unit (WKPU)

12.2 Features
The Wakeup Unit supports these distinctive features:
® Non-maskable interrupt support with

— 1 NMI source with bypassable glitch filter
— Independent interrupt destination: non-maskable interrupt, critical interrupt, or
machine check request
— Edge detection
o External wakeup/interrupt support with
— 4 system interrupt vectors for up to 18 interrupt sources
— Analog glitch filter per each wakeup line
— Independent interrupt mask
— Edge detection
— Configurable system wakeup triggering from all interrupt sources
— Configurable pullup
® On-chip wakeup support
— 2 wakeup sources
— Wakeup status mapped to same register as external wakeup/interrupt status

12.3 External signal description
The Wakeup Unit has 18 signal inputs that can be used as external interrupt sources in
normal RUN mode or as system wakeup sources in all power down modes.

The 18 external signal inputs include one signal input that can be used as a non-maskable
interrupt source in normal RUN, HALT or STOP modes or a system wakeup source in STOP
or STANDBY modes.

Note: The user should be aware that the Wake-up pins are enabled in ALL modes, therefore, the
Wake-up pins should be correctly terminated to ensure minimal current consumption. Any
unused Wake-up signal input should be terminated by using an external pull-up or pull-
down, or by internal pull-up enabled at WKPU_WIPUER. Also, care has to be taken on
packages where the Wake-up signal inputs are not bonded. For these packages the user
must ensure the internal pull-up are enabled for those signals not bonded.

12.4 Memory map and register description
This section provides a detailed description of all registers accessible in the WKPU module.

1241 Memory map

Table 91 gives an overview on the WKPU registers implemented.

Doc ID 16886 Rev 6 222/868

Wakeup Unit (WKPU)

RMO0045

Table 91. WKPU memory map

Base address: 0xC3F9_4000
Address offset Register name Location
0x00 NMI Status Flag Register (NSR) on page 12-223
0x04 — 0x07 Reserved
0x08 NMI Configuration Register (NCR) on page 12-224
0x0C — 0x13 Reserved
Ox14 Wakeup/Interrupt Status Flag Register (WISR) on page 12-225|
0x18 Interrupt Request Enable Register (IRER) on page 12-226|
0x1C Wakeup Request Enable Register (WRER) on page 12-226
0x20 — 0x27 Reserved
0x28 Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER) on page 12-227
0x2C Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER) on page 12-227
0x30 Wakeup/Interrupt Filter Enable Register (WIFER) on page 12-228
0x34 Wakeup/Interrupt Pullup Enable Register (WIPUER) on page 12-228
Note: Reserved registers will read as 0, writes will have no effect. If SSCM_ERROR[RAE] is

enabled, a transfer error will be issued when trying to access completely reserved register

space.

12.4.2 NMI Status Flag Register (NSR)

This register holds the non-maskable interrupt status flags.

Figure 89. NMI Status Flag Register (NSR)

Offset: 0x00 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
L
R| NIFO C>> 0 0 0 0 0 0 0 0 0 0 0 0 0 0
zZ
W| wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
223/868 Doc ID 16886 Rev 6 KYI

RM0045 Wakeup Unit (WKPU)
Table 92. NSR field descriptions
Field Description
NMI Status Flag
NIFO If enabled (NREEO or NFEEO set), NIFO causes an interrupt request.
1 An event as defined by NREEO and NFEEO has occurred
0 No event has occurred on the pad
NMI Overrun Status Flag
It will be a copy of the current NIFO value whenever an NMI event occurs, thereby indicating to the
software that an NMI occurred while the last one was not yet serviced. If enabled (NREEO or NFEEO
NOVFO :
set), NOVFO causes an interrupt request.
1 An overrun has occurred on NMI input
0 No overrun has occurred on NMI input
12.4.3 NMI Configuration Register (NCR)
This register holds the configuration bits for the non-maskable interrupt settings.
Figure 90. NMI Configuration Register (NCR)
Offset: 0x08 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
o
Rl X 2|0 | 218 o o0oflO0]|oO0O]|]O0|O0]|O0]0O
o NDSSO0 o w w |INFEO
wl 2 = o L
= =z =z =z
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 93. NCR field descriptions
Field Description
NMI Configuration Lock Register
NLOCKO |Writing a 1 to this bit locks the configuration for the NMI until it is unlocked by a system reset. Writing
a 0 has no effect.
NMI Destination Source Select
00 Non-maskable interrupt
NDSSO |01 Critical interrupt
10 Machine check request
11 Reserved—no NMI, critical interrupt, or machine check request generated

Doc ID 16886 Rev 6 224/868

Wakeup Unit (WKPU) RM0045

Table 93. NCR field descriptions (continued)

Field Description
NMI Wakeup Request Enable
1 A set NIFO bit or set NOVFO bit causes a system wakeup request
NWREO 0 System wakeup requests from the corresponding NIFO bit are disabled
Note: Software should only enable the NMI after the IVPR/IVOR registers have been configured.
This should be noted when booting from RESET or STANDBY mode as all registers will have
been cleared to their reset state.
NMI Rising-edge Events Enable
NREEO |1 Rising-edge event is enabled
0 Rising-edge event is disabled
NMI Falling-edge Events Enable
NFEEO |1 Falling-edge event is enabled
0 Falling-edge event is disabled
NMI Filter Enable
NFEO Enable analog glitch filter on the NMI pad input.
1 Filter is enabled
0 Filter is disabled
Note: Writing a ‘0’ to both NREEO and NFEEQ disables the NMI functionality completely (that is,
no system wakeup or interrupt will be generated on any pad activity)!
1244 Wakeup/Interrupt Status Flag Register (WISR)
This register holds the wakeup/interrupt flags.
Figure 91. Wakeup/Interrupt Status Flag Register (WISR)
Offset: 0x14 Access: User read/write
0 1 2 3|4 5 6 7|8 9 10 11|12 13 14 15|16 17 18 19‘20 21 22 23‘24 25 26 27‘28 29 30 31
o
R{0[0|0| EIF[28:25] [0|0|0|0|0O|T{0|0|0O]|0O EIF[14:0]
w
W 1 c
wic S wic
Reset 0 O 0 0|0 O O O|O O O OO O O OO O O O|O O O O|O OOO|OOOO
Table 94. WISR field descriptions
Field Description
External Wakeup/Interrupt WKPU[x] Status Flag
This flag can be cleared only by writing a 1. Writing a 0 has no effect. If enabled (IRER[X]), EIF[x]
EIF[x] causes an interrupt request.
1 An event as defined by WIREER and WIFEER has occurred
0 No event has occurred on the pad
Note: Status bits associated with on-chip wakeup sources are located to the left of the external
wakeup/interrupt status bits and are read only. The wakeup for these sources must be
225/868 Doc ID 16886 Rev 6 1S

RMO0045

Wakeup Unit (WKPU)

12.4.5

Offset: 0x18

configured and cleared at the on-chip wakeup source. Also, the configuration registers for
the external interrupts/wakeups do not have corresponding bits.

Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging from the wakeup/interrupt pads to
the interrupt controller.

Figure 92. Interrupt Request Enable Register (IRER)

Access: User read/write

01234567891011121314151617181920212223‘2425262728293031
)
R|0|0|{0|0|0|0|EIRE[28:25]|0|0|0|0|0O EO o|o|o0 EIRE[14:0]
w
W 2
wic S wic
Reset 0 0 0 0|0 O O O|O O O O|O O OO|OOOO|O0OOOO0O|O0O0OO0O|0O0O0ODDO
Table 95. IRER field descriptions
Field Description
External Interrupt Request Enable x
EIRE[x] |1 A set EIF[x] bit causes an interrupt request
0 Interrupt requests from the corresponding EIF[x] bit are disabled
12.4.6 Wakeup Request Enable Register (WRER)

Offset: 0x1C

This register is used to enable the system wakeup messaging from the wakeup/interrupt
pads to the mode entry and power control modules.

Figure 93. Wakeup Request Enable Register (WRER)

Access: User read/write

01234567891011121314151617181920212223‘2425262728293031
)
R|0|0|{0|0|0|0|WRE[28:25]|0|0|0|0]|0O EO o|o|o0 WRE[14:0]
=
W 1 =
wic S wic
Reset 0 0 0 0|0 O O O|O O O O|O OO O|OOOUO|O0OOOO0O|O0O0OO0O|0O0O0OBDO
Table 96. WRER field descriptions
Field Description
External Wakeup Request Enable x
WRE[X] |1 A set EIF[x] bit causes a system wakeup request
0 System wakeup requests from the corresponding EIF[x] bit are disabled
'] Doc ID 16886 Rev 6

226/868

Wakeup Unit (WKPU)

RMO0045

12.4.7

Note:

Offset: 0x28

Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

This register is used to enable rising-edge triggered events on the corresponding
wakeup/interrupt pads.

The RTC_API can only be configured on the rising edge.

Figure 94. Wakeup/Interrupt Rising-Edge Event Enable Register (WIREER)

Access: User read/write

01234567891011121314151617181920212223‘24252627‘28293031
o
R/0|0|0|0|0|0|IREE[28:25]|0|0|0|0O|O EO 0|00 IREE[14:0]
o
w 1 <
wic S wic
Reset 0 0 0 0|0 O O O|O O O OO O O O|O O O O|O OOO(OOOOOOOOW
Table 97. WIREER field descriptions
Field Description
External Interrupt Rising-edge Events Enable x
IREE[x] |1 Rising-edge event is enabled
0 Rising-edge event is disabled
12.4.8 Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

Offset: 0x2C

This register is used to enable falling-edge triggered events on the corresponding
wakeup/interrupt pads.

Figure 95. Wakeup/Interrupt Falling-Edge Event Enable Register (WIFEER)

Access: User read/write

01234567891011121314151617181920212223‘24252627‘28293031
o
R/0|0|0|0O|0O|O0|IFEE[28:25]|0|0|0|0O|O HJTO 0|00 IFEE[14:0]
w
W o
wic S wic
Reset 0 0 0 0|0 0 O O|O O O OO O O O|O O O O|OOOO(OOOOOOOD W
Table 98. WIFEER field descriptions
Field Description
External Interrupt Falling-edge Events Enable x
IFEEXx |1 Falling-edge event is enabled
0 Falling-edge event is disabled
227/868 Doc ID 16886 Rev 6 1S

RMO0045

Wakeup Unit (WKPU)

12.4.9

Note:

Offset: 0x30

Wakeup/Interrupt Filter Enable Register (WIFER)

This register is used to enable an analog filter on the corresponding interrupt pads to filter
out glitches on the inputs.

There is no analog filter for the RTC_API.
Figure 96. Wakeup/Interrupt Filter Enable Register (WIFER)

Access: User read/write

0 1 2 3|4 5 6 7|8 9 10 11|12 13 14 15|16 17 18 19|20 21 2223‘24252627‘28293031
o)
R|0|0|{0|0|0|0O| IFE[28:25] |0|0|0O0|0O|O ,'_,;_,0 0(0|0 IFE[14:0]
L
W o
wic S wic
Reset 0 O 0 0|0 0O O O|O O O O|O O O O|O O O OO O OO|O0OOOUOOOOU OO
Table 99. WIFER field descriptions
Field Description
External Interrupt Filter Enable x
IFE[x] Enable analog glitch filter on the external interrupt pad input.
1 Filter is enabled
0 Filter is disabled
12.4.10

Offset: 0x34

Wakeup/Interrupt Pullup Enable Register (WIPUER)

This register is used to enable a pullup on the corresponding interrupt pads to pull an
unconnected wakeup/interrupt input to a value of ‘1.

Figure 97. Wakeup/Interrupt Pullup Enable Register (WIPUER)

Access: User read/write

0 1 2 3|4 5 6 7|8 9 10 11|12 13 14 15/16 17 18 19[20 21 2223‘24252627‘28293031
o
R|0|{0|0|0|0|O0|IPUE[28:25]|0|0(0|0|O0 g.uo 0(0|0 IPUE[14:0]
o
W 1 <
wic S wic
Reset 0 O 0 0|0 O O O/O O O O|O O O O|O O O OO O OO|O0OOOUOOO0O OO
Table 100. WIPUER field descriptions
Field Description
External Interrupt Pullup Enable x
IPUE[X] |1 Pullup is enabled
0 Pullup is disabled

Doc ID 16886 Rev 6 228/868

Wakeup Unit (WKPU) RM0045

12.5

12.5.1

12.5.2

Note:

Functional description

General

This section provides a complete functional description of the Wakeup Unit.

Non-maskable interrupts

The Wakeup Unit supports one non-maskable interrupt which is allocated to the following
pins:

® 64-pin LQFP: Pin 4

® 100-pin LQFP: Pin 7

The Wakeup Unit supports the generation of three types of interrupts from the NMI. The

Wakeup Unit supports the capturing of a second event per NMI input before the interrupt is
cleared, thus reducing the chance of losing an NMI event.

Each NMI passes through a bypassable analog glitch filter.

Glitch filter control and pad configuration should be done while the NM| is disabled in order
to avoid erroneous triggering by glitches caused by the configuration process itself.

(@)
]
c

Mode/
Pwr Ctl

critical IRQ
machine check

Destination

ilf

Wakeup Enable

| Flag H Overrun |

Edge Detect

Glitch Filter

o = o [=]

w [~}
20288 |¢E
=z Z z z z

INMI Configuration Register (NCR)

229/868

Figure 98. NMI pad diagram

Doc ID 16886 Rev 6 KYI

RMO0045

Wakeup Unit (WKPU)

Note:

Note:

12.5.3

NMI management

The NMI can be enabled or disabled using the single NCR register laid out to contain all
configuration bits for an NMI in a single byte (see Figure 90). The pad defined as an NMI
can be configured by the user to recognize interrupts with an active rising edge, an active
falling edge or both edges being active. A setting of having both edge events disabled
results in no interrupt being detected and should not be configured.

The active NMI edge is controlled by the user through the configuration of the NREEO and
NFEEO bits.

After reset, NREEO and NFEEQ are set to ‘0’, therefore the NMI functionality is disabled after
reset and must be enabled explicitly by software.

Once the pad’s NMI functionality has been enabled, the pad cannot be reconfigured in the
IOMUX to override or disable the NMI.

The NMI destination interrupt is controlled by the user through the configuration of the
NDSSO field. See Table 93 for details.

An NMI supports a status flag and an overrun flag which are located in the NSR register
(see Figure 89). The NIFO and NOVFO fields in this register are cleared by writing a ‘1’ to
them; this prevents inadvertent overwriting of other flags in the register. The status flag is set
whenever an NMI event is detected. The overrun flag is set whenever an NMI event is
detected and the status flag is set (that is, has not yet been cleared).

The overrun flag is cleared by writing a ‘1’ to the appropriate overrun bit in the NSR register.
If the status bit is cleared and the overrun bit is still set, the pending interrupt will not be
cleared.

External wakeups/interrupts

The Wakeup Unit supports up to 18 external wakeup/interrupts which can be allocated to
any pad necessary at the SoC level. This allocation is fixed per SoC.

The Wakeup Unit supports up to four interrupt vectors to the interrupt controller of the SoC.
Each interrupt vector can support up to the number of external interrupt sources from the
device pads with the total across all vectors being equal to the number of external interrupt
sources. Each external interrupt source is assigned to exactly one interrupt vector. The
interrupt vector assignment is sequential so that one interrupt vector is for external interrupt
sources 0 through N-1, the next is for N through N+M-1, and so forth.

See Figure 99 for an overview of the external interrupt implementation for the example of
four interrupt vectors with up to eight external interrupt sources each.

Doc ID 16886 Rev 6 230/868

Wakeup Unit (WKPU) RM0045

Interrupt
Vectors
. Mode/
§' 2 IRQ_07_00 Power Ctl
EE IRQ_14 08
Qe
£S IRQ_19
IRQ_28 25
—0 [Wakeup enable
OR OR OR
[T 711 [T T T TT1 T T T T T 711
IRER[28:0] Interrupt enable |
[Flag[28:25] | Flag[19] | Flagl4:8] [Flag[7:0]
[1]] | I
_ . | Edge detection WIREER[28:0]
Glitch filter enable [[]1 | [T PITTTTT] Falling
WIFER[28:0] I—{ Analog glitch filter |
II®® & [T T[]] '
Interrupt edge enable
M DADIDADADADADA D4 DD DX X X Prece
Pads
RTC API

Note:

Note:

231/868

Figure 99. External interrupt pad diagram

All of the external interrupt pads within a single group have equal priority. It is the
responsibility of the user software to search through the group of sources in the most
appropriate way for their application.

Glitch filter control and pad configuration should be done while the external interrupt line is
disabled in order to avoid erroneous triggering by glitches caused by the configuration
process itself.

External interrupt management

Each external interrupt can be enabled or disabled independently. This can be performed
using a single rolled up register (Figure 92). A pad defined as an external interrupt can be
configured by the user to recognize external interrupts with an active rising edge, an active
falling edge or both edges being active.

Writing a ‘0’ to both IREE[x] and IFEE[x] disables the external interrupt functionality for that
pad completely (that is, no system wakeup or interrupt will be generated on any activity on
that pad)!

The active IRQ edge is controlled by the users through the configuration of the registers
WIREER and WIFEER.

Each external interrupt supports an individual flag which is held in the flag register (WISR).
The bits in the WISR[EIF] field are cleared by writing a ‘1’ to them; this prevents inadvertent
overwriting of other flags in the register.

J

Doc ID 16886 Rev 6

RMO0045

Wakeup Unit (WKPU)

12.5.4

On-chip wakeups

The Wakeup Unit supports two on-chip wakeup sources. It combines the on-chip wakeups
with the external ones to generate a single wakeup to the system.

On-chip wakeup management

In order to allow software to determine the wakeup source at one location, on-chip wakeups
are reported along with external wakeups in the WISR register (see Figure 91 for details).
Enabling and clearing of these wakeups are done via the on-chip wakeup source’s own
registers.

Doc ID 16886 Rev 6 232/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045

13 Real Time Clock / Autonomous Periodic Interrupt
(RTC/API)

13.1 Overview

The RTC/API is a free running counter used for time keeping applications. The RTC may be
configured to generate an interrupt at a predefined interval independent of the mode of
operation (run mode or low power mode). If in a low power mode when the RTC interval is
reached, the RTC first generates a wakeup and then assert the interrupt request. The RTC
also supports an autonomous periodic interrupt (API) function used to generate a periodic
wakeup request to exit a low power mode or an interrupt request.

13.2 Features

Features of the RTC/API include:
® 2 selectable counter clock sources
— SIRC (128 kHz)
— FIRC (16 MHz)
® Optional 512 prescaler and optional 32 prescaler
® 32-bit counter
— Supports times up to 1.5 months with 1 ms resolution
— Runs in all modes of operation
— Reset when disabled by software and by POR

® 12-bit compare value to support interrupt intervals of 1 s up to greater than 1 hr with 1 s
resolution

® RTC compare value changeable while counter is running

® RTC status and control register are reset only by POR

® Autonomous periodic interrupt (API)
— 10-bit compare value to support wakeup intervals of 1.0 msto 1 s
— Compare value changeable while counter is running

® Configurable interrupt for RTC match, APl match, and RTC rollover

® Configurable wakeup event for RTC match, APl match, and RTC rollover

233/868 Doc ID 16886 Rev 6 KYI

RMO0045

Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

Reserved
FIRC
SIRC

Reserved

L]

—»

CLKSEL[0:1]

div512

—

}4— load

RTCCNT ‘
sync | APIVAL ‘
22:31 A
—— - |
APIEN offset reg
reset
v
22:31
S

div512en

div32

=

div32en

32-bit counter ‘
eset ¢ 1021

P API wakeup

sync

APIF :

APIIE

API
interrupt

1

RTCVAL

» RTC wakeup

CNTEN

ROVREN

Figure 100. RTC/API block diagram

Doc ID 16886 Rev 6

RTC interrupt

234/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045

(cnten & clksel==2’b11)

en

Reserved
C.G.
CELL

(cnten & clksel== 2’b10)

| o
en

CG.
CELL
o~

(cnten & clksel== 2’b01)

FIRC

en -
SIRC 32-bit counter
C.G.
- —div 32
CELL ? CELL|
1 o en
‘— z
div512en T E
(cnten & clksel==|2'b00) divazen ©
en
Reserved
CG. T
CELL

CLKSEL[0:1]

Figure 101. Clock gating for RTC clocks

13.3 Device-specific information

For SPC560D30/40, the device specific information is the following:

® FIRC and SIRC clocks are provided as counter clocks for the RTC. Default clock on
reset is SIRC divided by 4.

® The RTC will be reset on destructive reset, with the exception of software watchdog
reset.

® The RTC provides a configurable divider by 512 to be optionally used when FIRC
source is selected.

13.4 Modes of operation

13.4.1 Functional mode

There are two functional modes of operation for the RTC: normal operation and low power
mode. In normal operation, all RTC registers can read or written and the input isolation is

235/868 Doc ID 16886 Rev 6 KYI

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

disabled. The RTC/API and associated interrupts are optionally enabled. In low power
mode, the bus interface is disabled and the input isolation is enabled. The RTC/API is
enabled if enabled prior to entry into low power mode.

13.4.2 Debug mode

On entering into the debug mode the RTC counter freezes on the last valid count if the
RTCC[FRZEN] is set. On exit from debug mode counter continues from the frozen value.

13.5 Register descriptions
Table 101 lists the RTC/API registers.

Table 101. RTC/API register map

Base address: 0xC3FE_C000
Address offset Register Location
0x0 RTC Supervisor Control Register (RTCSUPV) on page 13-236
Ox4 RTC Control Register (RTCC) on page 13-237
0x8 RTC Status Register (RTCS) on page 13-239
oxC RTC Counter Register (RTCCNT) on page 13-240

13.5.1 RTC Supervisor Control Register (RTCSUPV)

The RTCSUPV register contains the SUPV bit which determines whether other registers are
accessible in supervisor mode or user mode.

Note: RTCSUPV register is accessible only in supervisor mode.

Figure 102. RTC Supervisor Control Register (RTCSUPV)

Offset: 0x0 Access: Read/write
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R| >

5

W| o

Reset 1 0 0 0O 0O 0O O OO OOOOOOOOOOOOOOOOOOOOOODO

Table 102. RTCSUPYV field descriptions

Field Description

RTC Supervisor Bit
SUPV 0 All registers are accessible in both user as well as supervisor mode.
1 All other registers are accessible in supervisor mode only.

K‘YI Doc ID 16886 Rev 6 236/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

RMO0045

13.5.2

Offset: 0x4

RTC Control Register (RTCC)
The RTCC register contains:

RTC counter enable
RTC interrupt enable
RTC clock source select
RTC compare value

APl enable

APl interrupt enable
APl compare value

Figure 103. RTC Control Register (RTCC)

Access: User read/write

12 13 14 15

-
V)

RTCVAL

RTCIE

Reset

© | CNTEN

-
o

© | FRZEN
© |ROVREN| «

o

24 27 28 29 30 31

N
o
\b)
-

18 22 23 25 26

APIEN

CLKSEL APIVAL

APIIE

Reset

o |DIV512EN
o | DIV32EN

0 0

o

0 0

Table 103. RTCC field descriptions

Field

Description

CNTEN

Counter Enable

The CNTEN field enables the RTC counter. Making CNTEN bit 1’b0 has the effect of
asynchronously resetting (synchronous reset negation) all the RTC and API logic. This allows for
the RTC configuration and clock source selection to be updated without causing synchronization
issues.

1 Counter enabled

0 Counter disabled

RTCIE

RTC Interrupt Enable
The RTCIE field enables interrupts requests to the system if RTCF is asserted.

1 RTC interrupts enabled
0 RTC interrupts disabled

FRZEN

Freeze Enable
The counter freezes on entering the debug mode on the last valid count value if the FRZEN bit is
set. After coming out of the debug mode, the counter starts from the frozen value.

0 Counter does not freeze in debug mode.
1 Counter freezes in debug mode.

237/868

Doc ID 16886 Rev 6

RMO0045

Real Time Clock / Autonomous Periodic Interrupt (RTC/API)

Table 103. RTCC field descriptions (continued)

Field

Description

ROVREN

Counter Roll Over Wakeup/Interrupt Enable

The ROVREN bit enables wakeup and interrupt requests when the RTC has rolled over from
OxFFFF_FFFF to 0x0000_0000. The RTCIE bit must also be set in order to generate an interrupt
from a counter rollover.

1 RTC rollover wakeup/interrupt enabled

0 RTC rollover wakeup/interrupt disabled

RTCVAL

Note: RTC Compare Value
The RTCVAL bits are compared to bits 10:21 of the RTC counter and if match sets RTCF.
RTCVAL can be updated when the counter is running.

APIEN

Autonomous Periodic Interrupt Enable

The APIEN bit enables the autonomous periodic interrupt function.
1 APl enabled

0 API disabled

APIIE

API Interrupt Enable

The APIIE bit enables interrupts requests to the system if APIF is asserted.
1 API interrupts enabled

0 API interrupts disabled

CLKSEL

Clock Select

This field selects the clock source for the RTC. CLKSEL may only be updated when CNTEN is O.
The user should ensure that oscillator is enabled before selecting it as a clock source for RTC.
00 Reserved

01 SIRC

10 FIRC

11 Reserved

DIV512EN

Divide by 512 enable
The DIV512EN bit enables the 512 clock divider. DIV512EN may only be updated when CNTEN is
0.

0 Divide by 512 is disabled.
1 Divide by 512 is enabled.

DIV32EN

Divide by 32 enable
The DIV32EN bit enables the 32 clock divider. DIV32EN may only be updated when CNTEN is 0.

0 Divide by 32 is disabled.
1 Divide by 32 is enabled.

APIVAL

AP| Compare Value

The APIVAL field is compared with bits 22:31 of the RTC counter and if match asserts an
interrupt/wakeup request. APIVAL may only be updated when APIEN is 0 or API function is
undefined.

Note: API functionality starts only when APIVAL is non zero. The first APl interrupt takes two more
cycles because of synchronization of APIVAL to the RTC clock. After that interrupts are
periodic in nature. The minimum supported value of APIVAL is 4.

Doc ID 16886 Rev 6 238/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045

13.5.3 RTC Status Register (RTCS)
The RTCS register contains:
e RTC interrupt flag
® APl interrupt flag
® ROLLOVR Flag
Figure 104. RTC Status Register (RTCS)
Offset: 0x8 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 (LIS 0 0 0 0 0 0 0 0 0 0 0 0 0
|_
W o
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 T 0 0 s 0 0 0 0 0 0 0 0 0 0
% S
W < T
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 104. RTCS field descriptions
Field Description
RTC Interrupt Flag
The RTCF bit indicates that the RTC counter has reached the counter value matching RTCVAL.
RTCF RTCF is cleared by writing a 1 to RTCF. Writing a 0 to RTCF has no effect.
1 RTC counter matches RTCVAL
0 RTC counter is not equal to RTCVAL
API Interrupt Flag
The APIF bit indicates that the RTC counter has reached the counter value matching API offset
APIF value. APIF is cleared by writing a 1 to APIF. Writing a 0 to APIF has no effect.
1 APl interrupt
0 No API interrupt
Note: The periodic interrupt comes after APIVAL[0:9] + 1’b1 RTC counts
Counter Roll Over Interrupt Flag
The ROVREF bit indicates that the RTC has rolled over from Oxffff_ffff to 0x0000_0000. ROVRF is
ROVRF cleared by writing a 1 to ROVRF.

1 RTC has rolled over
0 RTC has not rolled over

239/868

Doc ID 16886 Rev 6 IYI

RM0045 Real Time Clock / Autonomous Periodic Interrupt (RTC/API)
13.54 RTC Counter Register (RTCCNT)
The RTCCNT register contains the current value of the RTC counter.
Figure 105. RTC Counter Register (RTCCNT)
Offset: 0xC Access: Read
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R RTCCNT
w
Reset 0 0 0 0O 0O OOOOOOOOOOOOOOOOOOOOOOOBODODOOO
Table 105. RTCCNTfield descriptions
Field Description
RTC Counter Value
RTCCNT |Due to the clock synchronization, the RTCCNT value may actually represent a previous counter
value.
13.6 RTC functional description

The RTC consists of a 32-bit free running counter enabled with the RTCC[CNTEN] bit
(CNTEN when negated asynchronously resets the counter and synchronously enables the
counter when enabled). The value of the counter may be read via the RTCCNT register.
Note that due to the clock synchronization, the RTCCNT value may actually represent a
previous counter value. The difference between the counter and the read value depends on
ratio of counter clock and system clock. Maximum possible difference between the two is 6
count values.

The clock source to the counter is selected with the RTCC[CLKSEL] field, which gives the
options for clocking the RTC/API. The output of the clock mux can be optionally divided by
combination of 512 and 32 to give a 1 ms RTC/API count period for different clock sources.
Note that the RTCC[CNTEN] bit must be disabled when the RTC/API clock source is
switched.

When the counter value for counter bits 10:21 match the 12-bit value in the RTCC[RTCVAL]
field, then the RTCS[RTCF] interrupt flag bit is set (after proper clock synchronization). If the
RTCCI[RTCIE] interrupt enable bit is set, then the RTC interrupt request is generated. The
RTC supports interrupt requests in the range of 1 s t0 4096 s (> 1 hr) with a 1 s resolution. If
there is a match while in low power mode then the RTC will first generate a wakeup request
to force a wakeup to run mode, then the RTCF flag will be set.

A rollover wakeup and/or interrupt can be generated when the RTC transitions from a count
of OXFFFF_FFFF to 0x0000_0000. The rollover flag is enabled by setting the
RTCC[ROVREN] bit. An RTC counter rollover with this bit will cause a wakeup from low
power mode. An interrupt request is generated for an RTC counter rollover when both the
RTCC[ROVREN] and RTCC[RTCIE] bits are set.

All the flags and counter values are synchronized with the system clock. It is assumed that
the system clock frequency is always more than or equal to the rtc_clk used to run the
counter.

Doc ID 16886 Rev 6 240/868

Real Time Clock / Autonomous Periodic Interrupt (RTC/API) RM0045

13.7 API functional description

Setting the RTCC[APIEN] bit enables the autonomous interrupt function. The 10-bit
RTCCI[APIVAL] field selects the time interval for triggering an interrupt and/or wakeup event.
Since the RTC is a free running counter, the APIVAL is added to the current count to
calculate an offset. When the counter reaches the offset count, a interrupt and/or wakeup
request is generated. Then the offset value is recalculated and again re-triggers a new
request when the new value is reached. APIVAL may only be updated when APIEN is
disabled. When a compare is reached, the RTCS[APIF] interrupt flag bit is set (after proper
clock synchronization). If the RTCC[APIIE] interrupt enable bit is set, then the APl interrupt
request is generated. If there is a match while in low power mode, then the API will first
generate a wakeup request to force a wakeup into normal operation, then the APIF flag will
be set.

241/868 Doc ID 16886 Rev 6 KYI

RMO0045

€200z0h Core

14

14.1

14.2

e200z0h Core

Overview

The e200 processor family is a set of CPU cores that implement cost-efficient versions of
the Power Architecture®. 200 processors are designed for deeply embedded control
applications which require low cost solutions rather than maximum performance.

The e200z0h processors integrate an integer execution unit, branch control unit, instruction
fetch and load/store units, and a multi-ported register file capable of sustaining three read
and two write operations per clock. Most integer instructions execute in a single clock cycle.
Branch target prefetching is performed by the branch unit to allow single-cycle branches in
some cases.

The e200z0h core is a single-issue, 32-bit Power Architecture technology VLE-only design
with 32-bit general purpose registers (GPRs). All arithmetic instructions that execute in the
core operate on data in the general purpose registers (GPRs).

Instead of the base Power Architecture technology support, the e200z0h core only
implements the VLE (variable-length encoding) APU, providing improved code density.

Microarchitecture summary

The e200z0h processor utilizes a four stage pipeline for instruction execution. The
Instruction Fetch (stage 1), Instruction Decode/Register file Read/Effective Address
Calculation (stage 2), Execute/Memory Access (stage 3), and Register Writeback (stage 4)
stages operate in an overlapped fashion, allowing single clock instruction execution for most
instructions.

The integer execution unit consists of a 32-bit Arithmetic Unit (AU), a Logic Unit (LU), a 32-
bit Barrel shifter (Shifter), a Mask-Insertion Unit (MIU), a Condition Register manipulation
Unit (CRU), a Count-Leading-Zeros unit (CLZ), an 8x32 Hardware Multiplier array, result
feed-forward hardware, and a hardware divider.

Arithmetic and logical operations are executed in a single cycle with the exception of the
divide and multiply instructions. A Count-Leading-Zeros unit operates in a single clock cycle.

The Instruction Unit contains a PC incrementer and a dedicated Branch Address adder to
minimize delays during change of flow operations. Sequential prefetching is performed to
ensure a supply of instructions into the execution pipeline. Branch target prefetching from
the BTB is performed to accelerate certain taken branches in the e200z0h. Prefetched
instructions are placed into an instruction buffer with 4entries in e200z0h, each capable of
holding a single 32-bit instruction or a pair of 16-bit instructions.

Conditional branches which are not taken execute in a single clock. Branches with
successful target prefetching have an effective execution time of one clock on €200z0h. All
other taken branches have an execution time of two clocks.

Memory load and store operations are provided for byte, halfword, and word (32-bit) data
with automatic zero or sign extension of byte and halfword load data as well as optional byte
reversal of data. These instructions can be pipelined to allow effective single cycle
throughput. Load and store multiple word instructions allow low overhead context save and
restore operations. The load/store unit contains a dedicated effective address adder to allow

Doc ID 16886 Rev 6 242/868

€200z0h Core RMO0045

243/19

effective address generation to be optimized. Also, a load-to-use dependency does not incur
any pipeline bubbles for most cases.

The Condition Register unit supports the condition register (CR) and condition register
operations defined by the Power Architecture platform. The condition register consists of
eight 4-bit fields that reflect the results of certain operations, such as move, integer and
floating-point compare, arithmetic, and logical instructions, and provide a mechanism for
testing and branching.

Vectored and autovectored interrupts are supported by the CPU. Vectored interrupt support
is provided to allow multiple interrupt sources to have unique interrupt handlers invoked with
no software overhead.

Doc ID 16886 Rev 6 KYI

RMO0045 €200z0h Core

14.3 Block diagram

s OnCE/NEXUS CPU
CONTROL LOGIC CONTROL LOGIC
T T
| LR | INTEGER
sprR CR. ! GpR EXECUTION
| CTR | A UNIT
XER
| |
n
@ INSTRUCTION UNIT - MULTRLY
w =
g Z INSTRUCTION BUFFER
G —" CONTROL
Al
» E -
= o EXTERNAL
< = <™ R
e 2 | vyy INTERFACE DATA
3 e [<SATA
@ (MTSPRIMFSPR)
o &
Q = PC_ [BRANCH
= 5 UNIT | UNIT
g | 2
sz; 5 LOAD/
Z STORE
UNIT -+
DATA BUS INTERFACE UNIT
32 32 N
ADDRESS~ DATA CONTROL

Figure 106. e200z0h block diagram

KYI Doc ID 16886 Rev 6 244/868

€200z0h Core

RMO0045

14.4 Features

The following is a list of some of the key features of the e200z0h core:

32-bit Power Architecture VLE-only programmer’s model
Single issue, 32-bit CPU

Implements the VLE APU for reduced code footprint
In-order execution and retirement

Precise exception handling

Branch processing unit

— Dedicated branch address calculation adder

— Branch acceleration using Branch Target Buffer

Supports independent instruction and data accesses to different memory subsystems,
such as SRAM and Flash memory via independent Instruction and Data bus interface
units (BIUs) (e200z0h only).

Load/store unit

— 1 cycle load latency

— Fully pipelined

— Big-endian support only

— Misaligned access support

— Zero load-to-use pipeline bubbles for aligned transfers
Power management

— Low power design

— Power saving modes: nap, sleep, and wait

— Dynamic power management of execution units
Testability

— Synthesizeable, full MuxD scan design

— ABIST/MBIST for optional memory arrays

14.41 Instruction unit features

The features of the €200 Instruction unit are:

245/19

32-bit instruction fetch path supports fetching of one 32-bit instruction per clock, or up
to two 16-bit VLE instructions per clock

Instruction buffer with 4 entries in e200z0h, each holding a single 32-bit instruction, or a
pair of 16-bit instructions

Dedicated PC incrementer supporting instruction prefetches

Branch unit with dedicated branch address adder supporting single cycle of execution
of certain branches, two cycles for all others

Doc ID 16886 Rev 6 KYI

RMO0045 €200z0h Core
14.4.2 Integer unit features
The €200 integer unit supports single cycle execution of most integer instructions:
® 32-bit AU for arithmetic and comparison operations
® 32-bit LU for logical operations
® 32-bit priority encoder for count leading zero’s function
® 32-bit single cycle barrel shifter for shifts and rotates
® 32-bit mask unit for data masking and insertion
® Divider logic for signed and unsigned divide in 5 to 34 clocks with minimized execution
timing
® 8x32 hardware multiplier array supports 1 to 4 cycle 32x32->32 multiply (early out)
14.4.3 Load/Store unit features
The €200 load/store unit supports load, store, and the load multiple / store multiple
instructions:
® 32-bit effective address adder for data memory address calculations
® Pipelined operation supports throughput of one load or store operation per cycle
® 32-bit interface to memory (dedicated memory interface on €200z0h)
14.4.4 e200z0h system bus features
The features of the e200z0h system bus interface are as follows:
® Independent instruction and data buses
o AMBAX AHBY Lite Rev 2.0 specification with support for ARM v6 AMBA extensions
— Exclusive access monitor
— Byte lane strobes
— Cache allocate support
® 32-bit address bus plus attributes and control on each bus
® 32-bit read data bus for instruction interface
® Separate uni-directional 32-bit read data bus and 32-bit write data bus for data interface
® Overlapped, in-order accesses
14.5 Core registers and programmer’s model

This section describes the registers implemented in the e200z0h cores. It includes an
overview of registers defined by the Power Architecture platform, highlighting differences in
how these registers are implemented in the €200 core, and provides a detailed description
of e200-specific registers. Full descriptions of the architecture-defined register set are
provided in the Power Architecture specification.

The Power Architecture defines register-to-register operations for all computational
instructions. Source data for these instructions are accessed from the on-chip registers or

k. Advanced Microcontroller Bus Architecture

I. Advanced High Performance Bus

Doc ID 16886 Rev 6 246/868

€200z0h Core RMO0045

Note:

247/19

are provided as immediate values embedded in the opcode. The three-register instruction
format allows specification of a target register distinct from the two source registers, thus
preserving the original data for use by other instructions. Data is transferred between
memory and registers with explicit load and store instructions only.

Figure 107, and Figure 106 show the e200 register set including the registers which are
accessible while in supervisor mode, and the registers which are accessible in user mode.
The number to the right of the special-purpose registers (SPRs) is the decimal number used
in the instruction syntax to access the register (for example, the integer exception register
(XER) is SPR 1).

e200z0h is a 32-bit implementation of the Power Architecture specification. In this
document, register bits are sometimes numbered from bit 0 (Most Significant Bit) to 31
(Least Significant Bit), rather than the Book E numbering scheme of 32:63, thus register bit
numbers for some registers in Book E are 32 higher.

Where appropriate, the Book E defined bit numbers are shown in parentheses.

Doc ID 16886 Rev 6 KYI

RMO0045 €200z0h Core

Exception Handling/Control Registers
General Registers

SPR General Save and Restore Interrupt Vector Prefix
Condition Register General-Purpose SPRGO | SPR272 SRRO SPR 26 IVPR SPR 63
Registers SPRG! |SPR2/3 | SAR1 | SPR2
F—— GPRO !
ount Register
g GPR CSRRO SPR 58
SPR9 CSRR1 | SPR59
. 1
Link Register . DSRRO SPR 574
1 SPR575

Exception Syndrome

XER ESR SPR 62
XER SPR1 Machine Check
Syndrome Register
i MCSR SPR 572
Processor Control Registers
Machine Stat Hardware Implementation Data Exception Address
achine State
Dependent’ DEAR SPR 61
Processor Version HIDO SPR 1008 BTB Reqi
PYR | sPRos7 HID1 | SPR 1009 egister
BTB Control'

Processor ID

SPR 286 BUCSR SPR 1013

1

(2]
<
7}
@
@
3
&
=
@,
=]
S

Memory Management Registers
Process ID

Configuration (read only)

SVR SPR 1023

Debug Registers?

Instruction Address

Debug Control Compare
DBCRO | SPR308 IAC1 SPR 312 MMUCFG | SPR 1015
DBCR1 SPR 309 IAC2 SPR 313
DBCR2 SPR 310 IAC3 SPR 314
! | SPR561 .
DBCR3 IAC4 SPR315 Cache Registers
Debug Status Data Address Compare ?;ec:; f:lg;iguration
DBSR SPR 304 DACT SPR 316
DAC2 SPR 317
L1CFGO | SPR 515
DVC2 SPR 319 1 - These e200-specific registers may not be supported by other

Power Architecture processors.
2 - Optional registers defined by the Power Architecture technology
3 - Read-only registers

Figure 107. e200z0 SUPERVISOR Mode Program Model SPRs

KYI Doc ID 16886 Rev 6 248/868

Enhanced Direct Memory Access (eDMA) RM0045

15

15.1

15.1.1

249/868

Enhanced Direct Memory Access (eDMA)

Device-specific features

16 programmable channels to support independent 8, 16 or 32-bit single value or block
transfers

Support of variable sized queues and circular queues

Source and destination address registers independently configured to post-
incrementor remain constant

Each transfer initiated by peripheral, CPU, periodic timer interrupt or eDMA channel
request

Peripheral eDMA request sources possible from:
— DSPI

— 12-bit ADC

- eMIOS

Each eDMA channel able to optionally send interrupt request to CPU on completion of
single value or block transfer

DMA transfers possible between system memories and all accessible memory mapped
locations including peripheral and registers

Programmable eDMA Channel Mux allows assignment of any eDMA source to any
available eDMA channel with total of up to 32 request sources

DMA supports the following functionality:
— Scatter Gather
— Channel Linking
— Inner Loop Offset
— Arbitration
Fixed Group, fixed channel
Round Robin Group, fixed channel
Round Robin Group, Round Robin Channel
Fixed Group, Round Robin Channel
— Channel preemption
— Cancel channel transfer

Interrupts — The eDMA has a single interrupt request for each implemented channel
and a combined eDMA Error interrupt to flag transfer errors to the system. Each
channel eDMA interrupt can be enabled or disabled and provides notification of a
completed transfer. Refer to the Interrupt Vector table of in the Interrupts chapter of the
reference manual for the allocation of these interrupts.

Registers unavailable on this device

The following registers are unavailable on this device:

DMA Channel 1663 Priority (DCHPRI16-DCHPRI63)
Transfer Control Descriptors 16—63 (TCD16-TCD63)

Doc ID 16886 Rev 6 KYI

RM0045 Enhanced Direct Memory Access (eDMA)
15.2 Introduction
The enhanced direct memory access controller (€DMA) is a second-generation platform
block capable of performing complex data movements through 16 programmable channels,
with minimal intervention from the host processor. The hardware microarchitecture includes
a DMA engine that performs source and destination address calculations, and the actual
data movement operations, along with an SRAM-based memory containing the transfer
control descriptors (TCD) for the channels. This implementation minimizes the overall block
size.
Figure 108 is a block diagram of the eDMA module.
eDMA o sRAM |
: transfer control descriptor :
: Slave write address |
! Slave write data |
: Y Y :
| ; |
| |
: SRAM [_______| TCDO |
m : [CCIIICI Ly
3 ! IR @
: | | £
Joi N B TCDn-1*! | £
7] [| ()
& . | g
r——————-——-—=——-—-—- - - = - -t ———— ———--—-——— == = 4 n
I eDMA engine |
| |
: Bus read data Program model/ : ()
I \ channel arbitration I
| |
| Address !
<> Control
: Data path path onto : Slave read data |
A g
: Bus write data R :
| |
I Bus address !
t |
*n = 16 channels \J
eDMA Peripheral eDMA Done
Request
Figure 108. eDMA block diagram
'] Doc ID 16886 Rev 6 250/868

Enhanced Direct Memory Access (eDMA) RM0045

15.2.1 Features

The eDMA module supports the following features:
® All data movement via dual-address transfers: read from source, write to destination

— Programmable source, destination addresses, transfer size, plus support for
enhanced addressing modes

® Transfer control descriptor organized to support two-deep, nested transfer operations
— An inner data transfer loop defined by a “minor” byte transfer count
— An outer data transfer loop defined by a “major” iteration count

® Channel service request via one of three methods:
— Explicit software initiation

— Initiation via a channel-to-channel linking mechanism for continuous transfers
— Independent channel linking at end of minor loop and/or major loop

— Peripheral-paced hardware requests (one per channel)

— For all three methods, one service request per execution of the minor loop is
required

® Support for fixed-priority and round-robin channel arbitration
® Channel completion reported via optional interrupt requests

— One interrupt per channel, optionally asserted at completion of major iteration
count

— Error terminations are optionally enabled per channel, and logically summed
together to form a small number of error interrupt outputs

® Support for scatter/gather eDMA processing
Support for complex data structures
® Support to cancel transfers via software or hardware

15.3 Memory map and register definition

15.3.1 Memory map

The eDMA memory map is shown in Table 106. The eDMA base address is OxFFF4_4000.
The address of each register is given as an offset to the eDMA base address. Registers are
listed in address order, identified by complete name and mnemonic, and list the type of
accesses allowed.

The eDMA’s programming model is partitioned into two regions—the first region defines a
number of registers providing control functions; the second region corresponds to the local
transfer control descriptor memory.

Table 106. eDMA memory map
Base address: 0xFFF4_4000

Address offset Register Location
0x0000 EDMA_CR — eDMA control register on page 15-253
0x0004 EDMA_ESR — eDMA error status register on page 15-255
0x0008 Reserved

251/868 Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

Table 106. eDMA memory map (continued)

Base address: 0xFFF4_4000

Address offset

Register

Location

0x000C EDMA_ERQRL — eDMA enable request low register (channels 15-00) on page 15-257
0x0010 Reserved
0x0014 EDMA_EEIRL — eDMA enable error interrupt low register (channels 15-00) on page 15-258
0x0018 EDMA_SERQR — eDMA set enable request register on page 15-259
0x0019 EDMA_CERQR — eDMA clear enable request register on page 15-260
0x001A EDMA_SEEIR — eDMA set enable error interrupt register on page 15-260
0x001B EDMA_CEEIR — eDMA clear enable error interrupt register on page 15-261
0x001C EDMA_CIRQR — eDMA clear interrupt request register on page 15-261
0x001D EDMA_CER — eDMA clear error register on page 15-262
0x001E EDMA_SSBR — eDMA set start bit register on page 15-262
0x001F EDMA_CDSBR — eDMA clear done status bit register on page 15-263
0x0020 Reserved
0x0024 EDMA_IRQRL — eDMA interrupt request low register l on page 15-263
0x0028 Reserved
0x002C EDMA_ERL — eDMA error low register ‘ on page 15-264
0x0030 Reserved
0x0034 EDMA_HRSL — eDMA hardware request status register ‘on page 15-265
0x0038 — 0x01FC |Reserved
0x0100 EDMA_CPRO — eDMA channel 0 priority register on page 15-265
0x0101 EDMA_CPR1 — eDMA channel 1 priority register on page 15-265
0x0102 EDMA_CPR2 — eDMA channel 2 priority register on page 15-265
0x0103 EDMA_CPR3 — eDMA channel 3 priority register on page 15-265
0x0104 EDMA_CPR4 — eDMA channel 4 priority register on page 15-265
0x0105 EDMA_CPR5 — eDMA channel 5 priority register on page 15-265
0x0106 EDMA_CPR6 — eDMA channel 6 priority register on page 15-265
0x0107 EDMA_CPR7 — eDMA channel 7 priority register on page 15-265
0x0108 EDMA_CPR8 — eDMA channel 8 priority register on page 15-265
0x0109 EDMA_CPR9 — eDMA channel 9 priority register on page 15-265
0x010A EDMA_CPR10 — eDMA channel 10 priority register on page 15-265
0x010B EDMA_CPR11 — eDMA channel 11 priority register on page 15-265
0x010C EDMA_CPR12 — eDMA channel 12 priority register on page 15-265
0x010D EDMA_CPR13 — eDMA channel 13 priority register on page 15-265
0x010E EDMA_CPR14 — eDMA channel 14 priority register on page 15-265

Doc ID 16886 Rev 6

252/868

Enhanced Direct Memory Access (eDMA) RM0045
Table 106. eDMA memory map (continued)
Base address: 0xFFF4_4000
Address offset Register Location

0x010F

EDMA_CPR15 — eDMA channel 15 priority register

on page 15-265

0x0110

Reserved

0x1000

TCDO00O — eDMA transfer control descriptor 00

on page 15-267

0x1020

TCDO0O1 — eDMA transfer control descriptor 01

on page 15-267

0x1040

TCDO02 — eDMA transfer control descriptor 02

on page 15-267

0x1060

TCDO03 — eDMA transfer control descriptor 03

on page 15-267

0x1080

TCDO04 — eDMA transfer control descriptor 04

on page 15-267

0x10A0

TCDO05 — eDMA transfer control descriptor 05

on page 15-267

0x10CO

TCDO06 — eDMA transfer control descriptor 06

on page 15-267

0x10EO

TCDO07 — eDMA transfer control descriptor 07

on page 15-267

0x1100

TCDO08 — eDMA transfer control descriptor 08

on page 15-267

0x1120

TCDO09 — eDMA transfer control descriptor 09

on page 15-267

0x1140

TCD10 — eDMA transfer control descriptor 10

on page 15-267

0x1160

TCD11 — eDMA transfer control descriptor 11

on page 15-267

0x1180

TCD12 — eDMA transfer control descriptor 12

on page 15-267

0x11A0

TCD13 — eDMA transfer control descriptor 13

on page 15-267

0x11C0

TCD14 — eDMA transfer control descriptor 14

on page 15-267

Ox11EO

TCD15 — eDMA transfer control descriptor 15

on page 15-267

0x1200

Reserved

15.3.2 Register descriptions

DMA Control Register (EDMA_CR)
The 32-bit EDMA_CR defines the basic operating configuration of the eDMA.

Arbitration among the channels can be configured to use a fixed priority or a round robin. In
fixed-priority arbitration, the highest priority channel requesting service is selected to
execute. The priorities are assigned by the channel priority registers (see Section DMA
Channel n Priority (EDMA_CPRn)’). In round-robin arbitration mode, the channel priorities
are ignored and the channels are cycled through, from channel 15 down to channel 0,
without regard to priority.

See Figure 109 and Table 107 for the EDMA_CR definition.

253/868

Doc ID 16886 Rev 6

RMO0045

Enhanced Direct Memory Access (eDMA)

Offset: 0x0000

Figure 109. DMA Control Register (EDMA_CR)

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0
CX | ECX
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 = — w < < 0]
GRPOPRI | 2 | 3 |2 |0 | 2|2 |2 |7
w || T | T | W |w|mom|Ww
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 107. EDMA_CR field descriptions
Field Description
Cancel Transfer
0 Normal operation.

CX 1 Cancel the remaining data transfer. Stop the executing channel and force the minor loop
to be finished. The cancel takes effect after the last write of the current read/write
sequence. The CXFR bit clears itself after the cancel has been honored. This cancel
retires the channel normally as if the minor loop was completed.

Error Cancel Transfer

0 Normal operation.

1 Cancel the remaining data transfer in the same fashion as the CX cancel transfer. Stop

ECX the executing channel and force the minor loop to be finished. The cancel takes effect
after the last write of the current read/write sequence. The ECX bit clears itself after the
cancel has been honored. In addition to cancelling the transfer, the ECX treats the cancel
as an error condition; thus updating the EDMA_ESR register and generating an optional
error interrupt (see Section DMA Error Status (EDMA_ESR)).
GRPOPRI Channel G.I’OL.Ip 0 Priority . N o

Group 0 priority level when fixed priority group arbitration is enabled.

Enable Minor Loop Mapping

0 Minor loop mapping disabled. TCDn.word2 is defined as a 32-bit nbytes field.

1 Minor loop mapping enabled. When set,

EMLM TCDn.word2 is redefined to include individual enable fields, an offset field and the nbytes
field. The individual enable fields allow the minor loop offset to be applied to the source
address, the destination address, or both. The nbytes field is reduced when either offset
is enabled.

Continuous Link Mode
0 A minor loop channel link made to itself will go through channel arbitration before being
activated again.
CL™m 1 A minor loop channel link made to itself will not go through channel arbitration before

being activated again. Upon minor loop completion the channel will active again if that
channel has a minor loop channel link enabled and the link channel is itself. This
effectively applies the minor loop offsets and restarts the next minor loop.

Doc ID 16886 Rev 6 254/868

Enhanced Direct Memory Access (eDMA) RM0045

Table 107. EDMA_CR field descriptions (continued)

Field Description

Halt DMA Operations

HALT 0 Normal operation.

1 Stall the start of any new channels. Executing channels are allowed to complete. Channel
execution will resume when the HALT bit is cleared.

Halt On Error

HOE 0 Normal operation.

1 Any error will cause the HALT bit to be set. Subsequently, all service requests will be
ignored until the HALT bit is cleared.

Enable Round Robin Group Arbitration

ERGA 0 Fixed priority arbitration is used for selection among the groups.

1 Round robin arbitration is used for selection among the groups.

Enable Round Robin Channel Arbitration

ERCA 0 Fixed priority arbitration is used for channel selection within each group.

1 Round robin arbitration is used for channel selection within each group.

Enable Debug
0 The assertion of the device debug mode is ignored.

EDBG 1 The assertion of the device debug mode causes the eDMA to stall the start of a new

channel. Executing channels are allowed to complete. Channel execution will resume
when either the device comes out of debug mode or the EDBG bit is cleared.

0 The bufferable write signal (hprot[2]) is not asserted during AMBA AHB writes.

EBW 1 The bufferable write signal (hprot[2]) is asserted on all AMBA AHB writes except for the

last write sequence.

255/868

DMA Error Status (EDMA_ESR)

The EDMA_ESR provides information about the last recorded channel error. Channel errors
can be caused by a configuration error (an illegal setting in the transfer control descriptor or
an illegal priority register setting in fixed-arbitration mode) or an error termination to a bus
master read or write cycle.

A configuration error is caused when the starting source or destination address, source or
destination offsets, minor loop byte count, and the transfer size represent an inconsistent
state. The addresses and offsets must be aligned on 0-modulo-transfer_size boundaries,
and the minor loop byte count must be a multiple of the source and destination transfer
sizes. All source reads and destination writes must be configured to the natural boundary of
the programmed transfer size respectively.

In fixed-arbitration mode, a configuration error is generated when any two channel priority
levels are equal and any channel is activated. The ERRCHN field is undefined for this type
of error. All channel priority levels must be unique before any service requests are made.

If a scatter-gather operation is enabled on channel completion, a configuration error is
reported if the scatter-gather address (DLAST_SGA) is not aligned on a 32-byte boundary.
If minor loop channel linking is enabled on channel completion, a configuration error is
reported when the link is attempted if the TCD.CITER.E_LINK bit is not equal to the
TCD.BITER.E_LINK bit. All configuration error conditions except scatter-gather and minor
loop link error are reported as the channel is activated and assert an error interrupt request
if enabled. When properly enabled, a scatter-gather configuration error is reported when the

Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

scatter-gather operation begins at major loop completion. A minor loop channel link
configuration error is reported when the link operation is serviced at minor loop completion.

If a system bus read or write is terminated with an error, the data transfer is immediately
stopped and the appropriate bus error flag is set. In this case, the state of the channel’'s
transfer control descriptor is updated by the DMA engine with the current source address,
destination address, and minor loop byte count at the point of the fault. If a bus error occurs
on the last read prior to beginning the write sequence, the write will execute using the data
captured during the bus error. If a bus error occurs on the last write prior to switching to the
next read sequence, the read sequence will execute before the channel is terminated due to
the destination bus error.

The occurrence of any type of error causes the DMA engine to stop the active channel and
the appropriate channel bit in the eDMA error register to be asserted. At the same time, the
details of the error condition are loaded into the EDMA_ESR. The major loop complete
indicators, setting the transfer control descriptor DONE flag and the possible assertion of an
interrupt request, are not affected when an error is detected. After the error status has been
updated, the DMA engine continues to operate by servicing the next appropriate channel. A
channel that experiences an error condition is not automatically disabled. If a channel is
terminated by an error and then issues another service request before the error is fixed, that
channel will execute and terminate with the same error condition.

Figure 110. DMA Error Status (EDMA_ESR) Register

Offset: 0x0004

Access: Read

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R|VLD| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| 0 |CPE ERRCHNJO0:5] SAE | SOE | DAE | DOE | NCE | SGE | SBE | DBE
W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 108. EDMA_ESR field descriptions
Field Description
Logical OR of all EDMA_ERL status bits.
VLD 0 No EDMA_ERL bits are set.
1 Atleastone EDMA_ERL bit is set indicating a valid error exists that has not been cleared.
Channel Priority Error
CPE 0 No channel priority error.
1 The last recorded error was a configuration error in the channel priorities within a group.
All channel priorities within a group are not unique.
Error Channel Number or Cancelled Channel Number
ERRCHNI0:5] The channel number of the last recorded error (excluding GPE and CPE errors) or last
recorded transfer that was error cancelled.

574

Doc ID 16886 Rev 6 256/868

Enhanced Direct Memory Access (eDMA) RM0045

Table 108. EDMA_ESR field descriptions (continued)

Field

Description

SAE

Source Address Error

0 No source address configuration error.

1 The last recorded error was a configuration error detected in the TCD.saddr field.
TCD.saddr is inconsistent with TCD.ssize.

SOE

Source Offset Error

0 No source offset configuration error.
1 The last recorded error was a configuration error detected in the TCD.soff field. TCD.soff
is inconsistent with TCD.ssize.

DAE

Destination Address Error

0 No destination address configuration error.

1 The last recorded error was a configuration error detected in the TCD.daddr field.
TCD.daddr is inconsistent with TCD.dsize.

DOE

Destination Offset Error

0 No destination offset configuration error.

1 The last recorded error was a configuration error detected in the TCD.doff field. TCD.doff
is inconsistent with TCD.dsize.

NCE

Nbytes/Citer Configuration Error

0 No nbytes/citer configuration error.

1 The last recorded error was a configuration error detected in the TCD.nbytes or TCD.citer
fields. TCD.nbytes is not a multiple of TCD.ssize and TCD.dsize, or TCD.citer is equal to
zero, or TCD.citer.e_link is not equal to TCD.biter.e_link.

SGE

Scatter/Gather Configuration Error

0 No scatter/gather configuration error.

1 The last recorded error was a configuration error detected in the TCD.dlast_sga field.
This field is checked at the beginning of a scatter/gather operation after major loop
completion if TCD.e_sg is enabled. TCD.dlast_sga is not on a 32 byte boundary.

SBE

Source Bus Error

0 No source bus error.
1 The last recorded error was a bus error on a source read.

DBE

Destination Bus Error

0 No destination bus error.
1 The last recorded error was a bus error on a destination write.

257/868

DMA Enable Request (EDMA_ERQRL)

The EDMA_ERQRL provides a bit map for the 16 channels to enable the request signal for
each channel. EDMA_ERQRL maps to channels 15-0.

The state of any given channel enable is directly affected by writes to this register; the state
is also affected by writes to the EDMA_SERQR, and EDMA_CERQR registers. The
EDMA_CERQR and EDMA_SERQR registers are provided so the request enable for a
single channel can be modified without performing a read-modify-write sequence to the
EDMA_ERQRL register.

Both the eDMA request input signal and this enable request flag must be asserted before a
channel’s hardware service request is accepted. The state of the eDMA enable request flag
does not affect a channel service request made through software or a linked channel
request.

Doc ID 16886 Rev 6 KYI

RM0045 Enhanced Direct Memory Access (eDMA)
Figure 111. DMA Enable Request (EDMA_ERQRL) Registers
Offset: 0x000C Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl | x(elslc|e|g|8|5](s|s8l83|8|8|z]|¢8
g g g g g g g g g g g g g g @) g
wl T o o i o o i i o o i o o i o o
L L] L L L L L] L L [T L L i L
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 109. EDMA_ERQRL field descriptions
Field Description
Enable eDMA Request n
ERQn 0 The eDMA request signal for channel n is disabled.
1 The eDMA request signal for channel n is enabled.

As a given channel completes the processing of its major iteration count, there is a flag in
the transfer control descriptor that may affect the ending state of the EDMA_ERQRL bit for
that channel. If the TCD.d_req bit is set, then the corresponding EDMA_ERQRL bit is
cleared, disabling the eDMA request; else if the d_req bit is cleared, the state of the
EDMA_ERQRL bit is unaffected.

DMA Enable Error Interrupt (EDMA_EEIRL)

The EDMA_EEIRL provides a bit map for the 16 channels to enable the error interrupt signal
for each channel. EDMA_EEIRL maps to channels 15-0.

The state of any given channel’s error interrupt enable is directly affected by writes to these
registers; it is also affected by writes to the EDMA_SEEIR and EDMA_CEEIR registers. The
EDMA_SEEIR and EDMA_CEEIR registers are provided so that the error interrupt enable
for a single channel can be modified without the performing a read-modify-write sequence to
the EDMA_EEIRL register.

Both the eDMA error indicator and this error interrupt enable flag must be asserted before
an error interrupt request for a given channel is asserted. See Figure 112 and Table 110 for
the EDMA_EEIRL definition.

Doc ID 16886 Rev 6 258/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Figure 112. DMA Enable Error Interrupt (EDMA_EEIRL) Register

Offset: 0x0014 Access: Read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R Te} < (op} Al — o (o2} e} N~ © 0 < (o2} [aV] by o
s s s i - s =] =4 =] =] =4 =) =] =} =) =]
w w w w w w w w w w w w w w w w
Wl w w w w w w w w w w w w w w w w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 110. EDMA_EEIRL field descriptions
Field Description
Enable Error Interrupt n
EEIn 0 The error signal for channel n does not generate an error interrupt.
1 The assertion of the error signal for channel n generate an error interrupt request.

DMA Set Enable Request (EDMA_SERQR)

The EDMA_SERQR provides a simple memory-mapped mechanism to set a given bit in the

EDMA_ERQRL to enable the eDMA request for a given channel. The data value on a

register write causes the corresponding bit in the EDMA_ERQRL to be set. Setting bit 1
(SERQ[0]) provides a global set function, forcing the entire contents of EDMA_ERQRL to be

asserted. Reads of this register return all zeroes.

Figure 113. DMA Set Enable Request (EDMA_SERQR) Register

Offset: 0x0018

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W SERQ
RESET 0 0 0 0 0 0 0 0
Table 111. EDMA_SERQR field descriptions
Field Description
Set Enable Request
SERQ 0- Set the corresponding bit in EDMA_ERQRL
64-127 Set all bits in EDMA_ERQRL
259/868 Doc ID 16886 Rev 6 Ky_l

RMO0045

Enhanced Direct Memory Access (eDMA)

Offset: 0x0019

DMA Clear Enable Request (EDMA_CERQR)

The EDMA_CERQR provides a simple memory-mapped mechanism to clear a given bit in
the EDMA_ERQRL to disable the eDMA request for a given channel. The data value on a
register write causes the corresponding bit in the EDMA_ERQRL to be cleared. Setting bit 1
(CERQIO0]) provides a global clear function, forcing the entire contents of the EDMA_ERQRL
to be zeroed, disabling all eDMA request inputs. Reads of this register return all zeroes. See
Figure 114 and Table 112 for the EDMA_CERQR definition.

Figure 114. DMA Clear Enable Request (EDMA_CERQR) Register

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0

w CERQ
RESET 0 0 0 0 0 0 0 0

Table 112. EDMA_CERQR field descriptions

Field Description
Clear Enable Request

CERQ 0-63 Clear corresponding bit in EDMA_ERQRL
64-127 Clear all bits in EDMA_ERQRL

Offset: 0x001A

DMA Set Enable Error Interrupt (EDMA_SEEIR)

The EDMA_SEEIR provides a memory-mapped mechanism to set a given bit in the
EDMA_EEIRL to enable the error interrupt for a given channel. The data value on a register
write causes the corresponding bit in the EDMA_EEIRL to be set. Setting bit 1 (SEEI[0])
provides a global set function, forcing the entire contents of EDMA_EEIRL to be asserted.
Reads of this register return all zeroes. See Figure 115and Table 113 for the EDMA_SEEIR
definition.

Figure 115. DMA Set Enable Error Interrupt (EDMA_SEEIR) Register

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0

w SEEI
RESET: 0 0 0 0 0 0 0 0

Table 113. EDMA_SEEIR field descriptions

Name

Description

SEEI 0-63

Set Enable Error Interrupt
Set the corresponding bit in EDMA_EEIRL
64-127 Set all bits in EDMA_EEIRL

Doc ID 16886 Rev 6 260/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Offset: 0x001B

DMA Clear Enable Error Interrupt (EDMA_CEEIR)

The EDMA_CEEIR provides a memory-mapped mechanism to clear a given bit in the
EDMA_EEIRL to disable the error interrupt for a given channel. The data value on a register
write causes the corresponding bit in the EDMA_EEIRL to be cleared. Setting bit 1
(CEEI[0]) provides a global clear function, forcing the entire contents of the EDMA_EEIRL to
be zeroed, disabling error interrupts for all channels. Reads of this register returns all
zeroes. See Figure 116 and Table 114 for the EDMA_CEEIR definition.

Figure 116. DMA Clear Enable Error Interrupt (EDMA_CEEIR) Register

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0

w CEEI[0:6]
RESET: 0 0 0 0 0 0 0 0

Table 114. EDMA_CEEIR field descriptions

Field

Description

CEEI

Clear Enable Error Interrupt
0-63 Clear corresponding bit in EDMA_EEIRL
64-127 Clear all bits in EDMA_EEIRL

DMA Clear Interrupt Request (EDMA_CIRQR)

The EDMA_CIRQR provides a memory-mapped mechanism to clear a given bit in the
EDMA_IRQRL to disable the interrupt request for a given channel. The given value on a
register write causes the corresponding bit in the EDMA_IRQRL to be cleared. Setting bit 1
(CINT[Q]) provides a global clear function, forcing the entire contents of the EDMA_IRQRL
to be zeroed, disabling all eDMA interrupt requests. Reads of this register return all zeroes.

See Figure 117 and Table 115 for the EDMA_CIRQR definition.

Figure 117. DMA Clear Interrupt Request (EDMA_CIRQR) Fields

Offset: 0x001C

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
w CINT
RESET: 0 0 0 0 0 0 0 0
Table 115. EDMA_CIRQR field descriptions
Field Description
Clear Interrupt Request
CINTI[0:6] 0-63 Clear the corresponding bit in EDMA_IRQRL
64-127 Clear all bits in EDMA_IRQRL
261/868 Doc ID 16886 Rev 6 Ky_l

RMO0045

Enhanced Direct Memory Access (eDMA)

Offset: 0x001D

DMA Clear Error (EDMA_CER)

The EDMA_CER provides a memory-mapped mechanism to clear a given bit in the
EDMA_ERL to disable the error condition flag for a given channel. The given value on a
register write causes the corresponding bit in the EDMA_ERL to be cleared. Setting bit 1
(CERRI[O0]) provides a global clear function, forcing the entire contents of the EDMA_ERL to
be zeroed, clearing all channel error indicators. Reads of this register return all zeroes. See
Figure 118 and Table 116 for the EDMA_CER definition.

Figure 118. DMA Clear Error (EDMA_CER) Register

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0

w CERR
RESET:! 0 0 0 0 0 0 0 0

Table 116. EDMA_CER field descriptions

Field

Description

CERR 0-63

Clear Error Indicator
Clear corresponding bit in EDMA_ERL
64-127 Clear all bits in EDMA_ERL

Offset: 0x001E

DMA Set START Bit (EDMA_SSBR)

The EDMA_SSBR provides a memory-mapped mechanism to set the START bit in the TCD
of the given channel. The data value on a register write causes the START bit in the
corresponding transfer control descriptor to be set. Setting bit 1 (SSB[0]) provides a global
set function, forcing all START bits to be set. Reads of this register return all zeroes. See
Table 124 for the TCD START bit definition.

Figure 119. DMA Set START Bit (EDMA_SSBR) Register

Access: Write

0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0

w SSRT
RESET: 0 0 0 0 0 0 0 0

Doc ID 16886 Rev 6 262/868

Enhanced Direct Memory Access (eDMA) RM0045

Table 117. EDMA_SSBR field descriptions

Field Description

Set START Bit (Channel Service Request)
SSRT 0-63 Set the corresponding channel’s TCD.start
64-127 Set all TCD.start bits

DMA Clear DONE Status (EDMA_CDSBR)

The EDMA_CDSBR provides a memory-mapped mechanism to clear the DONE bit in the
TCD of the given channel. The data value on a register write causes the DONE bit in the
corresponding transfer control descriptor to be cleared. Setting bit 1 (CDSB[0]) provides a
global clear function, forcing all DONE bits to be cleared. See Table 124 for the TCD DONE
bit definition.

Figure 120. DMA Clear DONE Status (EDMA_CDSBR) Register

Offset: 0x001F Access: Write
0 1 2 3 4 5 6 7
R 0 0 0 0 0 0 0 0
W CDNE[0:6]
RESET: 0 0 0 0 0 0 0 0

Table 118. EDMA_CDSBR field descriptions

Field Description

Clear DONE Status Bit

CDNE[0:6
[0:6] 0-63 Clear the corresponding channel’s DONE bit 64-127 Clear all TCD DONE bits

DMA Interrupt Request (EDMA_IRQRL)

The EDMA_IRQRL provides a bit map for the 16 channels signaling the presence of an
interrupt request for each channel. EDMA_IRQRL maps to channels 15-0.

The DMA engine signals the occurrence of a programmed interrupt on the completion of a
data transfer as defined in the transfer control descriptor by setting the appropriate bit in this
register. The outputs of this register are directly routed to the interrupt controller (INTC).
During the execution of the interrupt service routine associated with any given channel,
software must clear the appropriate bit, negating the interrupt request. Typically, a write to
the EDMA_CIRQR in the interrupt service routine is used for this purpose.

The state of any given channel’s interrupt request is directly affected by writes to this
register; it is also affected by writes to the EDMA_CIRQR. On writes to the EDMA_IRQRL, a
1 in any bit position clears the corresponding channel’s interrupt request. A 0 in any bit
position has no affect on the corresponding channel’s current interrupt status. The
EDMA_CIRQR is provided so the interrupt request for a single channel can be cleared
without performing a read-modify-write sequence to the EDMA_IRQRL. See Figure 121 and
Table 119 for the EDMA_IRQL definition.

263/868 Doc ID 16886 Rev 6 KYI

RM0045 Enhanced Direct Memory Access (eDMA)
Figure 121. DMA Interrupt Request (EDMA_IRQRL) Registers
Offset: 0x0024 Access: Read/write
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 | 24 25 26 27 | 28 29 30 31
R To] < ™ eV} - o (o] [e0] N~ (] 0 < ™ [aV] — o
— — — — ~— — o (@] o o o o o o o o
= = = = = = E E E E E E E E E E
w| Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 119. EDMA_IRQRL field descriptions
Field Description

DMA Interrupt Request n

0 The interrupt request for channel n is cleared.
1 The interrupt request for channel n is active.

DMA Error (EDMA_ERL)

The EDMA_ERL provides a bit map for the 16 channels signaling the presence of an error
for each channel. EDMA_ERL maps to channels 15-0.

The DMA engine signals the occurrence of a error condition by setting the appropriate bit in
this register. The outputs of this register are enabled by the contents of the EDMA_EEIR,
then logically summed across 16 channels to form an error interrupt request, which is then
routed to the interrupt controller. During the execution of the interrupt service routine
associated with any eDMA errors, it is software’s responsibility to clear the appropriate bit,
negating the error interrupt request. Typically, a write to the EDMA_CER in the interrupt
service routine is used for this purpose. The normal eDMA channel completion indicators,
setting the transfer control descriptor DONE flag and the possible assertion of an interrupt
request, are not affected when an error is detected.

The contents of this register can also be polled and a non-zero value indicates the presence
of a channel error, regardless of the state of the EDMA_EEIR. The EDMA_ESR[VLD] bitis a
logical OR of all bits in this register and it provides a single bit indication of any errors. The
state of any given channel’s error indicators is affected by writes to this register; it is also
affected by writes to the EDMA_CER. On writes to EDMA_ERL, a 1 in any bit position clears
the corresponding channel’s error status. A 0 in any bit position has no affect on the
corresponding channel’s current error status. The EDMA_CER is provided so the error
indicator for a single channel can be cleared. See Figure 122 and Table 120 for the
EDMA_ERL definition.

Doc ID 16886 Rev 6 264/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Figure 122. DMA Error (EDMA_ERL) Registers

Offset: 0x002C

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
RESET: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RR2|XTlels|lc-cl2)3/8| 58|83 (8|8|s|s8
o o o o o o o o o o 0o o o o o o
wl & o o o o o o o o o o o o o o o
I L I u w I I w I | w L u w L I
RESET: O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 120. EDMA_ERL field descriptions
Field Description
DMA Error n
ERRn 0 An error in channel n has not occurred.
1 An error in channel n has occurred.

DMA Hardware Request Status (EDMA_HRSL)

The EDMA_HRSL register provides a bit map for the implemented channels to show the

current hardware request status for each channel. This view into the hardware request

signals may be used for debug purposes.
See Figure 123 and Figure 121 for the EDMA_HRSL definition.

Figure 123. DMA Hardware Request Status (EDMA_HRSL) Register

Offset: 0x0034

RESET:

RESET:

265/868

Access: Read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
n < (4p) (q] — o (o)) 0] N~ (o) Yo} < (2] Al - o
— - ~— — ~— ~— o o o o o o o o o o
n [7p] on n o on n AN on n AN (7] n AN (2] n
o o o o o o o o o o o o o o o o
I I T I I T I I T T I I I I I I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Doc ID 16886 Rev 6 KYI

Enhanced Direct Memory Access (eDMA)

Table 121. EDMA_HRSL field descriptions

Description

HRSn

DMA Hardware Request Status n

0 A hardware service request for channel n is not present.
1 A hardware service request for channel n is present.

Note: The hardware request status reflects the state of the request as seen by the
arbitration logic. Therefore, this status is affected by the EDMA_ERQRL[n] bit.

DMA Channel n Priority (EDMA_CPRn)

When the fixed-priority channel arbitration mode is enabled (EDMA_CR[ERCA] = 0), the
contents of these registers define the unique priorities associated with each channel. The
channel priorities are evaluated by numeric value; that is, 0 is the lowest priority, 1 is the next
higher priority, then 2, 3, etc. If software modifies channel priority values, then the software
must ensure that the channel priorities contain unique values, otherwise a configuration
error will be reported. The range of the priority value is limited to the values of 0 through 15.

Channel preemption is enabled on a per-channel basis by setting the ECP bit in the
EDMA_CPRn register. Channel preemption allows the executing channel’s data transfers to
be temporarily suspended in favor of starting a higher priority channel. After the preempting
channel has completed all its minor loop data transfers, the preempted channel is restored
and resumes execution. After the restored channel completes one read/write sequence, it is
again eligible for preemption. If any higher priority channel requests service, the restored
channel will be suspended and the higher priority channel will be serviced. Nested
preemption (attempting to preempt a preempting channel) is not supported. After a
preempting channel begins execution, it cannot be preempted. Preemption is available only
when fixed arbitration is selected for channel arbitration mode

A channel’s ability to preempt another channel can be disabled by setting the DPA bit in the
EDMA_CPRn register. When a channel’s preempt ability is disabled, that channel cannot
suspend a lower priority channel’s data transfer; regardless of the lower priority channel’s
ECP setting. This allows for a pool of low priority, large data moving channels to be defined.
These low priority channels can be configured to not preempt each other, thus preventing a
low priority channel from consuming the preempt slot normally available a true, high priority
channel. See Figure 124 and Table 122 for the EDMA_CPRnN definition.

Figure 124. DMA Channel n Priority (EDMA_CPRn) Register

Offset: 0x0100 + n Access: Read/write
0 1 2 3 4 5 6 7
R GRPPRI
ECP DPA CHPRI
w
RESET: 0 0 * * * * * *
* = defaults to channel number (n) after reset

Doc ID 16886 Rev 6 266/868

Enhanced Direct Memory Access (eDMA) RM0045

Table 122. EDMA_CPRn field descriptions

Field Description
Enable Channel Preemption

ECP 0 Channel n cannot be suspended by a higher priority channel’s service request.
1 Channel n can be temporarily suspended by the service request of a higher priority

channel.

Disable Preempt Ability

DPA 0 Channel n can suspend a lower priority channel.
1 Channel n cannot suspend any channel, regardless of channel priority.
Channel n Arbitration Priorit

CHPRI[0:3] y

Channel priority when fixed-priority arbitration is enabled.

Transfer Control Descriptor (TCD)

Each channel requires a 32-byte transfer control descriptor for defining the desired data
movement operation. The channel descriptors are stored in the local memory in sequential
order: channel 0, channel 1,... channel 15. The definitions of the TCD are presented as eight
32-bit values. Table 123 is a field list of the basic TCD structure.

Table 123. TCDn 32-bit memory structure

eDMA offset TCDn field
0x1000+(32 x n)+0x0000 Source address (saddr)
0x1000+(32 x n)+0x0004 Transfer attributes Signed source address offset (soff)
0x1000+(32 x n)+0x0008 Inner minor byte count (nbytes)
0x1000+(32 x n)+0x000C Last source address adjustment (slast)
0x1000+(32 x n)+0x0010 Destination address (daddr)
0x1000+(32 x n)+0x0014 Current major iteration count (citer) ‘ Signed destination address offset (doff)
0x1000 (32 x n) 0x0018 Last destination address adjustment / scatter-gather address (dlast_sga)
0x1000+(32 x n)+0x001c | Beginning major iteration count (biter) ‘ Channel control/status

Figure 125 and Table 124 define the fields of the TCDn structure.

267/868

Doc ID 16886 Rev 6 KYI

RM0045 Enhanced Direct Memory Access (eDMA)

Figure 125. TCD structure

Word
Offset 0 1 2 3|4 5 6 7|8 9 10 11[12 13 14 15|16 17 18 19|20 21 22 23|24 25 26 27|28 29 30 31
0x0000 SADDR
0x0004 SMOD SSIZE DMOD DSIZE SOFF
0x0008 NBYTES(™
2lg
W
0x8| 9 9 MLOFF or NBYTES (! NBYTES®
= =
0 Q
0x000C SLAST
0x0010 DADDR
X
Z
|
CITER or
[
0x0014 Y CITER.LINKCH CITER DOFF
L
=
O
0x0018 DLAST_SGA
N X
=z = W -
- w5 o4
L S 0] = < =
oxooic|w BITEROr BITER BWC| MAJORLINKCH | | | | 9 & T 3| =
| BITER.LINKCH 2 O & wl |
w 49 7 9Zz?
= . =
m =
0 1 2 3|4 5 6 7|8 9 10 11[12 13 14 1516 17 18 19|20 21 22 23|24 25 26 27|28 29 30 31
1. The fields implemented in Word 2 depend on whether EDMA_CR(EMLM) is set to 0 or 1. See Table 107.
Note: The TCD structures for the eDMA channels shown in Figure 125 are implemented in

internal SRAM. These structures are not initialized at reset; therefore, all channel TCD
parameters must be initialized by the application code before activating that channel.

KYI Doc ID 16886 Rev 6 268/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Table 124. TCDn field descriptions

Bits /
Word Offset Name Description
[n:n]
0-31/ SADDR Source address. Memory address pointing to the source data.
0x0 [0:31] [0:31] Word 0x0, bits 0-31.
Source address modulo.
0 Source address modulo feature is disabled.
non-0 This value defines a specific address range that is specified to be the
value after SADDR + SOFF calculation is performed or the original
register value. The setting of this field provides the ability to easily
implement a circular data queue. For data queues requiring power-of-
32-36/ SMOD 2 size bytes, the queue should start at a 0-modulo-size address and
0x4 [0:4] [0:4] the SMOD field should be set to the appropriate value for the queue,
freezing the desired number of upper address bits. The value
programmed into this field specifies the number of lower address bits
that are allowed to change. For this circular queue application, the
SOFF is typically set to the transfer size to implement post-increment
addressing with the SMOD function constraining the addresses to a
0-modulo-size range.
Source data transfer size.
000 8-bit
001 16-bit
010 32-bit
011 Reserved
87-89/ SSIZE 100 16-byte (32-bit, 4-beat, WRAP4 burst)
Ox4 [5:7] [0:2] 101 32-byte (32-bit, 8 beat, WRAPS burst)
110 Reserved
111 Reserved
The attempted specification of a reserved encoding causes a configuration
error.
40-44/ DMOD L I
Ox4 [8:12] [0:4] Destination address modulo. See the SMOD[0:5] definition.
45-47 / DSIZE L , _
Ox4 [13:15] 0:2] Destination data transfer size. See the SSIZE[0:2] definition.
48-63 / SOFF Source address signed offset. Sign-extended offset applied to the current
source address to form the next-state value as each source read is
0x4 [16:31] [0:15] completed.
Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the DMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
64-95 / NBYTES transferred.' This is an.indivisible operation and cannot be stalled or halted.
After the minor count is exhausted, the current values of the SADDR and
0x8 [0:31] [0:31] DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.
Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 GB transfer.
269/868 Doc ID 16886 Rev 6 1S

RMO0045

Enhanced Direct Memory Access (eDMA)

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset
[n:n]

Name

Description

64-95 /
0x8 [0:31]

NBYTES(
[0:31]

Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.

Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 Gbyte transfer.

64
0x8 [0]

SMLOE (1)

Source minor loop offset enable

This flag selects whether the minor loop offset is applied to the source
address upon minor loop completion.

0 The minor loop offset is not applied to the saddr.
1 The minor loop offset is applied to the saddr.

65
0x8 [1]

DMLOE (1)

Destination minor loop offset enable

This flag selects whether the minor loop offset is applied to the destination
address upon minor loop completion.

0 The minor loop offset is not applied to the daddr.
1 The minor loop offset is applied to the daddr.

66-85
0x8 [2-21]

MLOFF or
NBYTES (1)
[0:19]

Inner “minor” byte transfer count or Minor loop offset

If both SMLOE and DMLOE are cleared, this field is part of the byte
transfer count.

If either SMLOE or DMLOE are set, this field represents a sign-extended
offset applied to the source or destination address to form the next-state
value after the minor loop is completed.

86-95 /
0x8 [22:31]

NBYTES (1)

Inner “minor” byte transfer count. Number of bytes to be transferred in each
service request of the channel. As a channel is activated, the contents of
the appropriate TCD is loaded into the eDMA engine, and the appropriate
reads and writes performed until the complete byte transfer count has been
transferred. This is an indivisible operation and cannot be stalled or halted.
Once the minor count is exhausted, the current values of the SADDR and
DADDR are written back into the local memory, the major iteration count is
decremented and restored to the local memory. If the major iteration count
is completed, additional processing is performed.

Note: The NBYTES value of 0x0000_0000 is interpreted as
0x1_0000_0000, thus specifying a 4 GByte transfer.

96-127/
0xC [0:31]

SLAST
[0:31]

Last source address adjustment. Adjustment value added to the source
address at the completion of the outer major iteration count. This value can
be applied to “restore” the source address to the initial value, or adjust the
address to reference the next data structure.

574

Doc ID 16886 Rev 6 270/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset
[n:n]

Name

Description

128-159 /
0x10 [0:31]

DADDR
[0:31]

Destination address. Memory address pointing to the destination data.

160 /
0x14 [0]

CITER.E_LINK

Enable channel-to-channel linking on minor loop completion. As the
channel completes the inner minor loop, this flag enables the linking to
another channel, defined by CITER.LINKCH[O0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
CITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.

0 The channel-to-channel linking is disabled.

1 The channel-to-channel linking is enabled.

Note: This bit must be equal to the BITER.E_LINK bit otherwise a
configuration error will be reported.

161-166 /
0x14 [1:6]

CITER
[0:5]
or
CITER.LINKCH

[0:5]

Current major iteration count or link channel number.

If channel-to-channel linking is disabled (TCD.CITER.E_LINK = 0), then
— No channel-to-channel linking (or chaining) is performed after the inner
minor loop is exhausted. TCD bits [161:175] are used to form a 15-bit

CITER field.
Otherwise,
— After the minor loop is exhausted, the DMA engine initiates a channel

service request at the channel defined by CITER.LINKCH[0:5] by setting
that channel’'s TCD.START bit.

167-175/
0x14 [7:15]

CITER
[6:14]

Current major iteration count. This 9 or 15-bit count represents the current
major loop count for the channel. It is decremented each time the minor
loop is completed and updated in the transfer control descriptor memory.
After the major iteration count is exhausted, the channel performs a
number of operations (for example, final source and destination address
calculations), optionally generating an interrupt to signal channel
completion before reloading the CITER field from the beginning iteration
count (BITER) field.

Note: When the CITER field is initially loaded by software, it must be set
to the same value as that contained in the BITER field.

Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

176-191 /
0x14 [16:31]

DOFF
[0:15]

Destination address signed Offset. Sign-extended offset applied to the
current destination address to form the next-state value as each
destination write is completed.

271/868

Doc ID 16886 Rev 6

RMO0045

Enhanced Direct Memory Access (eDMA)

Table 124. TCDn field descriptions (continued)

Wo

Bits /
rd Offset
[n:n]

Name

Description

192223 /
0x18 [0:31]

DLAST_SGA
[0:31]

Last destination address adjustment or the memory address for the next
transfer control descriptor to be loaded into this channel (scatter-gather).

If scatter-gather processing for the channel is disabled (TCD.E_SG = 0)
then

— Adjustment value added to the destination address at the completion of
the outer major iteration count.

This value can be applied to restore the destination address to the initial
value, or adjust the address to reference the next data structure.

Otherwise,

— This address points to the beginning of a 0-modulo-32 byte region
containing the next transfer control descriptor to be loaded into this
channel. This channel reload is performed as the major iteration count
completes. The scatter-gather address must be 0-modulo-32 byte,
otherwise a configuration error is reported.

224/

0x1C [0]

BITER.E_LINK

Enables channel-to-channel linking on minor loop complete. As the
channel completes the inner minor loop, this flag enables the linking to
another channel, defined by BITER.LINKCHI[O0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel. If channel linking is disabled, the
BITER value is extended to 15 bits in place of a link channel number. If the
major loop is exhausted, this link mechanism is suppressed in favor of the
MAJOR.E_LINK channel linking.

0 The channel-to-channel linking is disabled.

1 The channel-to-channel linking is enabled.

Note: When the TCD is first loaded by software, this field must be set
equal to the corresponding CITER field, otherwise a configuration error will
be reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

0Ox

225-230/

1C [1:6]

BITER
[0:5]
or
BITER.LINKCH[0:5]

Starting major iteration count or link channel number.

If channel-to-channel linking is disabled (TCD.BITER.E_LINK = 0), then

— No channel-to-channel linking (or chaining) is performed after the inner
minor loop is exhausted. TCD bits [225:239] are used to form a 15-bit
BITER field.

Otherwise,

— After the minor loop is exhausted, the DMA engine initiates a channel
service request at the channel, defined by BITER.LINKCH[O0:5], by
setting that channel's TCD.START bit.

Note: When the TCD is first loaded by software, this field must be set

equal to the corresponding CITER field, otherwise a configuration error will

be reported. As the major iteration count is exhausted, the contents of this
field is reloaded into the CITER field.

231-239/
0x1C [7:15]

BITER
[6:14]

Starting major iteration count. As the transfer control descriptor is first
loaded by software, this field must be equal to the value in the CITER field.
As the major iteration count is exhausted, the contents of this field are
reloaded into the CITER field.

Note: If the channel is configured to execute a single service request, the
initial values of BITER and CITER should be 0x0001.

574

Doc ID 16886 Rev 6 272/868

Enhanced Direct Memory Access (eDMA)

RMO0045

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset Name Description

[n:n]
Bandwidth control. This two-bit field provides a mechanism to effectively
throttle the amount of bus bandwidth consumed by the eDMA. In general,
as the eDMA processes the inner minor loop, it continuously generates
read/write sequences until the minor count is exhausted. This field forces

240-241 / BWC the eDMA to stall after the completion of each read/write access to control

0x1C [16:17]

[0:1]

the bus request bandwidth seen by the system bus crossbar switch
(XBAR).

00 No DMA engine stalls

01 Reserved

10 DMA engine stalls for 4 cycles after each r/'w

11 DMA engine stalls for 8 cycles after each r/w

242-247 /
0x1C [18:23]

MAJOR.LINKCH
[0:5]

Link channel number.

If channel-to-channel linking on major loop complete is disabled

(TCD.MAJOR.E_LINK = 0) then,

— No channel-to-channel linking (or chaining) is performed after the outer
major loop counter is exhausted.

Otherwise

— After the major loop counter is exhausted, the DMA engine initiates a
channel service request at the channel defined by MAJOR.LINKCH[0:5]
by setting that channel’s TCD.START bit.

248 /
0x1C [24]

DONE

Channel done. This flag indicates the eDMA has completed the outer
major loop. It is set by the DMA engine as the CITER count reaches zero; it
is cleared by software or hardware when the channel is activated (when
the DMA engine has begun processing the channel, not when the first data
transfer occurs).

Note: This bit must be cleared to write the MAJOR.E_LINK or E_SG bits.

249 /
0x1C [25]

ACTIVE

Channel active. This flag signals the channel is currently in execution. It is
set when channel service begins, and is cleared by the DMA engine as the
inner minor loop completes or if any error condition is detected.

250/
0x1C [26]

MAJOR.E_LINK

Enable channel-to-channel linking on major loop completion. As the
channel completes the outer major loop, this flag enables the linking to
another channel, defined by MAJOR.LINKCHI[0:5]. The link target channel
initiates a channel service request via an internal mechanism that sets the
TCD.START bit of the specified channel.

NOTE: To support the dynamic linking coherency model, this field is forced
to zero when written to while the TCD.DONE bit is set.

0 The channel-to-channel linking is disabled.
1 The channel-to-channel linking is enabled.

273/868

Doc ID 16886 Rev 6

RMO0045

Enhanced Direct Memory Access (eDMA)

Table 124. TCDn field descriptions (continued)

Bits /
Word Offset
[n:n]

Name

Description

251 /
0x1C [27]

E_SG

Enable scatter-gather processing. As the channel completes the outer
major loop, this flag enables scatter-gather processing in the current
channel. If enabled, the DMA engine uses DLAST_SGA as a memory
pointer to a 0-modulo-32 address containing a 32-byte data structure
which is loaded as the transfer control descriptor into the local memory.

NOTE: To support the dynamic scatter-gather coherency model, this field
is forced to zero when written to while the TCD.DONE bit is set.

0 The current channel’s TCD is normal format.

1 The current channel’s TCD specifies a scatter gather format. The
DLAST_SGA field provides a memory pointer to the next TCD to be
loaded into this channel after the outer major loop completes its
execution.

252 /
0x1C [28]

D_REQ

Disable hardware request. If this flag is set, the eDMA hardware

automatically clears the corresponding EDMA_ERQRL bit when the

current major iteration count reaches zero.

0 The channel's EDMA_ERQRL bit is not affected.

1 The channel's EDMA_ERQRL bit is cleared when the outer major loop is
complete.

253 /
0x1C [29]

INT_HALF

Enable an interrupt when major counter is half complete. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches the
halfway point. Specifically, the comparison performed by the eDMA engine
is (CITER == (BITER >> 1)). This halfway point interrupt request is
provided to support double-buffered (aka ping-pong) schemes, or other
types of data movement where the processor needs an early indication of
the transfer’s progress. CITER = BITER = 1 with INT_HALF enabled will
generate an interrupt as it satisfies the equation (CITER == (BITER >> 1))
after a single activation.

0 The half-point interrupt is disabled.
1 The half-point interrupt is enabled.

254 /
0x1C [30]

INT_MAJ

Enable an interrupt when major iteration count completes. If this flag is set,
the channel generates an interrupt request by setting the appropriate bit in
the EDMA_ERQRL when the current major iteration count reaches zero.
0 The end-of-major loop interrupt is disabled.

1 The end-of-major loop interrupt is enabled.

255/
0x1C [31]

START

Channel start. If this flag is set the channel is requesting service. The
eDMA hardware automatically clears this flag after the channel begins
execution.

0 The channel is not explicitly started.

1 The channel is explicitly started via a software initiated service request.

1. The fields implemented at 0x8 depend on whether EDMA_CR(EMLM) is set to 0 or 1. Refer to Table 107.

15.4

Functional description

This section provides an overview of the microarchitecture and functional operation of the
eDMA block.

Doc ID 16886 Rev 6 274/868

Enhanced Direct Memory Access (eDMA) RM0045

275/868

The eDMA module is partitioned into two major modules: the DMA engine and the transfer
control descriptor local memory. The DMA engine is further partitioned into four
submodules, which are detailed below.

® DMA engine

Address path: This module implements registered versions of two channel transfer
control descriptors: channel x and channel y, and is responsible for all the master
bus address calculations. All the implemented channels provide the same
functionality. This hardware structure allows the data transfers associated with one
channel to be preempted after the completion of a read/write sequence if a higher
priority channel service request is asserted while the first channel is active. After a
channel is activated, it runs until the minor loop is completed unless preempted by
a higher priority channel. This capability provides a mechanism (optionally
enabled by EDMA_CPRnR[ECP]) where a large data move operation can be
preempted to minimize the time another channel is blocked from execution.

When another channel is activated, the contents of its transfer control descriptor is
read from the local memory and loaded into the registers of the other address path
channel{x,y}. After the inner minor loop completes execution, the address path
hardware writes the new values for the TCDn.{SADDR, DADDR, CITER} back into
the local memory. If the major iteration count is exhausted, additional processing is
performed, including the final address pointer updates, reloading the TCDn.CITER
field, and a possible fetch of the next TCDn from memory as part of a scatter-
gather operation.

Data path: This module implements the actual bus master read/write datapath. It
includes 32 bytes of register storage (matching the maximum transfer size) and
the necessary mux logic to support any required data alignment. The system read
data bus is the primary input, and the system write data bus is the primary output.

The address and data path modules directly support the two-stage pipelined
system bus. The address path module represents the 1st stage of the bus pipeline
(the address phase), while the data path module implements the second stage of
the pipeline (the data phase).

Program model/channel arbitration: This module implements the first section of
eDMA’s programming model and also the channel arbitration logic. The
programming model registers are connected to the slave bus (not shown). The
eDMA peripheral request inputs and eDMA interrupt request outputs are also
connected to this module (via the control logic).

Control: This module provides all the control functions for the DMA engine. For
data transfers where the source and destination sizes are equal, the DMA engine
performs a series of source read, destination write operations until the number of
bytes specified in the inner minor loop byte count has been moved.

A minor loop interaction is defined as the number of bytes to transfer (nbytes)
divided by the transfer size. Transfer size is defined as:

if (SSIZE < DSIZE)

transfer size = destination transfer size (# of bytes)
else

transfer size = source transfer size (# of bytes)

Minor loop TCD variables are SOFF, SMOD, DOFF, DMOD, NBYTES, SADDR,
DADDR, BWC, ACTIVE, AND START. Major loop TCD variables are DLAST,

Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

15.4.1

SLAST, CITER, BITER, DONE, D_REQ, INT_MAJ, MAJOR_LNKCH, and
INT_HALF.

For descriptors where the sizes are not equal, multiple access of the smaller size
data are required for each reference of the larger size. For example, if the source
size references 16-bit data and the destination is 32-bit data, two reads are
performed, then one 32-bit write.

® TCD local memory

— Memory controller: This logic implements the required dual-ported controller,
handling accesses from both the DMA engine as well as references from the slave
bus. As noted earlier, in the event of simultaneous accesses, the DMA engine is
given priority and the slave transaction is stalled. The hooks to a BIST controller
for the local TCD memory are included in this module.

— Memory array: The TCD is implemented using a single-ported, synchronous
compiled RAM memory array.

eDMA basic data flow

The eDMA transfers data based on a two-deep, nested flow. The basic flow of a data
transfer can be partitioned into three segments. As shown in Figure 126, the first segment
involves the channel service request. In the diagram, this example uses the assertion of the
eDMA peripheral request signal to request service for channel n. Channel service request
via software and the TCDn.START bit follows the same basic flow as an eDMA peripheral
request. The eDMA peripheral request input signal is registered internally and then routed to
through the DMA engine, first through the control module, then into the program
model/channel arbitration module. In the next cycle, the channel arbitration is performed
using the fixed-priority or round-robin algorithm. After the arbitration is complete, the
activated channel number is sent through the address path and converted into the required
address to access the TCD local memory. Next, the TCD memory is accessed and the
required descriptor read from the local memory and loaded into the DMA engine address
path channel{x,y} registers. The TCD memory is organized 64-bits in width to minimize the
time needed to fetch the activated channel’s descriptor and load it into the eDMA engine
address path channel{x,y} registers.

Doc ID 16886 Rev 6 276/868

Enhanced Direct Memory Access (eDMA)

RMO0045

eDMA

System bus

F -
|

eDMA engine
|
Bus read data

Y

Bus write data

SRAM
(TCD)

Transfer control descriptor

|
|
|
|
|
|

Slave write address

Slave write data

SRAM [_ _ _ ____]

— |

TCDO

TCDn-1*

Program model/

channel arbitration

Address
path

<>
<>

Bus address

|
[
|
|
|
| Data path
|
|
|
[
|

|
|
|
|
|
|
Control :
|
|
|
|
|
|

Slave read data

Slave interface

Y

*n =16 channels

/

eDMA interrupt request
eDMA done handshake

eDMA peripheral request

Figure 126. eDMA operation, part 1

In the second part of the basic data flow as shown in Figure 127, the modules associated
with the data transfer (address path, data path, and control) sequence through the required
source reads and destination writes to perform the actual data movement. The source reads
are initiated and the fetched data is temporarily stored in the data path module until it is
gated onto the system bus during the destination write. This source read/destination write
processing continues until the inner minor byte count has been transferred. The eDMA done
handshake signal is asserted at the end of the minor byte count transfer.

277/868

Doc ID 16886 Rev 6

RM0045 Enhanced Direct Memory Access (eDMA)
eDMA [SRAM [
I Transfer control descriptor !
: (TCD) !
| Slave write address |
f Slave write data |
: Y Y :
| ; |
| |
: SRAM [____ __] TCDO |
” : [CIITTTT I
2 | gl R .
= I ()
o] L B TCDn-1* ' | £
7] | | (]
& . | =
r---—"- - -""-""-"-"-"=-"=-=-=- —_ e e e, e, ————————— — - - -\ - - - == - - = B (j)
I eDMA engine [
| |
Bus read data Y
: - Program model/ : C)
I + channel arbitration I
| |
| Address [
€3> Control
| Data path path : Slave read data |
A i
: Bus write data - :
([|
I Bus address I
€ T I

*n =16 channels

Figure 127. eDMA operation, part 2

eDMA peripheral
request

eDMA interrupt request
eDMA done handshake

After the inner minor byte count has been moved, the final phase of the basic data flow is
performed. In this segment, the address path logic performs the required updates to certain
fields in the channel’s TCD; for example, SADDR, DADDR, CITER. If the outer major
iteration count is exhausted, then there are additional operations performed. These include
the final address adjustments and reloading of the BITER field into the CITER. Additionally,
assertion of an optional interrupt request occurs at this time, as does a possible fetch of a
new TCD from memory using the scatter-gather address pointer included in the descriptor.
The updates to the TCD memory and the assertion of an interrupt request are shown in

Figure 128.

Doc ID 16886 Rev 6

278/868

Enhanced Direct Memory Access (eDMA) RM0045

eDMA I SRAM I
I Transfer control descriptor !
! (TCD) !
| Slave write address |
! Slave write data |
| V |
| |
| ; |
| |
: SRAM [____ __] TCDO |
” : [ZZ222277 R
2 | >] .
= I ()
o] L B TCDn-1* ' | £
7] | | (]
& . | =
r---—"- - -""-""-"-"-"=-"=-=-=- | —_ e e e, e, ————————— — - - -\ - - - == - - = B (/)
I eDMA engine [
| |
Y
: Bus read data Program model/ :
| v channel arbitration | C)
| I I
! Address <> control !
: Data path path : Slave read data ‘
A A i
: Bus write data - :
[|
I Bus address I
t |
*n =16 channels M
- eDMA peripheral eDMA done

request

Figure 128. eDMA operation, part 3

15.5 Initialization / application information

15.5.1 eDMA initialization

A typical initialization of the eDMA has the following sequence:
1. Write the EDMA_CR if a configuration other than the default is desired.

2. Write the channel priority levels into the EDMA_CPRn registers if a configuration other
than the default is desired.

3. Enable error interrupts in the EDMA_EEIRL and/or EDMA_EEIRH registers if desired.
4. Write the 32-byte TCD for each channel that may request service.

5. Enable any hardware service requests via the EDMA_ERQRH and/or EDMA_ERQRL
registers.

6. Request channel service by software (setting the TCD.START bit) or by hardware
(slave device asserting its DMA peripheral request signal).

After any channel requests service, a channel is selected for execution based on the
arbitration and priority levels written into the programmer's model. The DMA engine will read

279/868 Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

the entire TCD, including the primary transfer control parameter shown in Table 125, for the
selected channel into its internal address path module. As the TCD is being read, the first
transfer is initiated on the system bus unless a configuration error is detected. Transfers
from the source (as defined by the source address, TCD.SADDR) to the destination (as
defined by the destination address, TCD.DADDR) continue until the specified number of
bytes (TCD.NBYTES) have been transferred. When the transfer is complete, the DMA
engine's local TCD.SADDR, TCD.DADDR, and TCD.CITER are written back to the main
TCD memory and any minor loop channel linking is performed, if enabled. If the major loop
is exhausted, further post processing is executed; for example, interrupts, major loop
channel linking, and scatter-gather operations, if enabled.

Table 125. TCD primary control and status fields

TCD field name Description
Control bit to start channel when using a software initiated DMA service
START .
(Automatically cleared by hardware)
ACTIVE Status bit indicating the channel is currently in execution
Status bit indicating major loop completion (cleared by software when using a
DONE s -
software initiated DMA service)
Control bit to disable DMA request at end of major loop completion when using
D_REQ L .
a hardware-initiated DMA service
BWC Control bits for throttling bandwidth control of a channel
E_SG Control bit to enable scatter-gather feature
INT_HALF Control bit to enable interrupt when major loop is half complete
INT_MAJ Control bit to enable interrupt when major loop completes

Figure 129 shows how each DMA request initiates one minor loop transfer (iteration) without
CPU intervention. DMA arbitration can occur after each minor loop, and one level of minor
loop DMA preemption is allowed. The number of minor loops in a major loop is specified by
the beginning iteration count (biter).

Doc ID 16886 Rev 6 280/868

Enhanced Direct Memory Access (eDMA) RM0045

Current major loop

Example memory array iteration count
(CITER)

DMA request

. Minor loop 3
DMA request

: Minor loop Major loop 2
DMA request

. Minor loop 1

Figure 129. Example of multiple loop iterations

Figure 130 lists the memory array terms and how the TCD settings interrelate.

XADDR: XSIZE: Minor loop Offset (xOFF): Number of
(Starting address) (Size of one data (NBYTES in bytes added to current
transfer) minor loop, often address after each transfer
. the same value (Often the same value
. as xSIZE) as xSIZE)

Each DMA source (S) and
destination (D) has its own:
. . . » Address (XADDR)
Minor loop « Size (XSIZE)
« Offset (xOFF)
* Modulo (xMOD)
« Last address adjustment

XLAST: Number of bytes (XLAST) where x =S or D
added to current address .
after major loop . Last minor loop Peripheral queues typically
(typically used to . have size and offset
loop back) equal to NBYTES

Figure 130. Memory array terms

15.5.2 DMA programming errors

The DMA performs various tests on the transfer control descriptor to verify consistency in
the descriptor data. Most programming errors are reported on a per-channel basis with the
exception of channel-priority error, or EDMA_ESR[CPE].

For all error types other than channel-priority errors, the channel number causing the error is
recorded in the EDMA_ESR. If the error source is not removed before the next activation of
the problem channel, the error will be detected and recorded again.

281/868 Doc ID 16886 Rev 6 IYI

RM0045 Enhanced Direct Memory Access (eDMA)
If priority levels are not unique, the highest (channel) priority that has an active request is
selected, but the lowest numbered (channel) with that priority is selected by arbitration and
executed by the DMA engine. The hardware service request handshake signals, error
interrupts, and error reporting are associated with the selected channel.

15.5.3 DMA request assignments

The assignments between the DMA requests from the modules to the channels of the
eDMA are shown in Table 126. The source column is written in C language syntax. The
syntax is module_instance.register[bit].

Table 126. DMA Request Summary for eDMA

DMA Request

Channel

Source

Description

DMA_MUX_CHCONFIGO_SOURCE

DMA_MUX.CHCONFIGO[SOURCE]

DMA MUX channel 0 source

DMA_MUX_CHCONFIG1_SOURCE

—_

DMA_MUX.CHCONFIG1[SOURCE]

DMA MUX channel 1 source

DMA_MUX_CHCONFIG2_SOURCE

DMA_MUX.CHCONFIG2[SOURCE]

DMA MUX channel 2 source

DMA_MUX_CHCONFIG3_SOURCE

DMA_MUX.CHCONFIG3[SOURCE]

DMA MUX channel 3 source

DMA_MUX_CHCONFIG4_SOURCE

DMA_MUX.CHCONFIG4[SOURCE]

DMA MUX channel 4 source

DMA_MUX_CHCONFIG5_SOURCE

DMA_MUX.CHCONFIG5[SOURCE]

DMA MUX channel 5 source

DMA_MUX_CHCONFIG6_SOURCE

DMA_MUX.CHCONFIG6[SOURCE]

DMA MUX channel 6 source

DMA_MUX_CHCONFIG7_SOURCE

DMA_MUX.CHCONFIG7[SOURCE]

DMA MUX channel 7 source

DMA_MUX_CHCONFIG8_SOURCE

DMA_MUX.CHCONFIG8[SOURCE]

DMA MUX channel 8 source

DMA_MUX_CHCONFIG9_SOURCE

Ol N o]l W|DN

DMA_MUX.CHCONFIG9[SOURCE]

DMA MUX channel 9 source

DMA_MUX_CHCONFIG10_SOURCE

-
o

DMA_MUX.CHCONFIG10[SOURCE]

DMA MUX channel 10 source

DMA_MUX_CHCONFIG11_SOURCE

11

DMA_MUX.CHCONFIG11[SOURCE]

DMA MUX channel 11 source

DMA_MUX_CHCONFIG12_SOURCE

12

DMA_MUX.CHCONFIG12[SOURCE]

DMA MUX channel 12 source

DMA_MUX_CHCONFIG13_SOURCE

13

DMA_MUX.CHCONFIG13[SOURCE]

DMA MUX channel 13 source

DMA_MUX_CHCONFIG14_SOURCE

14

DMA_MUX.CHCONFIG14[SOURCE]

DMA MUX channel 14 source

DMA_MUX_CHCONFIG15_SOURCE

15

DMA_MUX.CHCONFIG15[SOURCE]

DMA MUX channel 15 source

15.5.4

Fixed-channel crbitration

DMA arbitration mode considerations

In this mode, the channel service request from the highest priority channel is selected to
execute. Preemption is available in this scenario only.

Round-robin channel arbitration

In this mode, channels are serviced starting with the highest channel number and rotating
through to the lowest channel number without regard to the assigned channel priority levels.

Doc ID 16886 Rev 6

282/868

Enhanced Direct Memory Access (eDMA) RM0045

15.5.5

283/868

DMA transfer

Single request

To perform a simple transfer of n bytes of data with one activation, set the major loop to 1
(TCD.CITER = TCD.BITER = 1). The data transfer will begin after the channel service
request is acknowledged and the channel is selected to execute. After the transfer is
complete, the TCD.DONE bit will be set and an interrupt will be generated if properly
enabled.

For example, the following TCD entry is configured to transfer 16 bytes of data. The eDMA is
programmed for one iteration of the major loop transferring 16 bytes per iteration. The
source memory has a byte wide memory port located at 0x1000. The destination memory
has a word wide port located at 0x2000. The address offsets are programmed in increments
to match the size of the transfer; one byte for the source and four bytes for the destination.
The final source and destination addresses are adjusted to return to their beginning values.

TCD.CITER = TCD.BITER =1
TCD.NBYTES = 16
TCD.SADDR = 0x1000
TCD.SOFF =1

TCD.SSIZE =0

TCD.SLAST =-16
TCD.DADDR = 0x2000
TCD.DOFF =4

TCD.DSIZE =2
TCD.DLAST_SGA=-16
TCD.INT_MAJ =1
TCD.START = 1 (Must be written last after all other fields have been initialized)
All other TCD fields =0

This would generate the following sequence of events:

Doc ID 16886 Rev 6 KYI

RM0045 Enhanced Direct Memory Access (eDMA)

Slave write to the TCD.START bit requests channel service.

The channel is selected by arbitration for servicing.

eDMA engine writes: TCD.DONE = 0, TCD.START =0, TCD.ACTIVE = 1.

eDMA engine reads: channel TCD data from local memory to internal register file.
The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)
b) write_word(0x2000) — first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)
d) write_word(0x2004) — second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)
f) write_word(0x2008) — third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)
h) write_word(0x200c) — last iteration of the minor loop — major loop complete

6. eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 1
(TCD.BITER).

7. eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.
8. The channel retires.

SRl I A

The eDMA goes idle or services the next channel.

Multiple requests

The next example is the same as previous, excepting transferring 32 bytes via two hardware
requests. The only fields that change are the major loop iteration count and the final address
offsets. The eDMA is programmed for two iterations of the major loop transferring 16 bytes
per iteration. After the channel's hardware requests are enabled in the EDMA_ERQR,
channel service requests are initiated by the slave device (ERQR should be set after TCD).
Note that TCD.START = 0.

TCD.CITER = TCD.BITER =2
TCD.NBYTES = 16
TCD.SADDR = 0x1000
TCD.SOFF =1

TCD.SSIZE =0

TCD.SLAST =-32
TCD.DADDR = 0x2000
TCD.DOFF =4

TCD.DSIZE =2
TCD.DLAST_SGA=-32
TCD.INT_MAJ =1
TCD.START = 0 (Must be written last after all other fields have been initialized)
All other TCD fields =0

This generates the following sequence of events:

K‘YI Doc ID 16886 Rev 6 284/868

Enhanced Direct Memory Access (eDMA) RM0045

285/868

SRl I A

6.
7.
8.

First hardware (eDMA peripheral request) request for channel service.

The channel is selected by arbitration for servicing.

eDMA engine writes: TCD.DONE = 0, TCD.START =0, TCD.ACTIVE = 1.

eDMA engine reads: channel TCD data from local memory to internal register file.
The source to destination transfers are executed as follows:

a) read_byte(0x1000), read_byte(0x1001), read_byte(0x1002), read_byte(0x1003)
b) write_word(0x2000) — first iteration of the minor loop

c) read_byte(0x1004), read_byte(0x1005), read_byte(0x1006), read_byte(0x1007)
d) write_word(0x2004) — second iteration of the minor loop

e) read_byte(0x1008), read_byte(0x1009), read_byte(0x100a), read_byte(0x100b)
f) write_word(0x2008) — third iteration of the minor loop

g) read_byte(0x100c), read_byte(0x100d), read_byte(0x100e), read_byte(0x100f)
h) write_word(0x200c) — last iteration of the minor loop

eDMA engine writes: TCD.SADDR = 0x1010, TCD.DADDR = 0x2010, TCD.CITER = 1.
eDMA engine writes: TCD.ACTIVE = 0.

The channel retires — one iteration of the major loop.

The eDMA goes idle or services the next channel.

9.

10.
11.
12.
13.

14.

15.
16.

Second hardware (eDMA peripheral request) requests channel service.

The channel is selected by arbitration for servicing.

eDMA engine writes: TCD.DONE = 0, TCD.START =0, TCD.ACTIVE = 1.

eDMA engine reads: channel TCD data from local memory to internal register file.
The source to destination transfers are executed as follows:

a) read_byte(0x1010), read_byte(0x1011), read_byte(0x1012), read_byte(0x1013)
b) write_word(0x2010) — first iteration of the minor loop

c) read_byte(0x1014), read_byte(0x1015), read_byte(0x1016), read_byte(0x1017)
d) write_word(0x2014) — second iteration of the minor loop

e) read_byte(0x1018), read_byte(0x1019), read_byte(0x101a), read_byte(0x101b)
f) write_word(0x2018) — third iteration of the minor loop

g) read_byte(0x101c), read_byte(0x101d), read_byte(0x101e), read_byte(0x101f)
h) write_word(0x201c) — last iteration of the minor loop — major loop complete

eDMA engine writes: TCD.SADDR = 0x1000, TCD.DADDR = 0x2000, TCD.CITER = 2
(TCD.BITER).

eDMA engine writes: TCD.ACTIVE = 0, TCD.DONE = 1, EDMA_IRQRn = 1.
The channel retires — major loop complete.

The eDMA goes idle or services the next channel.

Modulo feature

The modulo feature of the eDMA provides the ability to implement a circular data queue in
which the size of the queue is a power of two. MOD is a 5-bit bitfield for both the source and
destination in the TCD and specifies which lower address bits are allowed to increment from
their original value after the address + offset calculation. All upper address bits remain the
same as in the original value. A setting of O for this field disables the modulo feature.

Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

15.5.6

Table 127 shows how the transfer addresses are specified based on the setting of the MOD
field. Here a circular buffer is created where the address wraps to the original value while
the 28 upper address bits (0x1234567x) retain their original value. In this example the
source address is set to 0x12345670, the offset is set to 4 bytes and the mod field is set to
4, allowing for a 2% byte (16-byte) size queue.

Table 127. Modulo Feature Example

Lrl?:lﬂee: Address
1 0x12345670
2 0x12345674
3 0x12345678
4 0x1234567C
5 0x12345670
6 0x12345674

TCD status

Minor loop complete

There are two methods to test for minor loop completion when using software initiated
service requests. The first method is to read the TCD.CITER field and test for a change.
Another method may be extracted from the sequence below. The second method is to test
the TCD.START bit AND the TCD.ACTIVE bit. The minor loop complete condition is
indicated by both bits reading zero after the TCD.START was written to a 1. Polling the
TCD.ACTIVE bit may be inconclusive because the active status may be missed if the
channel execution is short in duration.

The TCD status bits execute the following sequence for a software activated channel:

1. TCD.START =1, TCD.ACTIVE = 0, TCD.DONE = 0 (channel service request via
software).

2. TCD.START =0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START =0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor
loop and is idle), or

4. TCD.START =0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major
loop and is idle).

The best method to test for minor loop completion when using hardware initiated service
requests is to read the TCD.CITER field and test for a change. The hardware request and
acknowledge handshakes signals are not visible in the programmer’s model.

The TCD status bits execute the following sequence for a hardware activated channel:

1. eDMA peripheral request asserts (channel service request via hardware).

2. TCD.START =0, TCD.ACTIVE = 1, TCD.DONE = 0 (channel is executing).

3. TCD.START =0, TCD.ACTIVE = 0, TCD.DONE = 0 (channel has completed the minor
loop and is idle), or

4. TCD.START =0, TCD.ACTIVE = 0, TCD.DONE = 1 (channel has completed the major
loop and is idle).

Doc ID 16886 Rev 6 286/868

Enhanced Direct Memory Access (eDMA) RM0045

15.5.7

287/868

For both activation types, the major loop complete status is explicitly indicated via the
TCD.DONE bit.

The TCD.START bit is cleared automatically when the channel begins execution, regardless
of how the channel was activated.

Active channel TCD reads

The eDMA will read back the true TCD.SADDR, TCD.DADDR, and TCD.NBYTES values if
read while a channel is executing. The true values of the SADDR, DADDR, and NBYTES
are the values the eDMA engine is currently using in its internal register file and not the
values in the TCD local memory for that channel. The addresses (SADDR and DADDR) and
NBYTES (decrements to zero as the transfer progresses) can give an indication of the
progress of the transfer. All other values are read back from the TCD local memory.

Preemption status

Preemption is available only when fixed arbitration is selected for channel-arbitration mode.
A preempt-able situation is one in which a preempt-enabled channel is running and a higher
priority request becomes active. When the eDMA engine is not operating in fixed-channel
arbitration mode, the determination of the relative priority of the actively running and the
outstanding requests become undefined. Channel priorities are treated as equal (or more
exactly, constantly rotating) when round-robin arbitration mode is selected.

The TCD.ACTIVE bit for the preempted channel remains asserted throughout the
preemption. The preempted channel is temporarily suspended while the preempting
channel executes one iteration of the major loop. Two TCD.ACTIVE bits set at the same time
in the overall TCD map indicates a higher priority channel is actively preempting a lower
priority channel.

Channel linking

Channel linking (or chaining) is a mechanism in which one channel sets the TCD.START bit
of another channel (or itself), thus initiating a service request for that channel. This operation
is automatically performed by the eDMA engine at the conclusion of the major or minor loop
when properly enabled.

The minor loop channel linking occurs at the completion of the minor loop (or one iteration of
the major loop). The TCD.CITER.E_LINK field are used to determine whether a minor loop
link is requested. When enabled, the channel link is made after each iteration of the minor
loop except for the last. When the major loop is exhausted, only the major loop channel link
fields are used to determine if a channel link should be made. For example, with the initial
fields of:

TCD.CITER.E_LINK =1
TCD.CITER.LINKCH = 0xC
TCD.CITER value = 0x4
TCD.MAJOR.E_LINK =1
TCD.MAJOR.LINKCH = 0x7

will execute as:

Doc ID 16886 Rev 6 KYI

RMO0045

Enhanced Direct Memory Access (eDMA)

Note:

Minor loop done — set channel 12 TCD.START bit
Minor loop done — set channel 12 TCD.START bit
Minor loop done — set channel 12 TCD.START bit
Minor loop done, major loop done — set channel 7 TCD.START bit

When minor loop linking is enabled (TCD.CITER.E_LINK = 1), the TCD.CITER field uses a
nine bit vector to form the current iteration count.

When minor loop linking is disabled (TCD.CITER.E_LINK = 0), the TCD.CITER field uses a
15-bit vector to form the current iteration count. The bits associated with the
TCD.CITER.LINKCH field are concatenated onto the CITER value to increase the range of
the CITER.

After configuration, the TCD.CITER.E_LINK bit and the TCD.BITER.E_LINK bit must be
equal or a configuration error will be reported. The CITER and BITER vector widths must be
equal to calculate the major loop, halfway done interrupt point.

o~

Table 128 summarizes how a DMA channel can link to another DMA channel, i.e, use
another channel’s TCD, at the end of a loop.

Table 128. Channel linking parameters

Desired Link
Behavior

TCD Control Field Name

Description

Link at end of
minor loop

citer.e_link

Enable channel-to-channel linking on minor loop
completion (current iteration).

Link channel number when linking at end of minor loop

citer.linkch (current iteration).

Link at end of completion.

major loop Link channel number when linking at end of major

. . Enable channel-to-channel linking on major loop
major.e_link

major.linkch
loop.

15.5.8

Dynamic programming

This section provides recommended methods to change the programming model during
channel execution.

Dynamic channel linking and dynamic scatter-gather operation

Dynamic channel linking and dynamic scatter-gather operation is the process of changing
the TCD.MAJOR.E_LINK or TCD.E_SG bits during channel execution. These bits are read
from the TCD local memory at the end of channel execution thus allowing the user to enable
either feature during channel execution.

Because the user is allowed to change the configuration during execution, a coherency
model is needed. Consider a scenario where the user attempts to execute a dynamic
channel link by enabling the TCD.MAJOR.E_LINK bit at the same time the eDMA engine is
retiring the channel. The TCD.MAJOR.E_LINK would be set in the programmer’s model, but
it would be unclear whether the actual link was made before the channel retired.

The following coherency model is recommended when executing a dynamic channel link or
dynamic scatter-gather request:

Doc ID 16886 Rev 6 288/868

Enhanced Direct Memory Access (eDMA) RM0045

1. Setthe TCD.MAJOR.E_LINK bit.
2. Read back the TCD.MAJOR.E_LINK bit
3. Testthe TCD.MAJOR.E_LINK request status:
a) If the bit is set, the dynamic link attempt was successful.
b) If the bit is cleared, the attempted dynamic link did not succeed, the channel was
already retiring.

This same coherency model is true for dynamic scatter-gather operations. For both dynamic
requests, the TCD local memory controller forces the TCD.MAJOR.E_LINK and TCD.E_SG
bits to zero on any writes to a channel’s TCD after that channel’'s TCD.DONE bit is set
indicating the major loop is complete.

Note: The user must clear the TCD.DONE bit before writing the TCD.MAJOR.E_LINK or
TCD.E_SG bits. The TCD.DONE bit is cleared automatically by the eDMA engine after a
channel begins execution.

289/868 Doc ID 16886 Rev 6 KYI

RM0045 eDMA Channel Multiplexer (DMA_MUX)

16 eDMA Channel Multiplexer (DMA_MUX)

16.1 Introduction

The eDMA channel multiplexer (DMA_MUX) allows the routing of 16 DMA sources (slots) to
16 eDMA channels. This is illustrated in Figure 131.

e eDMA Channel #0
Source #1 — DMA_MUX
' eDMA Channel #1
-
Source #2
'
Source #3
'
Source #63 >l l— >
Always enabled #1
Always ehabled #2
Trigger #1
. eDMA Channel #15
. L |- »
Trigger #2

Figure 131. DMA_MUX block diagram

K‘YI Doc ID 16886 Rev 6 290/868

eDMA Channel Multiplexer (DMA_MUX) RM0045

16.2

16.3

16.4

16.5

291/868

Features

The DMA_MUX has these major features:

® 16 independently selectable eDMA channel routers
— 2 channels with normal or periodic triggering capability
— 12 channels with normal capability

® Capability to assign each channel router to 1 of 16 possible peripheral DMA sources, 2
always enabled sources or 1 always disabled source

® 3 modes of operation:
— Disabled
— Normal
— Periodic Trigger

Modes of operation

The following operation modes are available:

® Disabled Mode — In this mode, the eDMA channel is disabled. Since disabling and
enabling of eDMA channels is done primarily via the eDMA configuration registers, this
mode is used mainly as the reset state for a eDMA channel in the DMA_MUX. It may
also be used to temporarily suspend a eDMA channel while reconfiguration of the
system takes place (for example, changing the period of a eDMA trigger).

® Normal Mode — In this mode, a eDMA source (such as DSPI_0_TX or DSPI_0_RX
example) is routed directly to the specified eDMA channel. The operation of the
DMA_MUX in this mode is completely transparent to the system.

® Periodic Trigger Mode — In this mode, a eDMA source may only request a eDMA
transfer (such as when a transmit buffer becomes empty or a receive buffer becomes
full) periodically. The period is configured in the registers of the Periodic Interrupt Timer
(PIT).

eDMA channels 0—3 may be used in all three modes, but channels 4—15 may only be
configured to disabled or normal mode.

External signal description
The DMA_MUX has no external pins.

Memory map and register definition

Table 129 shows the memory map for the DMA_MUX. Note that all addresses are offsets;
the absolute address may be computed by adding the specified offset to the base address
of the DMA_MUX.

Doc ID 16886 Rev 6 KYI

RM0045 eDMA Channel Multiplexer (DMA_MUX)
Table 129. DMA_MUX memory map
Base address: OxFFFD_C000
Address offset Register Location
0x0 Channel #0 Configuration (CHCONFIGO) on page 16-292
0x1 Channel #1 Configuration (CHCONFIG1) on page 16-292
OxF Channel #15 Configuration (CHCONFIG15) on page 16-292
All registers are accessible via 8, 16 or 32-bit accesses. However, 16-bit accesses must be
aligned to 16-bit boundaries, and 32-bit accesses must be aligned to 32-bit boundaries. As
an example, CHCONFIGO through CHCONFIGS3 are accessible by a 32-bit READ/WRITE to
address ‘Base + 0x00’, but performing a 32-bit access to address ‘Base + 0x01’ is illegal.
16.5.1 Channel configuration registers (CHCONFIGn)
Each of the total of 16 eDMA channels can be independently enabled/disabled and
associated with 1 of the 28 peripheral eDMA sources + 1 of the 4 always enabled eDMA
sources in the system.
Figure 132. Channel Configuration Registers (CHCONFIGn)
Offset: 0x0 + n (16 registers) Access: User read/write
0 1 2 3 ‘ 4 5 6 7
R
ENBL TRIG SOURCE
W
Reset 0 0 0 0 ‘ 0 0 0 0
Table 130. CHCONFIGn field descriptions
Field Description
eDMA Channel Enable
ENBL enables the eDMA channel.

ENBL 0 eDMA channelis disabled. This mode is primarily used during configuration of the DMA_MUX. The
eDMA has separate channel enables/disables, which should be used to disable or reconfigure a
eDMA channel.

1 eDMA channel is enabled
eDMA Channel Trigger Enable (for triggered channels only)
TRIG enables the periodic trigger capability for the eDMA channel.

TRIG 0 Periodic triggering is disabled. If periodic triggering is disabled, and the ENBL bit is set, the
DMA_MUX will simply route the specified source to the eDMA channel.

1 Triggering is enabled
eDMA Channel Source (slot)

SOURCE |SOURCE specifies which eDMA source, if any, is routed to a particular eDMA channel. Please see
Table 132 for DMA_MUX inputs mapping.

Doc ID 16886 Rev 6 292/868

eDMA Channel Multiplexer (DMA_MUX)

RMO0045

Table 131. Channel and trigger enabling

ENBL | TRIG Function Mode
0 X eDMA channel is disabled Disabled Mode
1 0 eDMA channel is enabled with no triggering Normal Mode
(transparent)
1 1 eDMA channel is enabled with triggering Periodic Trigger Mode

Note:

Note:

16.6

16.6.1

Setting multiple CHCONFIG registers with the same Source value results in unpredictable

behavior.

Before changing the trigger or source settings a eDMA channel must be disabled via the
CHCONFIGn[ENBL] bit.

DMA_MUX inputs

DMA_MUX peripheral sources

Table 132. eDMA channel mapping

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
0 — Always disabled —
1 DSPI 0 DSPI_0 TX DMA_MUX Source #1
2 DSPI 0 DSPI_0 RX DMA_MUX Source #2
3 DSPI 1 DSPI_1 TX DMA_MUX Source #3
4 DSPI 1 DSPI_1 RX DMA_MUX Source #4
5 = = DMA_MUX Source #5
6 — — DMA_MUX Source #6
7 — — DMA_MUX Source #7
8 — — DMA_MUX Source #8
9 = = DMA_MUX Source #9
10 = = DMA_MUX Source #10
11 = = DMA_MUX Source #11
12 = = DMA_MUX Source #12
13 — — DMA_MUX Source #13
14 — — DMA_MUX Source #14
15 — — DMA_MUX Source #15
16 = = DMA_MUX Source #16
17 eMIOS 0 |EMIOSO_CHO DMA_MUX Source #17
18 eMIOS 0 |EMIOSO_CHH1 DMA_MUX Source #18
19 eMIOS 0 |EMIOSO_CH9 DMA_MUX Source #19

293/868

Doc ID 16886 Rev 6

RMO0045

eDMA Channel Multiplexer (DMA_MUX)

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
20 eMIOS 0 |EMIOSO_CH18 DMA_MUX Source #20
21 eMIOS 0 |EMIOS0_CH25 DMA_MUX Source #21
22 eMIOS 0 |EMIOS0_CH26 DMA_MUX Source #22
23 — — DMA_MUX Source #23
24 — — DMA_MUX Source #24
25 — — DMA_MUX Source #25
26 — — DMA_MUX Source #26
27 = = DMA_MUX Source #27
28 = = DMA_MUX Source #28
29 — — DMA_MUX Source #29
30 ADC 1 ADC1_EOC DMA_MUX Source #30
31 — — DMA_MUX Source #31
32 — — DMA_MUX Source #32
33 LINFLEX 0 |[LINFLEX0_RX DMA_MUX Source #33
34 LINFLEX O |LINFLEXO_TX DMA_MUX Source #34
35 = = DMA_MUX Source #35
36 — — DMA_MUX Source #36
37 — — DMA_MUX Source #37
38 — — DMA_MUX Source #38
39 = = DMA_MUX Source #39
40 - — DMA_MUX Source #40
41 = = DMA_MUX Source #41
42 — — DMA_MUX Source #42
43 — — DMA_MUX Source #43
44 — — DMA_MUX Source #44
45 — — DMA_MUX Source #45
46 - — DMA_MUX Source #46
47 = = DMA_MUX Source #47
48 — — DMA_MUX Source #48
49 — — DMA_MUX Source #49
50 — — DMA_MUX Source #50
51 — — DMA_MUX Source #51
52 = = DMA_MUX Source #52
53 = = DMA_MUX Source #53
54 = = DMA_MUX Source #54

Doc ID 16886 Rev 6

294/868

eDMA Channel Multiplexer (DMA_MUX)

RMO0045

Table 132. eDMA channel mapping (continued)

DMA_MUX channel Module eDMA requesting module DMA_MUX input #
55 — — DMA_MUX Source #55
56 = = DMA_MUX Source #56
57 = = DMA_MUX Source #57
58 — — DMA_MUX Source #58
59 — — DMA_MUX Source #59
60 PIT_O ALWAYS ENABLED DMA_MUX Source #60
61 PIT_1 ALWAYS ENABLED DMA_MUX Source #61
62 = = DMA_MUX Source #62
63 = = DMA_MUX Source #63

16.6.2 DMA_MUX periodic trigger inputs

Table 133. DMA_MUX periodic trigger inputs

DMA_MUKX trigger input PIT channel
Trigger #1 PITO
Trigger #2 PITH

16.7 Functional description

The primary purpose of the DMA_MUX is to provide flexibility in the system’s use of the
available eDMA channels. As such, configuration of the DMA_MUX is intended to be a static
procedure done during execution of the system boot code. However, if the procedure
outlined in Section 16.8.2, Enabling and configuring sources, is followed, the configuration

of the DMA_MUX may be changed during the normal operation of the system.

Functionally, the DMA_MUX channels may be divided into two classes: Channels, which
implement the normal routing functionality plus periodic triggering capability, and channels,

which implement only the normal routing functionality.

16.7.1 eDMA channels with periodic triggering capability

Besides the normal routing functionality, the first four channels of the DMA_MUX provide a
special periodic triggering capability that can be used to provide an automatic mechanism to

transmit bytes, frames or packets at fixed intervals without the need for processor

intervention. The trigger is generated by the periodic interrupt timer (PIT); as such, the
configuration of the periodic triggering interval is done via configuration registers in the PIT.
Please refer to the periodic interrupt timer chapter of the reference manual for more

information on this topic.

Note: Because of the dynamic nature of the system (such as eDMA channel priorities, bus
arbitration, or interrupt service routine lengths), the number of clock cycles between a

trigger and the actual eDMA transfer cannot be guaranteed.

295/868 Doc ID 16886 Rev 6

RM0045 eDMA Channel Multiplexer (DMA_MUX)

Source #1
> _________
Source #2
> _________
Source #3 ol . i DMA Channel #0
. ----| Trigger#1 | ---- g :
; .- Trigger #2 | - - - -
Source #28 '
- DMA Channel #3
- [Tigger#a_}---
Always enabled = ~
Always enabled

Figure 133. DMA_MUX channel 0-3 block diagram

The eDMA channel triggering capability allows the system to “schedule” regular eDMA
transfers, usually on the transmit side of certain peripherals, without the intervention of the
processor. This trigger works by gating the request from the peripheral to the eDMA until a
trigger event has been seen. This is illustrated in Figure 134.

Periph Request / \ / _/

Trigger |_| . |_| . |_|
DMA Request / _M

Figure 134. DMA_MUX channel triggering: Normal operation

Once the eDMA request has been serviced, the peripheral will negate its request, effectively
resetting the gating mechanism until the peripheral re-asserts its request AND the next
trigger event is seen. This means that if a trigger is seen, but the peripheral is not requesting
a transfer, that triggered will be ignored. This situation is illustrated in Figure 135.

KYI Doc ID 16886 Rev 6 296/868

eDMA Channel Multiplexer (DMA_MUX) RM0045

Periph Request / | \ /

i o i

DMA Request / \ /

16.7.2

297/868

Figure 135. DMA_MUX channel triggering: Ignored trigger

This triggering capability may be used with any peripheral that supports eDMA transfers,
and is most useful for periodically polling external devices on a particular bus.

As an example, the transmit side of a DSPI is assigned to a eDMA channel with a trigger, as
described above. Once set up, the SPI will request eDMA transfers (presumably from
memory) as long as its transmit buffer is empty. By using a trigger on this channel, the DSPI
transfers can be automatically performed every 5 ps (as an example). On the receive side of
the SPI, the SPI and eDMA can be configured to transfer receive data into memory,
effectively implementing a method to periodically read data from external devices and
transfer the results into memory without processor intervention.

A more detailed description of the capability of each trigger (such as resolution, or range of
values) may be found in the periodic interrupt timer chapter of the reference manual.

eDMA channels with no triggering capability

Channels 4-15 of the DMA_MUX provide the normal routing functionality as described in
Section 16.3, Modes of operation.

Doc ID 16886 Rev 6 KYI

RM0045 eDMA Channel Multiplexer (DMA_MUX)

Source #1 \
> ________

Source #2
o
Source #3
I DMA Channel #4
_______ 4 :
Source #28
- e I R ‘
DMA Channel #15
Alwaysenabled = | | [T

Always enabled

Figure 136. DMA_MUX channel 4-15 block diagram

16.8 Initialization/Application information

16.8.1 Reset

The reset state of each individual bit is shown in Section 16.5, Memory map and register
definition. In summary, after reset, all channels are disabled and must be explicitly enabled
before use.

16.8.2 Enabling and configuring sources

Enabling a source with periodic triggering

The following describes how to enable a source with periodic triggering:

KYI Doc ID 16886 Rev 6 298/868

eDMA Channel Multiplexer (DMA_MUX) RM0045

1. Determine with which eDMA channel the source will be associated. Remember that
only the first four eDMA channels have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel
may be enabled at this point.

4. Inthe PIT, configure the corresponding timer.

5. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 1 Configure source #3 Transmit for use with eDMA Channel 2, with periodic
triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Configure Timer 4 in the Periodic Interrupt Timer (PIT) for the desired trigger interval

4. Write 0OxC3 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #4 above:
In File registers.h:

#define DMAMUX BASE ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG2 = (volatile unsigned char *)

(DMAMUX_BASE_ADDR+OXOOO2);
In File main.c:

#include "registers.h"

*CHCONFIG2 = 0x00;
*CHCONFIG2 0xC3;

Enabling a source without periodic triggering

The following describes how to enable a source without periodic triggering:

1. Determine with which eDMA channel the source will be associated. Remember that
only eDMA channels 0-3 have periodic triggering capability.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Ensure that the eDMA channel is properly configured in the eDMA. The eDMA channel
may be enabled at this point.

4. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL is set and the TRIG bit is cleared.

Example 2 Configure source #5 Transmit for use with eDMA Channel 2, without
periodic triggering capability

1. Write 0x00 to CHCONFIG2 (Base Address + 0x02)

2. Configure Channel 2 in the eDMA, including enabling the channel

3. Write 0x85 to CHCONFIG2 (Base Address + 0x02)

The following code example illustrates steps #1 and #3 above:
In File registers.h:
#define DMAMUX_BASE ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */

299/868 Doc ID 16886 Rev 6 KYI

RM0045 eDMA Channel Multiplexer (DMA_MUX)

volatile unsigned char *CHCONFIG2 = (volatile unsigned char *)
(DMAMUX BASE ADDR+0x0002) ;

In File main.c:
#include "registers.h"

*CHCONFIG2 = 0x00;
*CHCONFIG2 0x85;

Disabling a source

A particular eDMA source may be disabled by not writing the corresponding source value
into any of the CHCONFIG registers. Additionally, some module specific configuration may
be necessary. Please refer to the appropriate section for more details.

Switching the source of a eDMA channel

The following describes how to switch the source of a eDMA channel:

1. Disable the eDMA channel in the eDMA and reconfigure the channel for the new
source.

2. Clear the ENBL and TRIG bits of the eDMA channel.

3. Select the source to be routed to the eDMA channel. Write to the corresponding
CHCONFIG register, ensuring that the ENBL and TRIG bits are set.

Example 3 Switch eDMA Channel 8 from source #5 transmit to source #7 transmit

1. Inthe eDMA configuration registers, disable eDMA channel 8 and re-configure it to
handle the transfers to peripheral slot 7. This example assumes channel 8 doesn’t have
triggering capability.

2. Write 0x00 to CHCONFIG8 (Base Address + 0x08)

3. Write 0x87 to CHCONFIG8 (Base Address + 0x08).

The following code example illustrates steps #2 and #3 above:
In File registers.h:

#define DMAMUX_BASE ADDR 0xFC084000/* Example only ! */
/* Following example assumes char is 8-bits */
volatile unsigned char *CHCONFIG8 = (volatile unsigned char *)

(DMAMUX BASE ADDR+0x0008) ;

In File main.c:
#include "registers.h"

*CHCONFIG8
*CHCONFIG8

0x00;
0x87;

KYI Doc ID 16886 Rev 6 300/868

Interrupt Controller (INTC) RM0045

17

17.1

17.2

301/868

Interrupt Controller (INTC)

Introduction

The INTC provides priority-based preemptive scheduling of interrupt service requests
(ISRs). This scheduling scheme is suitable for statically scheduled hard real-time systems.
The INTC supports 95 interrupt requests. It is targeted to work with a Power Architecture
technology processor and automotive powertrain applications where the ISRs nest to
multiple levels, but it also can be used with other processors and applications.

For high priority interrupt requests in these target applications, the time from the assertion of
the peripheral’s interrupt request from the peripheral to when the processor is performing
useful work to service the interrupt request needs to be minimized. The INTC supports this
goal by providing a unique vector for each interrupt request source. It also provides 16
priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. Since
each individual application will have different priorities for each source of interrupt request,
the priority of each interrupt request is configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be
supported. The INTC supports the priority ceiling protocol for coherent accesses. By
providing a modifiable priority mask, the priority can be raised temporarily so that all tasks
which share the resource cannot preempt each other.

Multiple processors can assert interrupt requests to each other through software
configurable interrupt requests. These same software configurable interrupt requests also
can be used to break the work involved in servicing an interrupt request into a high priority
portion and a low priority portion. The high priority portion is initiated by a peripheral
interrupt request, but then the ISR can assert a software configurable interrupt request to
finish the servicing in a lower priority ISR. Therefore these software configurable interrupt
requests can be used instead of the peripheral ISR scheduling a task through the RTOS.

Features

Supports 87 peripheral and 8 software-configurable interrupt request sources
Unique 9-bit vector per interrupt source

Each interrupt source can be programmed to one of 16 priorities

Preemption

— Preemptive prioritized interrupt requests to processor

— ISR at a higher priority preempts ISRs or tasks at lower priorities

— Automatic pushing or popping of preempted priority to or from a LIFO

— Ability to modify the ISR or task priority; modifying the priority can be used to
implement the priority ceiling protocol for accessing shared resources.

® Low latency — 3 clocks from receipt of interrupt request from peripheral to interrupt
request to processor

Doc ID 16886 Rev 6 KYI

RM0045 Interrupt Controller (INTC)

Table 134. Interrupt sources available

Interrupt sources (95) Number available

Software 8
ECSM 1
eDMA 17
Software Watchdog (SWT) 1
STM

Flash/SRAM ECC (SEC-DED)

Real Time Counter (RTC/API)

System Integration Unit Lite (SIUL)

WKPU

MC_ME

MC_RGM

FXOSC

PIT

ADC_1

FlexCAN_O

LINFlex_0

LINFlex_1

LINFlex_2

DSPI_0

DSPI_1

Enhanced Modular I/O Subsystem 0 (eMIOS_0)

B I IS B\ \ G

—_

—_

OOl W Ww| w|(N|INd| >

—
N

17.3 Block diagram
Figure 137 provides a block diagram of the INTC.

KYI Doc ID 16886 Rev 6 302/868

Interrupt Controller (INTC) RM0045

Software o
Priority Module
Set/Clear Select Configuration Hardware
Interrupt Registers Register Vector Enable
Registers 9 1
ﬁ;)
End of Vector Tabl
‘ector Table
Y n'x Highest Lowest E;erirst’:g: Entry Size |
Flag Bits 4-bits Priority Vector 9 y
Peripheral Interrupt Interrupt Interrupt y Interrupt
Interrupt 8 Y Requests Request Vector Processor O Vector
Requests n' «| Priority n' «| Request n' «| Vector 9, o Interrupt 9, 3
Arbitrator | selector “| Encoder “| Acknowledge
. . Register
4 Highest Priority A
Pushed New
Priority Priority ¥ Interrupt
4 _ 4 Request to
~ Processor 0 [~ Update Interrupt Vector 1 Processor
Processor 0 | Popped Current Current Priority
Priority Priority Priority Priority | Gomparator 1 >
LIFO 4 >»| Register 4 >
AAA A A A A
Interrupt Acknowledge 1
Push/Update/Acknowledge 1 Slave Peripheral
Interface Bus
Pop 1 | for Reads
& Writes

|:| Memory Mapped Registers

|:| Non-Memory Mapped Logic

17.4

17.41

303/868

Figure 137. INTC block diagram

Modes of operation

Normal mode

In normal mode, the INTC has two handshaking modes with the processor: software vector
mode and hardware vector mode.

Software vector mode

In software vector mode, software, that is the interrupt exception handler, must read a
register in the INTC to obtain the vector associated with the interrupt request to the
processor. The INTC will use software vector mode for a given processor when its
associated HVEN bit in INTC_MCR is negated. The hardware vector enable signal to
processor 0 or processor 1 is driven as negated when its associated HVEN bit is negated.
The vector is read from INC_IACKR. Reading the INTC_IACKR negates the interrupt
request to the associated processor. Even if a higher priority interrupt request arrived while
waiting for this interrupt acknowledge, the interrupt request to the processor will negate for
at least one clock. The reading also pushes the PRI value in INTC_CPR onto the associated
LIFO and updates PRI in the associated INTC_CPR with the new priority.

Furthermore, the interrupt vector to the processor is driven as all 0s. The interrupt
acknowledge signal from the associated processor is ignored.

Doc ID 16886 Rev 6 KYI

RMO0045

Interrupt Controller (INTC)

17.5

17.5.1

Hardware vector mode

In hardware vector mode, the hardware is the interrupt vector signal from the INTC in
conjunction with a processor with the capability use that vector. In hardware vector mode,
this hardware causes the first instruction to be executed in handling the interrupt request to
the processor to be specific to that vector. Therefore the interrupt exception handler is
specific to a peripheral or software configurable interrupt request rather than being common
to all of them. The INTC uses hardware vector mode for a given processor when the
associated HVEN bit in the INTC_MCR is asserted. The hardware vector enable signal to
the associated processor is driven as asserted. When the interrupt request to the
associated processor asserts, the interrupt vector signal is updated. The value of that
interrupt vector is the unique vector associated with the preempting peripheral or software
configurable interrupt request. The vector value matches the value of the INTVEC field in
the INTC_IACKR field in the INTC_IACKR, depending on which processor was assigned to
handle a given interrupt source.

The processor negates the interrupt request to the processor driven by the INTC by
asserting the interrupt acknowledge signal for one clock. Even if a higher priority interrupt
request arrived while waiting for the interrupt acknowledge, the interrupt request to the
processor will negate for at least one clock.

The assertion of the interrupt acknowledge signal for a given processor pushes the
associated PRI value in the associated INTC_CPR register onto the associated LIFO and
updates the associated PRI in the associated INTC_CPR register with the new priority. This
pushing of the PRI value onto the associated LIFO and updating PRI in the associated
INTC_CPR does not occur when the associated interrupt acknowledge signal asserts and
INTC_SSCIR0_3-INTC_SSCIR4_7 is written at a time such that the PRI value in the
associated INTC_CPR register would need to be pushed and the previously last pushed
PRI value would need to be popped simultaneously. In this case, PRI in the associated
INTC_CPR is updated with the new priority, and the associated LIFO is neither pushed or

popped.
Debug mode

The INTC operation in debug mode is identical to its operation in normal mode.

Stop mode

The INTC supports STOP mode. The INTC can have its clock input disabled at any time by
the clock driver on the device. While its clocks are disabled, the INTC registers are not
accessible.

The INTC requires clocking in order for a peripheral interrupt request to generate an
interrupt request to the processor. Since the INTC is not clocked in STOP mode, peripheral
interrupt requests can not be used as a wakeup source, unless the device supports that
interrupt request as a wakeup source.

Memory map and register description

Module memory map

Table 135 shows the INTC memory map.

Doc ID 16886 Rev 6 304/868

Interrupt Controller (INTC)

RMO0045

Table 135. INTC memory map

Base address: 0xFFF4_8000

Address offset Register Location
0x0000 INTC Module Configuration Register (INTC_MCR) on page 17-305
0x0004 Reserved
0x0008 INTC Current Priority Register for Processor (INTC_CPR) | on page 17-306
0x000C Reserved
0x0010 INTC Interrupt Acknowledge Register (INTC_IACKR) ‘ on page 17-308
0x0014 Reserved
0x0018 INTC End-of-Interrupt Register (INTC_EOIR) ’ on page 17-309
0x001C Reserved

0X0020-0x0027 :m$g_séosf’tcvvlz|a:;2_87<)ethlear Interrupt Registers (INTC_SSCIRO_3- on page 17-309

0x0028-0x003C Reserved

1.

The PRI fields are “reserved” for peripheral interrupt requests whose vectors are labeled ‘Reserved’ in Figure 139.

17.5.2 Register description

With exception of the INTC_SSCIn and INTC_PSRn, all registers are 32 bits in width. Any
combination of accessing the four bytes of a register with a single access is supported,
provided that the access does not cross a register boundary. These supported accesses
include types and sizes of eight bits, aligned 16 bits, misaligned 16 bits to the middle two

bytes, and aligned 32 bits.

305/868

Although INTC_SSCInand INTC_PSRn are 8 bits wide, they can be accessed with a single
16-bit or 32-bit access, provided that the access does not cross a 32-bit boundary.

In software vector mode, the side effects of a read of INTC_IACKR are the same regardless
of the size of the read. In either software or hardware vector mode, the size of a write to
either INTC_SSCIR0_3-INTC_SSCIR4_7 or INTC_EOIR does not affect the operation of
the write.

INTC Module Configuration Register (INTC_MCR)

The module configuration register is used to configure options of the INTC.

Doc ID 16886 Rev 6 KYI

RMO0045

Interrupt Controller (INTC)

Offset: 0x0000

Figure 138. INTC Module Configuration Register (INTC_MCR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 () 0 0 0 0 pd
E g
w > I
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 136. INTC_MCR field descriptions
Field Description
Vector table entry size.
Controls the number of ‘0’s to the right of INTVEC in Section INTC Interrupt Acknowledge Register
(INTC_IACKR). If the contents of INTC_IACKR are used as an address of an entry in a vectortable as
VTES in software vector mode, then the number of rightmost ‘0’s will determine the size of each vector table
entry. VTES impacts software vector mode operation but also affects INTC_IACKR[INTVEC] position
in both hardware vector mode and software vector mode.
0 4 bytes
1 8 bytes
Hardware vector enable.
Controls whether the INTC is in hardware vector mode or software vector mode. Refer to
HVEN Section 17.4 Modes of operation, for the details of the handshaking with the processor in each mode.
0 Software vector mode
1 Hardware vector mode

Offset: 0x0008

INTC Current Priority Register for Processor (INTC_CPR)

Figure 139. INTC Current Priority Register (INTC_CPR)

Access: User read/write

4 5 6 7|8 9 10 11|12 13 14 15|16 17 18 19|20 21 22 23|24 25 26 27|28 29 30 31

R

ojo|jojo|o0|0j0j0jO0|jO|O|0O|0O|O|O|O|O|O|0O|O

PRI

W

Reset 0 0 0 O

000O0O0O0O0O0O0OOOOOOOOOOOOOOOOT 1T 11

Table 137. INTC_CPR field descriptions

Field

Description

PRI

Priority
PRI is the priority of the currently executing ISR according to the field values defined in Table 138.

Doc ID 16886 Rev 6 306/868

Interrupt Controller (INTC) RM0045

Note:

The INTC_CPR masks any peripheral or software configurable interrupt request set at the
same or lower priority as the current value of the INTC_CPRI[PRI] field from generating an
interrupt request to the processor. When the INTC interrupt acknowledge register
(INTC_IACKR) is read in software vector mode or the interrupt acknowledge signal from the
processor is asserted in hardware vector mode, the value of PRI is pushed onto the LIFO,
and PRI is updated with the priority of the preempting interrupt request. When the INTC
end-of-interrupt register (INTC_EOIR) is written, the LIFO is popped into the INTC_CPR’s
PRI field.

The masking priority can be raised or lowered by writing to the PRI field, supporting the
PCP. Refer to Section 17.7.5 Priority ceiling protocol.

A store to modify the PRI field which closely precedes or follows an access to a shared
resource can result in a non-coherent access to that resource. Refer to Section Ensuring
coherency for example code to ensure coherency.

Table 138. PRI values

307/868

PRI Meaning

1111 Priority 15—nhighest priority

1110 Priority 14

1101 Priority 13

1100 Priority 12

1011 Priority 11

1010 Priority 10

1001 Priority 9

1000 Priority 8

0111 Priority 7

0110 Priority 6

0101 Priority 5

0100 Priority 4

0011 Priority 3

0010 Priority 2

0001 Priority 1

0000 Priority 0—lowest priority
Doc ID 16886 Rev 6 Ky_l

RM0045 Interrupt Controller (INTC)

INTC Interrupt Acknowledge Register (INTC_IACKR)

Figure 140. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =0

Offset: 0x0010 Access: User read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R
VTBA[20:5]
w
Reset © 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0
16 17 18 19 ‘ 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R INTVEC 0 0
VTBA[4:0]
w
Reset © 0 0 0 ‘ 0 0 0 0 0 0 0 0 0 0 0 0

Figure 141. INTC Interrupt Acknowledge Register (INTC_IACKR) when INTC_MCR[VTES] =1

Offset: 0x0010 Access: User read/write
0 1 2 3 ‘ 4 5 6 7 ‘ 8 9 10 11 ‘ 12 13 14 15
R
VTBA[19:4]
w
Reset © 0 0 0 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
R INTVEC 0 0 0
VTBA[3:0]
w
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 139. INTC_IACKR field descriptions

Field Description

Vector Table Base Address

VTBA
Can be the base address of a vector table of addresses of ISRs.

Interrupt Vector

INTVEC It is the vector of the peripheral or software configurable interrupt request that caused the interrupt
request to the processor. When the interrupt request to the processor asserts, the INTVEC is
updated, whether the INTC is in software or hardware vector mode.

The interrupt acknowledge register provides a value which can be used to load the address
of an ISR from a vector table. The vector table can be composed of addresses of the ISRs
specific to their respective interrupt vectors.

In software vector mode, the INTC_IACKR has side effects from reads. Therefore, it must
not be speculatively read while in this mode. The side effects are the same regardless of the

KYI Doc ID 16886 Rev 6 308/868

Interrupt Controller (INTC)

RMO0045

size of the read. Reading the INTC_IACKR does not have side effects in hardware vector

mode.

INTC End-of-Interrupt Register (INTC_EOIR)

Offset: 0x0018

Figure 142. INTC End-of-Interrupt Register (INTC_EOIR)

4 5 6

7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Access: Write only

24 25 26 27

28 29 30 31

R/0j0j0O|O

0|0]|0]|0

0|0

0/0|0|0|0O]O0

0|0]|0]|0

0|0|0]|0

0/0|0]|0

W

See

text

Reset 0 0 0 0

0O 0 0 O

0 0 0 O

0 0 0 O

0 0 0 O

0O 0 0 O

0 0 0 O

0O 0 0 O

Writing to the end-of-interrupt register signals the end of the servicing of the interrupt
request. When the INTC_EOIR is written, the priority last pushed on the LIFO is popped into
INTC_CPR. An exception to this behavior is described in Section Hardware vector mode.
The values and size of data written to the INTC_EOIR are ignored. The values and sizes
written to this register neither update the INTC_EOIR contents or affect whether the LIFO
pops. For possible future compatibility, write four bytes of all Os to the INTC_EOIR.

Reading the INTC_EOIR has no effect on the LIFO.

INTC Software Set/Clear Interrupt Registers (INTC_SSCIR0_3-
INTC_SSCIR4_7)

Figure 143. INTC Software Set/Clear Interrupt Register 0-3 (INTC_SSCIR[0:3])

Offset: 0x0020

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Rl 0 0 0 0 0 0 0| e 0 0 0 0 0 0 o | =

— —

w SET0| O SET1| O
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl 0 0 0 0 0 0 0 % 0 0 0 0 0 0 0 g

w SET2| O SET3| O

Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

309/868 Doc ID 16886 Rev 6 KYI

RM0045 Interrupt Controller (INTC)

Figure 144. INTC Software Set/Clear Interrupt Register 4-7 (INTC_SSCIR[4:7])

Offset: 0x0024 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 % 0 0 0 0 0 0 0 @
W SET4| O SET5| ©
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 % 0 0 0 0 0 0 0 E
w SET6| © SET7| ©
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 140. INTC_SSCIR[0:7] field descriptions
Field Description
Set Flag Bits
SETx Writing a 1 sets the corresponding CLRx bit. Writing a 0 has no effect. Each SET x always will be read
asalo.

Clear Flag Bits

CLRx is the flag bit. Writing a 1 to CLRx clears it provided that a 1 is not written simultaneously to its
CLRx corresponding SETx bit. Writing a 0 to CLRx has no effect.

0 Interrupt request not pending within INTC

1 Interrupt request pending within INTC

The software set/clear interrupt registers support the setting or clearing of software
configurable interrupt request. These registers contain eight independent sets of bits to set
and clear a corresponding flag bit by software. Excepting being set by software, this flag bit
behaves the same as a flag bit set within a peripheral. This flag bit generates an interrupt
request within the INTC like a peripheral interrupt request. Writing a 1 to SETx will leave
SETx unchanged at 0 but sets CLRx. Writing a 0 to SETx has no effect. CLRx is the flag bit.
Writing a 1 to CLRx clears it. Writing a 0 to CLRx has no effect. If a 1 is written
simultaneously to a pair of SETx and CLRx bits, CLRx will be asserted, regardless of
whether CLRx was asserted before the write.

KYI Doc ID 16886 Rev 6 310/868

Interrupt Controller (INTC)

RMO0045

INTC Priority Select Registers (INTC_PSR0_3-INTC_PSR152_154)

Figure 145. INTC Priority Select Register 0-3 (INTC_PSR[0:3])

Offset: 0x0040

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R 0 0 0 0 PRIO 0 0 0 0 PRI
w
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R 0 0 0 0 PRI2 0 0 0 0 PRI3
w
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Figure 146. INTC Priority Select Register 152-154 (INTC_PSR[152:154])

Offset: 0xOD8C

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0
PRI152 PRI153
w
Reset © 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0
PRI154
w
Reset © 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 141. INTC_PSRO0_3-INTC_PSR152_154 field descriptions
Field Description
PRI Priority Select
PRIx selects the priority for interrupt requests. See Section 17.6 Functional description.
Table 142. INTC Priority Select Register address offsets
INTC_PSRx_x Offset address INTC_PSRx_x Offset address
INTC_PSRO0_3 0x0040 INTC_PSR80_83 0x0090
INTC_PSR4_7 0x0044 INTC_PSR84_87 0x0094
INTC_PSR8_11 0x0048 INTC_PSR88_91 0x0098
INTC_PSR12_15 0x004C INTC_PSR92_95 0x009C
INTC_PSR16_19 0x0050 INTC_PSR96_99 0x00A0
311/868 Doc ID 16886 Rev 6 Ky_l

RMO0045

Interrupt Controller (INTC)

17.6

Table 142. INTC Priority Select Register address offsets (continued)

INTC_PSRx_x Offset address INTC_PSRx_x Offset address
INTC_PSR20_23 0x0054 INTC_PSR100_103 0x00A4
INTC_PSR24_27 0x0058 INTC_PSR104_107 0x00A8
INTC_PSR28_31 0x005C INTC_PSR108_111 0x00AC
INTC_PSR32_35 0x0060 INTC_PSR112_115 0x00B0O
INTC_PSR36_39 0x0064 INTC_PSR116_119 0x00B4
INTC_PSR40_43 0x0068 INTC_PSR120_123 0x00B8
INTC_PSR44_47 0x006C INTC_PSR124_127 0x00BC
INTC_PSR48_51 0x0070 INTC_PSR128_131 0x00CO0
INTC_PSR52_55 0x0074 INTC_PSR132_135 0x00C4
INTC_PSR56_59 0x0078 INTC_PSR136_139 0x00C8
INTC_PSR60_63 0x007C INTC_PSR140_143 0x00CC
INTC_PSR64_67 0x0080 INTC_PSR144_147 0x00D0
INTC_PSR68_71 0x0084 INTC_PSR148_151 0x00D4
INTC_PSR72_75 0x0088 INTC_PSR152_154 0x00D8
INTC_PSR76_79 0x008C

Note:

Functional description

The functional description involves the areas of interrupt request sources, priority
management, and handshaking with the processor.

The INTC has no spurious vector support. Therefore, if an asserted peripheral or software
settable interrupt request, whose PRIn value in INTC_PSRO-INTC_PSR154 is higher than
the PRI value in INTC_CPR, negates before the interrupt request to the processor for that
peripheral or software settable interrupt request is acknowledged, the interrupt request to
the processor still can assert or will remain asserted for that peripheral or software settable
interrupt request. In this case, the interrupt vector will correspond to that peripheral or
software settable interrupt request. Also, the PRI value in the INTC_CPR will be updated
with the corresponding PRIn value in INTC_PSRn. Furthermore, clearing the peripheral
interrupt request’s enable bit in the peripheral or, alternatively, setting its mask bit has the
same consequences as clearing its flag bit. Setting its enable bit or clearing its mask bit
while its flag bit is asserted has the same effect on the INTC as an interrupt event setting the
flag bit.

Table 143. Interrupt vector table

IRQ #

Offset

Size

(bytes) Module

Interrupt

Section A (Core Section)

— | 0x0000 16

Critical Input

C
(INTC software vector mode) / NMI ore

— | 0x0010 16

Machine check / NMI Core

Doc ID 16886 Rev 6 312/868

Interrupt Controller (INTC)

RMO0045

Table 143. Interrupt vector table (continued)

IRQ #| Offset (bSyi tZ:s) Interrupt Module
— | 0x0020 16 |Data Storage Core
— | 0x0030 16 |Instruction Storage Core
External Input
— | 0x0040 16 (INTC softvf/)are vector mode) Core
— | 0x0050 16 |Alignment Core
— | 0x0060 16 |Program Core
— | 0x0070 16 |Reserved Core
— | 0x0080 16 |System call Core
— | 0x0090 96 |Unused Core
— | Ox00FO0 16 |Debug Core
— | 0x0100 | 1792 |Unused Core
Section B (On-Platform Peripherals)
0 0x0800 4 |Software configurable flag 0 Software
1 0x0804 4 |Software configurable flag 1 Software
2 0x0808 4 |Software configurable flag 2 Software
3 0x080C 4 |Software configurable flag 3 Software
4 0x0810 4 |Software configurable flag 4 Software
5 0x0814 4 |Software configurable flag 5 Software
6 0x0818 4 |Software configurable flag 6 Software
7 0x081C 4 |Software configurable flag 7 Software
8 0x0820 4 Reserved
Platform Flash Bank 0 Abort |
Platform Flash Bank 0 Stall |
9 0x0824 4 Platform Flash Bank 1 Abort | ECSM
Platform Flash Bank 1 Stall |
10 | 0x0828 4 Combined Error eDMA
11 | 0x082C 4 Channel 0 eDMA
12 | 0x0830 4 |Channel 1 eDMA
13 | 0x0834 4 Channel 2 eDMA
14 | 0x0838 4 Channel 3 eDMA
15 | 0x083C 4 |Channel 4 eDMA
16 | 0x0840 4 Channel 5 eDMA
17 | 0x0844 4 Channel 6 eDMA
18 | 0x0848 4 |Channel 7 eDMA
19 | 0x084C 4 |Channel 8 eDMA
313/868 Doc ID 16886 Rev 6 KY_I

RMO0045 Interrupt Controller (INTC)
Table 143. Interrupt vector table (continued)
IRQ #| Offset (bSyi tZ:s) Interrupt Module
20 | 0x0850 4 |Channel 9 eDMA
21 0x0854 4 Channel 10 eDMA
22 | 0x0858 4 Channel 11 eDMA
23 | 0x085C 4 Channel 12 eDMA
24 | 0x0860 4 Channel 13 eDMA
25 | 0x0864 4 Channel 14 eDMA
26 | 0x0868 4 Channel 15 eDMA
27 | 0x086C 4 Reserved
28 | 0x0870 4 |Timeout SWT
29 | 0x0874 4 Reserved
30 | 0x0878 4 Match on channel 0 ST™M
31 | 0x087C 4 Match on channel 1 STM
32 | 0x0880 4 Match on channel 2 ST™M
33 | 0x0884 4 Match on channel 3 ST™M
34 | 0x0888 4 Reserved
35 |ox088C | 4 Egg:ggg:g:::g::;ﬁﬂ | Platform ECC Double Bit Detection
36 | 0x0890 | 4 Egg:ggg:g:::g:ﬂ;fﬂ | Platform ECC Single Bit Correction
37 | 0x0894 4 Reserved
Section C
38 | 0x0898 4 RTC RTC/API
39 | 0x089C 4 API RTC/API
40 | Ox08A0 4 Reserved
41 0x08A4 4 SIU External IRQ_0 SIUL
42 | Ox08A8 4 SIU External IRQ_1 SIUL
43 | Ox08AC 4 SIU External IRQ_2 SIUL
44 | 0x08B0O 4 Reserved
45 | 0x08B4 4 Reserved
46 | 0x08B8 4 WakeUp_IRQ_0 WKPU
47 | Ox08BC 4 WakeUp_IRQ_1 WKPU
48 | 0x08CO 4 WakeUp_IRQ_2 WKPU
49 | 0x08C4 4 WakeUp_IRQ_3 WKPU
50 | 0x08C8 4 Reserved
51 | 0x08CC 4 Safe Mode Interrupt MC_ME

Doc ID 16886 Rev 6

314/868

Interrupt Controller (INTC)

RMO0045

Table 143. Interrupt vector table (continued)

IRQ #| Offset (bSyi tZ:s) Interrupt Module
52 | 0x08DO0O 4 Mode Transition Interrupt MC_ME
53 | 0x08D4 4 Invalid Mode Interrupt MC_ME
54 | 0x08D8 4 Invalid Mode Config MC_ME
55 | 0x08DC 4 Reserved
56 | OXO8EO 4 Z:gﬁ:ﬁ?::rig? ((ij;iti::)ctive reset alternate MC_RGM
57 | Ox08E4 4 FXOSC counter expired (ipi_int_osc) FXOSC
58 | OxO8E8 4 Reserved
59 | Ox08EC 4 PITimer Channel 0 PIT
60 | 0xO8FO 4 |PITimer Channel 1 PIT
61 | OxO8F4 4 |PITimer Channel 2 PIT
62 | Ox08F8 4 Reserved
63 | 0X08FC 4 Reserved
64 | 0x0900 4 Reserved
65 | 0x0904 4 |FlexCAN_ESR[ERR_INT] FlexCAN_O
FlexCAN_ESR_BOFF |
66 | 0x0908 4 FlexCAN_Transmit_Warning | FlexCAN_O
FlexCAN_Receive_Warning
67 | 0x090C 4 Reserved
68 | 0x0910 4 |FlexCAN_BUF_00_03 FlexCAN_O
69 | 0x0914 4 |FlexCAN_BUF_04_07 FlexCAN_O
70 | 0x0918 4 |FlexCAN_BUF_08_11 FlexCAN_O
71 | 0x091C 4 FlexCAN_BUF_12_15 FlexCAN_O
72 | 0x0920 4 FlexCAN_BUF_16_31 FlexCAN_O
73 | 0x0924 4 Reserved
74 | 0x0928 4 Bgi::gﬁ{;’;g’;]] DSPI_0
75 | 0x092C 4 |DSPI_SR[EOQF] DSPI_0
76 | 0x0930 4 |DSPI_SR[TFFF] DSPI_0
77 | 0x0934 4 |DSPI_SR[TCF] DSPI_0
78 | 0x0938 4 |DSPI_SR[RFDF] DSPI_0
79 | 0x093C 4 |LINFlex_RXI LINFlex_0
80 | 0x0940 4 |LINFlex_TXI LINFlex_0
81 | 0x0944 4 |LINFlex_ERR LINFlex_0
82 | 0x0948 4 |ADC_EOC ADC_1
315/868 Doc ID 16886 Rev 6 KY_[

RMO0045 Interrupt Controller (INTC)
Table 143. Interrupt vector table (continued)
IRQ #| Offset (bSyi tZ:s) Interrupt Module

83 | 0x094C 4 Reserved

84 | 0x0950 4 ADC_WD ADC_1
85 | 0x0954 4 Reserved

86 | 0x0958 4 Reserved

87 | 0x095C 4 Reserved

88 | 0x0960 4 Reserved

89 | 0x0964 4 Reserved

90 | 0x0968 4 Reserved

91 | 0x096C 4 Reserved

92 | 0x0970 4 Reserved

93 | 0x0974 4 Reserved

DSPI_SR[TFUF

94 | 0x0978 4 DSPI:SR{RFOF]] DSPI_1
95 | 0x097C 4 DSPI_SR[EOQF] DSPI_1
96 | 0x0980 4 DSPI_SR[TFFF] DSPI_1
97 | 0x0984 4 DSPI_SR[TCF] DSPI_1
98 | 0x0988 4 DSPI_SR[RFDF] DSPI_1
99 | 0x098C 4 LINFlex_RXI LINFlex_1
100 | 0x0990 4 LINFlex_TXI LINFlex_1
101 | 0x0994 4 LINFlex_ERR LINFlex_1
102 | 0x0998 4 Reserved
103 | 0x099C 4 Reserved
104 | Ox09A0 4 Reserved
105 | Ox09A4 4 Reserved
106 | Ox09A8 4 Reserved
107 | OX09AC 4 Reserved
108 | 0x09BO 4 Reserved
109 | Ox09B4 4 Reserved
110 | Ox09B8 4 Reserved
111 | 0x09BC 4 Reserved
112 | 0x09CO 4 Reserved
113 | 0x09C4 4 Reserved
114 | 0x09C8 4 Reserved
115 | 0x09CC 4 Reserved

Doc ID 16886 Rev 6

316/868

Interrupt Controller (INTC)

RMO0045

Table 143. Interrupt vector table (continued)

IRQ #| Offset (bSyi tZ:s) Interrupt Module
116 | 0x09DO 4 Reserved
117 | 0x09D4 4 Reserved
118 | 0x09D8 4 Reserved
119 | 0x09DC 4 |LINFlex_RXI LINFlex_2
120 | OX09EO 4 |LINFlex_TXI LINFlex_2
121 | Ox09E4 4 |LINFlex_ERR LINFlex_2
122 | Ox09ES8 4 Reserved
123 | OX09EC 4 Reserved
124 | Ox09F0 4 Reserved
125 | Ox09F4 4 Reserved
126 | Ox09F8 4 Reserved
127 | Ox09FC 4 PITimer Channel 3 PIT
128 | Ox0A00 4 Reserved
129 | Ox0A04 4 Reserved
130 | Ox0AO08 4 Reserved
131 | OxOAOC 4 Reserved
132 | Ox0A10 4 Reserved
133 | Ox0A14 4 Reserved
134 | Ox0A18 4 Reserved
135 | Ox0A1C 4 Reserved
136 | Ox0A20 4 Reserved
137 | Ox0A24 4 Reserved
138 | Ox0A28 4 Reserved
139 | Ox0A2C 4 Reserved
140 | Ox0A30 4 Reserved
141 | Ox0A34 4 |EMIOS_GFRJ[FO,F1] eMIOS_0
142 | Ox0A38 4 |EMIOS_GFR[F2,F3] eMIOS_0
143 | OXOA3C 4 |EMIOS_GFR[F4,F5] eMIOS_0
144 | 0x0A40 4 |EMIOS_GFRI[F6,F7] eMIOS_0
145 | Ox0A44 4 |EMIOS_GFRJ[F8,F9] eMIOS_0
146 | Ox0A48 4 |EMIOS_GFR[F10,F11] eMIOS_0
147 | 0x0A4C 4 |EMIOS_GFR[F12,F13] eMIOS_0
148 | 0x0A50 4 |EMIOS_GFR[F14,F15] eMIOS_0
149 | Ox0A54 4 |EMIOS_GFR[F16,F17] eMIOS_0

317/868 Doc ID 16886 Rev 6 KY_I

RM0045 Interrupt Controller (INTC)
Table 143. Interrupt vector table (continued)
Size
IRQ #| Offset (bytes) Interrupt Module
150 | Ox0A58 4 EMIOS_GFR[F18,F19] eMIOS_0
151 | OX0A5C 4 EMIOS_GFR[F20,F21] eMIOS_0
152 | 0x0A60 4 EMIOS_GFR[F22,F23] eMIOS_0
153 | Ox0A64 4 EMIOS_GFR[F24,F25] eMIOS_0
154 | Ox0A68 4 EMIOS_GFR[F26,F27] eMIOS_0
17.6.1 Interrupt request sources
The INTC has two types of interrupt requests, peripheral and software configurable. These
interrupt requests can assert on any clock cycle.
Peripheral interrupt requests
An interrupt event in a peripheral’s hardware sets a flag bit that resides in the peripheral.
The interrupt request from the peripheral is driven by that flag bit.
The time from when the peripheral starts to drive its peripheral interrupt request to the INTC
to the time that the INTC starts to drive the interrupt request to the processor is three clocks.
External interrupts are handled by the SIU (see Section 19.6.3 External interrupts).
Software configurable interrupt requests
An interrupt request is triggered by software by writing a 1 to a SETx bit in
INTC_SSCIRO_3-INTC_SSCIR4_7. This write sets the corresponding flag bit, CLRXx,
resulting in the interrupt request. The interrupt request is cleared by writing a 1 to the CLRx
bit.
The time from the write to the SETx bit to the time that the INTC starts to drive the interrupt
request to the processor is four clocks.
Unique vector for each interrupt request source
Each peripheral and software configurable interrupt request is assigned a hardwired unique
9-bit vector. Software configurable interrupts 0—7 are assigned vectors 0—7 respectively. The
peripheral interrupt requests are assigned vectors 8 to as high as needed to include all the
peripheral interrupt requests. The peripheral interrupt request input ports at the boundary of
the INTC block are assigned specific hardwired vectors within the INTC (see Table 134).
17.6.2 Priority management

The asserted interrupt requests are compared to each other based on their PRIx values set
in the INTC Priority Select Registers (INTC_PSRO_3-INTC_PSR152_154). The result is
compared to PRI in the associated INTC_CPR. The results of those comparisons manage
the priority of the ISR executed by the associated processor. The associated LIFO also
assists in managing that priority.

Doc ID 16886 Rev 6 318/868

Interrupt Controller (INTC) RM0045

319/868

Current priority and preemption

The priority arbitrator, selector, encoder, and comparator subblocks shown in Figure 137
compare the priority of the asserted interrupt requests to the current priority. If the priority of
any asserted peripheral or software configurable interrupt request is higher than the current
priority for a given processor, then the interrupt request to the processor is asserted. Also, a
unique vector for the preempting peripheral or software configurable interrupt request is
generated for INTC interrupt acknowledge register (INTC_IACKR), and if in hardware vector
mode, for the interrupt vector provided to the processor.

Priority arbitrator subblock

The priority arbitrator subblock for each processor compares all the priorities of all of the
asserted interrupt requests assigned to that processor, both peripheral and software
configurable. The output of the priority arbitrator subblock is the highest of those priorities
assigned to a given processor. Also, any interrupt requests which have this highest priority
are output as asserted interrupt requests to the associated request selector subblock.

Request selector subblock

If only one interrupt request from the associated priority arbitrator subblock is asserted, then
it is passed as asserted to the associated vector encoder subblock. If multiple interrupt
requests from the associated priority arbitrator subblock are asserted, the only the one with
the lowest vector is passed as asserted to the associated vector encoder subblock. The
lower vector is chosen regardless of the time order of the assertions of the peripheral or
software configurable interrupt requests.

Vector encoder subblock

The vector encoder subblock generates the unique 9-bit vector for the asserted interrupt
request from the request selector subblock for the associated processor.

Priority Comparator subblock

The priority comparator subblock compares the highest priority output from the priority
arbitrator subblock with PRI in INTC_CPR. If the priority comparator subblock detects that
this highest priority is higher than the current priority, then it asserts the interrupt request to
the associated processor. This interrupt request to the processor asserts whether this
highest priority is raised above the value of PRI in INTC_CPR or the PRI value in
INTC_CPR is lowered below this highest priority. This highest priority then becomes the new
priority which will be written to PRI in INTC_CPR when the interrupt request to the
processor is acknowledged. Interrupt requests whose PRIn in INTC_PSRn are zero will not
cause a preemption because their PRIn will not be higher than PRI in INTC_CPR.

Last-In First-Out (LIFO)

The LIFO stores the preempted PRI values from the INTC_CPR. Therefore, because these
priorities are stacked within the INTC, if interrupts need to be enabled during the ISR, at the
beginning of the interrupt exception handler the PRI value in the INTC_CPR does not need
to be loaded from the INTC_CPR and stored onto the context stack. Likewise at the end of
the interrupt exception handler, the priority does not need to be loaded from the context
stack and stored into the INTC_CPR.

The PRI value in the INTC_CPR is pushed onto the LIFO when the INTC_IACKR is read in
softwarevector mode or the interrupt acknowledge signal from the processor is asserted in

Doc ID 16886 Rev 6 KYI

RMO0045

Interrupt Controller (INTC)

17.6.3

Note:

hardware vector mode. The priority is popped into PRI in the INTC_CPR whenever the
INTC_EOIR is written.

Although the INTC supports 16 priorities, an ISR executing with PRI in the INTC_CPR equal
to 15 will not be preempted. Therefore, the LIFO supports the stacking of 15 priorities.
However, the LIFO is only 14 entries deep. An entry for a priority of 0 is not needed because
of how pushing onto a full LIFO and popping an empty LIFO are treated. If the LIFO is
pushed 15 or more times than it is popped, the priorities first pushed are overwritten. A
priority of O would be an overwritten priority. However, the LIFO will pop ‘0’s if it is popped
more times than it is pushed. Therefore, although a priority of 0 was overwritten, it is
regenerated with the popping of an empty LIFO.

The LIFO is not memory mapped.

Handshaking with processor

Software vector mode handshaking

This section describes handshaking in software vector mode.

Acknowledging interrupt request to processor

A timing diagram of the interrupt request and acknowledge handshaking in software vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 147. The INTC examines the peripheral and software configurable interrupt
requests. When it finds an asserted peripheral or software configurable interrupt request
with a higher priority than PRI in the associated INTC_CPR, it asserts the interrupt request
to the processor. The INTVEC field in the associated INTC_IACKR is updated with the
preempting interrupt request’s vector when the interrupt request to the processor is
asserted. The INTVEC field retains that value until the next time the interrupt request to the
processor is asserted. The rest of the handshaking is described in Section Software vector
mode.

End of interrupt exception handler

Before the interrupt exception handling completes, INTC end-of-interrupt register
(INTC_EOIR) must be written.When written, the associated LIFO is popped so the
preempted priority is restored into PRI of the INTC_CPR. Before it is written, the peripheral
or software configurable flag bit must be cleared so that the peripheral or software
configurable interrupt request is negated.

To ensure proper operation across all Power Architecture® MCUs, execute an MBAR or
MSYNC instruction between the access to clear the flag bit and the write to the INTC_EOIR.

When returning from the preemption, the INTC does not search for the peripheral or
software settable interrupt request whose ISR was preempted. Depending on how much the
ISR progressed, that interrupt request may no longer even be asserted. When PRI in
INTC_CPR is lowered to the priority of the preempted ISR, the interrupt request for the
preempted ISR or any other asserted peripheral or software settable interrupt request at or
below that priority will not cause a preemption. Instead, after the restoration of the
preempted context, the processor will return to the instruction address that it was to next
execute before it was preempted. This next instruction is part of the preempted ISR or the
interrupt exception handler’s prolog or epilog.

Doc ID 16886 Rev 6 320/868

Interrupt Controller (INTC) RM0045

Clock AVAVASAWAW L AVAVSLAVAVAVAWA

Interrupt request to processor / --— \ -
Hardware vector enable == "=
Interrupt vector === - -
Interrupt acknowledge - - - -

Read INTC_IACKR I j_ \ - -
Write INTC_EOIR - - - /_ \

INTVEC in INTC_IACKR 0 X === 108 ===
PRI in INTC_CPR 0 .- X - - 1 X 0
Peripheral interrupt request 100 / - -- --\

Figure 147. Software vector mode handshaking timing diagram

Hardware vector mode handshaking

A timing diagram of the interrupt request and acknowledge handshaking in hardware vector
mode, along with the handshaking near the end of the interrupt exception handler, is shown
in Figure 148. As in software vector mode, the INTC examines the peripheral and software
settable interrupt requests, and when it finds an asserted one with a higher priority than PRI
in INTC_CPR, it asserts the interrupt request to the processor. The INTVEC field in the
INTC_IACKR is updated with the preempting peripheral or software settable interrupt
request’s vector when the interrupt request to the processor is asserted. The INTVEC field
retains that value until the next time the interrupt request to the processor is asserted. In
addition, the value of the interrupt vector to the processor matches the value of the INTVEC
field in the INTC_IACKR. The rest of the handshaking is described in Section Hardware
vector mode.

The handshaking near the end of the interrupt exception handler, that is the writing to the
INTC_EOIR, is the same as in software vector mode. Refer to Section End of interrupt
exception handler.

321/868 Doc ID 16886 Rev 6 IYI

RM0045 Interrupt Controller (INTC)

[ciock AVAVAVAVAWAVAVLLAVAVAVAWA
[nterrupt request to processor / \ |-

|Hardware vector enable .-

|Interrupt vector 0 ! 108 "=

|Interrupt acknowledge [\ ---

IRead INTC_IACKR .-

Write INTC_EOIR - /_ \

INTVEC in INTC_IACKR 0 X 108 ---

PRI in INTC_CPR 0 I === 1 [o
Peripheral interrupt request 100 / - = =N\

Figure 148. Hardware vector mode handshaking timing diagram

17.7 Initialization/application information

17.71 Initialization flow

After exiting reset, all of the PRIn fields in INTC priority select registers (INTC_PSRO0-
INTC_PSR154) will be zero, and PRI in INTC current priority register (INTC_CPR) will be
15. These reset values will prevent the INTC from asserting the interrupt request to the
processor. The enable or mask bits in the peripherals are reset such that the peripheral
interrupt requests are negated. An initialization sequence for allowing the peripheral and
software settable interrupt requests to cause an interrupt request to the processor
is:interrupt_request_initialization:

interrupt request initialization:

configure VTES and HVEN in INTC MCR

configure VTBA in INTC IACKR

raise the PRIn fields in INTC_PSRn

set the enable bits or clear the mask bits for the peripheral interrupt

requests

lower PRI in INTC CPR to zero

enable processor recognition of interrupts

17.7.2 Interrupt exception handler

These example interrupt exception handlers use Power Architecture™ assembly code.

K‘YI Doc ID 16886 Rev 6 322/868

Interrupt Controller (INTC) RM0045

323/868

Software vector mode

interrupt exception handler:

code to create stack frame, save working register, and save SRRO and SRR1
lis 1r3,INTC IACKR@ha # form adjusted upper half of INTC IACKR address
1wz r3,INTC IACKR@l (r3) # load INTC IACKR, which clears request to

processor
lwz r3,0x0(r3) # load address of ISR from vector table
wrteei 1 # enable processor recognition of interrupts

code to save rest of context required by e500 EABI

mtlr r3 # move INTC IACKR contents into link register
blrl # branch to ISR; link register updated with epilog
address

epilog:
code to restore most of context required by e500 EABI

Popping the LIFO after the restoration of most of the context and the
disabling of processor

recognition of interrupts eases the calculation of the maximum stack depth
at the cost of

postponing the servicing of the next interrupt request.

mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC EOIR address
1i r4,0x0 # form 0 to write to INTC_EOIR

wrteei 0 # disable processor recognition of interrupts

stw r4,INTC EOIR@l (r3) # store to INTC EOIR, informing INTC to lower
priority

code to restore SRRO and SRR1, restore working registers, and delete stack
frame

rfi
vector table base address:

address of ISR for interrupt with wvector 0
address of ISR for interrupt with vector 1

address of ISR for interrupt with vector 510
address of ISR for interrupt with vector 511

ISRx:
code to service the interrupt event

code to clear flag bit which drives interrupt request to INTC

blr # return to epilog
Hardware vector mode

This interrupt exception handler is useful with processor and system bus implementations
which support a hardware vector. This example assumes that each

Doc ID 16886 Rev 6 IYI

RMO0045 Interrupt Controller (INTC)
interrupt_exception_handlerx only has space for four instructions, and therefore a branch to
interrupt_exception_handler_continuedx is needed.
interrupt exception handlerx:

b interrupt exception handler continuedx# 4 instructions available, branch
to continue
interrupt exception handler continuedx:
code to create stack frame, save working register, and save SRRO and SRR1
wrteei 1 # enable processor recognition of interrupts
code to save rest of context required by e500 EABI
bl ISRx # branch to ISR for interrupt with vector x
epilog:
code to restore most of context required by e500 EABI
Popping the LIFO after the restoration of most of the context and the
disabling of processor
recognition of interrupts eases the calculation of the maximum stack depth
at the cost of
postponing the servicing of the next interrupt request.
mbar # ensure store to clear flag bit has completed
lis r3,INTC_EOIR@ha # form adjusted upper half of INTC_EOIR address
1i r4,0x0 # form 0 to write to INTC_EOIR
wrteei 0 # disable processor recognition of interrupts
stw r4,INTC EOIR@l (r3) # store to INTC EOIR, informing INTC to lower
priority
code to restore SRRO and SRR1, restore working registers, and delete stack
frame
rfi
ISRx:
code to service the interrupt event
code to clear flag bit which drives interrupt request to INTC
blr # branch to epilog
17.7.3 ISR, RTOS, and task hierarchy

The RTOS and all of the tasks under its control typically execute with PRI in INTC current
priority register (INTC_CPR) having a value of 0. The RTOS will execute the tasks according
to whatever priority scheme that it may have, but that priority scheme is independent and
has a lower priority of execution than the priority scheme of the INTC. In other words, the
ISRs execute above INTC_CPR priority 0 and outside the control of the RTOS, the RTOS
executes at INTC_CPR priority 0, and while the tasks execute at different priorities under
the control of the RTOS, they also execute at INTC_CPR priority 0.

If a task shares a resource with an ISR and the PCP is being used to manage that shared
resource, then the task’s priority can be elevated in the INTC_CPR while the shared
resource is being accessed.

Doc ID 16886 Rev 6 324/868

Interrupt Controller (INTC)

RMO0045

An ISR whose PRInin INTC priority select registers (INTC_PSRO-INTC_PSR154) has a
value of 0 will not cause an interrupt request to the processor, even if its peripheral or
software settable interrupt request is asserted. For a peripheral interrupt request, not setting
its enable bit or disabling the mask bit will cause it to remain negated, which consequently
also will not cause an interrupt request to the processor. Since the ISRs are outside the
control of the RTOS, this ISR will not run unless called by another ISR or the interrupt
exception handler, perhaps after executing another ISR.

17.7.4 Order of execution
An ISR with a higher priority can preempt an ISR with a lower priority, regardless of the
unique vectors associated with each of their peripheral or software configurable interrupt
requests. However, if multiple peripheral or software configurable interrupt requests are
asserted, more than one has the highest priority, and that priority is high enough to cause
preemption, the INTC selects the one with the lowest unique vector regardless of the order
in time that they asserted. However, the ability to meet deadlines with this scheduling
scheme is no less than if the ISRs execute in the time order that their peripheral or software
configurable interrupt requests asserted.
The example in Table 144 shows the order of execution of both ISRs with different priorities
and the same priority.
Table 144. Order of ISR execution example
Code Executing at End of Step PRI in
StepNo. Step description ISR108 Interrupt I::-I(E:ESZ?
RTOS ™) ISR208 | ISR308 | ISR408 | exception St
handler ep
1 RTOS at priority 0 is executing. X 0
Peripheral interrupt request 100 at
2 L X 1
priority 1 asserts. Interrupt taken.
Peripheral interrupt request 400 at
3 I X 4
priority 4 is asserts. Interrupt taken.
Peripheral interrupt request 300 at
4 - . X 4
priority 3 is asserts.
Peripheral interrupt request 200 at
5 L . X 4
priority 3 is asserts.
ISR408 completes. Interrupt
6 exception handler writes to X 1
INTC_EOIR.
Interrupt taken. ISR208 starts to
7 execute, even though peripheral X 3
interrupt request 300 asserted first.
ISR208 completes. Interrupt
8 exception handler writes to X 1
INTC_EOIR.
9 Interrupt taken. ISR308 starts to X 3
execute.
325/868 Doc ID 16886 Rev 6 IS7]

RM0045 Interrupt Controller (INTC)
Table 144. Order of ISR execution example (continued)
Code Executing at End of Step PRI in
StepNo. Step description ISR108 Interrupt I::g;g':?
RTOS M) ISR208 | ISR308 | ISR408 | exception St
handler ep
ISR308 completes. Interrupt
10 |exception handler writes to X 1
INTC_EOIR.
ISR108 completes. Interrupt
11 |exception handler writes to X 0
INTC_EOIR.
12 |RTOS continues execution. X 0
1. ISR108 executes for peripheral interrupt request 100 because the first eight ISRs are for software configurable interrupt
requests.
17.7.5 Priority ceiling protocol

Elevating priority

The PRI field in INTC_CPR is elevated in the OSEK PCP to the ceiling of all of the priorities
of the ISRs that share a resource. This protocol allows coherent accesses of the ISRs to
that shared resource.

For example, ISR1 has a priority of 1, ISR2 has a priority of 2, and ISR3 has a priority of 3.
They share the same resource. Before ISR1 or ISR2 can access that resource, they must
raise the PRI value in INTC_CPR to 3, the ceiling of all of the ISR priorities. After they
release the resource, the PRI value in INTC_CPR can be lowered. If they do not raise their
priority, ISR2 can preempt ISR1, and ISR3 can preempt ISR1 or ISR2, possibly corrupting
the shared resource. Another possible failure mechanism is deadlock if the higher priority
ISR needs the lower priority ISR to release the resource before it can continue, but the lower
priority ISR cannot release the resource until the higher priority ISR completes and
execution returns to the lower priority ISR.

Using the PCP instead of disabling processor recognition of all interrupts eliminates the time
when accessing a shared resource that all higher priority interrupts are blocked. For
example, while ISR3 cannot preempt ISR1 while it is accessing the shared resource, all of
the ISRs with a priority higher than 3 can preempt ISR1.

Ensuring coherency

A scenario can cause non-coherent accesses to the shared resource. For example, ISR1
and ISR2 are both running on the same core and both share a resource. ISR1 has a lower
priority than ISR2. ISR1 is executing and writes to the INTC_CPR. The instruction following
this store is a store to a value in a shared coherent data block. Either immediately before or
at the same time as the first store, the INTC asserts the interrupt request to the processor
because the peripheral interrupt request for ISR2 has asserted. As the processor is
responding to the interrupt request from the INTC, and as it is aborting transactions and
flushing its pipeline, it is possible that both stores will be executed. ISR2 thereby thinks that
it can access the data block coherently, but the data block has been corrupted.

Doc ID 16886 Rev 6 326/868

Interrupt Controller (INTC) RM0045

17.7.6

17.7.7

327/868

OSEK uses the GetResource and ReleaseResource system services to manage access to
a shared resource. To prevent corruption of a coherent data block, modifications to PRI in
INTC_CPR can be made by those system services with the code sequence:

disable processor recognition of interrupts

PRI modification

enable processor recognition of interrupts

Selecting priorities according to request rates and deadlines

The selection of the priorities for the ISRs can be made using rate monotonic scheduling
(RMS) or a superset of it, deadline monotonic scheduling (DMS). In RMS, the ISRs which
have higher request rates have higher priorities. In DMS, if the deadline is before the next
time the ISR is requested, then the ISR is assigned a priority according to the time from the
request for the ISR to the deadline, not from the time of the request for the ISR to the next
request for it.

For example, ISR1 executes every 100 ps, ISR2 executes every 200 ps, and ISR3 executes
every 300 ps. ISR1 has a higher priority than ISR2 which has a higher priority than ISRS;
however, if ISR3 has a deadline of 150 ps, then it has a higher priority than ISR2.

The INTC has 16 priorities, which may be less than the number of ISRs. In this case, the
ISRs should be grouped with other ISRs that have similar deadlines. For example, a priority
could be allocated for every time the request rate doubles. ISRs with request rates around
1 ms would share a priority, ISRs with request rates around 500 ps would share a priority,
ISRs with request rates around 250 ys would share a priority, etc. With this approach, a
range of ISR request rates of 216 could be included, regardiess of the number of ISRs.

Reducing the number of priorities reduces the processor’s ability to meet its deadlines.
However, reducing the number of priorities can reduce the size and latency through the
interrupt controller. It also allows easier management of ISRs with similar deadlines that
share a resource. They do not need to use the PCP to access the shared resource.

Software configurable interrupt requests

The software configurable interrupt requests can be used in two ways. They can be used to
schedule a lower priority portion of an ISR and they may also be used by processors to
interrupt other processors in a multiple processor system.

Scheduling a lower priority portion of an ISR

A portion of an ISR needs to be executed at the PRIx value in the INTC Priority Select
Registers (INTC_PSRO_3-INTC_PSR152_154), which becomes the PRI value in
INTC_CPR with the interrupt acknowledge. The ISR, however, can have a portion that does
not need to be executed at this higher priority. Therefore, executing the later portion that
does not need to be executed at this higher priority can prevent the execution of ISRs which
do not have a higher priority than the earlier portion of the ISR but do have a higher priority
than what the later portion of the ISR needs. This preemptive scheduling inefficiency
reduces the processor’s ability to meet its deadlines.

One option is for the ISR to complete the earlier higher priority portion, but then schedule
through the RTOS a task to execute the later lower priority portion. However, some RTOSs
can require a large amount of time for an ISR to schedule a task. Therefore, a second option
is for the ISR, after completing the higher priority portion, to set a SETx bit in
INTC_SSCIRO_3-INTC_SSCIR4_7. Writing a 1 to SETx causes a software configurable
interrupt request. This software configurable interrupt request will usually have a lower PRIx

Doc ID 16886 Rev 6 KYI

RMO0045

Interrupt Controller (INTC)

17.7.8

Note:

17.7.9

value in the INTC_PSRx_x and will not cause preemptive scheduling inefficiencies. After
generating a software settable interrupt request, the higher priority ISR completes. The
lower priority ISR is scheduled according to its priority. Execution of the higher priority ISR is
not resumed after the completion of the lower priority ISR.

Scheduling an ISR on another processor

Because the SETx bits in the INTC_SSCIRx_x are memory mapped, processors in multiple-
processor systems can schedule ISRs on the other processors. One application is that one
processor wants to command another processor to perform a piece of work and the initiating
processor does not need to use the results of that work. If the initiating processor is
concerned that the processor executing the software configurable ISR has not completed
the work before asking it to again execute the ISR, it can check if the corresponding CLRx
bit in INTC_SSCIRx_x is asserted before again writing a 1 to the SETx bit.

Another application is the sharing of a block of data. For example, a first processor has
completed accessing a block of data and wants a second processor to then access it.
Furthermore, after the second processor has completed accessing the block of data, the
first processor again wants to access it. The accesses to the block of data must be done
coherently. To do this, the first processor writes a 1 to a SETx bit on the second processor.
After accessing the block of data, the second processor clears the corresponding CLRx bit
and then writes 1 to a SETx bit on the first processor, informing it that it can now access the
block of data.

Lowering priority within an ISR

A common method for avoiding preemptive scheduling inefficiencies with an ISR whose
work spans multiple priorities (see Section Scheduling a lower priority portion of an ISR) is
to lower the current priority. However, the INTC has a LIFO whose depth is determined by
the number of priorities.

Lowering the PRI value in INTC_CPR within an ISR to below the ISR’s corresponding PRI
value in the INTC Priority Select Registers (INTC_PSRO_3—-INTC_PSR152_154) allows
more preemptions than the LIFO depth can support.

Therefore, the INTC does not support lowering the current priority within an ISR as a way to
avoid preemptive scheduling inefficiencies.

Negating an interrupt request outside of its ISR

Negating an interrupt request as a side effect of an ISR

Some peripherals have flag bits that can be cleared as a side effect of servicing a peripheral
interrupt request. For example, reading a specific register can clear the flag bits and their
corresponding interrupt requests. This clearing as a side effect of servicing a peripheral
interrupt request can cause the negation of other peripheral interrupt requests besides the
peripheral interrupt request whose ISR presently is executing. This negating of a peripheral
interrupt request outside of its ISR can be a desired effect.

Negating multiple interrupt requests in one ISR

An ISR can clear other flag bits besides its own. One reason that an ISR clears multiple flag
bits is because it serviced those flag bits, and therefore the ISRs for these flag bits do not
need to be executed.

Doc ID 16886 Rev 6 328/868

Interrupt Controller (INTC) RM0045

17.7.10

329/868

Proper setting of interrupt request priority

Whether an interrupt request negates outside its own ISR due to the side effect of an ISR
execution or the intentional clearing a flag bit, the priorities of the peripheral or software
configurable interrupt requests for these other flag bits must be selected properly. Their
PRIx values in the INTC Priority Select Registers (INTC_PSRO_3-INTC_PSR152_154)
must be selected to be at or lower than the priority of the ISR that cleared their flag bits.
Otherwise, those flag bits can cause the interrupt request to the processor to assert.
Furthermore, the clearing of these other flag bits also has the same timing relationship to
the writing to INTC_SSCIR0O_3—-INTC_SSCIR4_7 as the clearing of the flag bit that caused
the present ISR to be executed (see Section End of interrupt exception handler).

A flag bit whose enable bit or mask bit negates its peripheral interrupt request can be
cleared at any time, regardless of the peripheral interrupt request’s PRIx value in
INTC_PSRx_x.

Examining LIFO contents

In normal mode, the user does not need to know the contents of the LIFO. He may not even
know how deeply the LIFO is nested. However, if he wants to read the contents, such as in
debug mode, they are not memory mapped. The contents can be read by popping the LIFO
and reading the PRI field in either INTC_CPR. The code sequence is:

pop_1lifo:

store to INTC_EOIR

load INTC_CPR, examine PRI, and store onto stack

if PRI is not zero or value when interrupts were enabled, branch to

pop_lifo

When the examination is complete, the LIFO can be restored using this code sequence:
push lifo:
load stacked PRI value and store to INTC_CPR
load INTC_ IACKR
if stacked PRI values are not depleted, branch to push lifo

Doc ID 16886 Rev 6 KYI

RMO0045

Crossbar Switch (XBAR)

18 Crossbar Switch (XBAR)

18.1 Introduction

This chapter describes the multi-port crossbar switch (XBAR), which supports simultaneous
connections between two master ports and three slave ports. XBAR supports a 32-bit
address bus width and a 32-bit data bus width at all master and slave ports.

18.2 Block diagram

Figure 149 shows a block diagram of the crossbar switch.

CPU data /
Nexus

rT

Crossbar Switch

Flash
memory

Internal
SRAM

Master modules

Slave modules

Peripheral
bridges

Figure 149. XBAR block diagram

Table 145 gives the crossbar switch port for each master and slave, and the assigned and
fixed ID number for each master. The table shows the master ID numbers as they relate to

the master port numbers.

Table 145. XBAR switch ports for SPC560D30/40

Port
Module Physical master ID
Type Logical humber
€200z0 core—CPU instructions Master 0 0
€200z0 core—CPU data / Nexus Master 0 1
Flash memory Slave 0 —
Internal SRAM Slave 2 —
Peripheral bridges Slave 7 —

Doc ID 16886 Rev 6

330/868

Crossbar Switch (XBAR) RM0045

18.3

18.4

18.5

18.5.1

18.5.2

18.6

18.6.1

331/868

Overview

The XBAR allows for concurrent transactions to occur from any master port to any slave
port. It is possible for all master ports and slave ports to be in use at the same time as a
result of independent master requests. If a slave port is simultaneously requested by more
than one master port, arbitration logic selects the higher priority master and grants it
ownership of the slave port. All other masters requesting that slave port are stalled until the
higher priority master completes its transactions.

Requesting masters are granted access based on a fixed priority.

Features

® 2 master ports:
— Core: €200z0 core instructions
— Core: €200z0 core data / Nexus
® 3 slave ports

— Flash (refer to the flash memory chapter for information on accessing flash
memory)

— Internal SRAM

— Peripheral bridges
® 32-bit address, 32-bit data paths
Fully concurrent transfers between independent master and slave ports
® Fixed priority scheme and fixed parking strategy

Modes of operation

Normal mode

In normal mode, the XBAR provides the logic that controls crossbar switch configuration.

Debug mode

The XBAR operation in debug mode is identical to operation in normal mode.

Functional description

This section describes the functionality of the XBAR in more detail.

Overview

The main goal of the XBAR is to increase overall system performance by allowing multiple
masters to communicate concurrently with multiple slaves. To maximize data throughput, it
is essential to keep arbitration delays to a minimum.

This section examines data throughput from the point of view of masters and slaves,
detailing when the XBAR stalls masters, or inserts bubbles on the slave side.

Doc ID 16886 Rev 6 KYI

RMO0045

Crossbar Switch (XBAR)

18.6.2

18.6.3

General operation

When a master makes an access to the XBAR from an idle master state, the access is taken
immediately by the XBAR. If the targeted slave port of the access is available (that is, the
requesting master is currently granted ownership of the slave port), the access is
immediately presented on the slave port. It is possible to make single clock (zero wait state)
accesses through the XBAR by a granted master. If the targeted slave port of the access is
busy or parked on a different master port, the requesting master receives wait states until
the targeted slave port can service the master request. The latency in servicing the request
depends on each master’s priority level and the responding slave’s access time.

Because the XBAR appears to be simply another slave to the master device, the master
device has no indication that it owns the slave port it is targeting. While the master does not
have control of the slave port it is targeting, it is wait-stated.

A master is given control of a targeted slave port only after a previous access to a different
slave port has completed, regardless of its priority on the newly targeted slave port. This
prevents deadlock from occurring when a master has the following conditions:

o Outstanding request to slave port A that has a long response time
® Pending access to a different slave port B
® Lower priority master also makes a request to the different slave port B.

In this case, the lower priority master is granted bus ownership of slave port B after a cycle
of arbitration, assuming the higher priority master slave port A access is not terminated.

After a master has control of the slave port it is targeting, the master remains in control of
that slave port until it gives up the slave port by running an IDLE cycle, leaves that slave port
for its next access, or loses control of the slave port to a higher priority master with a request
to the same slave port. However, because all masters run a fixed-length burst transfer to a
slave port, it retains control of the slave port until that transfer sequence is completed.

When a slave bus is idled by the XBAR, it is parked on the master which did the last transfer.

Master ports

A master access is taken if the slave port to which the access decodes is either currently
servicing the master or is parked on the master. In this case, the XBAR is completely
transparent and the master access is immediately transmitted on the slave bus and no
arbitration delays are incurred. A master access stall if the access decodes to a slave port
that is busy serving another master, parked on another master.

If the slave port is currently parked on another master, and no other master is requesting
access to the slave port, then only one clock of arbitration is incurred. If the slave port is
currently serving another master of a lower priority and the master has a higher priority than
all other requesting masters, then the master gains control over the slave port as soon as
the data phase of the current access is completed. If the slave port is currently servicing
another master of a higher priority, then the master gains control of the slave port after the
other master releases control of the slave port if no other higher priority master is also
waiting for the slave port.

A master access is responded to with an error if the access decodes to a location not
occupied by a slave port. This is the only time the XBAR directly responds with an error
response. All other error responses received by the master are the result of error responses
on the slave ports being passed through the XBAR.

Doc ID 16886 Rev 6 332/868

Crossbar Switch (XBAR) RM0045

18.6.4

18.6.5

Slave ports

The goal of the XBAR with respect to the slave ports is to keep them 100% saturated when
masters are actively making requests. To do this the XBAR must not insert any bubbles onto
the slave bus unless absolutely necessary.

There is only one instance when the XBAR forces a bubble onto the slave bus when a
master is actively making a request. This occurs when a handoff of bus ownership occurs
and there are no wait states from the slave port. A requesting master which does not own
the slave port is granted access after a one clock delay.

Priority assignment

Each master port is assigned a fixed 3-bit priority level (hard-wired priority). The following
table shows the priority levels assigned to each master (the lowest has highest priority).

Table 146. Hardwired bus master priorities

Port
Module Priority level
Type Number

e200z0 core—CPU instructions Master 0 7

©200z0 core—CPU data / Nexus Master 0 6

18.6.6

333/868

Arbitration

XBAR supports only a fixed-priority comparison algorithm.

Fixed priority operation

When operating in fixed-priority arbitration mode, each master is assigned a unique priority
level in the XBAR_MPR. If two masters both request access to a slave port, the master with
the highest priority in the selected priority register gains control over the slave port.

Any time a master makes a request to a slave port, the slave port checks to see if the new
requesting master’s priority level is higher than that of the master that currently has control
over the slave port (if any). The slave port does an arbitration check at every clock edge to
ensure that the proper master (if any) has control of the slave port.

If the new requesting master’s priority level is higher than that of the master that currently
has control of the slave port, the higher priority master is granted control at the termination
of any currently pending access, assuming the pending transfer is not part of a burst
transfer.

A new requesting master must wait until the end of the fixed-length burst transfer, before it is
granted control of the slave port. But if the new requesting master’s priority level is lower
than that of the master that currently has control of the slave port, the new requesting
master is forced to wait until the master that currently has control of the slave port is finished
accessing the current slave port.

Parking

If no master is currently requesting the slave port, the slave port is parked. The slave port
parks always to the last master (park-on-last). When parked on the last master, the slave
port is passing that master’s signals through to the slave bus. When the master accesses

Doc ID 16886 Rev 6 KYI

RMO0045

Crossbar Switch (XBAR)

the slave port again, no other arbitration penalties are incurred except that a one clock
arbitration penalty is incurred for each access request to the slave port made by another
master port. All other masters pay a one clock penalty.

Doc ID 16886 Rev 6 334/868

System Integration Unit Lite (SIUL) RMO0045

19

19.1

19.2

335/868

System Integration Unit Lite (SIUL)

Introduction

This chapter describes the System Integration Unit Lite (SIUL), which is used for the
management of the pads and their configuration. It controls the multiplexing of the alternate
functions used on all pads as well as being responsible for the management of the external
interrupts to the device.

Overview

The System Integration Unit Lite (SIUL) controls the MCU pad configuration, ports, general-
purpose input and output (GPIO) signals and external interrupts with trigger event
configuration. Figure 150 provides a block diagram of the SIUL and its interfaces to other
system components.

The module provides the capability to configure, read, and write to the device’s general-

purpose I/O pads that can be configured as either inputs or outputs.

® When a pad is configured as an input, the state of the pad (logic high or low) is
obtained by reading an associated data input register.

® When a pad is configured as an output, the value driven onto the pad is determined by
writing to an associated data output register. Enabling the input buffers when a pad is
configured as an output allows the actual state of the pad to be read.

® To enable monitoring of an output pad value, the pad can be configured as both output
and input so the actual pad value can be read back and compared with the expected
value.

Doc ID 16886 Rev 6 KYI

RMO0045 System Integration Unit Lite (SIUL)

SIUL Module
Pad Configuration (IOMUXC)
79 (1)
4—» Pad Config (PCRs)
GPIO Functionality
\ 4
79 (1)
— P Data » 10 Pads
MUX
79 (M 79 (M
— Pad Input < e 4
IPS
Master B
D E—
Interrupt Functionality
20 @) Interrupt
Interrupt < Controller
—>) .
- Configuration | 3
- Glitch Filter >
IPS
BUS
Notes:

1. Up to 45 I/O pins in 64-pin packages; up to 79 I/O pins in 100-pin packages
2. Upto 11 1/O pins in 64-pin packages; up to 20 I/O pins in 100-pin packages

Figure 150. System Integration Unit Lite block diagram

Doc ID 16886 Rev 6 336/868

System Integration Unit Lite (SIUL) RMO0045

19.3 Features
The System Integration Unit Lite supports these distinctive features:
e GPIO
— GPIO function on up to 79 1/O pins
— Dedicated input and output registers for most GPIO pins(m)
® External interrupts
— 3interrupt vectors dedicated to 20 external interrupts
— 24 programmabile digital glitch filters
— Independent interrupt mask
— Edge detection
® System configuration
— Pad configuration control
19.4 External signal description
Most device pads support multiple device functions. Pad configuration registers are
provided to enable selection between GPIO and other signals. These other signals, also
referred to as alternate functions, are typically peripheral functions.
GPIO pads are grouped in “ports”, with each port containing up to 16 pads. With appropriate
configuration, all pins in a port can be read or written to in parallel with a single R/W access.
Note: In order to use GPIO port functionality, all pads in the port must be configured as GPIO
rather than as alternate functions.
Table 147 lists the external pins configurable via the SIUL.
Table 147. SIUL signal properties
GPI0[0:122]() 1[o) .
Name . . Function
category direction

System configuration

GPIO [0:19] [26:47] [60:76]

[121:122] Input/Output (General-purpose input/output

)Analog precise channels, low power oscillator

GPIO [20:25] [48:59] Input bins

External interrupt

PA[3], PA[6:8], PA[11:12],
PA[14], PC[2:5], PC[12],
PC[14:15], PE[2], PE[4],
PE[6:7], PE[10], PE[12]©@

Pins with External Interrupt Request
Input functionality. Please see the signal description
chapter of this reference manual for details.

1. GPIO[77:120] not available in SPC560D30/40; GPIO[43:120] not available in 64-pin LQFP
2. PCI[12], PC[14:15], PE[2], PE[4], PE[6:7], PE[10] and PE[12] not available in 64-pin

337/868

m. Some device pins, e.g., analog pins, do not have both input and output functionality.

Doc ID 16886 Rev 6 KYI

RMO0045 System Integration Unit Lite (SIUL)

19.4.1 Detailed signal descriptions

General-purpose /O pins (GP10[0:122])("

The GPIO pins provide general-purpose input and output function. The GPIO pins are
generally multiplexed with other I/O pin functions. Each GPIO input and output is separately
controlled by an input (GPDIn_n) or output (GPDOn_n) register.

External interrupt request input pins (EIRQ[0:23])(®)

The EIRQ[0:23] pins are connected to the SIUL inputs. Rising- or falling-edge events are
enabled by setting the corresponding bits in the SIUL_IREER or the SIUL_IFEER register.

n. GPIO[0-76] and GPIO[121-122] in 100-pin LQFP; GPIO[0-43] and GPIO[121-122] in 64-pin LQFP
o. EIRQ[0:11] plus EIRQ[16:23] in 100-pin LQFP; EIRQ[0:7] plus EIRQ[16:18] in 64-pin LQFP

KYI Doc ID 16886 Rev 6 338/868

System Integration Unit Lite (SIUL)

RM0045

19.5

Memory map and register description

This section provides a detailed description of all registers accessible in the SIUL module.

19.5.1

SIUL memory map

Table 148 gives an overview of the SIUL registers implemented.

Table 148. SIUL memory map

Base address: 0xC3F9_0000

Address offset Register Location

0x0000 Reserved

0x0004 MCU ID Register #1 (MIDR1) on page 19-341
0x0008 MCU ID Register #2 (MIDR2) on page 19-342
0x000C—-0x0013 Reserved

0x0014 Interrupt Status Flag Register (ISR) on page 19-343
0x0018 Interrupt Request Enable Register (IRER) on page 19-344
0x001C-0x0027 Reserved

0x0028 Interrupt Rising-Edge Event Enable Register (IREER) on page 19-344
0x002C Interrupt Falling-Edge Event Enable Register (IFEER) on page 19-345
0x0030 Interrupt Filter Enable Register (IFER) on page 19-346

0x0034—-0x003F

Reserved

0x0040-0x0134

Pad Configuration Registers (PCRO-PCR122)(")

on page 19-347

0x0136—0x04FF

Reserved

0x0500-0x053C

Pad Selection for Multiplexed Inputs Registers (PSMIO_3—
PSMI60_63)

on page 19-349

0x0540—-0x05FF

Reserved

0x0600—-0x0678

GPIO Pad Data Output Registers (GPDO0_3—
GPDO120_123)@

on page 19-352

0x067C—-0x07FF

Reserved

0x0800-0x0878

GPIO Pad Data Input Registers (GPDIO_3-GPDI120_123)®

‘on page 19-353

0x087C—-0x0BFF

Reserved

0x0C00-0x0C0C

Parallel GPIO Pad Data Out Registers (PGPDO0 — PGPDO3)

‘on page 19-353

0x0C10-0x0C3F

Reserved

0x0C40-0x0C4C

Parallel GPIO Pad Data In Registers (PGPDIO — PGPDI3)

lon page 19-354

0x0C50-0x0C7F

Reserved

0x0C80-0x0C9C

Masked Parallel GPIO Pad Data Out Register (MPGPDOO0O—-
MPGPDQ?7)

on page 19-355

0x0CAO0-O0xOFFF

Reserved

339/868

Doc ID 16886 Rev 6

RMO0045 System Integration Unit Lite (SIUL)
Table 148. SIUL memory map (continued)
Base address: 0xC3F9_0000
Address offset Register Location

Interrupt Filter Maximum Counter Registers (IFMCO—

0x1000-0x105C IFMC23)4) on page 19-356
0x1060-0x107C Reserved
0x1080 Interrupt Filter Clock Prescaler Register (IFCPR) on page 19-357
0x1084-0x3FFF Reserved

1. PCR[0:76] and PCR[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is PCR[0:43] and
PCR[121:122], so all the remaining registers are reserved.

2. GPDQ[0:76] and GPDO[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDO[0:43] and
GPDO[121:122], so all the remaining registers are reserved.

3. GPDIO[0:76] and GPDIO[121:122] is valid in 100-pin LQFP package, while in the 64-pin LQFP package is GPDI0[0:43] and
GPDIO[121:122], so all the remaining registers are reserved.

4. IFMC[0:11] plus IFMC[16:23] in 100-pin LQFP, while in the 64-pin LQFP package is IFMC[0:7] plus IFMC[16:18]—all
remaining registers are reserved.

Note: A transfer error will be issued when trying to access completely reserved register space.

19.5.2 Register protection

Individual registers in System Integration Unit Lite can be protected from accidental writes
using the Register Protection module. The following registers can be protected:

Interrupt Request Enable Register (IRER)

Interrupt Rising-Edge Event Enable Register (IREER)
Interrupt Falling-Edge Event Enable Register (IFEER)
Interrupt Filter Enable Register (IFER),

Pad Configuration Registers (PCRO—PCR122). Note that only the following registers
can be protected:

— PCR[0:15] (Port A)

— PCR[16:19] (Port B[0:3])

— PCR[34:47] (Port C[2:15])

Pad Selection for Multiplexed Inputs Registers (PSMIO_3-PSMI60_63)

Interrupt Filter Maximum Counter Registers (IFMCO0-IFMC23). Note that only
IFMC[0:15] can be protected.

Interrupt Filter Clock Prescaler Register (IFCPR)

See the “Register Under Protection” appendix for more details.

19.5.3 Register descriptions

MCU ID Register #1 (MIDR1)

This register holds identification information about the device.

Doc ID 16886 Rev 6 340/868

System Integration Unit Lite (SIUL)

RM0045

Offset: 0x0004

Figure 151. MCU ID Register #1 (MIDR1)

Access: Read

2 3 4 5 6 7 8 9 10 11 12 13 14 15

PARTNUM[15:0]

18 19 20 21 22 23 24 25 26 27 28 29 30 31

R| CSP

MAJOR_MASK MINOR_MASK

Reset 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0

Table 149. MIDR1 field descriptions

Field

Description

PARTNUM[15:0]

MCU Part Number, lower 16 bits
Device part number of the MCU.
0101_0110_0000_0001:128 KB
0101_0110_0000_0010: 256 KB
For the full part number this field needs to be combined with MIDR2[PARTNUM[23:16]].

CSP

Always reads back 0

PKG

Package Settings

Can be read by software to determine the package type that is used for the particular
device as described below. Any values not explicitly specified are reserved.

0b00001: 64-pin LQFP
0b01001: 100-pin LQFP

MAJOR_MASK

Major Mask Revision
Counter starting at 0x0. Incremented each time there is a resynthesis.

MINOR_MASK

Minor Mask Revision
Counter starting at 0x0. Incremented each time a mask change is done.

341/868

Doc ID 16886 Rev 6

RMO0045

System Integration Unit Lite (SIUL)

MCU ID Register #2 (MIDR2)

Offset: 0x0008

Figure 152. MCU ID Register #2 (MIDR2)

Access: Read

0 1 2 3 4 5 6 7 ‘ 8 9 10 11 12 13 14 15

R| SF FLASH_SIZE_1 FLASH_SIZE_2 o|lo|lo|lo| o] o] oO
W

Reset 1 0 1 0 1 o o o0 0 o0 o Oo0/|O0 O 0 O

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R PARTNUM[23:16] o| o| o |E|Oo|O0o|]oO0]oO
W

Reset 0 1 0 0 0 1 0 0 0 0 0 1 0M o oM o

1. Static bit fixed in

hardware

Table 150. MIDR2 field descriptions

Field Description
Manufacturer
SF 0 Reserved

1 ST
Coarse granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

FLASH_SIZE_1 {0011 128 KB
0100 256 KB
0101 512 KB
Fine granularity for Flash memory size
Total flash memory size = FLASH_SIZE_1 + FLASH_SIZE_2

FLASH_SIZE_2 | 0000 0 x (FLASH_SIZE_1/8)
0010 2 x (FLASH_SIZE_1/8)
0100 4 x (FLASH_SIZE_1/8)
MCU Part Number, upper 8 bits containing the ASCII character within the MCU part number

PARTNUM 0x44h: Character ‘D’
[23:16]
For the full part number this field needs to be combined with MIDR1[PARTNUM[15:0]].
Data Flash present
EE 0 No Data Flash is present

1 Data Flash is present

Interrupt Status Flag Register (ISR)

This register holds the interrupt flags.

Doc ID 16886 Rev 6

342/868

System Integration Unit Lite (SIUL) RMO0045

Figure 153. Interrupt Status Flag Register (ISR)

Offset: 0x0014 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| © 0 0| o 0| o 0| o EIF[23:16]")
w wic

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl 0 0 0 0 EIF[11:0]"

w wic

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. 20 flags in 100-pin LQFP; 11 flags in 64-pin LQFP: EIF[18:16] plus EIF[7:0] (register bits 8-12 and 20-23 reserved).

Table 151. ISR field descriptions

Field Description

External Interrupt Status Flag x

This flag can be cleared only by writing a ‘1’. Writing a ‘0’ has no effect. If enabled (IRER[x]),
EIF[x] EIF[x] causes an interrupt request.

0 No interrupt event has occurred on the pad

1 Aninterrupt event as defined by IREER[x] and IFEER[x] has occurred

343/868 Doc ID 16886 Rev 6 KYI

RMO0045

System Integration Unit Lite (SIUL)

Interrupt Request Enable Register (IRER)

This register is used to enable the interrupt messaging to the interrupt controller.

Offset: 0x0018

Figure 154. Interrupt Request Enable Register (IRER)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| © 0 0 0 0 0 0 0
IRE[23:16](")
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl 0 0 0 0 IRE[11:0])
W wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. 20 enable requests in 100-pin LQFP; 11 enable requests in 64-pin LQFP: IRE[18:16] plus IRE[7:0] (register bits 8-12 and

20-23 reserved).

Table 152. IRER field descriptions

Field Description
External Interrupt Request Enable x
IRE[X] 0 Interrupt requests from the corresponding ISR[EIF[x]] bit are disabled.
1 Interrupt requests from the corresponding ISR[EIF[x]] bit are enabled.
Interrupt Rising-Edge Event Enable Register (IREER)
This register is used to enable rising-edge triggered events on the corresponding interrupt
pads.
Figure 155. Interrupt Rising-Edge Event Enable Register (IREER)
Offset:0x0028 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 ‘ 12 13 14 15
R O 0 0 0 0 0 0 0
IREE[23:16](")
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 ‘ 0 0 0 0
16 17 18 19 20 21 22 23 ‘ 24 25 26 27 ‘ 28 29 30 31
Rl 0 0 0 0 IREE[11:0])
w wic
Resst 0 0 0 O 0 O 0 0 ‘ o 0 0 0 ‘ o o0 0 0

1. 20 enable events in 100-pin LQFP; 11 enable events in 64-pin LQFP: IREE[18:16] plus IREE[7:0] (register bits 8-12 and
20-23 reserved).

574

Doc ID 16886 Rev 6

344/868

System Integration Unit Lite (SIUL) RMO0045

Table 153. IREER field descriptions

Field Description

Enable rising-edge events to cause the ISR[EIF[x]] bit to be set.
IREE[Xx] 0 Rising-edge event is disabled
1 Rising-edge event is enabled

Interrupt Falling-Edge Event Enable Register (IFEER)

This register is used to enable falling-edge triggered events on the corresponding interrupt
pads.

Figure 156. Interrupt Falling-Edge Event Enable Register (IFEER)

Offset:0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IFEE[23:16](")

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl 0 0 0 0 IFEE[11:0)")

w wic

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. 20 enabling events in 100-pin LQFP; 11 enabling events in 64-pin LQFP: IFEE[18:16] plus IFEE[7:0] (register bits 8-12 and
20-23 reserved).

Table 154. IFEER field descriptions

Field Description

Enable falling-edge events to cause the ISR[EIF[x]] bit to be set.
IFEE[X] OFalling-edge event is disabled
1Falling-edge event is enabled

Note: If both the IREER[IREE] and IFEER[IFEE] bits are cleared for the same interrupt source, the
interrupt status flag for the corresponding external interrupt will never be set. If IREER[IREE]
and IFEERJ[IFEE] bits are set for the same source the interrupts are triggered by both rising
edge events and falling edge events.

345/868 Doc ID 16886 Rev 6 KYI

RMO0045 System Integration Unit Lite (SIUL)
Interrupt Filter Enable Register (IFER)
This register is used to enable a digital filter counter on the corresponding interrupt pads to
filter out glitches on the inputs.
Figure 157. Interrupt Filter Enable Register (IFER)
Offset:0x0030 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0
IFE[23:16](")
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0| o 0 IFE[11:0]")
w wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1. 20 bits in 100-pin LQFP; 11 bits in 64-pin LQFP: IFE[18:16] plus IEE[7:0] (register bits 8-12 and 20-23 reserved).

Table 155. IFER field descriptions

Field

Description

IFE[x]

0 Filter is disabled

See the IFMC field descriptions in Table 165 for details on how the filter works.

Enable digital glitch filter on the interrupt pad input

1 Filter is enabled

Pad Configuration Registers (PCR0-PCR122)

The Pad Configuration Registers allow configuration of the static electrical and functional
characteristics associated with 1/0 pads. Each PCR controls the characteristics of a single
pad.

Please note that input and output peripheral muxing are separate.

For output pads:

— Select the appropriate alternate function in Pad Config Register (PCR)
— OBE is not required for functions other than GPIO

For INPUT pads:

— Select the feature location from PSMI register

— Set the IBE bit in the appropriate PCR

For normal GPIO (not alternate function):

— Configure PCR

— Read from GPDI or write to GPDO

Doc ID 16886 Rev 6 346/868

System Integration Unit Lite (SIUL) RMO0045

Figure 158. Pad Configuration Registers (PCRXx)

Offsets: Base + 0x0040 (PCRO)(registers)

Base + 0x0042 (PCR1)

Access: User read/write

Base + 0x0 (PCR)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0
SMC | APC PA[1:0] OBE | IBE ODE SRC | WPE | WPS
w
Reset 0 0" 0 o o o 0@ 0@ | o 0 0 0 0 o 00 1@
1. SMC and PA[1] are ‘1’ for JTAG pads
2. OBE is ‘1’ for TDO
3. IBE and WPE are ‘1’ for TCK, TMS, TDI, FAB and ABS
4. WPS is ‘O’ for input only pad with analog feature and FAB
Note: 16/32-bit access is supported.

In addition to the bit map above, the following Table 156 describes the PCR depending on
the pad type (pad types are defined in the “Pad types” section of this reference manual). The
bits in shaded fields are not implemented for the particular I/O type. The PA field selecting
the number of alternate functions may or may not be present depending on the number of
alternate functions actually mapped on the pad.

Table 156. PCRXx field descriptions

Field

Description

SMC

Safe Mode Control.
This bit supports the overriding of the automatic deactivation of the output buffer of the
associated pad upon entering SAFE mode of the device.

0 In SAFE mode, the output buffer of the pad is disabled.
1 In SAFE mode, the output buffer remains functional.

APC

Analog Pad Control.
This bit enables the usage of the pad as analog input.

0 Analog input path from the pad is gated and cannot be used
1 Analog input path switch can be enabled by the ADC

PA[1:0]

Pad Output Assignment

This field is used to select the function that is allowed to drive the output of a multiplexed pad.
00 Alternative Mode 0 — GPIO

01 Alternative Mode 1 — See the signal description chapter

10 Alternative Mode 2 — See the signal description chapter

11 Alternative Mode 3 — See the signal description chapter

Note: Number of bits depends on the actual number of actual alternate functions. Please see
datasheet.

OBE

Output Buffer Enable
This bit enables the output buffer of the pad in case the pad is in GPIO mode.

0 Output buffer of the pad is disabled when PA[1:0] = 00
1 Output buffer of the pad is enabled when PA[1:0] = 00

347/868

Doc ID 16886 Rev 6 KYI

RMO0045

System Integration Unit Lite (SIUL)

Table 156. PCRXx field descriptions (continued)

Field

Description

IBE

Input Buffer Enable
This bit enables the input buffer of the pad.

0 Input buffer of the pad is disabled
1 Input buffer of the pad is enabled

ODE

Open Drain Output Enable

This bit controls output driver configuration for the pads connected to this signal. Either open
drain or push/pull driver configurations can be selected. This feature applies to output pads only.
0 Pad configured for push/pull output

1 Pad configured for open drain

SRC

Slew Rate Control

This field controls the slew rate of the associated pad when it is slew rate selectable. Its usage is
the following:

0 Pad configured as slow (default)

1 Pad is configured as medium or fast (depending on the pad)

Note: PC[1] (TDO pad) is medium only. By default SRC = 0, and writing ‘1’ has no effect.

WPE

Weak Pull Up/Down Enable

This bit controls whether the weak pull up/down devices are enabled/disabled for the pad
connected to this signal.

0 Weak pull device disabled for the pad

1 Weak pull device enabled for the pad

WPS

Weak Pull Up/Down Select

This bit controls whether weak pull up or weak pull down devices are used for the pads
connected to this signal when weak pull up/down devices are enabled.

0 Weak pull-down selected
1 Weak pull-up selected

Pad Selection for Multiplexed Inputs Registers (PSMI0_3-PSMI60_63)

In some cases, a peripheral input signal can be selected from more than one pin. For
example, the CAN1_RXD signal can be selected on three different pins: PC[3], PC[11] and
PF[15]. Only one can be active at a time. To select the pad to be used as input to the
peripheral:

Select the signal via the pad’s PCR register using the PA field.
Specify the pad to be used via the appropriate PSMI field.

Doc ID 16886 Rev 6 348/868

System Integration Unit Lite (SIUL)

RM0045

Figure 159. Pad Selection for Multiplexed Inputs Register (PSMIO0_3)

Offsets:0x0500-0x053C (16 registers)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0
PADSELO PADSELA1
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0
PADSEL2 PADSELS3
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 157. PSMIO_3 field descriptions
Field Description
PADSELO0-3,
PADSEL4-7, |Pad Selection Bits

PADSEL60-63

Each PADSEL field selects the pad currently used for a certain input function. See Table 158.

In order to multiplex different pads to the same peripheral input, the SIUL provides a register
that controls the selection between the different sources.

Table 158. Peripheral input pin selection

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping“)
PADSELO 0x500 Reserved —
PADSELA1 0x501 Reserved —
PSMIO_3
PADSEL2 0x502 Reserved —
PADSEL3 0x503 Reserved —
PADSEL4 0x504 Reserved —
00: PCR[14]
PADSEL5 0x505 SCK_0/DSPI_0
X - - 01: PCR[15]
PSMI4_7 00: PCR[14]
PADSEL6 0x506 CS0_0/DSPI_0 01: PCR[15]
10: PCR[27]
00: PCR[34]
PADSEL7 0x507 SCK_1/DSPI_1 01: PCR[68]
349/868 Doc ID 16886 Rev 6 KYI

RMO0045

System Integration Unit Lite (SIUL)

Table 158. Peripheral input pin selection (continued)

PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(")
00: PCR[36]
PADSELS8 0x508 SIN_1/DSPI_1 01: PCR[66]
00: PCR[35]
01: PCR[61]
PSMI8_11 PADSEL9 0x509 CS0_1/DSPI_1 10: PCR[69]
11: PCR[4]
PADSEL10 Ox50A Reserved —
PADSEL11 0x50B Reserved —
PADSEL12 0x50C Reserved —
00: PCR[3]
PADSEL13 0x50D E1UC[3]/ eMIOS_0 01: PCR[27]
10: PCR[40]
PSMI12_15 00 PCRI4]
E 4]/ eMl '
PADSEL14 Ox50E 0UC[4]/ eMIOS_0 01: PCR[28]
00: PCR[5]
E Mi
PADSEL15 Ox50F 0UCI5]/ eMIOS_0 01: PCR[29]
00: PCR[6]
L1 1 E Mi
PADSEL16 0x510 0UCI[6]/ eMIOS_0 01: PCR[30]
00: PCR[7]
PSMI16_19 PADSEL17 0x511 EOUC[7]/ eMIOS_0 01: PCR[31]
10: PCR[41]
PADSEL18 0x512 Reserved —
PADSEL19 0x513 Reserved —
PADSEL20 0x514 Reserved —
00: PCR[45]
0
PADSEL21 0x515 EOUC[13] / eMIOS_ 10: PCRI0]
PSMI20_23 00: PCR[46]
0
PADSEL22 0x516 EOUC[14] / eMIOS_ 10: PCR[g]
00: PCR[70]
PADSEL23 0x517 EOUC[22] / eMIOS_0 01: PCR[72]
00: PCR[71]
PADSEL24 0x518 EOUC[23] / eMIOS_0 01: PCR[73]
00: PCR[60]
E 24]/ eMI
PSMI24_27 PADSEL25 0x519 OUC[]/e 0S_0 10: PCR[?S]
PADSEL26 Ox51A Reserved —
PADSEL27 0x51B Reserved —
KYI Doc ID 16886 Rev 6 350/868

System Integration Unit Lite (SIUL) RMO0045
Table 158. Peripheral input pin selection (continued)
PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping“)
PADSEL28 0x51C Reserved —
PADSEL29 0x51D Reserved —
PSMI28_31
PADSEL30 Ox51E Reserved —
PADSEL31 Ox51F Reserved —
PADSEL32 0x520 Reserved —
PADSEL33 0x521 Reserved —
PSMI32_35
PADSEL34 0x522 Reserved —
PADSEL35 0x523 Reserved —
PADSEL36 0x524 Reserved —
PADSEL37 0x525 Reserved —
00: PCRI0]
PSMI36_39 PADSEL 2 E MI
SEL38 0x526 0UCI[0]/ eMIOS_0 01: PCR[14]
00: PCR[1]
PADSEL39 0x527 EOUC[1]/ eMIOS_0
X [1]7eMIOS. 01: PCR[15]
PADSEL40 0x528 Reserved —
PADSEL41 0x529 Reserved —
PSMI40_43
PADSEL42 Ox52A Reserved —
PADSEL43 0x52B Reserved —
PADSEL44 0x52C Reserved —
PADSEL45 0x52D Reserved —
PSMI44_47
PADSEL46 Ox52E Reserved —
PADSEL47 Ox52F Reserved —
PADSEL48 0x530 Reserved —
PADSEL49 0x531 Reserved —
PSMI48_51
PADSEL50 0x532 Reserved —
PADSEL51 0x533 Reserved —
PADSEL52 0x534 Reserved —
PADSEL53 0x535 Reserved —
PSMI52_55
PADSEL54 0x536 Reserved —
PADSEL55 0x537 Reserved —
PADSEL56 0x538 Reserved —
PADSEL57 0x539 Reserved —
PSMI56_59 00: PCR[41]
PADSEL A LIN2RX / LINFI 2
SEL58 0x53 / ex _ 01: PCR[11]
PADSEL59 0x53B Reserved —
351/868 Doc ID 16886 Rev 6 IYI

RMO0045 System Integration Unit Lite (SIUL)
Table 158. Peripheral input pin selection (continued)
PSMI registers PADSEL fields SIUL address offset Function / Peripheral Mapping(")
PADSELG60 0x53C Reserved —
PSMI60_63@ PADSEL61 0x53D Reserved —
: PCR[1
PADSEL62 0x53E LINORX / LINFlex _0 g? PgR{s}

1. See the signal description chapter of this reference manual for correspondence between PCR and pinout
2. PADSELG63 is not implemented

GPIO Pad Data Output Registers (GPDO0_3-GPDO120_123)

These registers are used to set or clear GPIO pads. Each pad data out bit can be controlled

separately with a byte access.

Figure 160. Port GPIO Pad Data Output Register 0-3 (GPDOO0_3)

Offsets: 0x0600—-0x0678 (31 registers) Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rrolo|lo|oO|O|]O|O|Z&|]O|O0O]|O|O]|]O||O]|O]|=
8 8
w o o
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rrojlo|lo|oO|O]|]O|O|X|]O|O]|O|O]|]O|f|O]O]|%
8 8
w o o
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 159. GPDOO0_3 field descriptions
Field Description
Pad Data Out
This bit stores the data to be driven out on the external GPIO pad controlled by this register.
PDOIX] 0 Lo?ictlow value is driven on the corresponding GPIO pad when the pad is configured as an
outpu
1 Logic high value is driven on the corresponding GPIO pad when the pad is configured as an
output
Caution: Toggling several IOs at the same time can significantly increase the current in a pad group.

Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

GPIO Pad Data Input Registers (GPDI0_3—-GPDI120_123)

These registers are used to read the GPIO pad data with a byte access.

Doc ID 16886 Rev 6 352/868

System Integration Unit Lite (SIUL) RMO0045

Figure 161. Port GPIO Pad Data Input Register 0-3 (GPDI0_3)

Offsets: 0x0800—-0x0878 (31 registers) Access: User read
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
=) =
R| O 0 0 0 0 0 0 3 0 0 0 0 0 0 0 B
a a

w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16

24 25 26 27 28 29 30

w
g

17 18 19 20 21 22

N
w

o

o

o

o

o

o
PDI[2]

o

o

o

o

o

o

o
PDI[3]

Reset 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 160. GPDIO_3 field descriptions

Field

Description

PDI[x]

Pad Data In
[This bit stores the value of the external GPIO pad associated with this register.

0 Value of the data in signal for the corresponding GPIO pad is logic low
1 Value of the data in signal for the corresponding GPIO pad is logic high

Caution:

353/868

Parallel GPIO Pad Data Out Registers (PGPDOO0 - PGPDO3)

SPC560D30/40 devices ports are constructed such that they contain 16 GPIO pins, for
example PortA[0..15]. Parallel port registers for input (PGPDI) and output (PGPDO) are
provided to allow a complete port to be written or read in one operation, dependent on the
individual pad configuration.

Writing a parallel PGPDO register directly sets the associated GPDO register bits. There is
also a masked parallel port output register allowing the user to determine which pins within
a port are written.

While very convenient and fast, this approach does have implications regarding current
consumption for the device power segment containing the port GPIO pads. Toggling several
GPIO pins simultaneously can significantly increase current consumption.

Caution must be taken to avoid exceeding maximum current thresholds when toggling
multiple GPIO pins simultaneously. Please see datasheet.

Table 161 shows the locations and structure of the PGPDOx registers.

Doc ID 16886 Rev 6 KYI

RMO0045 System Integration Unit Lite (SIUL)
Table 161. PGPDOO — PGPDO3 register map
offset(V)| Register Field
RN EREEREEEEEEEEIENRN NN KRER
0x0C00 | PGPDOO Port A Port B
0x0C04 | PGPDO1 Port C Port D
0x0C08 | PGPDO2 Port E Port F
0x0COC | PGPDO3 Port G Port H

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 161, the PGPDOO register contains fields for Port A and Port B.

® Bit 0is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

® Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

Parallel GPIO Pad Data In Registers (PGPDIO — PGPDI3)

The SIU_PGPDI registers are similar in operation to the PGPDIO registers, described in the
previous section (Section Parallel GPIO Pad Data Out Registers (PGPDOO — PGPDO3))
but they are used to read port pins simultaneously.

Note: The port pins to be read need to be configured as inputs but even if a single pin within a port
has IBE set, then you can still read that pin using the parallel port register. However, this
does mean you need to be very careful.

Reads of PGPDI registers are equivalent to reading the corresponding GPDI registers but
significantly faster since as many as two ports can be read simultaneously with a single 32-
bit read operation.
Table 162 shows the locations and structure of the PGPDIx registers. Each 32-bit PGPDIx
register contains two 16-bit fields, each field containing the values for a separate port.
Table 162. PGPDIO — PGPDI3 register map
offset(!)| Register Field
EERNEERERENNEEEE RN EEREEIEENRN NN IR

0x0C40 | PGPDIO Port A Port B

0x0C44 | PGPDI1 Port C Port D

0x0C48 | PGPDI2 Port E Port F

0x0C4C | PGPDI3 Port G Port H

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

Doc ID 16886 Rev 6 354/868

System Integration Unit Lite (SIUL) RMO0045

For example in Table 162, the PGPDIO register contains fields for Port A and Port B.

® Bit 0is mapped to Port A[0], bit 1 is mapped to Port A[1] and so on, through bit 15,
which is mapped to Port A[15]

® Bit 16 is mapped to Port B[0], bit 17 is mapped to Port B[1] and so on, through bit 31,
which is mapped to Port B[15].

Masked Parallel GPIO Pad Data Out Register (MPGPDO0-MPGPDO7)

The MPGPDOx registers are similar in operation to the PGPDOXx ports described in
Section Parallel GPIO Pad Data Out Registers (PGPDOO — PGPDQO3), but with two
significant differences:

® The MPGPDOx registers support masked port-wide changes to the data out on the
pads of the respective port. Masking effectively allows selective bitwise writes to the full
16-bit port.

® Each 32-bit MPGPDOx register is associated to only one port.

Note: The MPGPDOXx registers may only be accessed with 32-bit writes. 8-bit or 16-bit writes will
not modify any bits in the register and will cause a transfer error response by the module.
Read accesses return ‘0'.
Table 163 shows the locations and structure of the MPGPDOx registers. Each 32-bit
MPGPDOx register contains two 16-bit fields (MASK, and MPPDO,). The MASK field is a
bitwise mask for its associated port. The MPPDOQOOQO field contains the data to be written to the
port.

Table 163. MPGPDOO - MPGPDO?7 register map
offset(')| Register Field
EERNEERENREEREENEEREEIENRNENERNERSRER

0x0C80 | MPGPDOO MASKO (Port A) MPPDOO (Port A)

0x0C84 | MPGPDO1 MASK1 (Port B) MPPDO1 (Port B)

0x0C88 | MPGPDO2 MASK2 (Port C) MPPDO2 (Port C)

0x0C8C | MPGPDO3 MASKS3 (Port D) MPPDO3 (Port D)

0x0C90 | MPGPDO4 MASK4 (Port E) MPPDO4 (Port E)

0x0C94 | MPGPDO5 MASKS5 (Port F) MPPDOS5 (Port F)

0x0C98 | MPGPDO6 MASKS6 (Port G) MPPDOS6 (Port G)

0x0C9C | MPGPDO7 MASK?7 (Port H) MPPDO?7 (Port H)

1. SIU base address is 0xC3F9_0000. To calculate register address add offset to base address

355/868

It is important to note the bit ordering of the ports in the parallel port registers. The most
significant bit of the parallel port register corresponds to the least significant pin in the port.

For example in Table 163, the MPGPDOO register contains field MASKO, which is the

bitwise mask for Port A and field MPPDQOO, which contains data to be written to Port A.

® MPGPDOQOI[0] is the mask bit for Port A[0], MPGPDOQOQ[1] is the mask bit for Port A[1]
and so on, through MPGPDOO[15], which is the mask bit for Port A[15]

® MPGPDOOQ[16] is the data bit mapped to Port A[0], MPGPDOO0[17] is mapped to Port
A[1] and so on, through MPGPDOOQ[31], which is mapped to Port A[15].

Doc ID 16886 Rev 6

574

RMO0045 System Integration Unit Lite (SIUL)
Table 164. MPGPDOO0..MPGPDO?7 field descriptions
Field Description
Mask Field
MASK Each bit corresponds to one data bit in the MPPDO,, register at the same bit location.
[15:0] 0 Associated bit value in the MPPDO,field is ignored
1 Associated bit value in the MPPDO, field is written
Masked Parallel Pad Data Out
Write the data register that stores the value to be driven on the pad in output mode.
MPPDO Accesses to this register location are coherent with accesses to the bitwise GPIO Pad Data
[15:0] X Output Registers (GPDO0_3-GPDO120_123).
' The x and bit index define which MPPDO register bit is equivalent to which PDO register bit
according to the following equation:
MPPDO[x][y] = PDO[(x*16)+y]

Caution: Toggling several I0s at the same time can significantly increase the current in a pad group.
Caution must be taken to avoid exceeding maximum current thresholds. Please see
datasheet.

Interrupt Filter Maximum Counter Registers (IFMC0-IFMC23)
These registers are used to configure the filter counter associated with each digital glitch
filter.

Note: For the pad transition to trigger an interrupt it must be steady for at least the filter period.

Figure 162. Interrupt Filter Maximum Counter Registers (IFMCO-IFMC23)
Offset: 0x1000-) (registers) Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 0
MAXCNTX
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Doc ID 16886 Rev 6 356/868

System Integration Unit Lite (SIUL) RMO0045

Table 165. IFMC field descriptions

Field Description

Maximum Interrupt Filter Counter setting

Filter Period = T(CK)*MAXCNTXx + n*T(CK)

Where (n can be —1 to 3)

MAXCNTx can be 0 to 15

IT(CK): Prescaled Filter Clock Period, which is FIRC clock prescaled to IFCP value
IT(FIRC): Basic Filter Clock Period: 62.5 ns (fgjgc = 16 MHz)

MAXCNTx

Interrupt Filter Clock Prescaler Register (IFCPR)

This register is used to configure a clock prescaler which is used to select the clock for all
digital filter counters in the SIUL.

Figure 163. Interrupt Filter Clock Prescaler Register (IFCPR)

Offsets:0x1080 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

IFCP

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 166. IFCPR field descriptions

Field Description

Interrupt Filter Clock Prescaler setting

Prescaled Filter Clock Period = T(FIRC) x (IFCP + 1)
T(FIRC) is the fast internal RC oscillator period.
IFCP can be 0 to 15.

IFCP

19.6 Functional description

19.6.1 Pad control

The SIUL controls the configuration and electrical characteristic of the device pads. It
provides a consistent interface for all pads, both on a by-port and a by-bit basis. The pad
configuration registers (PCRn, see Section Pad Configuration Registers (PCRO—-PCR122))

357/868 Doc ID 16886 Rev 6 KYI

RMO0045 System Integration Unit Lite (SIUL)

allow software control of the static electrical characteristics of external pins with a single
write. These are used to configure the following pad features:

Open drain output enable

Slew rate control

Pull control

Pad assignment

Control of analog path switches
Safe mode behavior configuration

19.6.2 General purpose input and output pads (GPIO)

The SIUL manages up to 123 GPIO pads organized as ports that can be accessed for data
reads and writes as 32, 16 or 8-bit(®).

Note: Ports are organized as groups of 16 GPIO pads, with the exception of Port J, which has 5. A
32-bit R/W operation accesses two ports simultaneously. A 16-bit operation accesses a full
port and an 8-bit access either the upper or lower byte of a port.

As shown in Figure 164, all port accesses are identical with each read or write being
performed only at a different location to access a different port width.

31 23 15 7 0

SIUL Base+ 0x0C00 | 32-bit Access (2 ports)

7 0 15 7 0

16-bit Access (full port) | Sllél;ol?:aosoﬂ | 16-bit Access (full port) |

15
SIUL Base+
0x0C02 |

7 0 7 0 7 0 7 0
SIUL Base+ 8-bit Access SIUL Base+ 8-bit Access SIUL Base+ 8-bit Access SIUL Base+ 8-bit Access
0x0C03 (half port) 0x0C02 (half port) 0x0C01 (half port) 0x0C00 (half port)

Figure 164. Data Port example arrangement showing configuration for different port width
accesses

The SIUL has separate data input (GPDIn_n, see Section GPIO Pad Data Input Registers
(GPDIO_3—-GPDI120_123)) and data output (GPDOn_n, see Section GPIO Pad Data
Output Registers (GPDO0_3-GPDO120_123)) registers for all pads, allowing the possibility
of reading back an input or output value of a pad directly. This supports the ability to validate
what is present on the pad rather than simply confirming the value that was written to the
data register by accessing the data input registers.

Data output registers allow an output pad to be driven high or low (with the option of push-
pull or open drain drive). Input registers are read-only and reflect the respective pad value.

When the pad is configured to use one of its alternate functions, the data input value reflects
the respective value of the pad. If a write operation is performed to the data output register
for a pad configured as an alternate function (non-GPIO), this write will not be reflected by

the pad value until reconfigured to GPIO.

p. There are exceptions. Some pads, e.g., precision analog pads, are input only.

K‘YI Doc ID 16886 Rev 6 358/868

System Integration Unit Lite (SIUL) RMO0045

The allocation of what input function is connected to the pin is defined by the PSMI registers
(PCRn, see Section Pad Selection for Multiplexed Inputs Registers (PSMI0_3-
PSMI60_63))”

19.6.3 External interrupts
The SIUL supports 24 external interrupts, EIRQ0-EIRQ23. In the signal description chapter
of this reference manual, mapping is shown for external interrupts to pads.
The SIUL supports threeinterrupt vectors to the interrupt controller. Each vector interrupt
has eight external interrupts combined together with the presence of flag generating an
interrupt for that vector if enabled. All of the external interrupt pads within a single group
have equal priority.
See Figure 165 for an overview of the external interrupt implementation.
Vectors.
53
e
e IRQ_23_16 IRQ_15_08 IRQ_07_00
=0
OR OR OR
| I 1N N N N S N N N N S N N I O |
Interrupt enable | IRE[23:0]) |
Glitch filter Prescaler EIF[23:16] EIF[15:8] EIF[7:0]
e iaing
Glitch filter Counter_n | Edge Detection |_ | IREE[23:0](‘) |
[TTT T T T T T I T T TTTTTT 1177 Fallin
IRQ Glitch Filter enable ILILILILILILILILILZZIEEILILILILILILILAILIL I IFEE[23:0]") |
Pads

359/868

Figure 165. External interrupt pad diagram
3. 20 interrupts in 100-pin LQFP; 11 interrupts in 64-pin LQFP.

Each interrupt can be enabled or disabled independently. This can be performed using the
IRER. A pad defined as an external interrupt can be configured to recognize interrupts with
an active rising edge, an active falling edge or both edges being active. A setting of having
both edge events disabled is reserved and should not be configured.

The active EIRQ edge is controlled through the configuration of the registers IREER and
IFEER.

Each external interrupt supports an individual flag which is held in the Interrupt Status Flag
Register (ISR). The bits in the ISR[EIF] field are cleared by writing a ‘1’ to them; this
prevents inadvertent overwriting of other flags in the register.

Doc ID 16886 Rev 6 IYI

RMO0045

System Integration Unit Lite (SIUL)

19.7

Pin muxing

For pin muxing, please see the signal description chapter of this reference manual.

Doc ID 16886 Rev 6 360/868

LIN Controller (LINFlex) RM0045

20 LIN Controller (LINFlex)

20.1 Introduction

The LINFlex (Local Interconnect Network Flexible) controller interfaces the LIN network and
supports the LIN protocol versions 1.3; 2.0 and 2.1; and J2602 in both Master and Slave
modes. LINFlex includes a LIN mode that provides additional features (compared to
standard UART) to ease LIN implementation, improve system robustness, minimize CPU
load and allow slave node resynchronization.

20.2 Main features

20.2.1 LIN mode features

Supports LIN protocol versions 1.3, 2.0, 2.1 and J2602
Master mode with autonomous message handling
Classic and enhanced checksum calculation and check
Single 8-byte buffer for transmission/reception
Extended frame mode for In-Application Programming (IAP) purposes
Wake-up event on dominant bit detection

True LIN field state machine

Advanced LIN error detection

Header, response and frame timeout

Slave mode

— Autonomous header handling

— Autonomous transmit/receive data handling

LIN automatic resynchronization, allowing operation with 16 MHz fast internal RC
oscillator as clock source

16 identifier filters for autonomous message handling in Slave mode

20.2.2 UART mode features

361/868

Full duplex communication

8- or 9-bit with parity

4-byte buffer for reception, 4-byte buffer for transmission
8-bit counter for timeout management

Doc ID 16886 Rev 6 KYI

RM0045 LIN Controller (LINFlex)
20.2.3 Features common to LIN and UART
® Fractional baud rate generator
® 3 operating modes for power saving and configuration registers lock:
— Initialization
— Normal
— Sleep
® 2 test modes:
— Loop Back
— Self Test
® Maskable interrupts
20.3 General description

The increasing number of communication peripherals embedded on microcontrollers, for
example CAN, LIN and SPI, requires more and more CPU resources for communication

management. Even a 32-bit microcontroller is overloaded if its peripherals do not provide
high-level features to autonomously handle the communication.

Even though the LIN protocol with a maximum baud rate of 20 Kbit/s is relatively slow, it still
generates a non-negligible load on the CPU if the LIN is implemented on a standard UART,
as usually the case.

To minimize the CPU load in Master mode, LINFlex handles the LIN messages
autonomously.

In Master mode, once the software has triggered the header transmission, LINFlex does not

request any software intervention until the next header transmission request in transmission

mode or until the checksum reception in reception mode.

To minimize the CPU load in Slave mode, LINFlex requires software intervention only to:

® Trigger transmission or reception or data discard depending on the identifier

® Write data into the buffer (transmission mode) or read data from the buffer (reception
mode) after checksum reception

If filter mode is activated for Slave mode, LINFlex requires software intervention only to write
data into the buffer (transmission mode) or read data from the buffer (reception mode)

The software uses the control, status and configuration registers to:

Configure LIN parameters (for example, baud rate or mode)

Request transmissions

Handle receptions

Manage interrupts

Configure LIN error and timeout detection

Process diagnostic information

The message buffer stores transmitted or received LIN frames.

Doc ID 16886 Rev 6 362/868

LIN Controller (LINFlex) RM0045

204

363/868

MESSAGE HANDLER

(0] ~— <
3 [)
2 MCU 3 3
5 Application c c
“‘;,‘ (0] (0]
< 3 3
LINFlex @ @
zZ pd =z
= Controller < <
LN LIN
Rx v Tx
LIN
Transceiver
A
LIN
v v v
LIN Bus
Figure 166. LIN topology network
REGISTER MODEL / APPLICATION INTERFACE
Message
Buffer
CONFIGURATION Interface
CONTROL STATUS
| LINcontrol | <> @
| LINstatus |
| Baudrate | SLAVE

Filter configuration

MASTER
MESSAGE HANDLER

LIN PROTOCOL HANDLER

1. Filter activation optional

Figure 167. LINFlex block diagram

Fractional baud rate generation

The baud rates for the receiver and transmitter are both set to the same value as
programmed in the Mantissa (LINIBRR) and Fraction (LINFBRR) registers.

Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Equation 2

fperiph_set_1 _clk

Tx/ Rx baud = (16 x LFDIV)

LFDIV is an unsigned fixed point number. The 12-bit mantissa is coded in the LINIBRR and
the fraction is coded in the LINFBRR.

The following examples show how to derive LFDIV from LINIBRR and LINFBRR register
values:

Example 4 Deriving LFDIV from LINIBRR and LINFBRR register values
If LINIBRR = 27d and LINFBRR = 12d, then

Mantissa (LFDIV) = 27d

Fraction (LFDIV) = 12/16 = 0.75d

Therefore LFDIV = 27.75d

Example 5 Programming LFDIV from LINIBRR and LINFBRR register values

To program LFDIV = 25.62d,

LINFBRR = 16 x 0.62 = 9.92, nearest real number 10d = OxA
LINIBRR = mantissa (25.620d) = 25d = 0x19

Note: The baud counters are updated with the new value of the baud registers after a write to
LINIBRR. Hence the baud register value must not be changed during a transaction. The
LINFBRR (containing the Fraction bits) must be programmed before the LINIBRR.
Note: LFDIV must be greater than or equal to 1.5d, i.e. LINIBRR = 1 and LINFBRR = 8. Therefore,
the maximum possible baudrate is fperiph_set_1_clk / 24.
Table 167. Error calculation for programmed baud rates
fperiph_set_1_c|k = 48 MHz fperiph_set_1_c|k =16 MHz
Value programmed in| % Error = Value programmed in % Error =
Baud the baud rate register | (Calculated — the baud rate register | (Calculated —
rate Desired) Desired)
Actual baud rate Actual baud rate
LINIBRR | LINFBRR / Desired LINIBRR | LINFBRR / Desired
baud rate baud rate
2400 | 2400.00 1250 0 0.000 2399.88 416 11 -0.005
9600 | 9600.00 312 8 0.000 9598.08 104 3 -0.02
10417 | 10416.67 287 16 -0.003 10416.7 95 16 -0.003
19200 | 19200.00 156 4 0.000 19207.7 52 1 0.04
57600 | 57623.05 52 1 0.040 57554 17 6 -0.08
115200 |{115107.91 26 1 -0.080 115108 8 11 -0.08
230400 {230769.23 13 0 0.160 231884 4 5 0.644
460800 (461538.46 6 8 0.160 457143 2 3 -0.794
921600 {923076.92 3 4 0.160 941176 1 1 2.124
'] Doc ID 16886 Rev 6 364/868

LIN Controller (LINFlex) RM0045

20.5

20.5.1

20.5.2

20.5.3

365/868

Operating modes

LINFlex has three main operating modes: Initialization, Normal and Sleep. After a hardware
reset, LINFlex is in Sleep mode to reduce power consumption. The software instructs
LINFlex to enter Initialization mode or Sleep mode by setting the INIT bit or SLEEP bit in the
LINCR1.

RESET

INITIALIZATION

LINRX DOMINANT,

Figure 168. LINFlex operating modes

Initialization mode

The software can be initialized while the hardware is in Initialization mode. To enter this
mode the software sets the INIT bit in the LINCR1.

To exit Initialization mode, the software clears the INIT bit.

While in Initialization mode, all message transfers to and from the LIN bus are stopped and
the status of the LIN bus output LINTX is recessive (high).

Entering Initialization mode does not change any of the configuration registers.

To initialize the LINFlex controller, the software selects the mode (LIN Master, LIN Slave or
UART), sets up the baud rate register and, if LIN Slave mode with filter activation is
selected, initializes the identifier list.

Normal mode

Once initilization is complete, software clears the INIT bit in the LINCR1 to put the hardware
into Normal mode.

Low power mode (Sleep)

To reduce power consumption, LINFlex has a low power mode called Sleep mode. To enter
Sleep mode, software sets the SLEEP bit in the LINCR1. In this mode, the LINFlex clock is

Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

20.6

20.6.1

20.6.2

stopped. Consequently, the LINFlex will not update the status bits but software can still
access the LINFlex registers.

LINFlex can be awakened (exit Sleep mode) either by software clearing the SLEEP bit or on
detection of LIN bus activity if automatic wake-up mode is enabled (AWUM bit is set).

On LIN bus activity detection, hardware automatically performs the wake-up sequence by
clearing the SLEEP bit if the AWUM bit in the LINCR1 is set. To exit from Sleep mode if the
AWUM bit is cleared, software clears the SLEEP bit when a wake-up event occurs.

Test modes

Two test modes are available to the user: Loop Back mode and Self Test mode. They can be
selected by the LBKM and SFTM bits in the LINCR1. These bits must be configured while
LINFlex is in Initialization mode. Once one of the two test modes has been selected, LINFlex
must be started in Normal mode.

Loop Back mode

LINFlex can be put in Loop Back mode by setting the LBKM bit in the LINCR. In Loop Back
mode, the LINFlex treats its own transmitted messages as received messages.

LINFlex

v
LINTX LINRX

Figure 169. LINFlex in loop back mode

This mode is provided for self test functions. To be independent of external events, the LIN
core ignores the LINRX signal. In this mode, the LINFlex performs an internal feedback from
its Tx output to its Rx input. The actual value of the LINRX input pin is disregarded by the
LINFlex. The transmitted messages can be monitored on the LINTX pin.

Self Test mode

LINFlex can be put in Self Test mode by setting the LBKM and SFTM bits in the LINCR. This
mode can be used for a “Hot Self Test”, meaning the LINFlex can be tested as in Loop Back
mode but without affecting a running LIN system connected to the LINTX and LINRX pins. In
this mode, the LINRX pin is disconnected from the LINFlex and the LINTX pin is held
recessive.

Doc ID 16886 Rev 6 366/868

LIN Controller (LINFlex)

RMO0045

20.7

20.7.1

Memory map and registers description

LINFlex

Tx Rx

|-

T

<+—1

LINTX LINRX

bz

Figure 170. LINFlex in self test mode

Memory map

See the “Memory map” chapter of this reference manual for the base addresses for the
LINFlex modules.

Table 168 shows the LINFlex memory map.

Table 168. LINFlex memory map

Address offset Register Location
0x0000 LIN control register 1 (LINCR1) on page 20-368
0x0004 LIN interrupt enable register (LINIER) on page 20-371
0x0008 LIN status register (LINSR) on page 20-373
0x000C LIN error status register (LINESR) on page 20-376
0x0010 UART mode control register (UARTCR) on page 20-377
0x0014 UART mode status register (UARTSR) on page 20-379
0x0018 LIN timeout control status register (LINTCSR) on page 20-381
0x001C LIN output compare register (LINOCR) on page 20-382
0x0020 LIN timeout control register (LINTOCR) on page 20-382
0x0024 LIN fractional baud rate register (LINFBRR) on page 20-383
0x0028 LIN integer baud rate register (LINIBRR) on page 20-384
0x002C LIN checksum field register (LINCFR) on page 20-385
0x0030 LIN control register 2 (LINCR2) on page 20-385
0x0034 Buffer identifier register (BIDR) on page 20-387
0x0038 Buffer data register LSB (BDRL)(") on page 20-388
0x003C Buffer data register MSB (BDRM)@) on page 20-388
0x0040 Identifier filter enable register (IFER) on page 20-389

367/868

Doc ID 16886 Rev 6

RMO0045

LIN Controller (LINFlex)

Table 168. LINFlex memory map (continued)

Address offset Register Location
0x0044 Identifier filter match index (IFMI) on page 20-390
0x0048 Identifier filter mode register (IFMR) on page 20-391
0x004C Identifier filter control register 0 (IFCRO0) on page 20-392
0x0050 Identifier filter control register 1 (IFCR1) on page 20-393
0x0054 Identifier filter control register 2 (IFCR2) on page 20-393
0x0058 Identifier filter control register 3 (IFCR3) on page 20-393
0x005C Identifier filter control register 4 (IFCR4) on page 20-393
0x0060 Identifier filter control register 5 (IFCR5) on page 20-393
0x0064 Identifier filter control register 6 (IFCR6) on page 20-393
0x0068 Identifier filter control register 7 (IFCR7) on page 20-393
0x006C Identifier filter control register 8 (IFCR8) on page 20-393
0x0070 Identifier filter control register 9 (IFCR9) on page 20-393
0x0074 Identifier filter control register 10 (IFCR10) on page 20-393
0x0078 Identifier filter control register 11 (IFCR11) on page 20-393
0x007C Identifier filter control register 12 (IFCR12) on page 20-393
0x0080 Identifier filter control register 13 (IFCR13) on page 20-393
0x0084 Identifier filter control register 14 (IFCR14) on page 20-393
0x0088 Identifier filter control register 15 (IFCR15) on page 20-393

0x008C—-0x000F |Reserved

1. LSB: Least significant byte
2. MSB: Most significant byte

LIN control register 1 (LINCR1)

Figure 171. LIN control register 1 (LINCR1)

Offset: 0x0000

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R
CCD | CFD |LASE | AWUM MBL BF |SFTM|LBKM|MME |SBDT|RBLM|SLEEP| INIT
w
Reset 0O 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
KYI Doc ID 16886 Rev 6 368/868

LIN Controller (LINFlex) RM0045

Table 169. LINCR1 field descriptions

Field

Description

CCD

Checksum calculation disable

This bit disables the checksum calculation (see Table 170).

0 Checksum calculation is done by hardware. When this bit is 0, the LINCFR is read-only.

1 Checksum calculation is disabled. When this bit is set the LINCFR is read/write. User can
program this register to send a software-calculated CRC (provided CFD is 0).

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

CFD

Checksum field disable
This bit disables the checksum field transmission (see Table 170).

0 Checksum field is sent after the required number of data bytes is sent.
1 No checksum field is sent.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LASE

LIN Slave Automatic Resynchronization Enable

0 Automatic resynchronization disable.

1 Automatic resynchronization enable.

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

AWUM

Automatic Wake-Up Mode
This bit controls the behavior of the LINFlex hardware during Sleep mode.

0 The Sleep mode is exited on software request by clearing the SLEEP bit of the LINCR.
1 The Sleep mode is exited automatically by hardware on LINRX dominant state detection. The
SLEEP bit of the LINCR is cleared by hardware whenever WUF bit in the LINSR is set.

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

MBL

LIN Master Break Length
This field indicates the Break length in Master mode (see Table 171).

Note: This field can be written in Initialization mode only. It is read-only in Normal or Sleep
mode.

BF

Bypass filter

0 No interrupt if identifier does not match any filter.
1 An RX interrupt is generated on identifier not matching any filter.
Note:

— If no filter is activated, this bit is reserved and always reads 1.
— This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SFTM

Self Test Mode
This bit controls the Self Test mode. For more details, see Section 20.6.2, Self Test mode.

0 Self Test mode disable.
1 Self Test mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

LBKM

Loop Back Mode
This bit controls the Loop Back mode. For more details see Section 20.6.1, Loop Back mode.

0 Loop Back mode disable.
1 Loop Back mode enable.
Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode

369/868

Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 169. LINCR1 field descriptions (continued)

Field

Description

MME

Master Mode Enable

0 Slave mode enable.

1 Master mode enable.

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SBDT

Slave Mode Break Detection Threshold

0 11-bit break.

1 10-bit break.

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

RBLM

Receive Buffer Locked Mode

0 Receive Buffer not locked on overrun. Once the Slave Receive Buffer is full the next incoming
message overwrites the previous one.

1 Receive Buffer locked against overrun. Once the Receive Buffer is full the next incoming
message is discarded.

Note: This bit can be written in Initialization mode only. It is read-only in Normal or Sleep mode.

SLEEP

Sleep Mode Request
This bit is set by software to request LINFlex to enter Sleep mode.

This bit is cleared by software to exit Sleep mode or by hardware if the AWUM bit in LINCR1 and
the WUF bit in LINSR are set (see Table 172).

INIT

Initialization Request

The software sets this bit to switch hardware into Initialization mode. If the SLEEP bit is reset,
LINFlex enters Normal mode when clearing the INIT bit (see Table 172).

Table 170. Checksum bits configuration

CFD

CCD LINCFR Checksum sent

1 Read/Write None

0 Read-only None

1 Read/Write Programmed in LINCFR by bits CF[0:7]

0 Read-only Hardware calculated

Table 171. LIN master break length selection

MBL Length
0000 10-bit
0001 11-bit
0010 12-bit
0011 13-bit
0100 14-bit
0101 15-bit
0110 16-bit
0111 17-bit
Doc ID 16886 Rev 6 370/868

LIN Controller (LINFlex) RM0045

Table 171. LIN master break length selection (continued)

MBL Length
1000 18-bit
1001 19-bit
1010 20-bit
1011 21-bit
1100 22-bit
1101 23-bit
1110 36-bit
1111 50-bit

Table 172. Operating mode selection

SLEEP INIT Operating mode
1 0 Sleep (reset value)
X 1 Initialization
0 0 Normal

LIN interrupt enable register (LINIER)

Figure 172. LIN interrupt enable register (LINIER)

Offset: 0x0004 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
SZIE |OCIE | BEIE | CEIE | HEIE FEIE |BOIE | LSIE |WUIE | DBFIE|DBEIE| DRIE | DTIE |HRIE

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 173. LINIER field descriptions

Field Description

Stuck at Zero Interrupt Enable

SZIE 0 No interrupt when SZF bit in LINESR or UARTSR is set.
1 Interrupt generated when SZF bit in LINESR or UARTSR is set.

371/868 Doc ID 16886 Rev 6 KYI

RM0045 LIN Controller (LINFlex)

Table 173. LINIER field descriptions (continued)

Field Description

Output Compare Interrupt Enable

OCIE 0 No interrupt when OCF bit in LINESR or UARTSR is set.
1 Interrupt generated when OCF bit in LINESR or UARTSR is set.

Bit Error Interrupt Enable

BEIE 0 No interrupt when BEF bit in LINESR is set.
1 Interrupt generated when BEF bit in LINESR is set.

Checksum Error Interrupt Enable

CEIE 0 No interrupt on Checksum error.
1 Interrupt generated when checksum error flag (CEF) in LINESR is set.

Header Error Interrupt Enable

HEIE 0 No interrupt on Break Delimiter error, Synch Field error, Identifier field error.
1 Interrupt generated on Break Delimiter error, Synch Field error, Identifier field error.

Framing Error Interrupt Enable

FEIE 0 No interrupt on Framing error.
1 Interrupt generated on Framing error.

Buffer Overrun Interrupt Enable

BOIE 0 No interrupt on Buffer overrun.
1 Interrupt generated on Buffer overrun.

LIN State Interrupt Enable

0 No interrupt on LIN state change.
LSIE 1 Interrupt generated on LIN state change.

This interrupt can be used for debugging purposes. It has no status flag but is reset when writing
‘1111’ into LINS[0:3] in the LINSR.

Wake-up Interrupt Enable

WUIE 0 No interrupt when WUF bit in LINSR or UARTSR is set.
1 Interrupt generated when WUF bit in LINSR or UARTSR is set.

Data Buffer Full Interrupt Enable

DBFIE 0 No interrupt when buffer data register is full.
1 Interrupt generated when data buffer register is full.

Data Buffer Empty Interrupt Enable

DBEIE 0 No interrupt when buffer data register is empty.
1 Interrupt generated when data buffer register is empty.

Data Reception Complete Interrupt Enable

DRIE 0 No interrupt when data reception is completed.
1 Interrupt generated when data received flag (DRF) in LINSR or UARTSR is set.

Data Transmitted Interrupt Enable

DTIE 0 No interrupt when data transmission is completed.
1 Interrupt generated when data transmitted flag (DTF) is set in LINSR or UARTSR.

Header Received Interrupt Enable

HRIE 0 No interrupt when a valid LIN header has been received.
1 Interrupt generated when a valid LIN header has been received, that is, HRF bit in LINSR is set.

KYI Doc ID 16886 Rev 6 372/868

LIN Controller (LINFlex) RM0045

LIN status register (LINSR)

Figure 173. LIN status register (LINSR)

Offset: 0x0008

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R LINS 0 0 |RMB| 0 |RBSY|RPS | WUF |DBFF|DBEF| DRF | DTF | HRF
w wic wic wic wic | wic | wic | wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
373/868 Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 174. LINSR field descriptions

Field

Description

LINS

LIN modes / normal mode states

0000: Sleep mode

LINFlex is in Sleep mode to save power consumption.
0001: Initialization mode

LINFlex is in Initialization mode.

Normal mode states

0010: Idle

This state is entered on several events:

— SLEEP bit and INIT bit in LINCR1 have been cleared by software,

— A falling edge has been received on RX pin and AWUM bit is set,

— The previous frame reception or transmission has been completed or aborted.

0011: Break

In Slave mode, a falling edge followed by a dominant state has been detected. Receiving Break.

Note: In Slave mode, in case of error new LIN state can be either Idle or Break depending on
last bit state. If last bit is dominant new LIN state is Break, otherwise Idle.

In Master mode, Break transmission ongoing.
0100: Break Delimiter

In Slave mode, a valid Break has been detected. See Section, LIN control register 1 (LINCR1)
for break length configuration (10-bit or 11-bit). Waiting for a rising edge.

In Master mode, Break transmission has been completed. Break Delimiter transmission is
ongoing.

0101: Synch Field

In Slave mode, a valid Break Delimiter has been detected (recessive state for at least one bit
time). Receiving Synch Field.

In Master mode, Synch Field transmission is ongoing.

0110: Identifier Field

In Slave mode, a valid Synch Field has been received. Receiving Identifier Field.

In Master mode, identifier transmission is ongoing.

0111: Header reception/transmission completed

In Slave mode, a valid header has been received and identifier field is available in the BIDR.
In Master mode, header transmission is completed.

1000: Data reception/transmission

Response reception/transmission is ongoing.

1001: Checksum

Data reception/transmission completed. Checksum reception/transmission ongoing.
In UART mode, only the following states are flagged by the LIN state bits:

— Init

— Sleep

— ldle

— Data transmission/reception

Doc ID 16886 Rev 6 374/868

LIN Controller (LINFlex) RM0045

Table 174. LINSR field descriptions (continued)

Field

Description

RMB

Release Message Buffer

0 Buffer is free.

1 Buffer ready to be read by software. This bit must be cleared by software after reading data
received in the buffer.

This bit is cleared by hardware in Initialization mode.

RBSY

Receiver Busy Flag

0 Receiveris idle

1 Reception ongoing

Note: In Slave mode, after header reception, if BIDR[DIR] = 0 and reception starts then this bit
is set. In this case, user cannot program LINCR2[DTRQ)] = 1.

RPS

LIN receive pin state
This bit reflects the current status of LINRX pin for diagnostic purposes.

WUF

Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
on the LINRX pin when:

— Slave is in Sleep mode
— Master is in Sleep mode or idle state

This bit must be cleared by software. It is reset by hardware in Initialization mode. An interrupt is
generated if WUIE bit in LINIER is set.

DBFF

Data Buffer Full Flag

This bit is set by hardware and indicates the buffer is full. It is set only when receiving extended
frames (DFL > 7).

This bit must be cleared by software.
It is reset by hardware in Initialization mode.

DBEF

Data Buffer Empty Flag

This bit is set by hardware and indicates the buffer is empty. It is set only when transmitting
extended frames (DFL > 7).

This bit must be cleared by software, once buffer has been filled again, in order to start
transmission.

This bit is reset by hardware in Initialization mode.

DRF

Data Reception Completed Flag

This bit is set by hardware and indicates the data reception is completed.
This bit must be cleared by software.

It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error or framing error.

DTF

Data Transmission Completed Flag

This bit is set by hardware and indicates the data transmission is completed.
This bit must be cleared by software.

It is reset by hardware in Initialization mode.

Note: This flag is not set in case of bit error if IOBE bit is reset.

375/868

Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 174. LINSR field descriptions (continued)

Field Description

Header Reception Flag

This bit is set by hardware and indicates a valid header reception is completed.

This bit must be cleared by software.

This bit is reset by hardware in Initialization mode and at end of completed or aborted frame.
HRF Note: lIffilters are enabled, this bit is set only when identifier software filtering is required, that is

to say:
— All filters are inactive and BF bit in LINCR1 is set
— No match in any filter and BF bit in LINCR1 is set
— TX filter match

LIN error status register (LINESR)

Offset: 0x000C

Figure 174. LIN error status register (LINESR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| SZF | OCF | BEF | CEF |SFEF|BDEF|IDPEF| FEF | BOF | 0 0 0 0 0 0 NF
W| wic | wic | wic | wic | wic | wic | wic | wic | wic wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 175. LINESR field descriptions
Field Description
Stuck at Zero Flag
SZF This bit is set by hardware when the bus is dominant for more than a 100-bit time. If the dominant
state continues, SZF flag is set again after 87-bit time. It is cleared by software.
Output Compare Flag
0 No output compare event occurred
OCF 1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR. If this bit
is set and IOT bit in LINTCSR is set, LINFlex moves to Idle state.
If LTOM bit in LINTCSR is set, then OCF is cleared by hardware in Initialization mode. If LTOM bit is
cleared, then OCF maintains its status whatever the mode is.
Bit Error Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a bit error. This
BEF error can occur during response field transmission (Slave and Master modes) or during header

transmission (in Master mode).
This bit is cleared by software.

Doc ID 16886 Rev 6 376/868

LIN Controller (LINFlex) RM0045

Table 175. LINESR field descriptions (continued)

Field Description
Checksum Error Flag
This bit is set by hardware and indicates that the received checksum does not match the hardware
CEF calculated checksum.
This bit is cleared by software.
Note: This bit is never set if CCD or CFD bit in LINCR1 is set.
Synch Field Error Flag
SFEF This bit is set by hardware and indicates that a Synch Field error occurred (inconsistent Synch
Field).
Break Delimiter Error Flag
BDEF This bit is set by hardware and indicates that the received Break Delimiter is too short (less than
one bit time).
Identifier Parity Error Flag
IDPEE This bit is set by hardware and indicates that a Identifier Parity error occurred.
Note: Header interrupt is triggered when SFEF or BDEF or IDPEF bit is set and HEIE bit in LINIER
is set.
Framing Error Flag
FEF This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit). This error can occur during reception of any data in the response field (Master or
Slave mode) or during reception of Synch Field or Identifier Field in Slave mode.
Buffer Overrun Flag
BOF This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared. If
RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new byte
overwrites the buffer. It can be cleared by software.
Noise Flag
NF This bit is set by hardware when noise is detected on a received character. This bit is cleared by
software.
UART mode control register (UARTCR)
Figure 175. UART mode control register (UARTCR)
Offset: 0x0010 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0
TDFL RDFL RXEN|TXEN| OP | PCE | WL |UART
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

377/868

Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 176. UARTCR field descriptions

Field

Description

TDFL

Transmitter Data Field length

This field sets the number of bytes to be transmitted in UART mode. It can be programmed
only when the UART bit is set. TDFL[0:1] = Transmit buffer size — 1.

00 Transmit buffer size = 1.

01 Transmit buffer size = 2.

10 Transmit buffer size = 3.

11 Transmit buffer size = 4.

RDFL

Receiver Data Field length

This field sets the number of bytes to be received in UART mode. It can be programmed only
when the UART bit is set. RDFL[0:1] = Receive buffer size — 1.

00 Receive buffer size = 1.

01 Receive buffer size = 2.

10 Receive buffer size = 3.

11 Receive buffer size = 4.

RXEN

Receiver Enable

0 Receiver disable.

1 Receiver enable.

This bit can be programmed only when the UART bit is set.

TXEN

Transmitter Enable

0 Transmitter disable.

1 Transmitter enable.

This bit can be programmed only when the UART bit is set.

Note: Transmission starts when this bit is set and when writing DATAO in the BDRL register.

OoP

Odd Parity

0 Sent parity is even.
1 Sent parity is odd.

This bit can be programmed in Initialization mode only when the UART bit is set.

PCE

Parity Control Enable

0 Parity transmit/check disable.

1 Parity transmit/check enable.

This bit can be programmed in Initialization mode only when the UART bit is set.

WL

Word Length in UART mode

0 7-bit data + parity bit.

1 8-bit data (or 9-bit if PCE is set).

This bit can be programmed in Initialization mode only when the UART bit is set.

UART

UART mode enable

0 LIN mode.
1 UART mode.
This bit can be programmed in Initialization mode only.

Doc ID 16886 Rev 6 378/868

LIN Controller (LINFlex) RM0045

UART mode status register (UARTSR)

Offset: 0x0014

Figure 176. UART mode status register (UARTSR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| SZF | OCF | PE3 | PE2 | PE1 | PEO |RMB | FEF | BOF | RPS |WUF| 0 0 |DRF|DTF | NF
W| wic | wic | wic | wic | wic | wic | wic | wic | wic | wic | wic wic | wic | wic
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 177. UARTSR field descriptions
Field Description
Stuck at Zero Flag
SZF This bit is set by hardware when the bus is dominant for more than a 100-bit time. It is cleared by
software.
OCF Qutput Compare Flag
OCF 0 No output compare event occurred.
1 The content of the counter has matched the content of OC1[0:7] or OC2[0:7] in LINOCR.
An interrupt is generated if the OCIE bit in LINIER register is set.
Parity Error Flag Rx3
This bit indicates if there is a parity error in the corresponding received byte (Rx3). See Section,
PE3 Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.
Parity Error Flag Rx2
This bit indicates if there is a parity error in the corresponding received byte (Rx2). See Section,
PE2 Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.
Parity Error Flag Rx1
This bit indicates if there is a parity error in the corresponding received byte (Rx1). See Section,
PE1 Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.
Parity Error Flag Rx0
This bit indicates if there is a parity error in the corresponding received byte (Rx0). See Section,
PEO Buffer in UART mode. No interrupt is generated if this error occurs.
0 No parity error.
1 Parity error.
379/868 Doc ID 16886 Rev 6 1S

RM0045 LIN Controller (LINFlex)
Table 177. UARTSR field descriptions (continued)
Field Description
Release Message Buffer
0 Buffer is free.
RMB 1 Buffer ready to be read by software. This bit must be cleared by software after reading data
received in the buffer.
This bit is cleared by hardware in Initialization mode.
Framing Error Flag
FEF This bit is set by hardware and indicates to the software that LINFlex has detected a framing error
(invalid stop bit).
Buffer Overrun Flag
BOF This bit is set by hardware when a new data byte is received and the buffer full flag is not cleared.
If RBLM in LINCR1 is set then the new byte received is discarded. If RBLM is reset then the new
byte overwrites buffer. it can be cleared by software.
RPS LIN Receive Pin State
This bit reflects the current status of LINRX pin for diagnostic purposes.
Wake-up Flag
This bit is set by hardware and indicates to the software that LINFlex has detected a falling edge
WUF on the LINRX pin in Sleep mode.
This bit must be cleared by software. It is reset by hardware in Initialization mode.
An interrupt i generated if WUIE bit in LINIER is set.
Data Reception Completed Flag
This bit is set by hardware and indicates the data reception is completed, that is, the number of
bytes programmed in RDFL[0:1] in UARTCR have been received.
DRF This bit must be cleared by software.
It is reset by hardware in Initialization mode.
An interrupt is generated if DRIE bit in LINIER is set.
Note: In UART mode, this flag is set in case of framing error, parity error or overrun.
Data Transmission Completed Flag
This bit is set by hardware and indicates the data transmission is completed, that is, the number of
DTE bytes programmed in TDFL[0:1] have been transmitted.
This bit must be cleared by software.
It is reset by hardware in Initialization mode.
An interrupt is generated if DTIE bit in LINIER is set.
Noise Flag
NF This bit is set by hardware when noise is detected on a received character. This bit is cleared by

software.

Doc ID 16886 Rev 6 380/868

LIN Controller (LINFlex) RM0045

LIN timeout control status register (LINTCSR)

Offset: 0x0018

Figure 177. LIN timeout control status register (LINTCSR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 CNT
LTOM| IOT |TOCE
w
Reset 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Table 178. LINTCSR field descriptions
Field Description
LIN timeout mode
0 LIN timeout mode (header, response and frame timeout detection).
LTOM
1 Output compare mode.
This bit can be set/cleared in Initialization mode only.
Idle on Timeout
oT 0 LIN state machine not reset to Idle on timeout event.
1 LIN state machine reset to Idle on timeout event.
This bit can be set/cleared in Initialization mode only.
Timeout counter enable
0 Timeout counter disable. OCF bit in LINESR or UARTSR is not set on an output compare event.
TOCE 1 Timeout counter enable. OCF bit is set if an output compare event occurs.
TOCE bit is configurable by software in Initialization mode. If LIN state is not Init and if timer is in
LIN timeout mode, then hardware takes control of TOCE bit.
ONT Counter Value
This field indicates the LIN timeout counter value.
381/868 Doc ID 16886 Rev 6 1S

RM0045 LIN Controller (LINFlex)

LIN output compare register (LINOCR)

Figure 178. LIN output compare register (LINOCR)

Offset: 0x001C Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R
oc2! oc1!
w
Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1. If LINTCSR[LTOM] = 1, this field is read-only.
Table 179. LINOCR field descriptions
Field Description
0GC2 Output compare 2 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.
ocH Output compare 1 value
These bits contain the value to be compared to the value of bits CNT[0:7] in LINTCSR.
LIN timeout control register (LINTOCR)
Figure 179. LIN timeout control register (LINTOCR)
Offset: 0x0020 Access: User read/write
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0
RTO HTO
w
Reset 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0

KYI Doc ID 16886 Rev 6

382/868

LIN Controller (LINFlex) RM0045

Table 180. LINTOCR field descriptions

Field Description

Response timeout value
RTO This field contains the response timeout duration (in bit time) for 1 byte.
The reset value is OXE = 14, corresponding to Tresponse_Maximum = 1-4 X TResponse_Nominal

Header timeout value

This field contains the header timeout duration (in bit time). This value does not include the
HTO Break and the Break Delimiter. The reset value is the 0x2C = 44, corresponding to
THeader Maximum. Programming LINSR[MME] = 1 changes the HTO value to 0x1C = 28.

This field can be written only in Slave mode.

LIN fractional baud rate register (LINFBRR)

Figure 180. LIN fractional baud rate register (LINFBRR)

Offset: 0x0024 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl O 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DIV_F

Table 181. LINFBRR field descriptions

Field Description

Fraction bits of LFDIV

The 4 fraction bits define the value of the fraction of the LINFlex divider (LFDIV).
Fraction (LFDIV) = Decimal value of DIV_F / 16.

This field can be written in Initialization mode only.

DIV_F

383/868 Doc ID 16886 Rev 6 KYI

RM0045 LIN Controller (LINFlex)

LIN integer baud rate register (LINIBRR)

Figure 181. LIN integer baud rate register (LINIBRR)

Offset: 0x0028 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl O 0 0
w

DIV_M

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 182. LINIBRR field descriptions

Field Description

LFDIV mantissa

DIV_M This field defines the LINFlex divider (LFDIV) mantissa value (see Table 183). This field can be
written in Initialization mode only.

Table 183. Integer baud rate selection

DIV_M[0:12] Mantissa
0x0000 LIN clock disabled
0x0001 1
Ox1FFE 8190
ox1FFF 8191

K‘YI Doc ID 16886 Rev 6 384/868

LIN Controller (LINFlex) RM0045

LIN checksum field register (LINCFR)

Figure 182. LIN checksum field register (LINCFR)

Offset: 0x002C Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Rl O 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 184. LINCFR field descriptions

Field Description

Checksum bits

CF When LINCR1[CCD] = 0, this field is read-only. When LINCR1[CCD] = 1, this field is read/write.
See Table 170.

LIN control register 2 (LINCR2)

Figure 183. LIN control register 2 (LINCR2)

Offset: 0x0030 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0
IOBE | IOPE
W WURQ DDRQ|DTRQ[ABRQ|HTRQ

Reset 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

385/868 Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 185. LINCR2 field descriptions

Field

Description

IOBE

Idle on Bit Error

0 Bit error does not reset LIN state machine.
1 Bit error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

IOPE

Idle on Identifier Parity Error

0 Identifier Parity error does not reset LIN state machine.
1 Identifier Parity error reset LIN state machine.

This bit can be set/cleared in Initialization mode only.

WURQ

Wake-up Generation Request

Setting this bit generates a wake-up pulse. It is reset by hardware when the wake-up character
has been transmitted. The character sent is copied from DATAO in BDRL buffer. Note that this bit
cannot be set in Sleep mode. Software has to exit Sleep mode before requesting a wake-up. Bit
error is not checked when transmitting the wake-up request.

DDRQ

Data Discard Request

Set by software to stop data reception if the frame does not concern the node. This bit is reset by
hardware once LINFlex has moved to idle state. In Slave mode, this bit can be set only when HRF
bit in LINSR is set and identifier did not match any filter.

DTRQ

Data Transmission Request

Set by software in Slave mode to request the transmission of the LIN Data field stored in the
Buffer data register. This bit can be set only when HRF bit in LINSR is set.

Cleared by hardware when the request has been completed or aborted or on an error condition.

In Master mode, this bit is set by hardware when BIDR[DIR] = 1 and header transmission is
completed.

ABRQ

Abort Request
Set by software to abort the current transmission.

Cleared by hardware when the transmission has been aborted. LINFlex aborts the transmission
at the end of the current bit.

This bit can also abort a wake-up request.
It can also be used in UART mode.

HTRQ

Header Transmission Request

Set by software to request the transmission of the LIN header.

Cleared by hardware when the request has been completed or aborted.
This bit has no effect in UART mode.

Doc ID 16886 Rev 6 386/868

LIN Controller (LINFlex) RM0045

Buffer identifier register (BIDR)

Figure 184. Buffer identifier register (BIDR)

Offset: 0x0034 Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R 0 0
DFL DIR | CCS ID

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 186. BIDR field descriptions

Field Description

Data Field Length
This field defines the number of data bytes in the response part of the frame.
DFL DFL = Number of data bytes — 1.

Normally, LIN uses only DFL[2:0] to manage frames with a maximum of 8 bytes of data. Identifier
filters are compatible with DFL[2:0] only. DFL[5:3] are provided to manage extended frames.

Direction
This bit controls the direction of the data field.

0 LINFlex receives the data and copies them in the BDR registers.
1 LINFlex transmits the data from the BDR registers.

DIR

Classic Checksum

This bit controls the type of checksum applied on the current message.

0 Enhanced Checksum covering Identifier and Data fields. This is compatible with LIN

ccs specification 2.0 and higher.

1 Classic Checksum covering Data fields only. This is compatible with LIN specification 1.3 and
earlier.

In LIN slave mode (MME bit cleared in LINCR1), this bit must be configured before the header
reception. If the slave has to manage frames with 2 types of checksum, filters must be configured.

Identifier
Identifier part of the identifier field without the identifier parity.

387/868 Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Buffer data register LSB (BDRL)

Offset: 0x0038

Figure 185. Buffer data register LSB (BDRL)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R
DATA3 DATA2
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R
DATA1 DATAO
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 187. BDRL field descriptions
Field Description
Data Byte 3
DATA
8 Data byte 3 of the data field.
Data Byte 2
DATA2
Data byte 2 of the data field.
Data Byte 1
DATA1
Data byte 1 of the data field.
Data Byte 0
DATAOQ
Data byte 0 of the data field.

Buffer data register MSB (BDRM)

Offset: 0x003C

Figure 186. Buffer data register MSB (BDRM)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
R
DATA7 DATA6
W
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R
DATA5 DATA4
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

574

Doc ID 16886 Rev 6

388/868

LIN Controller (LINFlex)

RMO0045

Table 188. BDRM field descriptions

Field Description
DATA7 B::: E;Itt: 770f the data field.
DATAG B::: E;Itt: : of the data field.
DATAS B::: E;Itt: 55 of the data field.
DATA4 B::: E;Itt: : of the data field.

Identifier filter enable register (IFER)

Offset: 0x0040

Figure 187. Identifier filter enable register (IFER)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rl O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Rl O 0 0 0 0 0 0 0
FACT
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 189. IFER field descriptions
Field Description
Filter activation (see Table 190)
FACT 0 Filters2nand 2n + 1 are deactivated.
1 Filters 2nand 2n + 1 are activated.
This field can be set/cleared in Initialization mode only.
Table 190. IFER[FACT] configuration
Bit Value Result
0 Filters 0 and 1 are deactivated.
FACTIO]
1 Filters 0 and 1 are activated.
0 Filters 2 and 3 are deactivated.
FACTI[1]
1 Filters 2 and 3 are activated.
389/868 Doc ID 16886 Rev 6 KYI

RMO0045

LIN Controller (LINFlex)

Table 190. IFER[FACT] configuration (continued)

Bit Value Result

0 Filters 4 and 5 are deactivated.
FACTI[2]

1 Filters 4 and 5 are activated.

0 Filters 6 and 7 are deactivated.
FACTI[3]

1 Filters 6 and 7 are activated.

0 Filters 8 and 9 are deactivated.
FACTI[4]

1 Filters 8 and 9 are activated.

0 Filters 10 and 11 are deactivated.
FACTI[5]

1 Filters 10 and 11 are activated.

0 Filters 12 and 13 are deactivated.
FACTI[6]

1 Filters 12 and 13 are activated.

0 Filters 14 and 15 are deactivated.
FACTI[7]

1 Filters 14 and 15 are activated.

Identifier filter match index (IFMI)

Address: Base + 0x0044

Figure 188. Identifier filter match index (IFMI)

Access: User read-only

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0 0 0 0 IFMI[0:4]
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 191. IFMI field descriptions
Field Description
0:26 Reserved

Filter match index
IFMI[0:4] This register contains the index corresponding to the received identifier. It can be used to directly

27:31 write or read the data in SRAM (see Section , Slave mode for more details).

When no filter matches, IFMI[0:4] = 0. When Filter nis matching, IFMI[0:4] =n+ 1.

Doc ID 16886 Rev 6

390/868

LIN Controller (LINFlex)

RMO0045

Identifier filter mode register (IFMR)

Offset: 0x0048

Figure 189. Identifier filter mode register (IFMR)

Access: User read/write

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R| O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
R| O 0 0 0 0 0 0 0
IFM
w
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Table 192. IFMR field descriptions
Field Description
Filter mode (see Table 193).
IFM 0 Filters 2nand 2n + 1 are in identifier list mode.
1 Filters 2nand 2n + 1 are in mask mode (filter 2n + 1 is the mask for the filter 2n).
Table 193. IFMR[IFM] configuration
Bit | Value Result
0 F